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PBScaler: A Bottleneck-aware Autoscaling
Framework for Microservice-based Applications

Shuaiyu Xie, Jian Wang, Bing Li, Zekun Zhang, Duantengchuan Li, Patrick C. K. Hung

Abstract—Autoscaling is critical for ensuring optimal performance and resource utilization in cloud applications with dynamic
workloads. However, traditional autoscaling technologies are typically no longer applicable in microservice-based applications due to
the diverse workload patterns and complex interactions between microservices. Specifically, the propagation of performance anomalies
through interactions leads to a high number of abnormal microservices, making it difficult to identify the root performance bottlenecks
(PBs) and formulate appropriate scaling strategies. In addition, to balance resource consumption and performance, the existing
mainstream approaches based on online optimization algorithms require multiple iterations, leading to oscillation and elevating the
likelihood of performance degradation. To tackle these issues, we propose PBScaler, a bottleneck-aware autoscaling framework
designed to prevent performance degradation in a microservice-based application. The key insight of PBScaler is to locate the PBs.
Thus, we propose TopoRank, a novel random walk algorithm based on the topological potential to reduce unnecessary scaling. By
integrating TopoRank with an offline performance-aware optimization algorithm, PBScaler optimizes replica management without
disrupting the online application. Comprehensive experiments demonstrate that PBScaler outperforms existing state-of-the-art
approaches in mitigating performance issues while conserving resources efficiently.

Index Terms—microservice, autoscaling, performance bottleneck, replica management
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1 INTRODUCTION

W ITH the advancement of microservice architecture, an
increasing number of cloud applications are migrat-

ing from monolithic architecture to microservice architec-
ture [1], [2], [3], [4], [5], [6]. This new architecture reduces ap-
plication coupling by breaking a monolithic application into
multiple microservices that communicate with each other
via HTTP or RPC protocols [7]. Moreover, each microservice
can be developed, deployed, and scaled independently by
separate teams, enabling rapid application development
and iteration. Nevertheless, the unpredictability of external
workloads and the complexity of interactions between mi-
croservices can result in performance degradation [8], [9],
[10]. Cloud providers must prepare excessive resources to
meet the service level objective (SLO) of application owners,
which usually causes unnecessary waste of resources [11],
[12]. As a result, the imbalance between satisfying SLO and
minimizing resource consumption becomes a major chal-
lenge encountered by resource management in microser-
vices.

Microservice autoscaling refers to the capability of allo-
cating resources elastically in response to workload varia-
tions [13]. By utilizing the elasticity property of microser-
vices, autoscaling can mitigate the conflict between resource
cost and performance. However, the autoscaling of mi-
croservices suffers from accurately scaling the performance
bottleneck (PB) in a short period. Due to the complexity
of communication between microservices, the performance
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degradation of a PB may propagate to other microservices
via message passing [2], resulting in a high number of
abnormal microservices at the same time. We demonstrated
this by injecting burst workloads to specific microservices
in Online Boutique 1, an open-source microservice appli-
cation developed by Google. Fig. 1 shows that the per-
formance degradation in the PB Recommend can spread to
the upstream microservices like Checkout and Frontend. To
further verify the importance of accurately scaling the PB,
we conducted stress testing and scaled different microser-
vices separately. As shown in Fig. 2, abnormal microservice
(Frontend) scaling cannot alleviate SLO violations. How-
ever, when we identified and scaled the PB Recommend,
the performance of the microservice application improved.
Unfortunately, locating PBs is usually time-consuming and
can occasionally make mistakes [14].

In recent years, several approaches have been proposed
to identify critical microservices before autoscaling. For
example, the default autoscaler of Kubernetes 2 filters mi-
croservices for direct scaling based on a static threshold of
computing resources. Yu et al. [15] defined the boundaries
of elastic scaling by calculating the service power, which is
the ratio between the 50th percentile response time (P50)
and the 90th percentile response time (P90). Furthermore,
Qiu et al. [4] introduced an SVM-based approach for ex-
tracting critical paths by analyzing the ratio of various tail
latencies. Although these studies have narrowed the scope
of autoscaling, they still take into account non-bottleneck
microservices that may affect scaling strategies, especially
when a large number of microservices in the application are
abnormal at the same time. Consequently, there is an urgent

1. https://github.com/GoogleCloudPlatform/microservices-demo
2. https://github.com/kubernetes/autoscaler
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Fig. 1. Part of the invocation relationship in Online Boutique.
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Fig. 2. Latency distribution in four scenarios.

need to pinpoint bottleneck microservices accurately before
autoscaling.

To balance resource consumption and performance, ex-
isting works have employed online optimization algorithms
to find near-optimal autoscaling strategies. However, due to
the vast range of possible strategies for autoscaling, these
approaches require a significant number of attempts, which
will be problematic for online applications. For example,
Train Ticket3 is the largest open-source microservice appli-
cation, consisting of nearly 40 microservices. Assuming that
each microservice can have up to 15 replicas, determining
the optimal allocation strategy for this application is un-
doubtedly an NP-hard problem, as there are a maximum
of 1540 scaling alternatives. Additionally, the duration of
the feedback loop in online optimization is too long to
achieve model convergence. It is also essential to consider
the potential risks of performance degradation caused by
online optimization. Fig. 3 illustrates the impact of burst
workloads on the replica fluctuation and latency fluctuation
of MicroScaler [15], an online autoscaling approach incor-
porating online Bayesian optimization to find the global
minimizer of the total cost. The frequent online attempts to
create replicas (Fig. 3a) caused by online optimization result
in oscillations and performance degradation (Fig. 3b). As
a result, we are inspired to design an offline optimization
process fueled by feedback from a simulator.

