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Abstract—Spatial crowdsourcing is an increasingly popular category in the era of mobile Internet and sharing economy, where tasks
have spatio-temporal constraints and must be completed at specific locations. In this paper, we focus on the Multi-Objective
Spatio-Temporal task assignment (MOST) problem considering the worker heterogeneity in spatial crowdsourcing and model it as a
combinatorial multi-objective optimization (MOO) problem with the goals of maximizing the overall task completion rate and minimizing
the average task time cost. Finding the optimal global assignment turns out to be intractable since it does not simply imply optimality for
an individual worker, as a typical nearest-neighbor heuristic generally does not render a satisfactory result. We prove that the problem
is NP-hard. Subsequently, we formulate an efficient algorithm for the MOST problem — Task Clustering based Mixed Priority Queue
Scheduling (TAMP). First, we improve the spectral clustering algorithm to evenly divide the task network into different subdomains
according to tasks’ geographical locations, considering the task clustering phenomena in real scenarios. We then design a mixed
priority queue strategy considering the geographical influence and temporal urgency, to schedule workers finishing tasks in sequence.
Experiments on synthetic and real datasets demonstrate the efficiency of our solution over other methods.

Index Terms—Spatial Crowdsourcing, Task Assignment, Worker Heterogeneity, Spectral Clustering, Queue Scheduling

✦

1 INTRODUCTION

C ROWDSOURCING is simply the outsourcing of different
tasks or work to a diverse group of individuals in an

open call for the purpose of utilizing human intelligence [1].
A well-designed crowdsourcing system leverages the collec-
tive intelligence of the massive crowd workers to provide
services and accomplish tasks cost-effectively, and thereby
it has attracted extensive attention from both academia and
industry [2] in recent years.

With the increasing pervasiveness of GPS-equipped
smart mobile devices and decreased cost of wireless mobile
network (e.g., 5G network), a new class of crowdsourcing
has emerged, called spatial crowdsourcing (SC) [3]. Spatial
crowdsourcing advances the potential of a crowd to per-
form tasks related to real-world scenarios involving phys-
ical locations, which were not feasible with conventional
crowdsourcing methods. The main feature of spatial crowd-
sourcing is the presence of spatial tasks that require workers
(with smartphones) to be physically present at a particular
location for task fulfillment. Its natural connection with the
physical world makes spatial crowdsourcing a computing
paradigm for a broad spectrum of daily applications, such
as real-time ride-hailing services (e.g., Uber) [4], product
placement checking supermarkets [5], road condition moni-
toring [6], crowdsourcing-aided positioning [7], etc.

A representative spatial crowdsourcing model consists
of three types of participants: requesters (clients), workers
(the crowd), and crowdsourcing platform (server). The gen-
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Fig. 1. A general framework of a spatial crowdsourcing model.

eral framework of spatial crowdsourcing model for task
assignment is shown in Fig. 1. The task publishers release
tasks also known as human intelligence tasks (HITs), and
then the worker requests these tasks. The crowdsourcing
platform acts as a broker between the task publishers and
the workers. The crowdsourcing platform aggregates the
information of publishers and workers, then assigns tasks
to suitable workers by the algorithm. In practice, a spatial
crowdsourcing platform is the core of the system and often
needs to manage massive tasks and workers every day.

Thus, the major challenge of the spatial crowdsourcing
platforms is how to assign the large-scale tasks to their
workers, i.e., task assignment. In addition, most of the ex-
isting studies focus on task assignment based on the whole
study area [8], [9], [10], [11], [12], [13].

The platforms usually aim to arrange the tasks to suit-
able workers with different optimization objectives, such as
maximizing the total number of assigned tasks or the full
payoff of the tasks to their assigned workers, minimizing the
total traveling costs of the allocated workers. The objective
is generally determined based on real needs and constraints.
For example, one common challenge in spatial crowdsourc-
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ing is that the tasks reachable by each worker highly depend
on the distance between origin and destination as well as the
tightness of deadline, which have to be treated carefully in
constructing the task assignment algorithm.

Therefore, designing an efficient assignment mechanism
is of paramount importance for the SC platform, which
could improve the system efficiency by increasing the in-
come of workers and saving the cost of the platform. Based
on the basic problem characteristics, task assignment in SC
can be classified into two different categories: task matching
and task scheduling. Task matching provides guidance on
which tasks to perform: the assignment mechanism tries to
match a set of tasks to workers. Task scheduling provides a
plan (or order) to perform tasks located at different places:
the assignment mechanism schedules the order of tasks for
the workers. The problem of task scheduling is unique to
spatial crowdsourcing.

Geographic information is of vital importance in the
field of SC and is a necessary condition to allocate tasks
in the spatial dimension. As the task allocation problem is
NP-hard in its general form [14], it is easier to obtain an
accurate solution by dividing a complex spatial problem
into multiple sub-problems based on geographical informa-
tion. However, most of these studies ignored the temporal
information of workers and tasks, and thus do not apply
readily to an SC application. Niu et al. [15] propose a pricing
model based on the distance information and the number of
workers, but the expiration time of tasks is not considered.

In addition, in real crowdsourcing situations, it is often
observed the phenomena of task clustering, i.e., most of the
tasks are concentrated in a few regions in the space instead
of being distributed uniformly. The reason for this phe-
nomenon is that community structures are quite common
in real networks [16]. For example, in the take-out scene,
the locations of tasks are often concentrated in densely
populated areas, such as schools or office spaces. However,
in sparsely populated places or suburbs, the distribution
of tasks is relatively sparse. If let workers select tasks by
their preferences, workers will only choose to complete
tasks that are closer, resulting in remote tasks that have not
been responded to forever, thereby affecting the overall task
completion rate.

Based on the observation, we introduce spectral cluster-
ing [17], a graph clustering algorithm in our integrated al-
gorithm to partition the task network. Besides, we improve
the spectral clustering algorithm by applying θ-sparseness
to reconstruct the affinity matrix for the reasonable time
complexity and enhancing the fairness of subdomain divi-
sion. In view of the divide-and-conquer idea, we first divide
the task network into different subdomains based on their
locations in space and allocate workers to the corresponding
subdomains to finish tasks.

Compared to the previous work, the hardness of our
problem lies in that, once the traveling cost associated with
moving to tasks’ locations, the expiration time of tasks,
and the heterogeneity of workers are taken into account,
the locally optimal assignment does not guarantee global
optimality. In other words, assigning the most jobs to each
worker does not necessarily imply the maximum number of
accomplished tasks by all workers.

To the best of our knowledge, a unified assign-

ment mechanism considering spatio-temporal constraints
of tasks, worker heterogeneity, and task clustering, with
multiple objectives in the multi-user dynamic environment
in SC systems has not been all probed together, so far. In
summary, we make the following contributions:

• To promote the overall performance of task assign-
ment, the task queue scheduling problem is mod-
eled as a multi-objective joint optimization prob-
lem, the Multi-Objective Spatio-Temporal task assign-
ment (MOST) problem, which focuses on maximizing
the overall task completion rate and minimizing the
average task time cost, and considers the worker
heterogeneity simultaneously. Besides, we prove the
problem is NP-hard.

