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An Introduction to the Construction and
Verification of Alphard Programs
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Abstract—The programming language Alphard is designed to provide
support for both the methodologies of “well-structured” programming
and the techniques of formal program verification. Language constructs
allow a programmer to isolate an abstraction; specifying its behavior
publicly while localizing knowledge about its implementation. The veri-
fication of such an abstraction consists of showing that its implementa-
tion behaves in accordance with its public specifications; the abstrac-
tion can then be used with confidence in constructing other programs,
and the verification of that use employs only the public specifications.

This paper introduces Alphard by developing and verifying a data
structure definition and a program that uses it. It shows how each
language construct contributes to the development of the abstraction
and discusses the way the language design and the verification method-
ology were tailored to each other. It serves not only as an introduction
to Alphard, but also as an example of the symbiosis between verification
and methodology in language design. The strategy of program structur-
ing; illustrated for Alphard, is also applicable to most of the “data ab-
straction” mechanisms now appearing.

Index Terms—Abstract data types, abstraction and representation, as-
sertions, correctness, information hiding, levels of abstraction, modular
decomposition, program specifications, program verification, program-
ming languages, programming methodology, structured programming.

INTRODUCTION

UR ultimate concern is with the cost and quality of real
O programs. Although problems that arise during mainte-

nance of large programis are often ignored, it is neverthe-
less by now generally accepted that programming costs are too
high, quality is too low, schedules are too often missed, and so
on [5], [13], [28], [35].

The area called structured programming is concerned with
those aspects of the software problem which result from our
human limitations in dealing with complexity [1], [7], [9],
[14], [29], [37], [38]. Recognizing that programs exist for
long periods of time adds a new dimension, maintenance, to
the problem, since it no longer suffices to develop the program
in a well-structured manner. If a program is to be modifiable,
the structure of the development must be retained in the ulti-
mate program text. A major objective of the Alphard program-
ming language design, currently under way at Carnegie-Mellon
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University, is precisely the retention of this structure. Alphard
deals with complexity by restricting both the form of the pro-
grams (by eliminating the goto, for example [10]) and the
process of creating them (as is the case with stepwise refine-
ment [37]).

Research on program verification has addressed the software
problem differently, by proving that the programs we write are
in fact consistent with their specifications [12], [17], [19],
[25]. Recently, attention has turned to verification of collec-
tions of related functions as a means of segmenting the verifi-
cation task along the same lines as the decomposition of the
program itself. For example, proof techniques described by
Hoare [19] and Spitzen and Wegbreit [33], [34] can show
that a data representation and its associated operations possess
the expected. properties, provided that the representation is
directly manipulated only by the associated operations and
not by other parts of a program. This decomposition and fac-
torization permit parts of the verification to be performed for
each operator definition instead of for each use. Ultimately,
the techniques rely on induction on the number of data opera-
tions performed. Related proofs may be found in [15], [16],
[41].

Well-structured, understandable, easily modified, and de-
monstrably consistent programs can in principle be written in
any programming language. In practice, however, we know
that the presence or absence of certain features in a language
can materially affect all these desirable properties. We also
know, from both natural and artificial languages, that the
language we use to express our ideas can shape the ideas them-
selves [36]. Thus, by choosing language features and structure
properly we can hope to exert a positive influence on the pro-
grams written in the language.

Instead of starting with an existing language and focusing on
methodology or verification individually, we therefore chose
to treat these issues jointly in a new language design. Alphard’s
abstraction mechanism, the form, encapsulates a set of related
function definitions and associated data descriptions [27]. As
a result, the user can attend independently to defining an ab-
stract behavior and to using this abstract behavior in other pro-
grams. The strategy for verifying a form consists of showing
that 1) the data structures used in the implementation consti-
tute a valid representation of the abstract concept, 2) the ini-
tialization performed when an instance of the form is created
produces a legitimate representation of an abstract object,
3) the implementation of each function behaves as its imple-
mentation description promises, and 4) the abstract de-
scription of the behavior is represented by these implementa-
tion descriptions.
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PREVIEW OF THE ALPHARD LANGUAGE

A key concept in structured programming is abstraction: the
retention of only the essential properties of an object and the
corollary neglect of inessential details. Several abstraction
techniques have appeared in the literature on structured pro-
gramming [11], [29], [30], [37].

In Alphard programs, information about the implementation
of an abstraction is isolated and textually localized within a
form. This has several advantages over more traditional
organizations.

1) The places where modifications must be made are more
likely to be close together.

2) A smaller portion of the program will be likely to require
reverification when a change is made.

3) The user of the abstraction may ignore the details of the
implementation.

4) It becomes possible to make absolute statements about
certain things (e.g., data structures) which are independent of
€vVen perverse programmers.

5) The implementation of the abstraction may (sometimes)
ignore the complexity of the environment in which the ab-
straction will be used.

The specific language mechanism used to capture this style
of decomposition, the Alphard form, is derived from Simula
classes [7]; similar adaptations have also appeared in CLU
[23] and Concurrent Pascal [3], [4], and related features are
beginning to appear in other languages (see, for example, [8]).
At this point we shall only introduce the general nature of the
construct and the Alphard notation; more details will follow
an explanation of the verification issues. .

The Alphard form permits the programmer to introduce a
new abstraction into the program. In most ways the newly in-
troduced abstraction will resemble a new fype as that term is
used in other programming languages.!