This paper presents PBScaler, a horizontal autoscaling
framework designed to prevent performance degradation
in microservice-based applications by identifying and ad-
dressing bottlenecks. Instead of optimizing resources for
all abnormal microservices, as was done in previous work
[11], [15], we propose TopoRank, a random walk algorithm
based on topological potential theory (TPT) to identify
performance bottlenecks (PBs). By taking into account mi-
croservice dependencies and anomaly potential, TopoRank

3. https://github.com/FudanSELab/train-ticket
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Fig. 3. The replica fluctuation and latency fluctuation of MicroScaler
under burst workloads. Excessive online attempts (a) cause oscillations
and performance degradation (b).

improves the accuracy and explainability of bottleneck lo-
calization. After identifying the PBs by TopoRank, PBScaler
further employs a genetic algorithm to find nearly optimal
strategies. To avoid application oscillation caused by ex-
cessive optimization, the process is conducted offline and
is guided by an SLO violation predictor, which simulates
the online application and provides feedback to the scaling
strategies. The main contributions of the paper are summa-
rized as follows:

• We propose PBScaler, a bottleneck-aware autoscaling
framework designed to prevent performance degra-
dation in a microservice-based application. By pin-
pointing bottlenecks, PBScaler can reduce unneces-
sary scaling and expedite the optimization process.

• We employ a genetic algorithm-based offline op-
timization process to optimize resource consump-
tion while avoiding SLO violations. This process is
guided by an SLO violation predictor and is designed
to strike a balance between resource consumption
and performance without disrupting online applica-
tions.

• We design and implement PBScaler in the Kuber-
netes system. To evaluate its effectiveness, we con-
duct extensive experiments with real-world and em-
ulated workload injection on two widely-used mi-
croservice systems running in an online environ-
ment. Experimental results demonstrate that PB-
Scaler outperforms several state-of-the-art elastic
scaling methods.

The rest of the paper is organized as follows. In Section
2, we discuss the related work about bottleneck analysis
and autoscaling for microservices. In Section 3, we describe
the overall system in detail. In Section 4, we present the
evaluations and experimental results. Section 5 concludes
our work and discusses the future research direction.

2 RELATED WORK

With the advancement of cloud computing, numerous au-
toscaling methods for cloud resources, such as virtual
machines or containers, have been proposed in academia
and industry [16], [17], [18], [19]. However, autoscaling for
microservices can be much more complicated due to the
intricate dependencies between microservices.

Performance bottleneck analysis, also known as root
cause analysis, is a useful way for quickly locating the
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bottleneck responsible for the performance degradation of
microservices, hence reducing the time and effort required
for autoscaling. In this section, we will analyze the related
work on bottleneck analysis and autoscaling for microser-
vices.

2.1 Bottleneck Analysis
In recent years, numerous methods for bottleneck analysis
in microservice scenarios have been developed, most of
which rely on three types of data: logs, traces, and metrics.
1) Logs. Jia et al. [20] and Nandi et al. [21] first extracted
templates and flows from normal-state logs, matched them
with target logs, and filtered out abnormal logs. 2) Traces.
Trace is an event tracking-based record that reproduces
the request process between microservices. Several studies
[22], [23], [24], [25] have been introduced to pinpoint the
bottlenecks using traces. Yu et al. [22], [23] located bottle-
necks by combining spectrum analysis and the PageRank
algorithm on the dependency graph constructed by traces,
while Mi et al. [24] presented an unsupervised machine
learning prototype to learn the pattern of microservices and
filter out abnormal microservices. However, using traces can
be intrusive to the code and requires operators to have a
deep understanding of the structure of the microservices.
3) Metrics. Some approaches [2], [26], [27] leverage graph
random walk algorithms to simulate the propagation pro-
cess of anomalies and then find bottlenecks by integrating
statistical features of metrics and dependencies between mi-
croservices. Additionally, methods such as CauseInfer [14]
and MicroCause [28] focused on building metrics causality
graphs with causal inference, which typically involve hid-
den indirect relationships between metrics.

Since the workflow code is rarely modified when moni-
toring metrics, collecting metrics for microservices is usually
cheaper than using trace. Moreover, using metrics as the
primary monitoring data can reduce the cost of integrating
bottleneck analysis and autoscaling, as metrics are widely
used in the latter scenario. Despite these approaches’ advan-
tages, most have no preference in selecting the starting point
for abnormal backtracking. In contrast, our approach begins
random walks from microservices with greater anomaly
potential, accelerating convergence speed and improving
bottleneck localization accuracy.

2.2 Autoscaling for Microservices
Existing autoscaling methods for microservices can be cate-
gorized into five groups. 1) Rule-based heuristic approach.
KHPA, Libra [29], KHPA-A [30], and PEMA [31] manage
the number of microservice replicas based on resource
thresholds and specific rules. However, since different mi-
croservices have varying sensitivities to specific resources,
expert knowledge is needed to support autoscaling for these
various microservices. 2) Model-based approach. Microser-
vices can be modeled to predict their status under particular
configurations and workloads. Queuing theory [32], [33]
and graph neural network (GNN) [12] are commonly used
to build performance prediction models for microservices. 3)
Control theory-based approach [11], [32]. Using the control
theory, SHOWAR [11] dynamically adjusts the microservice
replicas to correct the error between monitoring metrics and

thresholds. 4) Optimization-based approach. These methods
[15], [34] make a large number of attempts to find the opti-
mal strategy given the present resources and workloads. The
key to these approaches is to reduce the decision-making
scope to speed up the process. 5) RL-based Approach. Re-
inforcement learning (RL) has been widely used in resource
management for microservices. MIRAS [35] adopts a model-
based RL method for decision-making to avoid the high
sampling complexity of the real environment. FIRM [4]
leverages a support vector machine (SVM) to identify the
critical path in microservices and a deep deterministic policy
gradient (DDPG) algorithm to make hybrid scaling strate-
gies for microservices along the path. RL-based methods
require constant interactions with the environment during
exploration and are incapable of adapting to the dynamic
microservices architecture.

In conclusion, while the aforementioned autoscaling
techniques have their respective advantages, they pay little
attention to performance bottlenecks. Consuming computer
resources for non-bottleneck microservices will inevitably
increase scaling costs and lengthen decision-making. Our
method, on the other hand, focuses on locating performance
bottlenecks.