• Considering clustering phenomena of spatial crowd-
sourcing tasks, spectral clustering is introduced to
divide tasks into subdomains. At the same time, in
order to better learn the spatial relationships between
tasks and reduce the complexity of the algorithm,
we creatively reconstruct the affinity matrix by θ-
sparseness method to improve spectral clustering.

• The proposed algorithm, Task Clustering based Mixed
Priority Queue Scheduling (TAMP) algorithm, inte-
grates two critical objectives, the temporal con-
straints and the spatial information of spatial tasks,
into one joint metric and uses it to make decisions
on sequences of task execution. The choice of the
combined weight of these two metrics is dynamic
and investigated in the design.

• Extensive experiments on both synthetic and real
data are performed to compare the proposed scheme
with different comparative techniques, and the re-
sults show that the new scheme outperforms others.

This paper extends the initial study [18], via (i) surveying
up to date literature and summarizing the comparison of
task assignment models in Sec. 2; (ii) reformulating the com-
binatorial multi-objective optimization problem and prov-
ing it as a NP-hard problem in Sec. 3; (iii) designing a sparse-
ness method to improve the spectral clustering efficiency;
(iv) adding more explanations for model framework and
the time complexity analysis for algorithm in Section 3.2.3;
(v) updating existing figures and add more diagrams; (vi)
improving the organization and presentation of the paper
by a major revision and careful proofreading.

2 RELATED WORK

Spatial Crowdsourcing (SC) can be deemed as one of the
main enablers to employ smart device carriers as workers
to move to some specified locations and perform location-
based tasks physically [38]. A recent survey on spatial
crowdsourcing is [39], which reviews the existing research
on major algorithmic issues such as task assignment, quality
control, incentive mechanism design, and privacy protec-
tion. Moreover, the first challenge of the spatial crowdsourc-
ing platforms is task assignment, which is the basis for other
research studies.

In view of the task publishing mode, SC can be classified
into two categories, namely Worker Selected Tasks (WST)
mode and Server Assigned Tasks (SAT) mode [3]. WST
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TABLE 1
Taxonomy and analysis of research concerning task assignment in spatial crowdsourcing

Ref Mode Objective
Constraints Assignments

Algorithm
Spatial Time Worker Heter Others Matching Scheduling

[19] WST maximize the overall satisfaction ✓ ✓ ✓ ✓ ✓ Greedy algorithm
[20] WST maximize the number of assigned tasks ✓ ✓ ✓ ✓ ✓ HCTD and Greedy algorithm
[21] SAT maximize the sum of the rewards ✓ ✓ ✓ ✓ Approximation algorithm
[22] SAT maximize the sum of the rewards ✓ ✓ ✓ Greedy algorithm
[23] SAT maximize overall user satisfaction ✓ ✓ ✓ ✓ ✓ Greedy / Game algorithm
[24] WST maximize the task quality and minimize the incentive budget ✓ ✓ ✓ ✓ Heuristic algorithm
[25] SAT maximize the number of assigned tasks ✓ ✓ ✓ ✓ Heuristic algorithm
[26] SAT maximize the total payoff ✓ ✓ ✓ ✓ ✓ Greedy / Game algorithm
[27] SAT maximize the expected total utility ✓ ✓ ✓ Approximation algorithm
[28] SAT maximize task reliability for dynamic task assignment ✓ ✓ ✓ ✓ Approximation algorithm
[29] SAT maximize platform profit considering worker ✓ ✓ ✓ ✓ Greedy algorithm
[30] SAT maximize the expected quality ✓ ✓ ✓ Heuristic algorithm
[31] SAT maximize the spatial/temporal coverage ✓ ✓ ✓ Approximation / Heuristic algorithm
[32] SAT maximize the diversity score of assignment ✓ ✓ ✓ ✓ Approximation algorithm
[33] SAT maximize the total number of task assignments ✓ ✓ ✓ ✓ Greedy algorithm
[34] SAT minimize the overall cost ✓ ✓ ✓ Approximation algorithm
[35] SAT maximize the expectation of the number of answered tasks ✓ ✓ ✓ ✓ Greedy algorithm
[36] SAT maximize the number of assigned tasks ✓ ✓ ✓ Heuristic algorithm
[37] SAT maximize the social surplus ✓ ✓ ✓ ✓ ✓ Game-theoretic incentive mechanism

[10] SAT
maximize the number of assigned tasks and minimize the
average task number difference ✓ ✓ ✓ ✓ Reinforcement learning

mode gives workers the right to directly select the tasks
based on their own preference without coordination with
the server [19], [20], while SAT mode requires the server to
assign tasks to the interested workers based on the system
optimization goals [21], [22], [23]. In WST mode, no specific
task allocation algorithm is required, and it suffices for the
platform to receive and process the orders of the workers.
The users explore the optimal task assignment to befit their
own instead of the platform. One drawback of this mode is
that the SC server has no control over task allocation. This
may result in some spatial tasks never being assigned, while
others may be assigned redundantly.

Another drawback of WST is that workers choose tasks
based on their own objectives (e.g., choosing the closest
spatial tasks to minimize their travel cost), which is not
necessarily the ultimate objective of the SC-server (i.e.,
maximizing the overall task assignment). Besides, incentive
mechanisms have been widely used in WST mode. Wang
et al. [24] study a worker incentive model combined with
both a genetic algorithm and an ant colony optimization
algorithm to maximize the task completion quality while
minimizing the incentive budget in the whole area. Zhu
et al. [40] propose Incentive-aware Task Location (ITL) for
a location-unspecific task with a fixed budget, the aim of
which is to maximize the number of workers who are will-
ing to participate in the task. And the work proposes three
heuristic methods to solve it, including even clustering,
uneven clustering, and greedy location methods.

In SAT mode, the server of the crowdsourcing plat-
form assigns tasks to nearby workers usually based on the
system optimization goals such as maximizing the num-
ber of assigned tasks after collecting all the locations of
workers [25], maximizing the total payoff from assigned
tasks [26], maximizing the expected total utility achieved
by all workers [27], maximizing task reliability for dynamic
task assignment [28], maximizing platform profit consid-
ering worker utilities simultaneously [29], maximizing the
expected quality of results from workers by a real-time
budget-aware task package allocation [30], or maximizing

the spatial/temporal coverage where/when workers per-
form tasks [31].

Most existing studies adopt the SAT mode, where an
SC server takes charge of the task assignment process. For
example, Cheng et al. [32] propose a reliable diversity-based
spatial crowdsourcing (RDB-SC) problem in SC, where an
SC server assigns tasks to suitable workers in order to
maximize the diversity score of assignments. Zhao et al. [33]
propose a preference-based task assignment problem and
design a tensor-decomposition-based algorithm to learn
worker preferences, after which the assignment problem is
transformed into a Minimum Cost Maximum Flow (MCMF)
problem. However, they all assume that each worker can
only perform tasks in a specific spatial region, while we do
not exert in our model a hard constraint on the working
area. Therefore, these works have a much smaller search
space in their problem settings compared to ours.

Moreover, within the SAT publishing mode, tasks as-
signment can be further classified into two different modes:
Single Task Assignment (STA) mode and Redundant Task
Assignment (RTA) mode [3]. STA mode assumes that all
the workers are trusted and can perform the tasks correctly
without any malicious intentions so that each task is only
assigned to one worker in STA mode. However, there in-
evitably exist some malicious workers that might inten-
tionally complete tasks incorrectly. Therefore, RTA mode
is proposed to improve the validity of task completion by
assigning each task to several nearby workers. In RTA mode,
the task completion result with the majority vote is regarded
as correct [34], [35].