Thus, an Alphard program might contain a definition such
as:

form complex=
beginform
endform

This definition intioduces a new abstract notion, “complex
variable.” The form contains all the information relevant to

the implementation of the abstract notion. In this case, for .

example, we would find in the form both the definition of the
data structure to be used in representing a complex variable
(e.g., two real variables), and the definition of a set of opera-
tions on them (addition, multiplication, assignment, etc.). The
form also gives a formal specification of the abstract properties
of these complex variables as described in the next section.
Once such a definition is written, a programmer can write an
abstract program using the newly defined notion. Variables of
the new type may be declared, the defined operations may be

IIn general, the abstraction introduced by a form need not be a type
in the traditional sense. We use the word “type” informally in this
paper, however, and the reader will not be badly misled by thinking

+ in those terms.
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performed, and so on. We may, for example, write:

local x,y,z:complex;

X<Xty*z;

because certain features of the language allow new functions
to be associated with the infix operators.

All of this is, of course, very similar to the notions found in
extensible languages [31]. However, the emphasis is consider-
ably different: we are not interested in general syntactic exten-
sion. Rather, we are concerned with encapsulation, separating
the concrete realization (implementation) of an abstraction
from its use in an abstract program. Thus, for example, all of
the representational information in a form is inaccessible to
the abstract program; only those properties defined in the
formal specification are accessible.

With this overview of the language, we turn to a technique
for verifying the properties of a form. Since so much of the
syntax and semantics of Alphard are tuned to this verification
technique, we shall explain the technique first, then present
the language via an extended example. For now, the important
property of the language is its ability to separate the use of an
abstraction from its concrete representation. The verification
technique exploits this separation and permits the implementa-
tion (the form) to be verified independently of the abstract
program in which it is used.

In order to show as clearly as possible the relation between
language and verification we have omitted a number of issues
from this discussion of Alphard. These include data represen-
tation, iteration mechanisms, reference variables, storage allo-
cation, statement and expression syntax, exception handling,
and input-output. At least for the programs given here, the
reader’s intuition and good sense should be sufficient.

VERIFICATION OF FORMS

Our overall strategy for verifying Alphard programs parallels
the program decomposition implicit in the notion of a form.
We shall presume a relatively small main program expressed in
terms of operations on abstract objects natural to the problem.
This main program is verified by traditional methods (e.g.,
inductive assertions), treating the specifications of the abstract

-objects and operations as if they were primitive. Then, to

justify the use of the abstract objects we verify that the
concrete implementation of each abstraction is consistent with
its specifications. In general the implementation of an abstrac-
tion will be given in terms of further, lower level, abstract ob-
jects and operations on them. Thus, the verification of the al-
gorithms used to implement an abstraction will be similar to
the verification of the most abstract (top level) program. An
obvious requirement of this approach is that each of the im-
plementations be correct, or verified, if the ultimate program
is to be verified. Roughly speaking, the verification will show
that the specified relations exist between all abstractions and
their implementations so that each implementation “behaves
like,” or models, its abstraction.

The key to the utility of this approach is separating the
proof of each program that uses an abstraction from the proof
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of the implementation of that abstraction. Several advantages
accrue from this separation.

1) Individual proofs are kept manageably small.

2) Program modifications generally imply reverification of
only the affected program portion, usually a single form (ex-
ceptions occur when the modification affects the specification
of the abstraction implemented by the form).

3) Although the entire program can be considered correct
only when all portions have been verified, it is feasible for cer-
tain portions to be unverified during program development.
Alternatively, some verified forms may be available from a li-
brary while others may have been developed and verified by a
subgroup independently; these forms can be used confidently
during the development of further programs or forms.

The remainder of this section explicates a proof methodol-
ogy which permits this separation. It is based on ideas from
Hoare’s notable paper on correctness of data representations
[19]. ’

Suppose that we have an abstract type T, that “y” is an arbi-
trary object of type T, and that A, A, are abstract oper-
ations defined on objects of type T. Out first concern will be
to define the objects of this type and the operations on them
in a manner which permits a higher level program to use these
objects and be verified easily. This definition consists of three
parts: the specifications, which constitute the user’s sole
source of information about the form, the representation,
which describes the representation and related properties of an
object of this type, and the implementation, which contains
the definitions of the functions that can be applied to an
object.

In the specifications, we first define the class of objects be-
longing to this type by a predicate which, for reasons which
become clear later, is called the abstract invariant 1,. Second,
since the abstract type T may be defined only under certain
assumptions about the environment in which it is created, we
capture these assumptions by a predicate freq. Third, we give
another predicate B;n;;, which characterizes the initial value
given to an abstract object when it is created. Fourth, we de-
fine the abstract operations by their input-output relations,
using pairs of predicates which characterize their effect. We
call these By and Bpoe and write in Hoare’s notation [17]

Bore(y) {Ai} Bpost(¥)-

A, is assumed to read or change only y.

Our next concern will be to characterize a concrete imple-
mentation of these abstract objects and operations. Suppose
that “x” is the concrete representation of an object of type T,
and hence, in general, “x” will be a collection or record of
concrete variables. Further, suppose that C,,--,C, are the
concrete operations which purport to be the implementations
of the abstract operations A,;,*,A,. The set of concrete ob-
jects is also defined by a predicate, which we shall call the
concrete invariant 1.. The relation between a concrete object
x and the abstract object that x represents may be expressed
by a representation function, rep:

rep(x)=y
Note that the rep function may be many-one; that is, more
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than one concrete object may represent the same abstract ob-
ject. Rep must, however, be defined for all x satisfying I...