3 SYSTEM DESIGN

We present PBScaler, a PB-centric autoscaling controller,
to locate PBs and optimize replicas for them. As shown
in Fig. 4, PBScaler comprises three components: 1) Metric
Collector: To provide real-time insights into the applica-
tions’ status, we design a metric collector that captures and
integrates monitoring metrics from Prometheus4 at fixed
intervals. 2) Performance Bottleneck Analysis: With the assis-
tance of the metric collector, this component performs SLO
violation detection and redundancy checking to identify
microservices with abnormal behavior. Next, the bottleneck
localization process will be triggered to pinpoint the PBs in
the abnormal microservices. 3) Scaling Decision: This com-
ponent aims to determine the optimal number of replicas
for PBs using an evolutionary algorithm. Finally, PBScaler
generates configuration files with optimized strategies and
commits them to the kubernetes-client5, which regulates the
replica count of microservices.

3.1 Metric Collector

The autoscaling controller relies on observability for mi-
croservice applications, such as system load, tail latency,
and invocation relationships between microservices, to de-
termine whether elastic scaling should be performed and
how many resources should be allocated. While a trace-
based monitor can reflect the dependencies and perfor-
mance of microservices, it requires a deep understanding
of the program and code injection [7]. Moreover, real-
time analysis of massive tree-structural traces demands
a considerable amount of processing time. Therefore, we
design a metric-based monitor, the Metric Collector, based
on non-intrusive service mesh technology to minimize

4. https://prometheus.io
5. https://github.com/kubernetes-client/python
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Fig. 4. Framework of PBScaler.

TABLE 1
Labels of metrics collected from the monitoring tools.

Level Label
kube pod info
container cpu usage seconds total
container memory usage bytes
container spec cpu quota
container spec memory limit bytes

Container Level container fs usage bytes
container fs write seconds total
container fs read seconds total
container network receive bytes total
container network transmit bytes total
istio request duration milliseconds bucket

Microservice Level istio requests total
istio tcp received bytes total

disruptions to business flows. As shown in Table 1, PB-
Scaler uses Prometheus and kube-state-metrics to gather
and categorize these metrics (M ), including tail latency,
invocation relationships between microservices, resource
consumption, and microservice workload. For example,
container cpu usage seconds total is a resource metric that
records the Central Processing Unit (CPU) usage at the
container level. istio requests total records the TCP requests
between microservices. Fig. 5 displays a visualization of
the query results for istio requests total, where each point
represents the average request rate within the preceding
minute for a specific invocation relationship (e.g., fron-
tend→currency as marked in Fig. 5). This information serves
as a means to intuitively reflect the workload on mi-
croservices. Furthermore, istio requests total also records all
invocation relationships (listed in the legend of Fig. 5),
which can be utilized to construct a microservice correlation
graph Gc similar to the one depicted in Fig. 6. Meanwhile,
istio request duration milliseconds bucket serves as a perfor-
mance metric reflecting the tail latency of a microservice.
Typically, we collect the P90 tail latency of each microservice
to observe their performance. The monitoring interval of
Prometheus is set to five seconds, and the collected metrics
data is stored in a time-series database.

Service Mesh. A service mesh is an infrastructure that
enables developers to add advanced features, such as ob-

Fig. 5. Visualization of query results for metric istio requests total.

servability and traffic management, to cloud applications
without requiring additional code. One popular open-
source service mesh implementation is Istio6, designed to
seamlessly integrate with Kubernetes. When a pod starts up
in Kubernetes, Istio launches an envoy proxy within the pod
to intercept network traffic, enabling workload balancing
and monitoring.

3.2 Performance Bottleneck Analysis
Performance Bottleneck Analysis (PBA) is a process designed
to discover performance degradation and resource waste
in microservice applications to infer PBs of the current
problem. As stated in Section 1, by accurately locating these
bottlenecks, PBA can enhance the performance of autoscal-
ing and reduce excessive resource consumption. The PBA
process in PBScaler is depicted in Algorithm 1.

3.2.1 SLO Violation Detection
To detect abnormalities in microservices, PBScaler uses ser-
vice level objectives (SLOs) to compare with specific metrics.

6. https://istio.io
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Algorithm 1 Performance Bottleneck Analysis
Input: SLO

microservice correlation graph Gc
confidence level cl
tolerance to noise α
degree of significance β
impact factor σ

Output: ranking list rl
1: Initialize rl and abnormal microservice set S
2: for each vi in Gc.nodes do
3: for each ej,i in in-edges of vi do
4: /* SLO violation detection */
5: if P90(ej,i)> SLO ∗(1 + α/2) then
6: Store vi in S
7: end if
8: end for
9: end for

10: if S is empty then
11: /* Redundancy checking */
12: for each vi in Gc.nodes do
13: wi

p, wi
c ← Get workloads for microservice i from

the Metric Collector
14: t, P ← ttest(wi

c, wi
p ∗ β)

15: if t < 0 and P < cl then
16: Store vi in rl
17: end if
18: Return rl
19: end for
20: end if
21: rl = TopoRank(S)
22: Return rl

It is considered abnormal if a microservice has numerous
SLO violations, i.e., performance degradation. As discussed
in [14], [27], detecting SLO violations is a critical step in trig-
gering bottleneck localization. The invocation relationships
collected by the Metric Collector can be leveraged to build a
microservice correlation graph Gc. PBScaler inspects the P90
tail latency of all invocation edges in Gc every 15 seconds
to timely detect performance degradation. If the tail latency
of an invocation exceeds a predetermined threshold (such
as the SLO), the invoked microservice of the invocation
will be added to the set of abnormal microservices (S),
and the bottleneck localization process will be activated. To
account for occasional noise in the microservice latency, the
threshold is set to SLO×(1 + α

2 ), where α is used to adjust
the tolerance to noise.