Among the above studies in SC, traveling cost is critical,
due to the fact that SC workers have to physically move to
the locations of spatial tasks in order to perform them [36],
[37]. For instance, considering task localness, which refers
to workers’ preferences based on their traveling cost (i.e.,
workers are more likely to accept nearby tasks), [36] pro-
poses an effective task assignment framework by modeling
task acceptance rate as a decreasing function of travel dis-
tance. Cheung et al. [37] formulate the interactions among
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users as a non-cooperative Task Selection Game (TSG), and
propose an Asynchronous and Distributed Task Selection
(ADTS) algorithm that balances the rewards and traveling
costs of the workers for completing tasks.

In task assignment, modeling the assignment score as
the shortest path in visiting the locations of multiple tasks
becomes similar to the traveling salesman problem (TSP)
and vehicle routing problem (VRP) [41]. Since there is
only one worker in TSP, here we discuss VRP. Different
variants of VRP have been studied [42], [43], still, there are
differences between our task assignment problem and these
variants. Compared with VRP, our goal is to maximize the
overall task completion rate and minimize the average task
time cost simultaneously, whereas VRP aims to minimize
the total traveling time of all workers. Besides, in VRP,
all workers start from the same location, whereas, in our
setting, workers have different initial locations.

The latest model is extended to multiple workers in [10],
which is the closest related work to our study. In that paper,
the authors propose a Task Allocation with Geographic Par-
tition (TAGP) framework for the Multi-Center-based Task
Allocation problem (MCTA), which aims to maximize the
allocated task number and achieve the allocation fairness
among workers. More specifically, the work first utilizes
a Voronoi diagram mechanism to decompose a complex
multi-center graph into multiple smaller single-center-based
graphs and then adopts a Reinforcement Learning method
to allocate tasks by transforming the task allocation problem
into a multiple traveling salesman problem (MTSP). The
idea is similar to our work, which is to divide the whole
area first and then assign tasks for different subdomains.
However, this work still transforms the task assignment
problem into a MTSP inconsistent with facts in spatial
crowdsourcing, because the center of a graph assumed by
the work does not exist in practice. Besides, worker hetero-
geneity is not taken into account.

Our problem, which is discussed in this paper, is a ver-
sion of the task assignment problem considering traveling
time cost and worker heterogeneity in STA mode.

3 THE PROPOSED SCHEME

In this section, we firstly present our model architecture
and give a formal statement of the Multi-Objective Spatio-
Temporal task assignment (MOST) problem. Then, we ex-
plain each part of the proposed scheme in detail.

3.1 Model Architecture and Problem Statement
Here we investigate a kind of task assignment mechanism
under the above spatial crowdsourcing model with Single
Task Assignment (STA) mode, referred to as single spatio-
temporal task assignment. Specifically, given a user’s current
location, the platform aims to find an optimal assignment
between tasks and workers such that the overall task com-
pletion rate is maximized and the average task time cost rate
is minimized. In particular, we note that the task assignment
is actually made up of two sub-problems: 1) for each task,
we need to assign it to a suitable worker; and 2) for each
worker, we need to schedule a sequence that each worker
follows to perform the assigned tasks. (The list of involved
notations is given in Table 2.)

TABLE 2
Summary of Symbols and Notations

Category Symbols Definitions

Attributes

si The ith spatial task
wk The kth worker

lsi, lwk Location of si, wk

ei Expiration time of si
ewk Deadline of wk

vk , pk Traveling / Processing speed of wk

Sets

S Set of all tasks
SA Set of accomplished tasks
W Set of workers {wk}
A A task assignment strategy
Sk
A The achievable task set (ATS) for wk

Ωk The kth cluster

Parameters α Weight of time
θ Weight of matrix sparseness

Calculation

δ The overall task completion rate
τ The average task time cost

ak,i The arrival time of wk at lsi
dki , di,j Distance between si and wk/sj
tpk The total processing time of wk

dwk The traveling distance of wk

Ψk Task queue of wk

ξ
(t)
k (i) Temporal priority of si in Ψ

(t)
k

ξ
(d)
k (i) Spatial priority of si in Ψ

(d)
k

ξ
(m)
k (i) Mixed priority of si in Ψ

(m)
k

Before presenting our problem, we first formally define
the spatial tasks and the workers in spatial crowdsourcing.

Definition 1 (Spatial Task). A spatial task si is characterized by
a 2-tuple si = ⟨lsi, ei⟩, which implies that the task si is located
at lsi, and will expire at time ei. lsi is a position in 2D space
expressed as its coordinate (xi, yi).

For simplicity and without loss of generality, most stud-
ies assume that the processing time of each task is 0 and the
workers’ speeds are the same, but we consider the worker
heterogeneity in our model.

Definition 2 (Worker). A worker wk, characterized by a 4-
tuple wk = ⟨lwk, vk, pk, ewk

⟩, is a carrier of a mobile device
who volunteers to perform spatial tasks. A worker can be in
either online or offline mode. A worker is offline when she is
unable to perform tasks and is online when she is ready to accept
tasks. An online worker is associated with her current location
lwk = (xk, yk), the traveling speed and processing speed of which
are vk and pk respectively. In addition, she has to return to her
initial departure location lw0

k before her deadline ewk
.

In spatial crowdsourcing, the query of a spatial task si
can be answered only if a worker wk is physically located at
that location lsi. Therefore, considering the expiration time
of task si and the worker’s deadline, it can be completed
only if a worker wk arrives at lsi finishing the task before its
expiration time ei and returning back to her initial departure
lw0

k before her deadline ewk
, which implies the constraint

ak,i +
1

pk
≤ ei,

ak,0 = ak,i +
1

pk
+

d(lsi, lw
0
k)

vk
≤ ewk

,

(1)
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where ak,i is the arrival time of wk at the location lsi for
task si, ak,0 is the time wk back to departure lw0

k, 1
pk

is the
time of wk processing task si, and d(si, lw

0
k) is the distance

between task si and the initial location of wk.
Note that in the STA mode, the platform can assign

every spatial task to one worker only. Once worker wk

is online, she sends a task inquiry to the server, which
includes her current location lwk. The server will take all the
available tasks and workers at the particular time instance
into account and return a task sequence to wk.

Let t denote the current time. The distance dki (t) between
worker wk and task si at t is calculated as their Euclidean
distance, i.e.,

dki (t) = ∥lsi − lwk∥2 =
√
(xi − xk)2 + (yi − yk)2, (2)

where lsi and lwk are respectively the location of task si
and worker wk at the moment t.

The maximum allowable remaining time for task si is
determined based on the time left for the task before its
expiration time, given by

ti = ei − t. (3)

Due to the foregoing descriptions, we formally formulate
the problem statement as follows.

Problem Statement (MOST problem): In a model of
spatial crowdsourcing containing a crowdsourcing plat-
form, plenty of task publishers, tasks, and workers, how
does the crowdsourcing platform with STA mode simulta-
neously consider the spatio-temporal interactive informa-
tion of tasks and the heterogeneity of workers to assign
tasks to suitable workers, so as to maximize the number of
accomplished tasks and reduce traveling cost of workers?