The concrete operations C; must also be characterized in
terms of their input-output relations. To avoid confusion in
the sequel we shall refer to these predicates as the input and
output conditions, B, and By, rather than as pre and post
conditions. Thus,

Bin(x) {Cl} ﬁout(x)~

We assume that each C; alters or accesses variables only in x.

Finally, we shall presume a distinguished concrete operation
Cinit Which is invoked whenever an object is created; this oper-
ation is responsible for initializing the concrete representation.

Now, at an intuitive level, we wish to show that the concrete
representation and the implementation of the concrete opera-
tions are “correct.” More specifically, we wish to show that it
is safe for the programmer working at the abstract level to
prove the correctness of his program using only the abstract
specifications of the types he uses: I, freq, Binit, and (for each
abstract operation) Bpre and Bpost- In the sequel, we often dis-
cuss an arbitrary function whose corresponding abstract and
concrete operations are denoted by the symbols A and C,
respectively; our remarks are therefore implicitly quantified
over the set of such operations.

We have chosen to break the proof of the correctness of the
concrete realization into four steps. The first step establishes
the validity of the concrete representation. The second estab-
lishes that the concrete initialization operation is sufficient to
ensure that Bin;¢ and I; hold initially, provided Beq is satisfied.
The third establishes that the code of the concrete operations
is in fact characterized by the input-output assertions, §;, and
Bout, and furthermore that I is preserved. The last step estab-
lishes the relation between the concrete input-output asser-
tions and the abstract pre and post conditions. After describ-
ing the proof steps we discuss the relationship between this
methodology and Hoare’s.

For the form
Step 1: Validity of the representation®

Ie(x) O Iy(rep(x))
Step 2: Initialization of an object

Breq {Cinit} Binit(rep(x)) A Ie(x)
For each function

Step 3: Verification of concrete operations

Bin(®) A I(x) {C} Bout(®) A Le(x)

Step 4: Relation between concrete and abstract specifica-
tions

2This condition is actually slightly stronger than necessary since we
only need to ensure that those representations reachable by a finite
sequence of applications of the concrete operations actually represent
abstract objects; in practice, however, the stated theorem is not restric-
tive since I, can be made stronger if necessary. Note, by the way, that
we need not prove the dual (I;(y) implies the existence of an x such
that y=rep(x) A Io(x)) since this is guaranteed for reachable abstract
objects by Steps 1-4.
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a) L(x) A Bpre(rep(x)) D Bin(x)
b) LX) A Bp,e(rep(x’)) A Bout(x) D Bpost(rep(x))

where the primed variable in Step 4b) represents the value of
that variable prior to the execution of the operation.

Note that Steps 1 and 4 are theorems to be proved while 2
and 3 are standard verification formulas. Only the last step, 4,
should require further explanation. Step 4a) ensures that
whenever the abstract operation A could legally be applied in
the higher level, abstract program (that is, whenever B
holds), the input assertion of the concrete operation f;, will
also hold. Step 4b) ensures that if the concrete operation is
legally invoked (that is, I.(x)ABpr(rep(x’)) holds), then the
output assertion of the concrete operation B, is strong
enough to imply the abstract post condition Bpest. The four
steps are sufficient but not necessary for the proof.

Hoare’s similar technique for verifying the correctness of the
implementation of an abstraction differs from the one de-
scribed above in two respects. First, his approach does not
deal explicitly with the issue of the validity of the representa-
tion, or distinguish explicitly between the concrete and ab-
stract invariants. Second, he did not break the proof into
several steps; we did so because we felt it would add clarity,
would allow easier modifications of both forms and verifica-
tions, and would facilitate mechanical verification. In any

case, except for Step 1, the two techniques are equivalent in

the sense that from the proofs of one approach, we can derive
the proofs required by the other. To obtain the proofs re-
quired by Hoare’s approach from our proofs, merge Steps 3,
4a), and 4b) using the rule of consequence. Conversely, to ob-
tain our proofs from Hoare’s, choose §;; to be By (rep(x)) and
Bout to be Bpost(rep(x)). Details are in [40].

In some cases it may be appropriate to show Hoare’s com-
bined form directly for each function. Hoare proves the theo-
rem that if Step 2 and the combined form have been shown
to hold for the implementation of some abstraction, then a
concrete program using this implementation will produce the
(representation of the) same result as an abstract program
would have.® The proof of this theorem uses induction on the
number of applications of operations in the abstract program.
Our Steps 1 and 2 establish the basis step; Steps 1, 3, and 4 are
used to establish the induction.

One might expect from this description of the methodology
that the relationship

rep(x1) = rep(x2) D A(rep(x1)) = A(rep(x2))

would be true for arbitrary abstract functions A. Unfortu-
nately, it is false. For example, let x1 and x2 be equal but not
necessarily identical representations of a set S (i.e., x1 and x2
contain exactly the same elements, but in different orders); let
the function A select an arbitrary element from S. The post
condition for A is just x € S, which does not specify uniquely
which element to select.

In the next section we shall return to the description of
Alphard and in particular to how the various pieces of infor-
mation required by the proof technique are supplied in a form.

3Assuming, of course, that both the abstract and the concrete pro-
grams terminate.
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First, however, we must say a few words about the predicate
language in which the §’s are expressed. There remains some
controversy about the best specification techniques [24]. We
do not wish to enter that debate here; we are content to await
the emergence of one or more appropriate techniques and then
adopt them. Alphard should accommodate more than one,
and for the purposes of this paper we have chosen one we are
comfortable with.