3.2.2 Redundancy Checking
In the absence of performance anomalies, some microser-
vices may be allocated more resources than required. How-
ever, identifying such cases can be difficult through met-
rics alone, potentially leading to wasting limited hardware
resources. To avoid this, it is essential to identify which
microservices have allocated excess resources. PBScaler uses
the rate of workload change per second of microservices to
determine whether resources are redundant. This strategy is
more effective than relying only on resource consumption
because different microservices may have varying sensi-
tivity to heterogeneous resources. The main idea behind

Algorithm 2 TopoRank
Input: abnormal subgraph Ga

impact factor σ
preference vector u
transition matrix P
collected metrics M

Output: ranking list rl
1: Initialize rl and preference vector u
2: for each vi in Ga.nodes do
3: ai ← Anomaly degree of vi
4: φ← ai
5: for each vj in upstream microservices of vi do
6: hji ←Minimum number of hops from vj to vi
7: aj ← Anomaly degree of vj
8: φ← φ+ aje

−(hji/σ)
2

9: end for
10: ui ← φ
11: Lt ← An array of tail latency for vi
12: for each vj in out-edges of vi do
13: Lm ← An array of metric m for vj
14: Pi,j ← max

m∈M
(corr(Lt, Lm))

15: end for
16: end for
17: rl← pageRank(P, u)
18: Return rl

EmailRecommend
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Payment

Shipping

Product

Checkout

Cart Currency

Abnormal microservice Bottleneck microserviceNormal microservice

Normal invocation

AdService

Redis

Abnormal invocation

Fig. 6. Example of anomaly propagation in microservices.

redundancy checking is to employ hypothesis testing to
detect whether a microservice’s current workload wi

c is
significantly lower than its past workload (denoted as wi

p).
The degree of significance is adjusted by the parameter β,
and the hypothesis test can be formulated as:

{
H0, wi

c ≥ wi
p × β

H1, wi
c < wi

p × β.
(1)

To perform the hypothesis test, we first fetch the current
and historical workloads of the target microservices from
the Metric Collector. We then use a one-sided test to compute
the p-value P . If P does not exceed the confidence level cl
(which is set to 0.05 by default), we reject the null hypothesis
H0 and consider the microservice i to have redundant
resources.
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Fig. 7. Illustration of the computation process for the TopoRank algorithm.

3.2.3 Bottleneck Localization
Because of the complex interactions in a microservice ap-
plication [36], not every abnormal microservice needs to
be scaled up. For example, Fig. 6 illustrates how the per-
formance degradation of a bottleneck microservice (e.g.,
Product) can propagate to its upstream microservices (e.g.,
Recommend, Frontend, and Checkout) along the invocation
chains, even if the upstream microservices are not over-
loaded. Therefore, only the bottleneck microservice must
be scaled up while the other abnormal microservices are
merely implicated. To pinpoint the bottleneck microservice,
we introduce the concept of anomaly potential, which ag-
gregates the anomaly impact of all microservices in a given
position. Generally, a performance bottleneck tends to ex-
hibit a high anomaly potential in a microservice application,
as it is frequently surrounded by abnormal neighbors that
are influenced by the bottleneck. Based on the anomaly
potential, we model the backtracking of anomalies in mi-
croservice applications as a random walk on a directed
graph. Therefore, We design a novel bottleneck localization
algorithm, TopoRank, which introduces the topological po-
tential theory (TPT) in random walks to calculate the scores
for all abnormal microservices and finally outputs a ranking
list (rl). The microservices with the highest scores in the rl
can be recognized as the PBs.

TPT, which originated from the concept of ”field” in
physics, has been widely used in various works [37], [38]
to measure the mutual influence between nodes in complex
networks. Since the microservice correlation graph can also
be viewed as a complex network, we use TPT to evaluate
the anomaly potential of microservices. Specifically, we have
observed that in a microservice correlation graph Gc, the
microservices closer to the PBs, i.e., those with fewer hops,
are more likely to be abnormal, as they often have frequent
direct or indirect invocations with the PBs. Based on this
observation, we evaluate the anomaly potential of microser-
vices using the TPT. To do this, we first extract the abnormal
subgraph Ga by identifying the abnormal microservices and
their invocation relationships in Gc. We then calculate the
anomaly potential φ for microservice vi in the abnormal
subgraph Ga using the TPT:

φ = ai +
N∑
j=1

aje
−(hji/σ)

2

, (2)

where N is the number of upstream microservices of vi and
aj represents the anomaly degree of vj . PBScaler defines

the anomaly degree as the number of SLO violations for a
microservice in a time window. hji denotes the minimum
number of hops required from vj to vi. We use the impact
factor σ (1 by default) to control the influence range of a
microservice.

Fig. 7 illustrates the computation process of the Topo-
Rank algorithm. PBScaler checks the number of SLO viola-
tions for each microservice in Step 1 to initialize the anomaly
degree. It can be observed that the microservices A and
C, positioned upstream of the performance bottleneck (i.e.,
microservice E), have the highest anomaly degrees, with
values of 12 and 8, respectively. This is because anomalies
in downstream microservices propagate and accumulate in
upstream microservices. Consequently, it is inadvisable to
locate PBs solely based on the anomaly degree. In Step
2, PBScaler calculates the anomaly potential for each mi-
croservice according to Eq. 2. Taking the microservice C as
an example, its anomaly potential φ can be calculated as:
8 + 12× e−(1/1)2 = 12.41.