Optimal Objective: To better analyze and solve the
problem, we formalize it as a multiple-objective joint op-
timization problem, MOST problem, which has two optimal
goals: maximizing the overall task completion rate δ and
minimizing the average task time cost τ simultaneously.

Because a task only can be assigned to a suitable worker,
then we assume xk,i = 1 if worker wk complete task si,
otherwise xk,i = 0. Let S = {s1, s2, . . . } be the set of all
tasks, and SA denote the set of tasks that are accomplished
by the task assignment strategy A. Obviously, SA ⊆ S.
Thus, the maximization of the overall task completion rate
δ can be expressed as:

max δ =
|SA|
|S|

=

∑
xk,i

|S|
, (4)

subject to:

|W |∑
k=1

xk,i = 0, or 1, ∀ i = 1, 2, · · · , |S|,

xk,i · ak,i +
1

pk
≤ ei,

xk,i · ak,i +
1

pk
+

d(lsi, lw
0
k)

vk
≤ ewk

,

xk,i = 0, or 1.

(5)

Similarly, the minimization of average task time cost τ
for accomplished tasks is expressed as:

min τ =

∑
k

dwk

vk
+

∑
k tpk∑

xk,i

=

∑
k

dwk

vk
+

∑
k

∑
i xk,i

pk∑
xk,i

,

(6)

subject to:

|W |∑
k=1

xk,i = 0, or 1, ∀ i = 1, 2, · · · , |S|,

xk,i · ak,i +
1

pk
≤ ei,

xk,i · ak,i +
1

pk
+

d(lsi, lw
0
k)

vk
≤ ewk

,

dwk

vk
+ tpk

≤ ewk
,

xk,i = 0, or 1.

(7)

Here, dwk
is the traveling distance of worker wk, and tpk

is
the time spent on processing tasks of worker wk.

The MOST problem can be proved to be NP-hard by
reduction from the Maximum Coverage (MC) problem. In
the following, we give the definition of the achievable task
set for subsequent proof and then prove the MOST problem
as NP-hard.

Definition 3 (Achievable Task Set (ATS)). A task set Sk
A is

called an achievable task set (ATS) for a worker wk, if there exists
a task assignment strategy Ak, such that,

• all the tasks of Sk
A can be completed before their respective

expiration time, i.e., ak,i+ 1
pk
≤ ei for each si ∈ Sk

A, and
• worker wk can return back to departure on time after com-

pleting all tasks Sk
A, i.e., ak,0 ≤ ewk

for each si ∈ Sk
A.

Lemma 1. MOST problem is NP-hard.

Proof. We first introduce the Maximum Coverage (MC)
problem, which is proven to be NP-hard [44]. Given a
collection of sets R = {R1, R2, · · · , RK} over a set of objects
Ω, where Ri ⊆ Ω, and a positive integer l, the MC problem
is to find a subset R′ ⊆ R such that |R′| ≤ l and the number
of covered elements by R′ is maximized.

Getting the ATSs from a given task set S =
{s1, s2, . . . } for worker set W = {w1, w2, . . . , wK}, e.g.,
S = {S1

A1
, S1

A2
, . . . , S2

A1
, S2

A2
, . . . , SK

A1
, SK

A2
, . . . }, our spatio-

temporal task assignment problem is actually to find the subset
S′ ⊆ S such that |S′| ≤ K and the number of covered tasks
by S′ (e.g., |

⋃
Sk
Ai

∈S′ S
k
Ai
|) is maximized, where each subset

in S′ belongs to one worker in W .
Consider a special case of MOST problem, where each

worker has only one ATS, e.g., S = {S1
A, S

2
A, . . . , S

K
A }. The

goal of our problem is to select at most n number of ATSs
from S′, such that the total number of tasks is maximum.
That is, solving the maximum coverage problem is equal
to finding a subset of the ATSs, S′ ⊆ S, where |S′|(≤ K)
maximizes |

⋃
Sk
A∈S′ S

k
A|.

Again, Sk
A for each worker wk ∈ W corresponds to

each set Rk of the MC problem, where each task si ∈ S
corresponds to the object ωi ∈ Ω, and the number of
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Fig. 2. The framework of TAMP algorithm with two parts: task network division and worker queue scheduling.

workers (i.e., K) corresponds to the positive integer l in the
MC problem. Therefore, finding a subset S′ form S (where
|S′| ≤ K) with maximized |

⋃
Sk
A∈S′ S

k
A| is equivalent to

solving the maximum coverage problem. Therefore, MOST
problem with single ATS for each worker (i.e., the above
special case) is NP-hard and MOST problem with multiple
ATSs for each worker is also NP-hard.

3.2 TAMP: Task Clustering based Mixed Priority Queue
Scheduling

Since the MOST problem is NP-hard, a simple greedy al-
gorithm is to use the maximum achievable task set for
each worker as the assignment result. This can hardly be a
satisfying result since multiple workers may be assigned the
same set of tasks which may leave more tasks unassigned.
In this paper, we propose the spectral clustering based
scheme, Task Clustering-based Mixed Priority Queue Schedul-
ing (TAMP), which works in the above problem setting for
task assignment.

The whole framework of TAMP algorithm is shown in
Fig. 2, with two parts: task network division and worker
queue scheduling. First, TAMP initializes the network, and
reconstructs the network by θ-sparseness. Then, enhanced
spectral clustering divides the task network into subdo-
mains according to tasks’ geographical locations by En-
hanced Spectral Clustering (ESC). Next, tasks of each sub-
domain are allocated to corresponding workers. Moreover,
the task queue for a worker is rearranged by a mixed metric
incorporating geographical location information as well as
the task’s temporal emergency. Finally, return the target task
that the worker needs to accomplish in the next moment by
Mixed Priority Task (MPT), which calls two sub-algorithms
— Returnable Task (RT) and Not-Returnable Task (NRT).
Finally, schedule workers to accomplish those tasks by the
final task queue through Queue Scheduling (QS) algorithm.

3.2.1 Task Network Division
In order to group the network of tasks into subdomains,
the spectral clustering algorithm is adopted to divide the
network into subareas {Ωk}, k ∈ {1, · · · , |W |}. Every Ωk

has a designated worker, who is mainly responsible for all
tasks located inside.

To apply spectral clustering, the key step is to learn
the affinity matrix to measure the similarity among data
points. In the paper, we apply θ-sparseness to sparse the
distance matrix for reconstructing the affinity matrix. Here
we reconstruct the affinity matrix by matrix sparsification
for two main reasons: 1) the spectral clustering algorithm
needs to calculate the eigenvectors and eigenvalues of the
affinity matrix, and the sparse processing could reduce
the computational complexity in order to study the spa-
tial relationships between tasks within a reasonable time;
2) the sparse processing saves the task information in a
much closer neighborhood, and the subsequent subdomain
division can divide the subarea as fairly as possible.

We first calculate the geographical distance matrix G,
where Gi,j is the Euclidean distance between each pair of
tasks si and sj in 2D space:

Gi,j = ∥lsi − lsj∥2 =
√
(xi − xj)2 + (yi − yj)2. (8)

Obviously, the distance matrix elements should be non-
negative. Simply introducing the matrix into the spectral
clustering algorithm does not impose any constraints on
the graph sparsity, which will lead to expensive computing
costs and might introduce noise (i.e., unimportant edges).
Besides, it is not sparse enough that the spectral clustering
algorithm cannot focus on the more proximity tasks.