We shall presume the existence of a suitable collection of
recognized mathematical entities such as integers, booleans,
sets, sequences, multisets, matrices, and the operations defined
on these entities. We assume that they have been defined pre-
cisely and that a rich collection of useful theorems has been
proved for each. Our specifications will be stated in terms of
these mathematical objects; in effect they will characterize a
possible implementation in terms of the abstract mathematical
entities. Thus, for example, in the next section we shall
define an implementation of a (restricted) stack. The specifi-
cation will characterize the stack operations in terms of opera-
tions on a sequence, with the sequence itself used to capture
the state of the stack. A brief, informal definition of the
notion of a sequence, adapted from [18], is included as an
appendix.

INTRODUCTION TO ALPHARD

We now explain the Alphard language by developing a defini-
tion of stacks and a program which uses stacks. These ex-
amples illustrate both the abstract definition facility and the
interaction of verification considerations with language. We
chose the stack for an example because it is familiar to most
readers and because the Alphard program can be compared to
other descriptions.

Forms

Imagine that while designing some program we found it de-
sirable to use the notion of a stack—in particular, a stack
whose elements are integers. We presume that our language
does not contain stacks as a primitive concept, as indeed Al-
phard does not, so we want to introduce it as a new abstrac-
tion. Suppose further that an a priori depth limit is known or
desired, so we need not define a general stack mechanism, only
one which behaves like a stack so long as its depth does not
exceed some predetermined maximum.

We shall lean heavily on the verification methodology de-
veloped above to explain the rationale for the various compo-
nents of a form definition. We shall present the definition
piecemeal, with each piece corresponding to some aspect of
the verification technique. Starting at the top, the abstrac-
tion of a finite-depth stack of integers will be defined by a
form such as:

form istack(n:integer)=
beginform

endform;

where “n” is the maximum permissible depth of the stack.

The purpose of such a form definition is to introduce a new
abstract concept, to give it a name (“istack” in this case), and
to define both its abstract properties and its concrete imple-
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mentation. Note that we must carefully distinguish between
the abstract concept introduced by such a definition and an
instance of that concept. In general there may be many in-
stances of an abstraction. Instances of abstractions are intro-
duced into an Alphard program in several ways, but a common
one is by declarations. Thus,

local x:istack;

has the effect of creating an instance of an istack and giving
the name “x” to this particular instantiation. In the jargon of
programming languages, this declaration binds the name “x’
to an instantiation of istack.

We must now decide both what operations the abstract pro-
gram shall be allowed to perform and what effects these oper-
ations shall have. In this case we shall allow only four opera-
tions: “push” makes a new entry at the top of the stack,
“pop” deletes the current top element of the stack, “top”
returns the value of the current top element of the stack, and
“empty” returns “true” iff the stack if empty. (Obviously we
could have chosen a more comprehensive set, but this will
suffice here.)

The abstract program which uses the notion of an istack will
apply these operations to instances of the abstraction. The
form must provide a precise definition of these operations to-
gether with the concrete representation and operations to be
used in implementing them. Thus, in general, a form is com-
posed of three parts: specifications, representation, and
implementation. ‘

form istack(n: integer) =
beginform
specifications . . .;
representation . . .;
implementation . . .;
endform;

The specifications must provide the names of the operations
supplied by the form together with the types of their argu-
ments and results. In order for the user to be able to under-
stand and use the abstraction solely in terms of the specifica-
tion, and to permit verification, we must also include 1) a
definition of the abstract domain, 2) the initial value of each
entity of the abstract type, and 3) the pre and post conditions
for each operation. Using the mathematical notion of a se-
quence we can write:

form istack(n: integer) =
beginform
specifications
requires n>0;
let istack = <. ..x;...> where x; is integer;
invariant 0<\length(istack)<n;
initially istack=nullseq;
function
push(s:istack, x:integer)
pre 0 < length(s) < n post s=s~x,
pop(s: istack) pre 0 < length(s) <n post s = leader(s’),
top(s: istack) returns (x: integer)
pre 0 <length(s) < n post x = last(s’),
empty(s: istack) returns (b: boolean)
post b = (s=nullseq);
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representation . . .;
implementation . . .;
endform;

Note how various pieces of information about the abstrac-
tion implemented by the form are introduced: the requires
clause specifies freq, the invariant clause specifies I,, the ini-
tially clause specifies fin;¢, and each of the function clauses
specifies Bpre and Bpos for that function.* Furthermore, no
particular implementation is demanded or precluded. Note
that the exact size of the stack is parameterized so it can
be set for each instantiation. We shall say more about this
later, but we note here that not all values of the param-
eters may make sense. In this case, for example, a stack of
negative size is senseless. Restrictions on the parameters are
conveniently expressed in freq, that is, the requires portion of
the specifications.

In this case, then, the notion of an istack is explicated in
terms of the mathematical notion of a sequence of bounded
length. The operation “pop,” for example, is defined to pro-
duce a new sequence which is just like the old one except that
its last element has been deleted. (As before, the primed sym-
bols in the post conditions, e.g., s’, refer to the value of the
(unprimed) symbol prior to execution of the operation.)

The representation portion defines the data structure which
each instantiation of the form will use to represent the abstrac-
tion. It also specifies: 1) the initialization to be performed
whenever the form is instantiated, 2) the rep function, which
relates concrete to abstract descriptions, and 3) the concrete
invariant. Thus, this section provides the major information
relating an abstract entity and its concrete representation.