However, microservices with high anomaly potential
values are not necessarily PBs, since anomalies are usu-
ally propagated along the microservice correlation graph.
In Step 2 of Fig. 7, the upstream microservice A exhibits
the highest anomaly potential due to the propagation of
downstream anomalies. Hence, relying solely on the TPT
is insufficient for diagnosing PBs. To address this issue,
PBScaler incorporates the Personalized PageRank algorithm
[39] to reverse the anomaly propagation on the abnormal
subgraph Ga and locate PBs. Let P be the transition matrix
of Ga and Pi,j be the probability of anomaly tracking from
vi to its downstream node vj . Given vi with out-degree d,
the standard Personalized PageRank algorithm sets Pi,j as:

Pi,j =
1

d
, (3)

which means that the algorithm is not biased toward any
downstream microservice. However, this definition fails to
consider the association between the downstream microser-
vices and the anomaly of the current microservice. Con-
sequently, PBScaler adapts the calculation by giving more
attention to the downstream microservices whose metrics
are more relevant to upstream response time. For each
microservice vi, PBScaler logs a tail latency array (Lt). For
any metric m (e.g., container spec cpu quota) of collected
metrics M in Table 1, PBScaler records a metric array Lm for
vi within a specified time window. PBScaler defines that Pi,j
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depends on the maximum value of the Pearson correlation
coefficient between Lt and Lm:

Pi,j = max
m∈M

(corr(Lt, Lm)). (4)

The Personalized PageRank algorithm determines the
popularity of each node by randomly walking on the di-
rected graph. However, some nodes may never point to
others, causing the scores of all nodes to tend toward zero
after many iterations of the random walk. To avoid falling
into this ”trap,” a damping factor δ is applied, which allows
the algorithm to jump out from these nodes according to a
predefined rule. Typically δ is set to 0.15. The Personalized
PageRank is represented as follows:

v = (1− δ) · Pv + δ · u, (5)

where v represents the probability that each microservice
node is diagnosed as a PB. The preference vector u serves
as the personalized rule to guide the algorithm to leap from
the trap. The value of u is determined by the anomaly
potential φ of each node. The nodes with greater anomaly
potential are preferred as starting points for the algorithm.
The equation of the k-th iteration can be represented as:

v(k) = (1− δ) · Pv(k−1) + δ · u. (6)

After multiple rounds of iterations, v gradually converges.
PBScaler then sorts the final results and produces the rank-
ing list rl. In Step 4 of Fig. 7, the TopoRank algorithm under-
goes multiple rounds of random walks. During this process,
it reduces the suspicion levels on microservices A and C,
assigning them low scores of 0.11 and 0.17, respectively.
Conversely, microservice E is identified with the highest
suspicion score of 0.37. The top-k microservices (E and D)
with the highest ranking list scores can be recognized as PBs.
The whole process of TopoRank is depicted as Algorithm 2.

3.3 Scaling Decision

Given the PBs identified by the Performance Bottleneck Anal-
ysis, the replicas for the PBs will be scaled to minimize the
application’s resource consumption while ensuring the end-
to-end latency of microservices meets the SLO. Although
abundant replicas can alleviate the performance degrada-
tion problem, they also consume a significant amount of
resources. Consequently, it is essential to maintain a balance
between performance guarantees and resource consump-
tion. The process of Scaling Decision will be modeled as a
constrained optimization problem to achieve this balance.

3.3.1 Constrained Optimization Model

The autoscaling optimization in our scenario seeks to iden-
tify an allocation schema that allocates a variable number
of replicas for each PB. Given n PBs that require scaling,
we define a strategy as a set X = {x1, x2, · · · , xn}, where
xi denotes the number of replicas allocated for PB i. Before
the optimization, the initial number of replicas for PBs can
be expressed as C = {c1, c2, · · · , cn}. It should be noted
that the replicas constraint in PBScaler should be defined
separately for scaled-down and scaled-up processes. During

the scaled-up process, we limit the number of replicas for
PBs as follows:

s.t. xi ≥ ci + 1,∀xi ∈ X,∀ci ∈ C,
xi ≤ cmax,∀xi ∈ X,

(7)

where cmax represents the maximum number of replicas
that a microservice can scale to, given limited server re-
sources. The constraint of the number of replicas during the
scaled-down process can be expressed as:

s.t. xi ≥ max(ci − γ, 1),∀xi ∈ X,∀ci ∈ C,
xi ≤ ci,∀xi ∈ X,∀ci ∈ C.

(8)

In Eq. (8), γ (with the default value of two) denotes the
maximum number of replicas reductions. This limit is rea-
sonable since reducing the number of microservice replicas
drastically can cause a short latency peak, as observed in
experiments.

The goal of the Scaling Descision is to minimize the
application’s resource consumption while maintaining its
performance. Application performance is usually expressed
by SLO violations that users are more concerned about.
Therefore, the application performance reward can be de-
tailed as:

R1 =

{
0, SLO violation,

1, w/o SLO violation.
(9)

During the optimization process, the application’s resource
consumption, such as CPU and memory usage, is unpre-
dictable. To conservatively estimate resource consumption,
we consider the ratio of PB replicas to the maximum number
of allocatable replicas, rather than calculating the cost of
CPU and memory. We calculate the resource reward as:

R2 = 1−
∑n

i=1 xi
cmax × n

. (10)

Our objective is to guarantee performance while minimiz-
ing resource consumption. We leverage a weighted linear
combination (WLC) method to balance the two objectives.
The final optimization objective is defined as:

max
X

(λ ·R1(X) + (1− λ) ·R2(X)), (11)

where λ ∈ [0, 1]. We set λ as a parameter to balance the
application performance and resource consumption.

3.3.2 SLO Violation Predictor
To calculate the performance rewardR1, evaluating whether
a strategy will cause the SLO violation in online applications
is necessary. A simple way is to execute candidate strategies
directly in online applications and wait for feedback from
the monitoring system. However, oscillations caused by
frequent scaling in online applications will be inevitable.
An alternative method is to train an evaluation model with
historical metric data, which can simulate the feedback
from online applications. Without interacting with online
applications, this model predicts application performance
based on the current application state.

We use a vector r to denote the number of replicas for
each microservice after executing the scaling strategy X.
w is a vector that denotes the current workload for each
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Fig. 8. Illustration of the autoscaling optimization process.

microservice. Because of the low time cost of bottleneck-
aware optimization, it is reasonable to hypothesize that w
will not change significantly during this period (see Section
4.2). Given the application state represented by workload
w and replicas r of all microservices, an SLO violation
predictor can be designed as:

ψ(r,w) =

{
0, SLO violation,

1, w/o SLO violation,
(12)

where ψ is a binary classification model. Details of selecting
an appropriate classification model will be discussed in
Section 4.3. The historical metric data used for training can
be generated using either a classical scaling method (the
Kubernetes autoscaler by default) or a stochastic method.
We deployed an open-source microservice system on three
nodes (with a total of 44 CPU cores and 220 GB of RAM)
and performed elastic scaling. Prometheus gathered each
microservice’s workload and P90 tail latency at regular time
intervals. By comparing the tail latency of the front-end
microservice with the SLO, monitoring data for each time
interval can be easily labeled.