Therefore, we extract the sparse non-negative adjacency
matrix M from G by considering only the node pair with
a much closer distance. To make the hyperparameter of the
extraction threshold insensitive and not destroy the graph’s
sparsity distribution, we adopt a relative ranking strategy
for the entire graph. Specifically, we mask off (i.e., set to
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Algorithm 1: Enhanced Spectral Clustering (ESC)

Input: Tasks set S = {s1, · · · , sn}, workers set W , θ.
Output: Task clusters {Ωl}

1 k ← |W |;
2 Affinity matrix B ∈ Rn×n is calculated by Eq. (10);
3 D ← diag(sum(B)); //Degree matrix
4 L← D −B; //Laplacian matrix
5 Ls ← D− 1

2LD− 1
2 ; //Normalized Laplacian matrix

6 Let µ1, µ2, · · · , µk be the k smallest eigenvalues of
Ls and h1, h2, · · · , hk the corresponding
eigenvectors; //Chosen to be orthogonal

7 for i← 1 to k do
8 hi ← hi

∥hi∥2
; //Normalized

9 H ← [h1, h2, · · · , hk];
10 for i← 1 to n do
11 for j ← 1 to k do
12 Yij = Hij/(

∑
j H

2
ij)

1
2 ; //Normalize H

13 Treat each row of Y as a point in Rk, cluster them
into clusters by K-means; //Minimize distortion

14 for each si ∈ S do
15 if Yi∗ is assigned to cluster l then
16 Assign si to task subdomian Ωl;

17 return Clusters Ω1,Ω2, · · · ,Ωk with
Ωl = {si|yi ∈ domain(Ωl)}

zero) those elements that are larger than a non-negative
threshold, obtained by ranking the metric value in G. The
adjacency matrix can be reconstructed by θ-sparseness

Mij =

{
1, Gij ≤ Rankθn(Gi∗),

0, otherwise,
(9)

where Rankθn(Gi∗) returns the θn-th smallest value in ith
row of distance matrix G, n is the number of nodes, and θ
controls the overall sparsity of the generated graph.

It should be noticed that A is not necessarily symmetric
based on the definition of the connectivity. In order to obtain
a symmetric affinity matrix required in spectral clustering
algorithm, we define the affinity matrix B as below:

B =
1

2
(M +MT). (10)

It is different from the traditional sparse method that
introduces KNN algorithm to calculate the affinity ma-
trix [45]. The latter sets an absolute number threshold to
select the neighbors by distance matrix. In our method, the
hyperparameter θ could control the sparsity of the newly
generated graph, and the number of removed elements
could vary with the size of the graph.

As the value of parameter θ largely influences the ob-
tained clusters, we need to carefully regulate the value of
θ to make the number of tasks in each cluster more even,
which considers the fairness for workers. The choice of θ
will be discussed later in Section 4.

According to the above process, we can rebuild a new
affinity matrix, and divide the task network into different
subdomains by spectral clustering algorithm as shown in
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Fig. 3. Queue scheduling process for a single worker wk.

Algorithm 1 — Enhanced Spectral Clustering (ESC). Then
we begin to consider how to assign a suitable worker to
the corresponding subdomain and schedule the worker to
accomplish assigned tasks.

3.2.2 Worker Queue Scheduling

At first, we note the center of the subdomain Ωk as (xk, yk),
which is simply given by

(xk, yk) =

 1

|Ωk|
∑

si∈Ωk

xi,
1

|Ωk|
∑

si∈Ωk

yi

 . (11)

Additionally, we set the number of clusters as |W | when
dividing the clusters. Thus, the tasks in every subdomain
could be assigned to a specific worker, because the number
of subdomains is equal to the number of workers, which is
shown in the following part.

Here, we need to sort the subdomains {Ωk} by their size
|Ωk|, and the subdomain containing more tasks needs to
be prioritized by the nearest worker for the reason that the
more tasks in the subdomain, the less traveling cost need to
be paid in the domain to ensure that more tasks are com-
pleted. Then the worker who is nearest to the subdomain
center is allocated the tasks in the subdomain.

As shown in Fig. 3, the remaining assigned tasks for a
single worker wk could be formed into a task queue Ψk,
which will be rearranged by the mixed priority strategy
considering both her geographical distance to the task and
the task’s temporal emergency. This scheme will schedule
the worker to accomplish the corresponding target task with
higher mixed priority.

In the current task queue for some worker wk, we denote
the geographical distance of the nearest task by dkmin and the
furthest task by dkmax. In order to make the distance compa-
rable among workers, we first normalize the distances from
wk towards different tasks by defining her spatial priority of
each task si as:

ξ
(d)
k (i) =

dki − dkmin

dkmax − dkmin + ϵ
, (12)

where ϵ is a very small number to prevent potential over-
flow due to division by zero, which is set to 10−6 by default.

Similarly, we define the temporal emergency of the task
si for some worker wk as the maximum allowable remaining
traveling time ti. Let tmin denote the remaining time of the
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most urgent task and tmax denote the least. The temporal
priority of task si can be calculated as:

ξ
(t)
k (i) =

ti − tmin

tmax − tmin + ϵ
. (13)

To incorporate both metrics to evaluate the importance
of a task si for wk, a joint mixed priority ξ

(m)
k (i) is obtained

by combining spatial and temporal priorities:

ξ
(m)
k (i) = αξ

(d)
k (i) + (1− α)ξ

(t)
k (i), (14)

where parameter α balances weights of spatial and temporal
priorities, which is between 0 and 1. The influence of α will
be discussed and studied in Section 4 through experiments.

Generally, tasks with smaller values of mixed priorities,
ξ
(m)
k (i), are given higher priorities to be served first. The

results of the algorithm proposed in this paper are quite
different from those based solely on time constraints or
spatial information. Here we give an example to explain the
utility of the mixed priority strategy.

Example 1 (Utility of the mixed priority strategy). Fig. 4
shows the spatial and temporal information of worker w1 and
tasks s1∼s4. Besides, let w1 could finish processing 4 tasks at one
time unit, and the traveling speed is 2.

0 1 2 3 4 5 6

1

2

3

4

5

Y

X
w1

s4 (4, 1)
e4=9

s3 (6, 3)
e3=6

s1 (2, 2)
e1=7

s2 (1, 4)
e2=3

w1  (0, 0)
e  =10

Fig. 4. Example 1 for a worker under different priority strategies.

The lines with arrowheads show the routes for w1 under
different priority strategies. w1 will first go to process s2,
then s3, s4, and back to initial location considering temporal
priority only (see the yellow route shown in Fig. 4), in
which w1 could not finish task s1 before its expiration time
(w1 accomplish s2, s3 at time t =

√
17+

√
26

2 + 1
4 × 2 =

4.61 + 0.5 = 5.11, and she finishes processing s1 at least
at time t = 5.11 +

√
17
2 + 1

4 = 7.42, which is exceeding s1’
expiration time e1 = 7). Whereas if only the geographical
location information is considered, w1 will first go to process
s1, then s4, s3, and back to initial location (see the green
route shown in Fig. 4), in which w1 could not finish task
s2 before its expiration time (w1 accomplish s1 at time
t = 2

√
2

2 + 1
4 = 1.66, and she finishes processing s2 at least

at time t = 1.66 +
√
5
2 + 1

4 = 3.03, which is exceeding s2’
expiration time e2 = 3).