For this example we have chosen a simple representation for
the stack. A vector holds the contents of the stack and an
integer variable points to the top of the stack.

from istack (n: integer)=

beginform

specificiations . . .;

representation
unique v: vector(integer, 1,n), sp: integer init sp < 0;
rep (v,sp) = seq(v, 1,sp);
invariant 0 < sp <n;

states
mt when sp =0,
normal when 0 <sp <n,

full when sp =n,

err otherwise;
implementation . . .;
endform;

The first clause of the representation portion describes the
concrete data structure(s) used to represent the abstraction;
the key word unique used here indicates that the following

4To shorten the pre, post, in, and out conditions in this paper, we
often omit assertions about variables which are completely unchanged.
Thus, for example, we have omitted s=s’ from the post condition of top.
Such omitted assertions are nevertheless used in the proof steps. We
also generally avoid in our proofs the legitimate concerns expressed in
the term “clean termination”—such matters as array bounds checks,
overflow, division by zero, and other inexecutable operations.
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data structure(s) are unique to each instantiation (as opposed
to being shared by, or common to, all instantiations). The rep
clause specifies the representation function which maps con-
crete objects to abstract ones. The invariant clause specifies
I.. Also, note the init clause attached to the data structure
declaration; this is the distinguished operation C;p;; mentioned
in the previous section. The initialization operation is auto-
matically invoked whenever an instantiation of the form is
created, and is responsible for establishing f;,;;- Finally, ex-
perience in writing forms has shown that it is convenient to
add another piece of information to the representation: a set
of state definitions. These states are merely a shorthand for a
set of Boolean conditions, but, as we shall see below, they help
to accent certain interesting situations.

We would also like to note the use of the names “vector”
and “integer” in this example. These are not primitive types
of the language; they are simply form names. They happen to
be the names of forms which will be automatically provided
along with the compiler, but they are not special in any other
way. (See [40] for a discussion of primitive types.)

The implementation portion of the form contains the bodies
of the functions listed in the specifications, together with their
concrete input and output assertions (B, and fyy). In defin-
ing these functions bodies we make use of the states defined
in the representation part. The state of the representation is
determined when any function in the form is invoked, but is
not reevaluated as changes to the representation are made
within a function body. Thus, the state may be used, as in
this example, to select one of several possible bodies for a
function when it is called.

form istack(n: integer) =

beginform

specifications . . .;

representation . . .;

implementation

body push out (s.sp =s.sp’ + 1 Aswv=a(s.v’,s.5p,x))=

mt,normal:: (s.sp < s.sp + 1;s.v[s.sp] < x);
otherwise:: FAIL;

body pop out (s.sp =s.sp’-1) =
normal,full:: s.sp < s.sp-1;
otherwise:: FAIL;

body top out (x =s.v[s.sp]) =
normal,full:: x < s.v[s.sp];
otherwise:: FAIL;

body empty out (b = (sp=0)) =
normal full:: b < false;
mt:: b < true;
otherwise:: FAIL;

endform,;

Since the states are used to select one of several alternative
bodies for a function, the state descriptions may be used as
additional input assertions for the body selected. Thus, for
Step 3 of the proof we may add to the precondition the dis-
junction of the (state) conditions that can cause the selection
of that body. The notation “a(V,i,x),” which is used in the
output assertion of “push,” denotes a vector identical to “V”
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except that V;=x. Finally, the symbol FAIL used above is in-
tended to connote failure; we prefer to avoid a detailed dis-
cussion of the exception mechanism in this paper and hence
will avoid further elaboration of this symbol here.

Naming and Scope

The previous subsection dealt with the general organization
of forms; in this subsection we describe the naming and scope
rules. These rules make it possible for a form to encapsulate
an abstraction through information hiding.

Several names are defined in the istack form. Some of these
are the abstract operations (e.g., “push”), and others are re-
lated to the representation (e.g., “sp”). We know that the
operation names must be available outside the form. In
Alphard, however, names such as “sp” are not available out-
side the form.

Only names defined in the specifications part-of the form are
legal outside the form definition (inside is another matter).
If names such as “sp” were legal outside the form, the abstract
program could access, and possibly modify, the concrete repre-
sentation. If this were allowed, both theoretical and practical
difficulties would arise. First, we could not partition the
proof technique as described above; specifically, we could not
ensure that the concrete invariant was preserved between func-
tion invocations. Second, since the representation information
would no longer be hidden it would no longer be safe to
modify a form under the sole restriction that specified proper-
ties were preserved. We would instead have to examine all the
uses of the abstraction to be sure that the representational in-
formation was not being used in some clever, but obscure, way.

Thus, the general scope rules in Alphard are Algol-like, but
with two important exceptions.

1) Only those names appearing in the specification part of a
form may be used outside the form definition. (All the names
defined in a form may be used inside the same form definition.)

2) Only form names obey the usual block-structure conven-
tion on entering a form. Specifically, only those variables de-
fined outside a form which are passed as parameters are acces-
sible inside the form body.

These rules ensure that any dependency of the form on its
environment is explicated in its parameter list. Similar adapta-
tions of the Algol scope rules have appeared in other languages
(e.g., CLU and Concurrent Pascal) and have recently been
adopted in many more (see [8]).