3.3.3 Autoscaling Optimization
As mentioned in Section 3.3.1, the tradeoff between perfor-
mance and resource consumption can be modeled as a con-
strained optimization problem. To find a near-optimal strat-
egy, PBScaler employs a genetic algorithm (GA) to generate
and optimize scaling strategies that reduce resource con-
sumption while meeting SLO requirements. By emulating
natural selection in evolution, the GA improves the superior
offspring while eliminating the inferior ones. Initially, the
GA performs a random search to initialize a population of
chromosomes in the strategy space, with each chromosome
indicating a potential strategy for the optimization problem.
Next, in each iteration, elite chromosomes with high fitness,
called elites, will be selected for crossover or mutation to
produce the next generation.

The autoscaling optimization in our scenario seeks to
identify a scaling strategy that allocates a variable number of
replicas for each PB. The process of autoscaling optimization
is illustrated in Fig. 8. In the beginning, PBScaler obtains

Algorithm 3 GA-based Autoscaling Optimization
Input: the number of iterations I

the size of population Np

the size of elites Nz

the probability of crossover pc
the probability of mutation pm

Output: the best scaling strategy s
1: P0 ← Randomly create a population with Np strategies
2: Evaluate the fitness of each strategy in P0

3: Z0 ← Get Nz elites from P0

4: s← Get the best strategy in Z0

5: i← 0
6: while i < I do
7: Fi ← Set parents with (Np −Nz) strategies from Pi

8: Oi ← Generate offspring by recombining Fi with a
probability of pc

9: Oi ← Generate offspring by mutating Oi with a
probability of pm

10: Pi+1 ← (Zi ∪Oi)
11: Evaluate the fitness of each strategy in Pi+1

12: Zi+1 ← Get Nz elites from Pi+1

13: t← Get the best strategy in Zi+1

14: fs, ft ← Evaluate the fitness of s and t
15: if fs < ft then
16: s← t
17: end if
18: i← i+ 1
19: end while

each microservice’s current number of replicas r and work-
load w. After the Performance Bottleneck Analysis, PBScaler
identifies the PBs from r and filters out them to get r′.
Then, the population of strategies for PBs is generated by
the Decision Maker. Since the number of microservices to be
scaled influences the speed and effect of the optimization
algorithm (Section 4.3), PBScaler assumes that only PBs
need to be elastically scaled. In other words, the number
of replicas in r′ will remain unchanged. The SLO violation
predictor is responsible for evaluating the generated strate-
gies. It should be noted that the strategy is merged with r′

and input to the SLO violation predictor together with w.
With the help of GA, the superior strategy Xbest is selected
and then merged with r′ to generate the final decision.

In the optimization phase, the Decision Maker generates
and improves the scaling strategy for PB using the GA,
as described in Algorithm 3. After randomly generating a
population within the strategy scope of each PB (Line 1), the
Decision Maker estimates the fitness of each strategy based
on Eq. (11) and stores the elites (Lines 2-3). In each iteration,
the GA uses a tournament-based selection operator to pick
out outstanding parents Fi (Line 7). New offspring Oi

are generated through recombination and mutation (Lines
8-9) using a two-point crossover operator and a binary-
chromosome mutation operator. By simulating natural se-
lection, new offspring Oi and elites Zi with higher fitness
constitute a new population Pi+1 that enters the next iter-
ation (Line 10). At each iteration, the current best strategy
t undergoes a fitness comparison with the historically best
strategy s (Lines 13-17). The best strategy s after I iterations
will be considered as the value of final Xbest.
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Fig. 9. The fluctuation of one-hour real-world workloads (Wiki) and
twenty minutes emulated workloads (EW).

4 EVALUATIONS
In this section, we present the details of experimental sce-
narios for autoscaling, including a comparison of PBScaler
with several state-of-the-art autoscaling algorithms from
academia and industry.

4.1 Experimental Setup

4.1.1 Microservice Platform
Experiments were carried out in our private cloud cluster,
consisting of three physical computers (one master node
and two worker nodes) with a total of 44 Intel 2.40 GHz
CPU cores and 220 GB of RAM. To evaluate autoscaling,
we selected two open-source microservice applications as
benchmarks: a) Online Boutique7, a Web-based E-commerce
demo application developed by Google. The system imple-
ments basic functions such as browsing products, adding
items to shopping carts, and payment processing through
the collaboration of ten stateless microservices and a Redis
cache. b) Train Ticket8: a large-scale, open-source microser-
vice system developed by Fudan University. With more than
40 microservices and the usage of MongoDB and MySQL for
data storage, Train Ticket can satisfy a variety of workflows,
such as online ticket browsing, booking, and purchasing.
Because of cluster resource constraints, we limited each
microservice to no more than eight replicas. The source code
is available on Github9.

4.1.2 Workload
We evaluated the effectiveness of PBScaler under various
traffic scenarios, using a real-world Wikipedia workload
from the Wiki-Pageviews [40] on March 16, 2015, and five
emulated workloads (EW1 ∼ EW5), inspired by the experi-
ments conducted by Abdullah et al. in [41]. We compressed
the real-world workload to one hour and scaled it to an ap-
propriate level for our cluster. The five emulated workloads
exhibited various patterns, such as single peak, multiple
peaks, rising, and dropping, and were limited to a duration
of twenty minutes. Fig. 9 depicts the fluctuation of these
workloads.

7. https://github.com/GoogleCloudPlatform/microservices-demo
8. https://github.com/FudanSELab/train-ticket
9. https://github.com/WHU-AISE/PBScaler

4.1.3 Baseline Methods

We compare PBScaler with several state-of-the-art microser-
vice autoscaling methods from academia and industry,
which perform dynamic horizontal scaling of microservices
from the perspectives of static thresholds, control theory,
and black-box optimization.

