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Abstract—3D models (or assets) that are present in many of modern software applications are first modeled by graphic designers
using dedicated computer graphic tools and then integrated into such software applications or apps by software developers. This
simple workflow/procedure requires developers to have a basic grounding in computer graphics, since 3D engines, libraries and
third-party software are needed for this kind of integrations. Oftentimes, 3D designers are also required to customize or produce
versions of a 3D model and thus, they must re-model all the assets before they are returned back to the developers for integration into
the applications. This procedure also occurs whenever a modification or customization is requested. One possible significant
improvement to this traditional, poorly automated workflow is to use services-oriented technology and features servitization to carry out
the customization of 3D assets on-demand. In this paper, we introduce pS3D, an open-source microservices-based platform designed
to support features relating to the customization of 3D models. uS3D not only enables 3D assets to be customized without the need for
computer graphic tools or designers, but also allows 3D models to be visualized through web technologies (e.g. HTML, Javascript and
web component to visualize and interact with 3D models), thereby avoiding the development of computer graphics libraries or
components in final software products. The paper describes the elements that uS3D comprises, explains how it works and presents a
series of load tests to compare the performance (time consumption, CPU and memory utilization) of uS3D when implemented and
deployed as a microservices platform against a monolithic-based implementation, showing similar results with a low number of users
(and requests) but reducing, on average, 64.32% the response time in the microservice-based implementation for a large number of
users; reducing CPU utilization on microservice-based implementation and remaining the memory usage more or less constant in both

implementations.

Index Terms—3D models, graphics, services, microservices, customization, ps3d, architectures.

1 INTRODUCTION

3D models play a pivotal role in various industries and
fields due to their ability to provide highly realistic visual
representations, enhance user experiences [1]], [2], improve
communication and understanding, enable simulations and
training, support virtual and augmented reality experiences,
drive marketing and sales efforts, etc. Their versatility and
impact make 3D models indispensable tools in today’s digi-
tal age, enabling innovation, improved communication, and
breakthrough discoveries across numerous domains [3], [4].

Customization capabilities are relevant in these applica-
tions as users frequently seek to personalize the objects they
interact with and this ability to customize enhances user
engagement and satisfaction [5]. However, it is impractical
to expect designers to create or anticipate every possible
combination of customization options and preload them
in applications. As the number of customization options
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increases, the task becomes exponentially challenging. For
instance, let us consider a 3D object that can be painted in
four different colors and animated in five different ways.
This would require producing 20 unique 3D models (4
colors x 5 animations). As a result, this approach becomes
unfeasible and impractical.

The integration of 3D models and the development of
3D customization functionalities in software applications
require a knowledge base that goes beyond traditional
programming skills. It demands a deep understanding of
computer graphics, and the underlying principles of three-
dimensional representations [6]. For instance, a developer
aiming to incorporate a 3D model viewer in a web appli-
cation would need to utilize WebGL or Three js, along with
their APIs and libraries, to handle interaction. Additionally,
they would need to employ techniques such as texture
mapping, lighting, and shading to achieve realistic visual
effects. Furthermore, knowledge of 3D file formats like OB]
or FBX along with parsing algorithms, would be necessary
for loading and manipulating the 3D models [7].

Furthermore, it is important to note that the specific
technologies and concepts required may vary depending
on the target platform (e.g., web, desktop, mobile) and the
chosen 3D graphics library or framework being used in the
software development process [8], [9].

Nonetheless, developers can overcome the steep learn-
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ing curve associated with mastering various graphics tech-
nologies and frameworks by providing them with standard-
ized and simplified approaches to 3D model integration.
Servitization of functionalities and their encapsulation be-
hind accessible API's, particularly web services, has proven
to be a successful approach in many software application
domains in the past, but still underexplored when it comes
to 3D manipulation [10].

The design and encapsulation of functionalities, fol-
lowing the SOA (Service-Oriented Architecture) approach,
would not only simplify the manipulation of 3D models
through platform-independent technologies and standards.
In modern deployments, it could also leverage the power of
microservices and containerization, specifically using tools
like Docker and Kubernetes, to unlock numerous benefits.

By adopting a microservices architecture, the integration
of 3D models into software applications becomes highly
modular and scalable. Each microservice can be dedicated to
a specific aspect of 3D model processing, such as animation
or physics simulation, enabling easier development, testing,
and maintenance of individual components [11]]. This de-
coupling of functionalities allows for independent scaling,
deployment, and updates, resulting in enhanced flexibility
and faster time-to-market.

Containerization, facilitated by Docker, plays a crucial
role in efficiently deploying and managing microservices.
Containers provide a lightweight and consistent runtime
environment that encapsulates the required dependencies,
ensuring a seamless deployment process across various
platforms. Developers can package each microservice, along
with its dependencies, into self-contained units, ensuring
portability, scalability, and easy replication across different
environments [12].

To further enhance the management of microservices,
Kubernetes, an orchestration platform for containerized ap-
plications, automates the deployment, scaling, and load
balancing of containers. It ensures high availability and
efficient resource utilization. Kubernetes also offers features
like self-healing, rolling updates, and service discovery,
enabling the seamless integration of microservices into a
cohesive system.

This paper presents uS3D, a microservices-based plat-
form devised to support tasks relating to the manipulation
of 3D models (e.g., customization of parts of 3D models,
texture mapping and animations) on the fly without re-
quiring to develop complex 3D manipulation libraries or
embedding heavy 3D engines in software applications as
well as to know how to manipulate 3D objects using such
engines.

uS3D comprises three core elements: a microservices plat-
form, which is a set of microservices [13] supported by
Minikube (single-cluster version of Kubernetes) and Docker;
a wrapper, which provides a high-level interface for inter-
action with an independent computer graphic engine; and
the 3D model fingerprint, which is a cache-based system to
enhance performance in terms of storage and response time
to generate customized 3D models on demand. It has also
been implemented a monolithic version of #S3D in order
to compare both implementations (i.e., microservice-based
and monolithic), in terms of performance by conducting a
number of load and stress tests.