AN ExAMPLE OF A FORM VERIFICATION: RESTRICTED
STACKS

In this section we shall illustrate the verification technique
on the istack form of the previous section. First, however, let
us pull together the pieces of the istack definition:

form istack(n: integer) =
beginform
specifications
requires n>0;
letistack =<...x;...> where x; is integer;
invariant 0 <length(istack)<n;
initially istack=nullseq;
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function
push(s:istack, x:integer) pre 0 < lengtli(s) <n post s=s’~X,
pop(s: istack) pre 0 < length(s) < n post s = leader(s’),
top(s: istack) returns (x: integer)
pre 0 <length(s) < n post x = last(s’),
empty(s: istack) returns (b: boolean)
post b = (s=nullseq);

representation
unique v: vector(integer,1,n), sp: integer init sp < 0;
rep (v,5p) = seq(v,1,5p);
invariant 0 <sp <n;
states
mt when sp =0,
normal when 0 <sp <n,
full when sp =n,
err otherwise;
implementation
body push out (s.sp = s.sp’ + 1 As.v=afs.v,5.5p,X))=
mt,normal:: (s.sp < s.sp + 1;s.v[s.sp] « x);
otherwise:: FAIL;

body pop out (s.sp =s.sp’-1) =
normal full:: s.sp < s.sp-1;
otherwise:: FAIL;

body top out (x =s.v[s.sp]) =
normal,full:: x < s.v[s.sp] ;
otherwise:: FAIL;

body empty out (b = (sp=0)) =
normal,full:: b < false;
mt:: b < true;
otherwise:: FAIL;

endform;

In the verification of istack, which is given next, the precon-
dition for each body is the conjunction of its in clause (which
is defaulted to “true”) and the union of the state conditions
for which that body is selected.

For the form )
Step 1: Representation validity
Show: 0<sp<n D 0<(length(rep(x))<n
Proof: length(rep(x)) = length(seq(v, 1, sp)) =sp

Step 2: Initialization
Show: n>0 {sp«0} rep(v, 0) = nullseq A 0<sp<n
Proof: rep(v, 0) = seq(v, 1, 0) = <>, i.e., nullseq

For the function push
Step 3: Concrete operation
Show: (0=s.sp V 0<s.sp<n) A 0<s.sp<n {s.sp<s.sp+1;’
s.v[s.sp]«x} s.sp=s.sp’+1 As.v=a(s.v’, s.sp, X)
A0<s.sp<n
Proof: 0<<s.sp<n D 0<s.sp+1<n

Step 4a): B;, holds
Bin is true
Step 4b): Bpost holds
Show: 0<s.sp<in A O0<Clength(rep(s.v, s.sp’))<n
As.sp=s.sp’+1 Asv=a(s.v’, s.8p, X) D s=8’~x
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Proof: s=rep(s.v, s.sp) = seq(s.v, 1,s.sp’+1) =
seq(s.v, 1, s.sp’)~s.v[s.sp] =seq(s.v, 1, s.sp’)~x =8’ ~x

For the function pop
Step 3: Concrete operation
Show: 0<s.sp<n A 0<s.sp<n{s.sp<s.sp-1} s.sp=s.sp’-1
A 0<s.sp<n
Proof: 0<s.sp<n D 0<<s.sp-1<n

Step 4a): Bin holds
Bin is true

Step 4b): Bpost holds
Show: 0<<s.sp<n A 0<length(rep(s.v, s.sp’))<n A
s.sp=s.sp’-1 D s=leader(s’)
Proof: s=1ep(s.v, s.sp) = seq(s.v’, 1, s.sp’~1) = leader(s).
Note that leader(s’) is defined since s.sp’>1

For the function top
Step 3: Concrete operation
Show: 0<s.sp<n A 0<s.sp<n{x<s.v[ssp] } x=s.v[s.sp]
A 0<s.sp<n
Proof: Clear

Step 4a): B, holds
Bin is true

Step 4b): Bpost holds '
Show: 0<<s.sp<n A 0<length(rep(s.v, s.sp’))<n A
x=s.v[s.sp] D x=last(s’)
Proof: x=s.v[s.sp] =s.v’[s.sp’] =last(s’). Last (s’) is defined
since s.sp’>1

For the function empty
Step 3: Concrete operation
(Normal, full) Show:
0<s.sp<n A 0<s.sp<n{b<«false } b = (s.5p=0)
A0<s.sp<n
Proof: 0<s.sp D false = (s.sp=0)
(Mt) Show:
s.5p=0 A 0<s.sp<n{b<true} b = (s.sp=0) A 0<s.sp<n
Proof: s.sp=0 D true = (s.sp=0)

Step 4a): B;, holds
Bin is true

Step 4b): Bpost holds _
Show: 0<is.sp<n A b = (s.5p=0) D b = (s=nullseq)
Proof: b = (s.sp=0) = (rep(s.v, s.sp)=nullseq) = (s=nullseq)
Q.E.D.

The condition n=>0 is used implicitly in this proof. The
stricter n>0 is needed only to show that the four states are
disjoint. Finally, note that the union of the mt, normal, and
full states includes I, and that B, for each function and I;
specifically exclude the states that would trigger the otherwise
alternative for the body. We therefore omit verifications in-
volving FAIL.

GENERALIZING FORM DEFINITIONS

The form of the previous section defines the abstract notion
of a stack-of-integers, but what does the fact that the items
to be stacked are integers have to do with it? It seems that
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the abstract notion of a stack ought to be independent of the
kinds of things being stacked.® We would like to be able to
define a form such as

form stack(T:form, n:integer)=
beginform
endform
and then create instantiations with statements such as
local si:stack(integer,35), sr:stack(real,14);

which would make “si” a stack of integers and ““sr” a stack of
reals.