• Kubernetes Horizontal Pod Autoscaling (KHPA): It
is the default horizontal scaling scheme of Kuber-
netes. By customizing a threshold T for a certain
resource R (CPU usage as the default) and aggre-
gating the resource usage UR

i from all replicas of
a microservice, KHPA defines the target number of
replicas as n = ⌈

∑
i∈ActivePods U

R
i / T ⌉.

• MicroScaler [15]: It is an autoscaling tool that uses
a black-box optimization algorithm to determine the
optimal number of replicas for a microservice. Mi-
croScaler calculates the microservice’s P90/P50 for
classification and then performs four iterations of
Bayesian Optimization to make a scaling decision.

• SHOWAR [11]: It is a hybrid autoscaling technol-
ogy. We reproduced the horizontal scaling part in
SHOWAR, which uses the PID control theory to
gradually bring the observed metric close to the user-
specified threshold. In our implementation, we re-
placed the run queue latency with the more common
P90 latency since the former requires an additional
eBPF tool.

4.1.4 Experimental Parameters and Evaluation Criteria

In our experiments, we fixed the collection interval of
Prometheus to five seconds. With the increase in experiment
time and workloads, the data volume required by stateful
microservices like MongoDB will also grow. Eventually,
the data volume will exceed the available memory, neces-
sitating the use of disk storage. This transition can cause
performance degradation that cannot be remedied through
autoscaling. Hence, we limit workload testing to stateless
traces. The SLO values for the Online Boutique and the
Train Ticket were set to 500 ms and 200 ms, respectively.
In the SLO violation detection and redundancy checking
module, PBScaler first sets the action boundary α to 0.2 to
reduce noise interference, as done in SHOWAR. Then, we
empirically set the degree of significance β to 0.9 to control
the workload level that triggers scaling. For bottleneck lo-
calization, the impact factor σ of the topological potential is
set to 1, and the top-k (k =2) microservices with the highest
score in rl will be considered PBs.

We choose the SLO violation rate, resource consumption,
and response time to evaluate the performance of autoscal-
ing methods. An autoscaling approach is considered more
effective if it can reduce response time, SLO violation rate,
and resource consumption. We define the SLO violation
rate as the percentage of the end-to-end P90 tail latency
that exceeds the SLO. Resource consumption is calculated
following the method presented in [42], where the CPU
price is 0.00003334$ (vCPU/s) and the memory price is
0.00001389$ (G/s). The total resource consumption is ob-
tained by summing the cost of memory and CPU.
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TABLE 2
Performance of state-of-the-art methods and PBScaler under real and emulated workloads. SLO violation rate and cost are reported.

Methods Online Boutique Train Ticket
Wiki EW1 EW2 EW3 EW4 EW5 Wiki EW1 EW2 EW3 EW4 EW5

SLO violation rate (%)
None 79.64 57.26 67.22 70.12 56.85 39.00 94.87 48.37 53.11 57.54 35.88 37.89
KHPA 4.86 13.45 37.08 31.95 20.00 25.10 10.48 37.50 40.09 30.46 29.72 30.90
MicroScaler 8.18 17.43 17.45 31.54 22.41 18.26 46.70 29.61 30.48 47.57 50.29 42.16
SHOWAR 13.74 13.33 10.92 27.39 12.08 25.00 9.39 20.14 22.92 19.23 25.66 21.04
PBScaler 5.69 7.88 12.45 8.30 11.62 8.71 5.62 15.00 19.40 18.14 16.24 14.22
Cost ($)
None 1.93 0.50 0.62 0.65 0.61 0.64 11.62 3.03 3.06 3.25 3.15 3.39
KHPA 3.48 1.03 1.06 1.08 1.11 1.09 18.29 5.50 5.71 5.66 5.84 5.27
MicroScaler 3.09 0.79 0.72 0.71 0.76 0.68 15.44 3.76 3.52 4.70 4.86 4.46
SHOWAR 2.49 0.71 0.83 0.85 0.79 0.69 13.64 3.86 3.82 4.21 4.09 3.56
PBScaler 2.57 0.68 0.69 0.72 0.63 0.69 14.02 3.57 3.30 3.64 3.69 3.14
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Fig. 10. The latency distribution for different methods under real and emulated workloads.

TABLE 3
Time cost of four modules in PBScaler.

Modules Online
Boutique

Train
Ticket

SLO Violation Detection 0.29s 1.03s
Redundancy Checking 0.11s 0.15s
PBA 0.79s 3.1s
Decision Maker 3.36s 3.58s

4.2 Performance Evaluation

Table 2 compares the SLO violation rates and resource
costs for the four autoscaling methods in two microservice
applications with different workloads. The None method is
used as a reference and performs no autoscaling operation.
Its results are presented in grey and are excluded from the
comparison.

In general, PBScaler outperforms the competing ap-
proaches in reducing SLO violations and minimizing re-
source overhead under six workloads in both microservices
systems. In particular, the SLO violation rate of PBScaler in

Train Ticket is, on average, 4.96% lower than that of the
baseline methods, while the resource cost is reduced by
an average of 0.24$. These results show that PBScaler can
perform elastic scaling for bottleneck microservices in large-
scale microservice systems quickly and precisely, thereby re-
ducing SLO violations and saving resources. Regarding the
six workloads in Online Boutique, PBScaler also achieves
the lowest SLO violations in four of them and minimizes
resource consumption in three emulated workloads.

Fig. 10 depicts the box plots of latency distribution for
different methods under six workloads, exploring the im-
pact of each method on the performance of the microservice
system. It can be seen that the majority of the autoscaling
methods can keep the median of the latency distribution
below the red dotted line (SLO). However, only PBScaler
goes a step further to reduce the third quartile significantly
below the SLO for all workloads.