The main contributions of this work are:

¢ To enable the customization of 3D models, eliminat-
ing the need for a 3D designer once the models are
generated.

e it is a ready-to-use platform that allows develop-
ers of any background, even without technological
expertise on 3D assets or engines, to easily invoke
functionalities for customizing 3D models.

o while the integration and customization of mod-
els require specific technology depending on the
platform, our proposal (named uS3D), is platform-
agnostic.

o there are two implementations available, monolithic
and microservices-based, that can be used depending
on each project features.

e acomparison between both implementations to help
determine the most suitable one in terms of perfor-
mance, CPU and memory average use is provided.

e uS3D is currently available as an open-source plat-
form so that all the source code relating to both im-
plementations, the datasets used in the load-testing
and performance stage and a video demonstration
of uS3D working can be found in the repository
described in the Supplementary Materials section.

The remainder of the paper is structured as follows:
Section[2] presents related work and details other approaches
that improve the classical integration approach; Section
describes pS3D and explains its three core elements
(i.e. microservices, wrapper and cache-based system - 3D
fingerprint-); Section [ describe the workflow of our pro-
posal and an illustrative example. For the evaluation of
our proposal, Section |5 describes the Methods and Section

illustrates the results and draw the conclusions. Finally,
Section |7| discusses the proposal and Section [8| outlines our
conclusions and future work.

2 RELATED WORK

In conventional practices, designers rely on specialized soft-
ware to create 3D assets, which are subsequently integrated
into applications by developers [15], [19], [26]. Improve-
ments have been made in recent years to enhance this
approach by focusing on the release of custom software
to support the modeling or creation of 3D assets. Such
software solutions usually focus on a specific application
domain, such as building construction and creating char-
acters, among others [15]. Additional software has been
developed as add-ons or plugins for 3D computer graphics
tools, such as MB-LAIf}and AVATAR, a Blender add-on that
enables fast creation of 3D human models [14].

The purpose of this specialized software is to empower
graphic designers with the ability to create 3D models using
a lower level of expertise compared to other 3D tools like
Blender, 3D Studio Max and Maya. However, the integration
process for developers remains the same, where the graphic
designer sends the 3D model (which may comprise one or
several files) to the developer who then determines how
to integrate it into the application software. Additionally,

1. https:/ /mb-lab-community.github.io/MB-Lab.github.io/
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TABLE 1: Comparison of the most relevant works for 3D customization

Category Project Any 3D 3D 3D Technology Fully cus- Additional Knowledge
model Modeling Knowledge tomization | Required
Knowledge (Integration)
AVATAR [14] No Yes Yes Yes Blender Plugin
?l“]o)ol Sreppie MakeHuman [15] No Yes Yes Yes No
MB-LAB (Footnote No Yes Yes Yes Blender addon
. MICC [16] Yes Yes Yes Yes Ontologies,  Semantic
Semantic- Web
based - - - - -
approaches 3D with semantic queries [17] Yes Yes Yes No Qntologles, 3D model-
ing tool
Novel SGToolKit 18| No No Yes No Custom software
50“"‘{“‘3 Web3D Customization [19], [20], No No No No Custom software,
solutions [21] Web programming
AvatarClip [22] No No Yes No Skinned  Multi-Person
Linear Model
Rodin [23] Yes No Yes No Diffusion models
Use of Arti- -
ficial Intelli- | AlteredAvatar [24] No No Yes No Contrastive Language-
gence Image Pre-Training
(CLIP) neural network
Style3DAvatar [25] No No Yes No Generative Adversarial
Networks (GAN)

the graphic designer is responsible for customizing the 3D
model according to end-user needs by means of a separate,
offline procedure for making any necessary modifications
and for sending the 3D asset back to the developer. This
usually requires the software to be re-built and forces end-
users to update to a new version each time a change in the
3D asset is introduced.

Other improvements to enhance this classical approach
have come from computer science, where several projects
and solutions based on IT technologies have been pro-
posed in order to simplify the integration, generation and
management of 3D models. These projects and research
can be classified into three different categories: semantic-
based approaches to represent or customize 3D content, novel
software-based solutions to simplify the customization of 3D
content, and Al-based solutions to generate customized 3D
models from text or images.

In the first category, semantic-based approaches gener-
ally use ontologies. For instance, the project presented by
the authors in their article [16] introduces MICC (Method
of Inference-based 3D Content Creation), a method to create
3D content using OWL ontologies while hiding technical
details which are specific to 3D graphics through a map-
ping between domain-specific concepts and graphic specific
contents.

In the same category, other projects go one step fur-
ther by not merely representing 3D contents through non-
traditional 3D formats, but also by introducing the possi-
bility of customization. A prominent example is proposed
by Flotynski et al. [17], who propose that 3D contents be
customized through semantic queries represented in XML
(Extensible Markup Language).

In the second category of novel software applications,
a number of projects have recently appeared to simplify
the use and integration of 3D models through handy ad-
hoc applications. For instance, SGToolKit [18] is a toolkit

for customizing gesturing for human-like 3D models, i.e.
avatars. The application was developed so as to enable
the customization of the 3D model animations (rather than
parts of the model or textures) to simulate humanoid ges-
tures from the voice commands of a human interlocutor.
SGToolKit uses text-to-speech techniques together with deep
neural networks in order to classify the body posture to be
visualized in the 3D character.

In this same category, a current trend is the use of web
technologies to handle or customize 3D content in order to
reduce as much as possible the knowledge for manipulating
3D assets. For instance, Piao et al. [19] and Liu et al. [20]
present solutions supported by HTML and JavaScript as
technologies for visualizing and customizing 3D content.
A web-based solution to manage 3D content is presented
by Nicolaescu et al., [21] who describes an approach to
support real-time collaboration to annotate 3D objects on
the web through a microservice architecture. In this case,
the customization primarily focuses on the metadata of the
3D object for medical purposes.

Other two illustrative examples in this category are
described in [27] and [28]], presenting web services-based
tools to generate customized 3D models related to genomics
and protein structures.