We shall do essentially this, but as we introduce this facility
we must be very careful to retain the validity of the verifica-
tion technique. In fact, we want to ensure something stronger:
that the resulting proofs are not complicated by the introduc-
tion of this additional flexibility. Thus, we shall start with a
careful examination of the proof appearing in the preceding
section.

Specifically, let us observe how the proof depends upon
the fact that the items being stacked are integers. A careful
reading of the proof reveals that it depends only upon the
property of the items that we have an assignment operation
which obeys the assignment axiom.® The reader is encouraged
to examine the proof to verify that this is in fact the only
property required, and therefore to see that the proof would
be valid for any type of item possessing this assignment axiom.

Returning to the language issues, what we want is a means
for stating that the parameter “T” above cannot be just any
form name; it must be the name of a form which supplies the
properties required by ‘the proof (and, of course, by the
bodies of the concrete operations). The general mechanism
used to accomplish this will be discussed below; for the
moment we will consider only the special case which handles
the stack example. With this addition the form “stack™ has
become a “type generator’ rather than a simple type definition.

We shall append a bracketed list <a;,,a,> to a formal
parameter specification to denote that the properties a;,"",a,
are required of a corresponding actual parameter. Thus, in
the present case we may write the stack form header as:

form stack(T:form<<«>, n:integer)=
beginform

endform
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The “<<«>” attached to the form parameter asserts that the
actual form name used in this position must provide an assign-
ment operation. The specifications part of the actual param-
eter form must assert the availability of this operation and
assure that it obeys the assignment axiom. We shall discuss
these issues in greater detail below, but first we shall give the
specifications of the general stack definition and a verifica-
tion of a program using it. The specification of the general
stack differs from the version at the beginning of the previous
section only in the italicized lines, which are the ones that
previously referred to “istack™ or “integer.” The representa-
tion and implementation are identical to istack except for the
substitution of “T” for “integer” in the vector declaration.
The proof of this form is identical to that given above.

" form stack(T:form<<>, n:integer)=
beginform
specifications
requires n>0;
let stack=<...x;...>wherex;is T,
invariant 0<length(stack)<n;
initially stack=nullseq;
function
push(s:stack, x:T) pre 0 < length(s) < n post s=s'~x,
pop(s:stack) pre 0 < length(s) < n post s = leader(s’),
top(s:stack) returns (x:T)
pre 0 <length(s) < n post x = last(s’),
empty(s:stack) returns (b: boolean)
post b = (s=nullseq);

representation . . .
implementation . . .
endform;

Once the stack form is defined, programs may declare and
use stacks. The following program uses a stack as defined by
this form to traverse a (finite) binary tree and count its tips.
It also uses iteration and an explicit stack of binary trees
[6], [25]. A binary tree is defined recursively to be either
nil or to have a left son and a right son which are both binary
trees. The number of tips is defined recursively by

tips(t) = if t=nil then 1 else tips(leftson(t))+tips(rightson(t))

We shall not define a binary tree form explicitly, but shall
presume that it meets at least the specifications

isleaf(t:binarytree) returns b:boolean post b = (t=nil),
left(t:binarytree) returns u:binarytree pre t#nil post u=leftson(t’),
right(t:binarytree) returns u:binarytree pre tnil post u=rightson(t’)

sPerhaps one can argue that the fact that all items in a particular
stack are the same type, e.g., integers, is an abstract property of a stack,
but it would be unfortunate if we had to define separate forms for
st%cks of integers, stacks of reals, stacks of characters, and so on.
The assignment axiom is

PX{x<e}P

if x is a simple variable. For subscripted variables the meaning of
x[i] :=eisx :=a(x,i, e) asin [18].

We shall also presume a tree assignmient operation satisfying
the assignment axiom. In stating the maximum permissible
depth of the stack we use the height function defined by
height(t) = if t=nil then O
else 1+max(height(leftson(t)), height(rightson(t)))

Suppose the tip counter is specified by
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function tipcount(t:binarytree) returns count:integer

post count=tips(t)
then the body of the function tipcount might be

body tipcount out (count=tips(t))=

begin
unique s:stack(binarytree, max(height(t),1)), x:binarytree;
x<t; count<l;
invariant tips(t) = count - 1 + tips(x) + SIGMA ,etips(u);
while -1 empty(s) V 1isleaf(x) do

if isleaf(x) then (count<count+1; x<top(s); pop(s))
else (push(s, right(x)); x<left(x));
end

Throughout the body of tipcount the stack s means the abstract definition in terms of a sequence. In particular, SIGMA, &¢f(u)
means 0 if s=nullseq and otherwise

f(last(s)) + SIGMA cieader 5)f(0)-

We shall verify the concrete operation of this body (i.e., proof Step 3). Note first that the requires clause (n>0) of the stack
form is satisfied. We shall use the usual proof rule for the while statement.” Four verification conditions suffice; they are in the
form obtained by backward substitution with each function operation of a form replaced by its post condition.

1) (entry to while)
Show: tips(t) =1 - 1 + tips(t) + SIGMA ;& yiieq tips(w)
where “nullseq” is obtained from the initially clause of stack.
Proof: The SIGMA term is O.

2) (while to exit)
Show: tips(t) = count - 1 + tips(x) + SIGMA e, tips(u) A
71 (s#nullseq V x#nil) D count = tips(t)
Proof: The SIGMA term is O because s=nullseq. tips(x)=1 since
x=nil.