However, for the mixed priority metric (set α = 0.5) con-
sidering both temporal constraints and spatial information,
the worker w1 will finish the task s2 first (the mixed priority

Algorithm 2: Queue Scheduling (QS)

Input: Task clusters {Ωl}, workers set W
Output: The final task queues for workers {Lfk}

1 State is the list recording the states of workers
(Initial State(k) as online);

2 Lt is the time list recording when the workers
finished the last task (Initial Lt(k) as 0);

3 Ld is the location list recording the location of the
latest task;

4 Initial Lfk as [ ];
5 Sort {Ωl} by |Ωl| in descending order;
6 Compute the center of Ωl, note as centeri = (xl, yl);
7 for l← 1 to |W | do
8 w ← argminw∈W d(w, centeri);
9 Ψw ← Ωl; //Allocate w to Ωl

10 W ←W\{w}; //Remove w from W

11 while there are still workers online && the remaining
task queue ̸= ∅ do

12 wk ← argminw Lt; // First finish previous tasks
13 Get the next task si, update State(k) and the

remaining task queues {Ψk} by MPT;
14 if si ̸= ∅ then
15 Lfk ← Lfk ∪ {si};
16 Update Lt(k) and Ld(k) by si;

17 return {Lfk} for all workers

of s2 is minimum, which is 0.5×
√
17−2

√
2

3
√
5−2

√
2+ϵ

+0.5× 3−3
9−3+ϵ =

0.167 ), then s1 and s3, and then s4 (see the red route
shown in Fig. 4). Obviously, the number of accomplished
tasks is most by mixed priority strategy, and the route of the
mixed priority strategy is quite different from the other two
priority strategies with pure temporal or spatial.

Although we could schedule the worker to process
the assigned tasks in a subdomain by the mixed priority
strategy, in some extreme cases, when a worker is unable
to tackle currently assigned tasks, those tasks will be for-
warded to a nearest worker for help following the specific
forwarding rules.

In order to ensure the shortest collaboration paths and
reduce the traveling time, we construct the shortest Hamil-
ton path. We use Hi to represent the length of Hamiltonian
path from worker wk to the ith task created based on nodes
in Ψk including the location of wk. We denote the distance
between sm and sn as dm,n, and Hi can be calculated as:

Hi =

{
dki , i = 1,

Hi−1 + dui,ei , 1 < i ≤ |Ψk|,
(15)

where ui is the first node of ith path and ei is the last node.
The worker queue scheduling scheme is mainly shown

in QS algorithm, the part of which is split into MPT, RT
and NRT algorithm. First, task subdomains are allocated
to their designated workers (line 5-10). Moreover, the task
queue for a worker is rearranged by a mixed metric in-
corporating geographical location information as well as
the task’s temporal emergency (line 11-16). Finally, return
the target task that the worker needs to accomplish in the
next moment by MPT algorithm. If current task could be
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Algorithm 3: Mixed Priority Task (MPT)

Input: Remaining task queues {Ψk}, the time stamp
Lt(k), current location Ld(k)

Output: Target task si, State(k), {Ψk}
1 Initial α;
2 Get current task queue Ψk for wk;
3 for i← 1 to |Ψk| do
4 Sort Ψ(d)

k by dki (t) according to Eq. (2);
5 Sort Ψ(t)

k by ti according to Eq. (3);
6 Get ξ(d)k (i) according to Eq. (12);
7 Get ξ(t)k (i) according to Eq. (13);

8 for i← 1 to |Ψk| do
9 Calculate ξ

(m)
k (i) according to Eq. (14);

10 Sort Ψ(m)
k by ξ

(m)
k in ascending order;

11 Get top task of the sorted queue: si;
12 Test whether si is Returnable for wk by Eq. (16);
13 if Returnable then
14 call a sub-algorithm RT;
15 else
16 call a sub-algorithm NRT;

17 return si, State(k), {Ψk}

Returnable, the scheme select next task for the worker by
RT algorithm. Otherwise, the scheme will re-select a new
task for the worker by NRT algorithm. Besides, in case a
task cannot be served by its initial designated worker, this
work will send it to the nearest worker for help.

3.2.3 Scheme Analysis

In the task assignment architecture, when the crowdsourc-
ing platform schedules workers to accomplish correspond-
ing tasks, there are still remaining two important problems:

Algorithm 4: Returnable Task (RT)

Input: Task queues {Ψk}, the time stamp Lt(k),
current location Ld(k)

Output: Target task si, State(k), {Ψk}
1 Test whether si is reachable by Eq. (19);
2 if Reachable then
3 Ψk ← Ψk\{si}; ///Remove si from Ψk

4 if wk is Online-Idle then
5 State(k)← online-idle;

6 return si, State(k), {Ψk};
7 else
8 if wq is the nearest worker for si then
9 Ψq ← Ψq ∪ {si}; //Append si to Ψq

10 Ψk ← Ψk\{si}; //Remove si from Ψk

11 if wk is Online-Idle then
12 State(k)← online-idle;
13 return ∅, State(k), {Ψk};
14 else
15 Re-select a new task by priority in Ψ

(m)
k ;

Algorithm 5: Not-Returnable Task (NRT)

Input: Task queues {Ψk}, the time stamp Lt(k), the
location Ld(k)

Output: Target task si, State(k), {Ψk}
1 if wq is the nearest worker for si then
2 Ψq ← Ψq ∪ {si}; //Append si to Ψq

3 Ψk ← Ψk\{si}; //Remove si from Ψk

4 if wk is Offline then
5 State(k)← offline;
6 return ∅, State(k), {Ψk};
7 else
8 Re-select a new task by priority in Ψ

(m)
k ;

whether the working time of the worker is exceeded and
whether the allowable arriving time of the task is exceeded.

Returnable-In-Time Test: The worker wk need to finish
the assigned tasks and return back to initial departure
location before her deadline ewk

. After selecting a target task
si, a worker will pre-calculate whether she could finish the
task and return back to her departure location before her
deadline. If so, she will move forward to the next task si;
otherwise, she will re-select a new task in the mixed priority
queue and forward current task si to a nearest worker:

Returnable Test =

{
si, ewk

≥ t+
dk
i (t)+d(si,lw

0
k)

vk
+ 1

pk
,

re-select, otherwise.
(16)

Worker-Still-Online Test: When a worker is assigned a
new task by a crowdsourcing platform, the worker should
be tested whether she’s still online.

When worker wk is assigned a new task si, wk couldn’t
finish and return back to the initial departure before her
deadline. Then if the task is the last one in the current task
queue of worker wk, the worker would enter into the offline
state; otherwise, the worker stays online and needs to re-
select a new task in the remaining mixed priority queue.

Offline Test =

{
offline, si is the last and not returnable,
online, otherwise.

(17)
When the worker enters into the offline state, the crowd-
sourcing platform does not consider assigning a new task to
the worker anymore.