Lastly, and being the third category and the most in-
novative one, other projects primarily driven by major
companies such as Meta® and Microsoft® make use of Al-
based technologies to generate customized 3D models. Most
prominent proposal is Rodin, a generative model for custom
3D avatars through neural networks [23]]. Rodin enables
the customization of 3D avatars from images or text using
Blender pipeline along with an Al-based model, trained
with 100K 3D avatars. Some other renowned projects ori-
ented to 3D generative models are Altered Avatar, AvatarClip
and StyleAvatar3D [22], [24], [25].

The three presented categories (semantic-based, novel
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software applications and Al-based solutions) significantly
improve the customization and integration of 3D mod-
els, as well as enhance and simplify the tasks performed
by graphic designers and developers. However, these ap-
proaches present several drawbacks:

e Solutions aimed at simplifying the creation of 3D
models by graphic designers reduce total project
times and also the response time to provide the
required customized 3D models, but this does not
significantly affect developers endeavours, since they
still have to learn 3D-management technologies.

e Semantic-oriented approaches use ontologies, and
this also requires an in-depth knowledge of concep-
tual modeling languages and related APIs to create,
query and delete ontological representations.

o The other solutions based on dedicated applications
for creating or customizing 3D models are very lim-
ited, because they are usually ad-hoc applications
which are created for a specific purpose.

e Manual intervention by developers is required when
using these ad-hoc applications, which is part of the
integration time and, therefore, increases the time
required for the development process.

e Web-based approaches for customizing 3D models
also require considerable knowledge about graphic
design, because developers must learn about 3D file
formats and how to handle the parts or components
of each 3D asset.

o Theintegration of 3D models by means of web-based
technologies still requires a great deal of coding and
learning about dedicated 3D libraries.

o The Al-based approaches are still in their infancy, so
these solutions are far from being used by the general
public or developers, requiring knowledge of differ-
ent machine learning techniques such as diffusion
models or Generative Adversarial Networks (GAN).

e The Al-generated 3D assets are created according to
the trained model, so fully customization of assets
(i.e. personal textures, animations or assemblies) is
not supported.

Table [I| summarizes the most relevant works in the field
and the characteristics of each one in terms of 3D model
generation.

In this paper, we present #S3D, a microservices-based
platform to ease the access and invocation of customization
functionalities for 3D models. Unlike other solutions, uS3D
enables developers to address the integration of 3D models
into software applications without any prior knowledge of
3D computer graphics and tools. The remainder of the paper
describes uS3D in detail.

3 uS3D: SERVICES AND MICROSERVICES FOR
MANAGING 3D ASSETS

pS3D has been designed to streamline the integration pro-
cess of 3D objects for developers, eliminating the necessity
of relying on specialized 3D computer tools. Moreover, it
eliminates the tedious task of making post-design changes
for 3D designers once the models have been fully designed.
uS3D comprises three core elements (see Figure [):

1) a microservices platform,

2) a wrapper to interact with a graphic engine,

3) and the 3D model fingerprint, which is a cache-based
system to improve performance in terms of storage
and response time.

These three core elements are described in the remainder
of this section.
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Fig. 1: nS3D-based core elements

3.1 Microservices Platform

uS3D offers eight microservices, each dedicated to provid-
ing one of the following functionalities related to 3D asset
customization:

o to list the set of available 3D models in a series of 3D
files

o tolist the set of model animations

o to list the set of a 3D model parts

o to hide (or make not visible) a series of 3D model
parts

o to show (i.e.,, make it visible) a series of 3D model
parts

e tomap a color to a series of parts

e to map an image texture to a series of parts

e and, finally, to obtain the customized generated 3D
model.

The orchestration of these services enables developers
to include functionalities for the customization of the three
main parts (assemblies/skeleton, textures, animations) of
3D models by servitizing a computer graphic engine. The
API of these microservices is described using the OpenAPI
3.0 speciﬁcatiorﬂ and a guideline file can be found in the
repository referenced in the Supplementary Materials section.

The use of these services for customizing 3D models
implies that at some point, a computer graphic software
tool is necessary in order to process requests from these
microservices (e.g., to hide certain assemblies or list the ani-
mations of a model) and modify a stored 3D model (in a file
or set of files). This interaction between the microservices
and the graphic engine is conducted through the second
component of the uS3D platform, that is, the wrapper.

3.2 Wrapper

A custom wrapper has been developed to bridge the gap
between the microservices and the 3D computer graphic

2. https:/ /www.openapis.org/
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engine. This wrapper implements the low-level code required
to interact with the 3D engine interface to provide the
functionalities relating to customizations of the 3D model.
Although many different computer graphic tools are avail-
able for 3D modeling, we opted for Blender@ﬂ not only
because it is free (3DS Max® and AutoDesk Maya® require
paid licenses), open source and multiplatform (which makes
it accessible to a wide range of users), but mainly because
Blender provides a high level API, based on Python, to
access its processing engine.

When a microservice is invoked by the end-user soft-
ware application, a new instance of Blender is launched.
Several parameters are used to specify the operation to be
conducted (e.g., hide/show certain parts, change a texture,
etc.), the name of the model, and the payload of the request
(e.g., the color of the new texture, the name of the assem-
blies). The wrapper is executed by the Blender engine and
performs the operation(s) on the model using the payload,
thereby generating a new customized model.

Although the wrapper returns the path of the gener-
ated model to the microservice, the microservice returns
an HTML fragment to the end-user in order to display
the custom 3D model online. This allows any application
to visualize the 3D model efficiently without the need for
additional software because most current platforms and
technologies support HTML code embedding.

The wrapper also supports the main 3D file formats
compatible with Blender, ie., Blender native files, FBX
(FilmBoX), GLB/GLTF (Graphics Language Transmission
Format) and COLLADA. This significantly improves the in-
tegration of uS3D and enables 3D models to be customized
in the most common 3D file formats. Furthermore, in order
to ensure the integration of any type of engine, all cus-
tomized 3D models are exported and released in GLB/GLTF
format, which is basically a description of the 3D asset
using standard notation and which is supported by web
technology (HTMLS5, JavaScript and third-party libraries).