To evaluate the time cost of using PBScaler for elastic
scaling, the average time required by each module in PB-
Scaler is collected and counted. As reported in Table 3, the
total time cost of all PBScaler modules in Online Boutique
is less than one monitoring interval (i.e., 5s), while the
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Fig. 11. Performance comparison of bottleneck localization on Online
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Fig. 12. The iterative process of the genetic algorithm under Online
Boutique and Train Ticket.

same metric for Train Ticket is less than two monitoring
intervals. Thanks to the PBA that narrows the decision-
making scope, the time cost of the Decision Maker does not
increase much (no more than 6.6%) when the application is
switched from Online Boutique to Train Ticket, despite the
increased number of microservices. However, we recognize
the limitation that the time consumption of PBA quickly
rises as the microservice scale grows, which will be our
future work.

4.3 Effectiveness Analysis of Components
4.3.1 Performance Comparision of Bottleneck Localization
To evaluate whether the TopoRank algorithm can effec-
tively locate PBs caused by burst workloads, we injected
exceptions, such as CPU overload, memory overflow, and
network congestion, into Online Boutique and Train Ticket
through Chaos Mesh. These exceptions are typically caused
by high-workload conditions. The TopoRank algorithm was
used to analyze the metrics and identify performance bot-
tlenecks for these exceptions. The localization results were
then compared to MicroRCA [27], a baseline method for mi-
croservice root cause analysis.AC@k measures the accuracy
of the real PBs in the top-k results, andAvg@k is the average

TABLE 4
Precision and Recall of four ML methods for SLO violation prediction

Method Train Ticket Online Boutique
Precision Recall Precision Recall

SVM 0.819 0.961 0.865 0.915
Decision Tree 0.891 0.918 0.927 0.941
Random Forest 0.919 0.963 0.956 0.969
MLP 0.799 0.930 0.831 0.907
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Fig. 13. The replica and latency fluctuation of PBScaler and MicroScaler
under the Wiki workload.

accuracy at the top-k results. These metrics can be calculated
as follows.

AC@k =
1

|A|
∑
a∈A

|RT@k ∩ PBs|
min(k, |PBs|)

, (13)

Avg@k =
1

|A|
∑
a∈A

|A|∑
k=1

AC@k, (14)

where A represents the set of exceptions, and RT@k refers
to the top-k microservices in the ranking list. Fig. 11 presents
the AC@1 and Avg@5 values of TopoRank and MicroRCA
across different microservice applications. The results indi-
cate that TopoRank performs better than MicroRCA in both
metrics. This is primarily due to the fact that TopoRank takes
into account both the anomaly potential and microservice
dependencies when performing Personalized PageRank.

The primary purpose of bottleneck location is to narrow
down the strategy space and expedite the discovery of the
optimal strategy. We perform GA iterations on both PBs and
all microservices to demonstrate the influence of bottleneck
localization on optimization. Fig. 12 depicts the iterative
process under the microservice systems and demonstrates
that as the population increases, the PB-aware strategy
significantly outperforms the approach that scales for all
microservices in terms of fitness. The PB-aware strategy can
obtain superior fitness in less than five iterations. In con-
trast, the all-microservices-involved method requires larger
populations and more iterations to achieve the same level of
fitness. This is attributed to the fact that the PB-aware strat-
egy aids the genetic algorithm in reducing the optimization
range precisely and accelerating the acquisition of superior
solutions.

4.3.2 Effectiveness of the SLO Violation Predictor
The objective of the SLO violation predictor is to forecast the
result of the optimization strategy directly rather than wait-
ing for feedback from the online application. We determine
whether performance issues will occur based on the number
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of replicas and workloads of each microservice. Selecting
a suitable binary classification model for the prediction
task is critical. With a data collection interval of five sec-
onds, we collected two datasets, including a 3.1k historical
sampling dataset for Train Ticket and a 1.5k dataset for
Online Boutique, in our cluster. For training and testing
on these two datasets, we adopt four classical machine
learning (ML) methods, including Support Vector Machine
(SVM), Random Forest, Multilayer Perceptron (MLP), and
Decision Tree. We employ typical binary classification indi-
cators to assess the performance of experimental methods:
Precision = TP

TP+FP and Recall = TP
TP+FN , where TP

represents the number of identified SLO violations; FN and
FP represent the number of unrecognized SLO violations
and the number of false-positive SLO violations, respec-
tively. Table. 4 shows the performance comparison of the
four methods for SLO violation prediction. According to the
effects of the two datasets, we finally choose Random Forest
as the primary algorithm for the SLO violation predictor.

To demonstrate that the SLO violation predictor can sub-
stitute the feedback from the real environment, we compare
PBScaler, which employs the SLO violation predictor, with
MicroScaler, which collects feedback from the online system.
We injected burst workloads into the Online Boutique and
made only one microservice abnormal to eliminate the dif-
ference in bottleneck localization between the two methods.
As shown in Fig. 13, with the guidance of the predictor,
the number and the frequency of decision-making attempts
made by PBScaler are much lower than those of MicroScaler.
Reducing online attempts in a cluster will evidently reduce
the risk of oscillations.

5 CONCLUSIONS

This paper presents PBScaler, a bottleneck-aware autoscal-
ing framework designed to prevent performance degener-
ation in microservice-based applications. PBScaler collects
real-time performance metrics of applications using the ser-
vice mesh technology and dynamically builds a correlation
graph among microservices. To handle abnormal microser-
vices caused by external dynamic workloads and intricate
invocations among microservices, PBScaler employs Topo-
Rank, a random walk algorithm based on the topological po-
tential theory, to identify bottleneck microservices. Further-
more, PBScaler performs an offline evolutionary algorithm
to optimize scaling strategies guided by an SLO violation
predictor. Experimental results indicate that PBScaler can
minimize resource consumption while achieving lower SLO
violations.

In the future, we plan to improve our work from the
following two aspects. Firstly, we will explore the potential
of using bottleneck awareness in finer-grained resource
(e.g., CPU and memory) management. Secondly, we will
explore how to circumvent the interference of stateful mi-
croservices in autoscaling since the performance degrada-
tion from stateful microservices may disrupt the autoscal-
ing controller. Thirdly, we will improve the efficiency of
performance bottleneck analysis for large-scale microservice
systems.
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