When a new task is assigned to some worker, and the
worker could finish the task and return back to the initial
departure before her deadline, if the set of remaining tasks
for the worker is not empty after finishing the currently
assigned task, then the state of the worker is still online.
Otherwise, the worker enters into the online-idle state.

Idle Test =

{
online-idle, the remaining task set is empty,
online, otherwise.

(18)
If a worker is online-idle, the crowdsourcing platform

will not actively assign a new task to the worker, unless the
worker’s neighboring workers can’t complete the assigned
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tasks (i.e., the task can’t be finished by her neighboring
worker and its nearest worker is her).

Reachable-in-Time Test: In the task assignment architec-
ture, a subtle issue is that, no matter how hard the worker
works, there might exist task requests that will never be
served. Such requests should be either removed from the
queue or delivered to a nearest region’s worker for help.

When a task si request is received, wk should compute
the earliest time to reach the location of the task and com-
pare it with the task’s maximum allowable traveling time.
If a worker cannot reach the task before the maximum re-
maining allowable traveling time, the task request should be
simply dismissed or forwarded to the nearest subdomain for
another online worker for help. The worker’s finished time

of the previous task si−1 is ti−1 (i.e., ti−1 = Hi−1

vk
+

i−1∑
j=1

1
pk

).

This decision can be calculated by Equation (19) as well:

Reachable Test =

{
serve, ei ≥ ti−1 +

dk
i (ti−1)
vk

+ 1
pk
,

remove, otherwise.
(19)

The platform first allocates the worker to the correspond-
ing subdomain and then assigns a new task to the worker
who is the first to complete a previous task and still online.
(When two or more workers finish a previous task at the
same time, the platform would choose the worker whose id
is smaller.) The Queue Scheduling (QS) algorithm is shown
in Algorithm 2. Besides, the target task is assigned to the
worker with the highest mixed priority by Algorithm 3 MPT
algorithm. Moreover, If a worker could finish the current
task before her deadline, Algorithm 4 RT algorithm will
return the reachable task; If a worker could not finish the
current task before her deadline, Algorithm 5 NRT algo-
rithm will re-select a new task for the worker.

Conventional spectral clustering typically consists of two
time-consuming phases, namely, affinity matrix construc-
tion and eigen-decomposition. It generally takes O(N2d)
time to construct the affinity matrix, and takes O(N3) time
to solve the eigen-decomposition problem [46], where N
is the data size and d is the dimension. Thus, the time
complexity of Enhanced Spectral Clustering in Algorithm 1
is O(|S|2 + |S|3). The time complexity of Queue Scheduling
in Algorithm 2 is O(|W |2 + |W |(|S|+ |S|log|S|)).

4 EXPERIMENTS AND EVALUATION

4.1 General Setup
We report the results for two sets of experiments over the
proposed scheme on both synthetic datasets (SYN) and real
datasets (REAL). All the experiments are carried out on a
machine with 6 cores of AMD R5-4600U and 16 GByte RAM.

In the first part of experiments, we evaluate the im-
pact of the hyper-parameters, in particular, θ and α, on
the performance of our approach on synthetic datasets. In
these experiments, we evaluate the performance through 2
important metrics: 1) the overall task completion rate, and
2) the average task time cost.

In the second part of experiments, we fix the hyper-
parameters determined in the first part and evaluate the
scalability of our proposed approach by varying the number
of tasks and workers on both synthetic and real datasets.

4.2 Experiments on Synthetic Data Sets

For the synthetic (SYN) datasets, we use random data
following two different distributions: uniform (SYN-
UNIFORM) and skewed (SYN-SKEWED). With regard to
SYN datasets, 50% of the tasks are generated in twenty
clusters (with standard deviation as 1 and randomly chosen
centers) and the other 50% of the tasks are uniformly dis-
tributed, i.e., 50% of the tasks are SYN-SKEWED and others
are SYN-UNIFORM. This is motivated by the clustering
characteristic of tasks in practice.

Fig. 5. A sample of synthetic data.

4.2.1 Effect of Parameter θ
Our experiments firstly decide the best value of parameter θ
for applying θ-sparseness to reconstruct the affinity matrix
in Algorithm 1. We conduct experiments on a 200×200 km2

space where tasks with a cluster characteristic as illustrated
in Fig. 5, where circles represent tasks in space. The default
values of all the parameters used in our experiments are
summarized in Table 3.

TABLE 3
Parameters of simulation

Parameters Values

Space size (km2) 200× 200
Number of tasks 2000

Number of workers 150
Weight of time α 0.5

Expiration time of spatial tasks (h) [4, 10]
Deadline of workers (h) [8, 10]

Traveling speed of workers (km/h) [30, 60]
Processing speed of workers (item/h) [1, 4]

At the first time, we have no clear idea of the effects
of parameter α in our algorithm, and we set α = 0.5,
which implies that the time and distance factors have the
same level of impact on the priority of the tasks. Since the
synthetic data are generated randomly, in order to reduce
the impact of randomness on the experimental results, the
experiments are repeated 1000 times for each value of θ, and
the means of the metrics are reported.

In Fig. 6, we illustrate the overall task completion rate δ
and average traveling time cost τ . We notice that in general,
when we have the parameter θ = 0.007 for θ-sparseness,
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Fig. 6. Determining the value of parameter θ.

the overall task completion rate δ is largest, and the average
traveling time cost τ is relatively low and close to the
minimum obtained in the experiment. Besides, we can see
from Fig. 6 when θ < 0.007 or θ > 0.007 both measures
will get worse, which shows that the sparseness degree of
the affinity matrix in Spectral clustering would affect the
effect of the whole model. This suggests that θ = 0.007 is
a reasonable choice for Spectral clustering and we fix the
value in the following experiments. At the same time, the
value of θ is very small, which will have an impression on
the complexity of Spectral clustering. A smaller value of θ
can reduce the complexity of the whole algorithm to some
extent, and improve the performance of algorithm.

4.2.2 Effect of Parameter α

Fig. 7. Determining the weight of time α.

With the fixed value of parameter θ, in this part, we
will decide the value of parameter α, which influences the
weights of the temporal and spatial factors in the integrated
priority function. The parameter θ is set as 0.007, and the
other parameters are shown in Table 3 as well. Meanwhile,
in order to reduce the impact of randomness on the experi-
mental results, the experiments are repeated 1000 times for
each value of α, and the means of the metrics are reported.

In Fig. 7, we present the value variation of δ and τ with
respect to the value of α. We notice that when α = 0.65,
the accomplishment task rate δ is the highest, which is up
to 0.782, and the traveling time cost rate τ is relatively

low. In particular, when α > 0.5 (i.e.,
α

1− α
> 1), which

indicates that the time priority is more important than the
space priority, the task completion rate has a significant
improvement compared to α < 0.5. As shown in Fig. 7,
the overall task completion rate δ is increased from 0.731
to 0.774, rising 5.9%, when parameter α is changed from
0.5 to 0.55. Thus, a relative proportion of time priority can
improve the performance of our algorithm.

Such a result could be due to the proper combination
of these two priorities. On one hand, if temporal priority is
weighted too heavily, tasks that are too far away will be left
alone to spend a lot of traveling costs. On the other hand, a
heavy-weighted spatial priority may skip those tasks requir-
ing immediate accomplishment with lower spatial priority.