3.3 3D Model Fingerprint

No matter how large they are, 3D assets have a limited
number of animations, assemblies (or complements), and
set of textures. Every possible permutation or combina-
tion of these elements would generate a high number of
customized 3D models (for example, a model with 25 as-
semblies/complements, one possible texture for each one
and 10 animations could result in up to 25x25x10=6250
possible customized models). However, it is not uncommon,
especially with simple 3D models, for several users to select
the same customizations for the same 3D model, which may
result in duplicating unnecessarily thestorage space for 3D
models.

uS3D therefore includes a cache-based system of 3D
model fingerprints, which represents a self-contained descrip-
tion of the 3D model together with any customization that
has been requested. Rather than containing the 3D asset,
the 3D model fingerprint contains a light-weight description
file that includes the name of the 3D asset, the selected
parts and texture values of each customized complement,
the selected animation, and the path to the final generated

3. https://www.blender.org/

5

3D custom asset. In this way, if the user requests a specific
customized model, each microservice checks whether the
requested features for a model match any 3D model finger-
print already generated and stored. If there is a 3D model
fingerprint match, the HTML code with the embedded 3D
asset is returned to the end-user, thereby avoiding running
a new Blender instance and the different tasks carried out
by the wrapper already described. This not only reduces
the response time perceived by the user, but it also avoids
the generation of all possible 3D assets at once in certain
scenarios or applications.

3.4 uS3D: Design and Development

The uS3D platform has been designed to provide features
by means of microservices which can be accessed by de-
velopers, designers and anyone who may be interested in
incorporating them into their software. The #S3D microser-
vices implementation architecture is displayed in Figure

This implementation has been developed using two core
technologies: Kubernetesﬂ and Dockelﬂ The different ser-
vices have been organized around business capabilities relat-
ing to assemblies, textures and animations. Each business capa-
bility includes an independently deployed system running
on Docker, which includes the different web services that
represent the various features. Each business container is
deployed into a "POD” (i.e., the smallest deployable unit of
computing that you can create and manage in Kubernetes,
and which encapsulates and manages multiple containers)
and this is replicated n-times to provide scalability. In this
implementation, each business container has been replicated
three times. Each one is a separate computing unit and can
accept incoming requests independently. A set of replicas of
a specific POD is called a service.

The eight microservices introduced in subsection 3.1
have been grouped and deployed through five Kubernetes
services, namely: assemblies, animations, textures, utils and
Blender. Each Kubernetes service comprises three PODs,
each running a Docker image with an independent server
to access the microservices located in the POD, and which
also serve functionalites other than those related to 3D
models manipulation. Likewise, each Kubernetes service
has an endpoint (e.g., /assemblies, /animations, /textures, /utils,
/blender) and a load balancer that determines where to
forward requests among the different PODs available. The
load balancer used is Metulll‘:ﬂ Furthermore, at the top of
the architecture (above all the load balancers), there is a
light server deployed that acts as a shared access point
with two main goals: the first is to distribute the requests
using an additional load balancer, and the second is to
forward the requests to the proper entry point. Each ser-
vice (i.e., a set of a POD’s replicas) represents an inde-
pendent deployment supported by Docker and accessed
through a Flask server. Although each server provides an
internal IP address, in Kubernetes access between services
is through the service name (@WS3D-Assemblies, nWS3D-
Animations, etc). In this way, when an end-user application
requests something relating to assemblies (/assemblies), the

4. https:/ /kubernetes.io/
5. https:/ /www.docker.com/
6. https:/ /metallb.universe.tf
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microservices implemented in the pfWS3D-Assemblies ser-
vice are invoked. This forwarding between the request (e.g.,
http:/fws3d.info/assemblies) and the service where the PODs
with the microservices are running (uWS3D-Assemblies) is
performed through the so-called ingress, an API object that
manages external accesses to the services in a cluster.

Besides Kubernetes services, there is also a sixth con-
tainer with a database management system (in our case, it
is MongoDB) to manage 3D models fingerprints and also a
persistent volume mapped to a directory inside the running
Minikube instance to store the 3D model files.

This microservices architecture greatly enhances scala-
bility since a large number of requests (or consumption
services) are not managed by the same processing unit
and endpoint (as in a monolithic implementation). Load
balancers distribute requests to the different PODs which
are running in independent processing units, and the ingress
forwards each external access to the corresponding mi-
croservice. Although a processing unit could also be a
dedicated computer, this current implementation has been

developed using Minikubeﬂ a local Kubernetes deployment
based on a cluster with a single node.

4 uS3D WORKFLOW AND APPLICATION EXAMPLE
4.1 Workflow

Figure El illustrates the workflow of uS3D, showcasing how
our proposal functions using an example model. Addi-
tionally, we have included a video demonstration in the
Supplementary Material for further clarity and visualization
(see Section[8).

Thanks to uS3D microservices, graphic designers can
upload new models or update existing ones (Step 1) that
developers or other types of end-user applications can
use. End-user applications are able to manage the differ-
ent features provided relating to the animations, textures
and assemblies/complements (1-6) by using microservices.
Models are exported in GLIF (a standard file format for
three-dimensional scenes and models) in order to enhance

7. https:/ /minikube.sigs.k8s.io/
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Fig. 3: 3D Customization example in #S3D

their visualization and integration. This means that, if the
format of the original model container is different from
GLTF (for instance, FBX or Blend), the wrapper will export
the model with the modifications as a GLTF file. This is
performed in this way to protect the original uploaded
model, thereby preventing the changes in a specific 3D
model from affecting the customization of 3D models by
other users. For example, the activity of listing the parts
of a 3D model (represented by step number 3 and the file
character.fox in Figure (3) entails launching a new Blender
instance, importing the fbx file model, looping through the
collections to find the different parts and transforming the
original model (fbx) into a new GLTF model (i.e. charac-
ter_custom_1.gltf), thereby providing the user with a list of
available parts, along with the corresponding GLTF model
generated embedded in an HTML code snippet. This modus
operandi is reproduced through the different microservices
until the end-user application receives the order to generate
the final, customized 3D model (8) (customized3DAsset.gltf)
and any previous intermediate 3D customized model is
removed.

4.2 Synthetic uS3D-based solution for the customiza-
tion of 3D models

Besides the workflow described above, which also illustrates
the customization of a 3D model represented in 2D figure,
we have prepared a synthetic web platform, consisting of
a toy web application and a back-end supported by uS3D.
The platform comes equipped with a preloaded sample 3D

model. Through the web application, it is possible to try the
following 3D manipulation functionalities:
1) Visualize the 3D model and explore its various
assemblies.

2)  Control the visibility of different assemblies, choos-
ing which ones to show or hide.

3) Modify the color of any assembly.

4) Apply textures to specific parts by mapping images
onto them.

5) Create a personalized avatar based on the model.

6) Customize the animation of the model.

7) Easily obtain a download link for the customized
model or the HTML code required to embed it
within a web application.

Figure {4 shows an example of platform usage, where
some elements have been selected and others have not, and
where the textures for some assemblies has been changed
either by applying a color or mapping an image. In this
example, we have illustrated how, by leveraging these func-
tionalities, prospective developers could seamlessly create
the functionalities that permit to interact with the 3D mod-
els, tailor them, and conveniently integrate them into their
applications that support web technology.

5 uS3D EVALUATION: MONOLITHIC VERSUS Mi-
CROSERVICES ARCHITECTURE

In this section we evaluate the effectiveness and perfor-
mance of uS3D. We first describe the research questions we
are seeking to investigate.
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5.1 Research Questions

We designed our experimental study to answer the follow-
ing research questions (RQs):

e Q1: How does our solution perform when compared
to the monolithic implementation, which might be
preferred by some developers?

e Q2: How would our microservices-based solution
perform as the number of users increases?

e Q3: In terms of software development or software
engineering, is a microservice-based solution always
the best approach regardless of the domain, level of
expertise or level of usage (number of users, traffic)?

5.2 Preliminary research for RQs

Analyzing the RQs, and before to perform the evaluation
of our proposal, two different concern must be addressed:
1) What would be the alternative to a microservices archi-
tecture in order to compare our solution (Q1) and 2) what
are the metrics required to measure the performance of our
solution (Q1 and Q2).

After a comprehensive literature review, most surveys
present the monolithic architecture as the the alternative
to a microservices architecture, which is the type of archi-
tecture that was commonly used prior to the emergence of
microservices and remains highly relevant today [29], [30].

On the other hand, the first relevant metric in any
microservice-based solution is the response time in the con-
sumption of the service, that is, the time it takes for a system

or application to respond to a request or perform a task (also
known as latency) [31]. However, since microservice and
monolithic architectures are supported by different tech-
nologies, efficient hardware usage is also a relevant metric
to compare both solutions, particularly when considering
scalability issues [32].

Thus, we will consider monolithic architecture as an
alternative implementation to our microservice-based im-
plementation and we will measure the 1) response time, 2)
average CPU use and 3) average memory use as hardware
usage in our experiments.

A uS3D fork has been re-coded in a second imple-
mentation following a monolithic architecture approach for
comparison purposes. The monolithic architecture imple-
mentation is subsequently described in the next subsection.

Thereafter, we describe the methods for the conducted
experiments, the considerations that have been made and
technical information about thedatasets obtained. The ex-
perimental results as well as the discussion about them are
described in Section [6l

5.3 Monolithic Architecture Implementation

A monolithic architecture presents a single-server applica-
tion where the front-end, data and functionality are in-
cluded in a single platform [33], [34]. Monolithic applica-
tions have been (and still are) widely used by developers,
companies and research centers, mainly for three main rea-
sons: simplicity of design which allows for a comprehensive
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understanding of the entire system and facilitates the de-
sign and refactoring of different components; simplicity of
development in that most development tools and integrated
development environments (IDEs) are still geared towards
developing monolithic applications; and finally, simplicity
of deployment since most IDEs include a dedicated set of
functionalities for deploying applications both locally and
to external environments [34].
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Fig. 5: uS3D Monolithic Implementation

This implementation of the yS3D platform according to a
monolithic design is supported by a service-oriented archi-
tecture (SOA), as depicted in figure[F] [35]. As figure[5|shows,
the entire system runs on a single computer and implements
the same example as the one presented in Figure 3| The
system is composed by a set web-services deployed in a
single server supported by Flask, a web framework written
in Pythorﬁ On top of Flask, different web services have
been deployed for the customization of 3D models and to be
consumed by end-users (e.g., graphic designers, developers)
through a REST API. The different web services access a
MongoDB database to store 3D fingerprint models, and
interact with a Blender engine through a scripting software
implemented in Python to customize the 3D models stored
in the persistent storage. A custom HTML-based visualizer
with the model is returned to the end-user when 3D model
has been customized.

The various services described in Section [ have been
implemented as web services in Python and Flask. The
computer graphics tool Blender has been used to generate
customized 3D assets and the wrapper remains the same as
the one used in the microservices-based implementation.

MongoDB E| was chosen as the database management
system to store the 3D model fingerprints since it is NoSQL
and stores the information as JSON documents, the same
notation used for 3D model fingerprints. In this way, CRUD
(Create, Read, Update, Delete) operations relating to 3D
model fingerprints and schemes are natively supported [36].

Unlike the microservices architecture, monolithic archi-
tectures present several drawbacks that become increasingly
relevant, especially as the application grows in size. One of
the most important drawbacks is that it is extremely difficult
to scale the application [34]. In fact, anything concerning

8. https:/ /flask.palletsprojects.com/
9. https://www.mongodb.com/
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change is a disadvantage in a monolithic-based application
[37]. Most of these drawbacks (particularly the issue of scal-
ability) are overcome in the microservice implementation.
The following section explores these differences in terms of
performance through several load-tests conducted in both
implementations.

5.4 Methods

With the aim to check the performance between both im-
plementations, three different metrics have been collected:
1) time consumption, 2) average CPU use and 3) average
memory use.