Motivated by the results in Fig. 7, in the following exper-
iments, we fix α = 0.65. Because the task accomplishment
rate at this time is higher than 70% in the SYN data, the
TAMP algorithm is relatively stable and the optimal solution
could be obtained.

4.3 Comparison with Other Algorithms

In this part, we use the values of two hyper-parameters
determined in the first two experiments and compare TAMP
with condign methods for task assignment on both synthetic
and real data.

4.3.1 Baselines
We first briefly present the baseline methods for compara-
tive studies as follows.

• K-MP: The method clusters the tasks for different
workers by K-means, then schedules the tasks for
every worker by Mixed Priority Queue Scheduling.

• SC-DisGreedy: The method clusters the tasks for dif-
ferent workers by spectral clustering, and then every
worker selects the nearest achievable task, which
aims to reduce the traveling costs.

• NNH: In [47], Deng et al. propose an approximation
algorithm named nearest neighbor heuristic (NNH).
NNH exploits the spatial proximity between tasks
by iteratively choosing the nearest available task to
the last task added in the task sequence. At each
iteration of NNH, the worker chooses one task which
is available and the closest to his current position.

4.3.2 Results on Synthetic Data
Fig. 8 and Fig. 9 show the evaluation metrics δ and τ
achieved by different numbers of workers when there are
2000 and 5000 tasks in the SYN data network. The other
parameters are the same as shown in Table 3.

Intuitively, the rates δ and τ both increase in the number
of workers, as when more workers are available, it is more
likely to find a worker for any specific task, and the mini-
mum distance toward the task becomes lower. However, as
the number of workers k increases, the growth of the overall
task completion rate δ has begun to moderate. On the one
hand, this could be due to the possibility that the remaining
uncompleted tasks are located in remote locations. On the
other hand, there are other factors that restrict the growth
of the overall task completion rate δ, such as the traveling
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(a) The rate δ (b) The value of τ

Fig. 8. Comparison of different methods in SYN data (|S| = 2000).

(a) The rate δ (b) The value of τ

Fig. 9. Comparison of different methods in SYN data (|S| = 5000).

speed of workers, the deadline of workers, and so on.
Therefore, the growth of the overall task completion rate δ
merely driven by the increase of workers could slow down
and even saturate.

In terms of the overall task completion rate δ, the TAMP
algorithm outperforms the three baseline methods in most
of the cases. When |W | = 200 and |W | = 250 in Fig. 9
(S = 5000), the overall task completion rate δ is lower for
TAMP than SC-DisGreedy, which means α = 0.65 is not the
best weight of time for our algorithm at this moment, i.e.,
the value of α needs to be adjusted with the model. Even if
the parameter setting of the TAMP algorithm might not be
optimal in all the scenarios (The parameters’ values are not
changed in subsequent experiments), the TAMP algorithm
is still significantly better than other methods in most cases.
When |W | = 200 in Fig. 8 and |W | = 500 in Fig. 9, the rate
δ of TAMP algorithm is up to 0.9.

The NNH method has a lower running time since only
considers the distance between workers and tasks, then the
average task time cost τ is the lowest. The NNH method
pays more attention to tasks in the neighborhood of work-
ers, so as to minimize the traveling time cost of workers,
but Our algorithm seeks the optimal solution of worker
task assignment from a global perspective. Meanwhile, the
TAMP algorithm is better than the two remaining methods
in the average task time cost τ .

Generally speaking, the TAMP algorithm performed
well on SYN data.

4.3.3 Results on Real Data
Considering the real social network scenarios, we use the
open real-world dataset from Gowalla1. For simplicity, we
only sample the data with longitude between −125 and

1. http://snap.stanford.edu/data/loc-Gowalla.html

−120, and latitude between 35 and 40 (approximately
440 km× 557 km rectangle region).

The dataset is a location-based social network, where
users are able to check in to different spots in their vicinity.
The check-ins include the location and the time that the
users entered the spots. For our experiments, we use the
check-in data over a period of one month (i.e., October
2010). Moreover, we assume that Gowalla nodes are the
tasks of our spatial crowdsourcing system. Consequently,
we assume all the chosen items happen in a single day.

For each check-in, we use its location and time as the
location and expiration time of the task. Intuitively, checking
in a spot is equivalent to finishing a spatial task at that loca-
tion. The worker heterogeneity is considered in the setting,
then the processing time and traveling time are different
when the same job is assigned to different workers. For the
sake of simplicity, the traveling time cost is calculated by
the Euclidean distance divided by the worker’s traveling
speed, and the processing time is calculated by the worker’s
processing speed.

The initial locations of workers are randomly generated
in the restricted rectangle region, and the deadlines of work-
ers are uniformly distributed from 6:00 pm to 8:00 pm. In
this set of experiments, we evaluate the scalability of TAMP
algorithm by different numbers |S| of tasks, which is up to
8000. Fig. 10 and Fig. 11 show the rate δ and τ achieved
by different numbers of workers when there are 5000 and
8000 tasks in the Gowalla data. Based on the experiments of
REAL data, the advantage of TAMP algorithm in the overall
task completion rate δ is more obvious. When |W | = 400
in Fig. 10 and |W | = 700 in Fig. 11, the rate δ of TAMP
algorithm is more than 0.7.

(a) The rate δ (b) The value of τ

Fig. 10. Comparison of different methods in Gowalla data (|S| = 5000).

(a) The rate δ (b) The value of τ

Fig. 11. Comparison of different methods in Gowalla data (|S| = 8000).
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4.4 Discussion

The experiments present the efficiency and effectiveness of
our proposed method. The real-world application scenarios,
such as road condition monitoring [6] and crowdsourcing-
aided positioning [7], are more applicable to the problem
situations in our work. In these circumstances, the distance
between the worker and the task will impact the number
of completed tasks, with no special requirements on the
worker’s skills and strict time constraints on the task’s com-
pletion. In many applications, the task assignment problem
prefers to be dynamic rather than static. It is difficult to deal
with the real-time task assignment problem in SC due to
the unevenness of arriving tasks and workers, as well as
the arrival time being random to the system. Our proposed
method in this paper is applied in the static state of each
batch, where the spatial-temporal information of tasks and
workers is obtained in advance.

5 CONCLUSION

In this paper, we design an adequate task assignment mech-
anism in the context of spatial crowdsourcing, which assigns
spatio-temporal tasks considering workers’ heterogeneity.
We formulate a combinatorial multi-objective optimization
problem, i.e., MOST problem, and prove that it is NP-
hard. To solve the above problem, we proposed the Task
Clustering-based Mixed Priority Queue Scheduling (TAMP)
algorithm focusing on task network division and worker
queue scheduling. At first, we apply θ-sparseness to the
spectral clustering algorithm for optimizing the network
partition to improve the scope of crowdsourcing services.
Subsequently, the mixed priority queue scheduling scheme
combines the temporal requirement as well as spatial fea-
tures into a single priority metric, which schedules workers
to complete the assigned tasks in turn. Extensive exper-
iments on both synthetic and real data demonstrate the
effectiveness and efficiency of our scheme.

The add-on of this work is to consider other properties
of spatial tasks, such as the rewards of spatial tasks, the task
workload, and others. Moreover, the work can be extended
to spatial crowdsourcing in a real-time/online scenario.
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