We have simulated a set of invocations from end-user
applications (where each runs a set of HTTP requests to
consume the different functionalities described in Section
against the microservices-based and monolithic archi-
tectures. The same number of end-user applications (and
requests) have been tested in both implementations. The
following considerations have been made:

1) Each user (requester) runs a total of eight requests
in a row to the REST API (HTTP). All the users run
the same number of requests in the same order.

2) The requests are: Obtain the models, Obtain the
model animations, Obtain the model parts, Hide a
model part, Show a model part, Change the texture
(map) for a color, Change the texture (map) for an
image, and, finally, Generate the 3D model.

3) All users have run the requests with the same 3D
model.

4) Both implementations have been tested with 1, 3, 5,
10, 25, 75, 100 and 200 users (that suppose 8, 24, 40,
80, 200, 400, 800 and 1600 requests, respectively).

5) In each experiment (1,3,5,10,25,75, 100 and 200
users), all users runs in parallel with the aim to
simulate a real scenario where a group of users
attempt to customize the same 3D model.

6) The cache-based system supported by MongoDB for
3D model fingerprints in both implementations has
been disabled. Using the cache-based system, the
metrics since the second request remain the same,
defeating the purpose of the test.

7) Each uS3D implementation (monolithic, microser-
vices) are run on separate virtual machineq"| with
the same features: 2 core processors, 8GB RAM,
50GB HDD and Ubuntu 20.04 LTS (Focal Fossa) as
the operating system.

8) Both virtual machines run on a host computer
with the following specifications: Intel® CoreTM i7-
8700K CPU 3.70GHz, 64GB RAM DDR4 and 2TB
SSD with Ubuntu 21.10 Impish Indri as the operat-
ing system.

9) Both implementations have been tested at different

moments in time in order to ensure each implemen-

tation has the same available resources provided by
the host computer.

Due to Blender’s high system requirements, this has

been limited to a maximum of three simultaneous

10)

10. https:/ /www.virtualbox.org/
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process instances in both virtual machines and this
is managed by the operating system.

11) Both the test plans (the series of requests to be
executed) and the metrics of the various tests have
been performed using Apache ]Meteﬂ

12) Both the test plans and the output metrics(time,
average CPU and memory use) of tests of both
implementations are available from the repository
described in the Supplementary Material section.

13) To measure resource utilization (CPU, Memory) we
have used a cross-platform lib for process and sys-
tem monitoringEl

14) Resource utilization can be directly collected
in the monolithic implementation. However, the
microservice-based implementation uses Docker
containers, which are designed to work in isolation,
so the access to the server where all microservices
are running it is not possible. Therefore, for this
experiment, we have developed a dedicated ad-hoc
service that records for each operation its timestamp
to gather resource utilization information. This ser-
vice has been deployed to be consumed by the rest
of microservices.

Once we conduct the tests, we obtained the entire dataset,
which is available in the repository found in the Supplemen-
tary Material section.The details regarding the dataset are the
following;:

1) The dataset is a set of files represented in CSV
(Comma-separated Values) format. There are a set of
files for metrics related to 1) the time consumption
and another set of files for 2) resource utilization
(CPU and memory).

2) For time consumption, there are two folders,
one per each implementation (i.e., monolithic
and microservice-based), bot located under the
path JMeterDataset/TimeConsumption. Each imple-
mentation folder contains a set of folders named
according to the number of users (1,3,...,200),
and which contains the six files generated by
Apache JMeter. The only one used for this stu-
dio has been the file ws3d_<implementation>_
<numberusers>_users_table.csv. In this file, the rel-
evant columns are the timestamp, the elapsed time
and the label, which contains the number of opera-
tion and the user that makes each request (i.e., Op-
7-ChangeTextureMaterial-76 represents that the user
#76 mapped a texture to the 3D object).

3) As for resource utilization, there is a folder named
mono and another one named micro under a root
folder named ResourcelUtilization. Inside these fold-
ers there are a set of files named according to
the number of users (mono_1.csv, mono_50.csv, mi-
cro_200.csv). Relevant columns are timestamp, id for
the user number, operation for the operation per-
formed (i.e., get models, change texture, etc.), total-
cpuusagepsutils for the total utilization of CPU and
memoryusage for the memory utilization.

11. https:/ /jmeter.apache.org/
12. https:/ /pypi.org/project/psutil/
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6 LOAD-TESTING RESULTS
6.1 Evaluation of Time response

Regarding the first metric, i.e., time response, Figure
shows a comparative overview of the results of the two
experiments and displays the number of requests, time
consumption and the different experiments per number of
users in both implementations.

Both implementations obtain similar results for a mod-
erate number of users. However, when there is a significant
increase in the number of users and therefore the num-
ber of HTTP requests, the microservices implementation
shows a better time consumption and therefore performance
compared to the traditional monolithic architecture. As ex-
pected, the test with 200 users running simultaneously is the
one which requires the most time in both implementations
(around 44 minutes in the microservices architecture against
the 132 minutes required by the monolithic architecture).

On the other hand, Figure [6b| shows a box plot to
illustrate the statistical representation of the distribution of
the time consumed by each type of service and microservice
in both architecture implementations by 200 users running
in parallel.

The time required for each type of service and microser-
vice is significantly higher in the monolithic architecture
except in the Show complement, where the time required is a
little big higher in the microservices architecture. However,
in overall terms, a higher time consumption is needed in
most services implemented in the monolithic architecture
and this increases the time required to complete the run
with 200 users.

Our preliminary results suggest that the microservices
architecture works much better with a high number of
users/requests. Unfortunately, we have not been able to
carry out the test with more than 200 users due to limita-
tional resources (host computer specifications).

6.2 Evaluation of hardware, CPU and memory, utiliza-
tion

Concerning average CPU use, Figure [7a| shows the results
obtained in both implementations.

According to this results, CPU usage is lower in the
microservices architecture. In the most demanding situa-
tion, with 200 users, the CPU usage reached 99.36% in
the monolithic implementation, while in the microservice
implementation, that value was 87.41%. The microservice
implementation demonstrates higher efficiency, especially
for a smaller number of users, and exhibits more stable
performance as the number of users increases compared to
the monolithic architecture.

Otherwise, the memory usage remains more or less
constant in both implementations, regardless the number of
users, but it is clearly higher, and therefore, with poorer per-
formance, in the microservices-based architecture (around
20% for monolithic implementation and around 50% for
microservice-based implementation) (see Figure [7b).

6.3 Estimated response time and use of hardware re-
sources with a higher number of users

In order to improve the performance of the microservices
architecture implementation, we have used a forecasting
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approach to make predictions for a higher number of users
using the data gathered from the test with 200 users for both
implementations. We have used an AutoregRessive Integrated
Moving Average (ARIMA) model to predict future time
consumption as well as CPU and average memory use. Like
many other researchers, we have conducted a train-test split
procedure using the classical 70-30 split (70% of samples for
training and 30% for testing 140 and 60 users, respectively).
ARIMA trains the model with the input dataset (train) to
find the linear regression and make a prediction over the
test dataset. Figure [8al shows the prediction for test dataset
of monolithic implementation and Figure [8b] illustrates the
prediction for microservices implementation for time con-
sumption metric. The CPU usage values have a maximum
limit (100%) that is almost reached during the conducted
tests, while the memory usage remains constant in both
implementations ((see Figure [8c|and [8d|for CPU usage and
Figure Be|and [Bf] for memory average use).

With both the predicted results and the original val-
ues (test dataset), we have used a root-mean-square error
(RMSE) method to compare the difference between both sets
of values in order to quantify model confidence and
reliability. The RMSE for the different metrics are as well as
normalized (NRMSE) can be shown in Table 2]

A zero value as the estimated error indicates that the
model is perfect. As the values (minutes) are in the or-

Memory Resource Utilization Average (%)
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Monolithic Architecture

Microservices Architecture
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TABLE 2: Summary of the RMSE and NRMSE values for the
three metrics

Monolithic Microservice
Time | CPU | Memory | Time | CPU | Memory
RMSE 2.19 418 0.949 1.09 4.63 0.99
NRMSE | 0.1768 | 0.04 0.254 0.1752 | 0.05 0.23

der of tens (microservices) and hundreds (monolithic), the
estimated error value implies that the prediction fits well
with the real values, and the model trained for the mi-
croservices implementation is more reliable. On the other
hand, although NRMSE are better for CPU than for average
memory use, making them more reliable, in both cases, the
values are not far from 0, so it can be concluded that both
trained models are reliable.

As we are certain that our predictions are quite similar
to real values, we have again applied the same trained
model to predict the time consumed by the tests conducted
for 400, 600, 800 and 1000 users. Table ] summarizes the
time consumption of both implementations for the tests
conducted as well as the predicted values.

The three models have been trained with the following
ARIMA features:

1) 2 as the number of lag observations or autoregres-

sive terms in the model or AR (p) ;
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Fig. 8: Forecasting time consumption as well as CPU and memory average usage through ARIMA model to customize 3D

models

2) 2 as the difference in the nonseasonal observations [
(d);
3) 2 the size of the moving average window or MA (g).
In addition, for the forecasting, alpha is 0.05, which
means that the ARIMA model will estimate the upper and
lower values around the forecast where there is only a 5%
chance that the real value will not be in that range.

6.4 Evaluation of RQs

The conclusions that can be drawn regarding the RQs are as
follows.

Evaluation of Q1

How does our solution perform when compared with most widely
adopted implementation other than microservices?

Irrespective of the 3D model part managed by the de-
veloper or 3D designer (textures, animations, assem-
blies, etc.), the microservices architecture provides
a better response time and better utilization of the
CPU.

Memory usage does not change too much regardless
of number of users. So, once the minimum (or recom-
mended) memory requirements of the 3D computer
graphic tool are met, additional memory does not
improve performance in any aspect.

The average memory usage is constant in both im-
plementations, but significantly higher in the mi-
croservices architecture (twice as much). This is be-
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TABLE 3: Comparison in both implementations for the time consumption and resource utilization

Monolithic Microservices
# Users Time Consumption CPU Usage Memory Usage Time Consumption CPU Usage Memory Usage
(minutes) (% avg) (% avg) (minutes) (% avg) (% avg)
Test Predicted Test Predicted Test Predicted Test Predicted Test Predicted Test Predicted
1 0.31 3943 19.38 0.59 14.65 49.08
3 0.65 73.08 20.39 0.82 54.14 51.33
5 1.01 85.06 20.81 1.21 70.3 52.48
10 1.84 92.84 21.09 217 77.07 52.12
25 459 97.11 21.3 4.98 81.8 53.89
50 9.81 98.28 21.72 11.01 85.02 46.07
75 16.55 98.77 22.15 17.41 85.24 54.58
100 25.36 98.93 22.32 22.98 86.95 51.44
200 132.55 136.12 99.36 99.39 22.18 22.32 44.14 44.34 87.41 96.22 52.37 52.72
400 159.81 100 22.85 54.83 98.52 50.97
600 193.66 100 23.44 69.82 100 49.32
800 227.51 100 24.03 84.81 100 47.68
1000 261.19 100 24.62 99.72 100 46.04

cause microservice implementation needs a required
technology stack, i.e., Docker and Kubernetes, which
inherently consumes memory even when not ac-
tively processing requests, regardless of the number

e 1S3D is a technology that makes the generation of
custom 3D models transparent for developers, en-
abling the integration process of 3D models into any
kind of platform.

of users. e pS3D technology eliminates the need for 3D design-
ers in the modification phases.
Evaluation of Q2 e The 3D model fingerprint included as part of the

How would our microservices-based solution perform with a
higher number of users in terms of performance?

e The microservices architecture performs better with
a large number of users as far as time consumption
and average CPU use are concerned.

o For a reduced number of users or testing purposes,
monolithic implementation is more efficient.

Evaluation of Q3

In terms of software development or software engineering, it’s a
microservice-based solution always the best approach regardless
of the domain, level expertise or level of usage (number of users,

traffic)?

e The monolithic architecture implementation is sim-
pler than the microservices architecture in terms of
development and deployment, so the monolithic ar-
chitecture approach is probably much more suitable
for small-medium companies or independent devel-
opers/programmers.

o The deployment of a microservice-based architecture
demands specialised knowledge in Kubernetes and
Docker, so an expert programmer it is required.

7 DiIsSCUSSION

The solution presented in this study was designed to sup-
port a fully customization of 3D models without any techno-
logical background about 3D modeling tools by developers.
The different contributions of the work have outstanding
benefits:

proposal allows for model generation optimization
by reusing previously generated models, reducing
response times and storage requirements.

e Both implementations, monolithic and
microservices-based exhibit reasonable response
times, but the microservices-based one has shown
better performance values.

e The wrapper has been designed to work with Blender.
However, new wrappers can be added to the plat-
form so as to support additional third-parties 3D
manipulating engines, such as 3DStudio Max.

e uS3D provides customized 3D models in a stan-
dard format such as GLTF. Additionally, it offers an
HTML-based visualizer that allows seamless integra-
tion of the model into any platform.

Conversely, the proposal presented still has some challenges
and limitations.

First of all, current version of pS3D has been designed to
customize the 3D models/assets both before and after the
animation scene. For instance, we are able to customize as-
semblies and textures before the start of the animation (i.e.,
dance, jump, walk) or at the end of the animation. However,
the technology introduced does not support customization
during the transition of a dynamic 3D scene. In other words,
it is not possible to change the texture of the model or an
assembly in the middle of an animation.

In second place, uS3D eliminates the need for a designer
to customize the 3D model once it is finished, including all
assemblies and animations. However, if new assemblies or
animations need to be added to the 3D model, the designer’s
participation is still required. One limitation of our proposal
is the absence of services that enable the automatic merging
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of different 3D models. Such services would support the
addition of new assemblies or animations from the applica-
tions that manipulate them.

Finally, although 1nS3D enhances the integration of 3D
models in any platform by developers/programmers with-
out any 3D technology background, this is for developers
who use 1uS3D once it is deployed and running. How-
ever, the deployment of nS3D, could be challenging. The
monolithic implementation is quite easy because it runs as
any other back-end software (i.e., with a single command
it is possible to run the platform), but the microservices-
based implementation requires knowledge about Kuber-
netes, Dockers and administration tasks to run the entire
infrastructure. In this way, although the quick start guide
presented in the Supplementary Materials section is provided
as assistance, at least one developer with a medium-high
background about microservices would be required.

These disadvantages or shortcomings are considered
manageable and will be addressed as future work.

8 CONCLUSIONS AND FURTHER WORK

3D assets are usually modeled by graphic designers to
provide the developers with models (files) so that they can
be integrated into software applications, e.g. 3D engines, li-
braries or software development kits (SDKs). Although this
might appear to be a fairly simple procedure, developers
must deal not only with the lack of knowledge regarding 3D
computer graphics and the use of dedicated technologies,
objects representations and formats, but also the continual
communication with designers in case the 3D assets need
to be modified or customized. Generally speaking, this
scenario requires the application to be rebuilt and this will
affect the end-user experience as new app downloads or
updates are required.

In this paper, we present uS3D, a microservice plat-
form for customizing 3D model elements (e.g. arma-
tures/skeletons, animations, textures) which comprises
three core components: a microservices platform consisting
of a series of microservices, a wrapper to interact with an
underlying computer graphics engine, and the 3D model
fingerprint, a cache-based system to enhance performance
in terms of storage and response time in the generation of
customized 3D models.

uS3D is able to overcome classical procedure issues and
significantly enhance the integration of 3D assets into apps
since firstly, it enables 3D assets to be customized without
the need for graphic designers simply by orchestrating
different microservices, secondly, it does not require any
previous knowledge or experience of 3D computer graphics
or hard programming skills, and thirdly, it allows 3D assets
to be displayed directly online without the need to down-
load the corresponding models. Outsourcing of 3D assets
management functionalities also contributes to lighten the
size of software applications that make use of them.

Two separate implementations following a microservice-
oriented approach and a monolithic approach respectively,
have been developed in order to illustrate the feasibility
of the proposal. Furthermore, various load and stress tests
have been conducted to simulate a number of invocations
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in the microservice platform as well as in the pS3D fork im-
plemented following a monolithic approach. Our tests show
that performance is remarkably better in the microservices
architecture implementation, especially when the system is
used by a large number of users. Conversely, the monolithic
implementation also performs well with a reduced number
of concurrent users.

By way of future work, we intend to explore a number of
different research avenues. First, we plan to collaborate with
graphic design experts to support new features through
additional microservices in order to servitize functionali-
ties which are currently only implemented using computer
graphic tools (i.e. real-time modeling/animation, rigging).

The #S3D microservices platform is currently supported
by a cluster with a single node. In order to improve this
implementation, we also intend to implement an improved
microservices platform which is supported by a distributed
architecture (a cluster with various independent hardware
nodes) in order to replicate the conducted load-tests and to
compare the performance of the three different implementa-
tions (monolithic, centralized microservices and distributed
microservices).

In this line we plan to deploy it in a real environment
with sufficient available resources to validate our compar-
ison like a cloud computing platform (Microsoft Azure®,
Google Cloud®, or Amazon Web Services®) and using
different 3D models instead a single case study like the one
presented in this paper for the comparison.

Although the metrics obtained through the conducted
load-testing experiments are very promising, additional
tests are required to validate them. For instance, it is nec-
essary to perform a set of formal experiments to check
the accuracy of our prediction model or even compare the
results by applying different algorithms.

Finally, the shortcomings mentioned in the Discussion
(support customization during 3D scene animations and
enable the combination of models, thus avoiding the need
for a 3D designer to extend a model with new assemblies
or animations) (see Section [7) will be addressed to be sup-
ported in the next version of the platform.
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