3) (while through then to while)
Show: tips(t) = count - 1 + tips(x) + SIGMA ,stips(u) A
(s#nullseq V x#nil) Ax =nil D
tips(t) = count + 1 - 1 + tips(last(s)) + SIGMA cieader (s)tips(u)
Proof: x=nil means s#nullseq whence last(s) and leader(s) are
defined (i.e., the pre conditions for top and pop are satisfied). x=nil also
means tips(x)=1. The conclusion follows by the definition of SIGMA.

4) (while through else to while)

Show: tips(t) = count - 1 + tips(x) + SIGMA ,&stips(u) A

(s#nullseq V x#nil) A x#nil D
tips(t) = count-1 + tips(leftson(x)) + SIGMA yeg~ rightson (x) tiPS(1)

Proof: x#nil means the pre conditions of both left(x) and right(x)
are met. x#nil also means tips(x) = tips(leftson(x)) + tips(rightson(x)). The
conclusion follows by the definition of SIGMA. It remains to show that the
pre condition of push is met. To do this it is convenient to add two terms
to the while assertion:

length(s) + height(x) < height(t)
s=<sy, -, 5 > A 1<j<k D j + height(s;) < height(t) "

Assuming these two terms are indeed invariants (proof omitted), the pre
condition is met because x#nil means height(x) > 1, i.e. length(s) <

height(t).
Q.E.D.
7The while rule i PA B{S}P This i ial f the Alphard iterati truct; it behave: would expect a while to
e W elsP{whileBdoS}P/\‘lB' is is a special case of the Alphard iteration construct; it be S as you P

behave. A more general iteration mechanism, which allows the author of a form to specify how iterations involving objects of that type are carried
out, is described in [32].
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PROTECTION AND AcCCESS CONTROL

The “<>” notation introduced above is clearly an exten-
sion of the familiar notion of type checking in programming
languages; in this section we shall try to show its relation to
the protection facilities of modern operating systems, especially
those using the capability based protection model. (The
notion of incorporating proteétion in languages appears in
[2], [26].) In the foregoing discussion we stressed the restric-
tions imposed on actual parameters by the appearance of the
“<>” notation in a formal parameter list. We did not dis-
cuss either the restrictions it imposes on the body of the
subroutine (or form) or the precise nature of what may
appear between the angle brackets. Those issues will be treated
here as well.

Note that “x:X<p>" appearing in a formal parameter list
is intended to assert that the body depends on property p,
and only on property p, of the parameter. (The word “prop-
erty” is used intuitively here, but will be given a technical
meaning below.) Now, from our earlier discussion we know
that the only visible properties of an abstraction are those
specified in its specifications part. Thus we require that the
name “p” be one of the names defined in the specifications
part of the form X. Furthermore, since the abstraction
being defined claims to depend only on the property p, we
shall restrict the body of the abstraction to use only this
property. That is, all uses of x in contexts other than
p(x,~-) are illegal. (Note that this is a purely syntactic,
compile-time, check. Also note that we must check that
any functions called by the body of the abstraction, where
x is a parameter to that function, must also require no more
than “p” access to it.)

In the terminology of operating systems the specifications
part of a form defines a set of accesses to objects of the type
defined by the form. The “<>” notation defines both the
access rights required of the actual parameter and allowed to
the body. Once the actual parameter has been bound to the
formal at execution time the formal becomes the name of a
capability [20], [22] for the actual. At compile time the
formal parameter specification may be viewed as a template
[39] for legal actuals.

The analogy with the capability-based model of protection
is not yet complete. In an operating system it is generally
possible to restrict access rights; the “<>” natation permits
us to do this at formal/actual parameter binding, but may
also be useful in other contexts. For verification purposes,
for example, it may be convenient to know that in some
block no side-effect producing operations are applied to a
specific variable.

A full treatment of a mechanism which provides the type of
protection we desire may be found in [21]; the Alphard
mechanism is essentially identical to that discussed there.
For our present purposes we shall simply note that the “<>”’
notation is permitted in several additional contexts, two of
which are discussed below, and in these contexts implies only
a rights restriction (not also a requirement as in formal param-
eter specifications). These contexts are declarations and actual
parameters. Consider the declaration:

local i:integer<+,-,=,<>;
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This declaration defines a variable of type integer to which
only the operations “+,” “-,” “=" and “«” may be applied.
Any other operations defined by the integer form will be
illegal—specifically such things as “*,” */”” and relational
tests. Such a declaration might be used for a variable which
is intended only for use as a counter, for example.

By attaching a rights.restriction to the actual parameter of
a subroutine invocation the user may ensure that only certain

operations are applied by the subroutine. Thus, in the
program:

begin

local i:integer;

fi<+,-,*>);

end;

(132}

the main program has all access rights to the variable “i,
but restricts the operations that may be performed by “f”
to those listed. This is, perhaps, a somewhat strained example
since the more common case will be to restrict side-effect
producing operations; hopefully, however, it illustrates the
point. Once again let us emphasize that this is a purely static,
compile-time check. At compile time, the rights permitted
by the actual parameter are compared to those required by
the formal; if the former are not a superset of the latter a
compile-time error message is generated. There is no run-
time overhead.

The “<>” notation provides a means of specifying the
required properties of actual parameters. We shall now intro-
duce questionmark identifiers to relax the specifications of
formal parameters so that the binding of certain properties
may be deferred. A questionmark identifier is (syntactically)
simply a “?” immediately followed by an identifier, e.g.,
“Ixyz.” Consider the skeletal function definition

function f(a:?T) . ..

The use of “?T” permits us to specify that the abstract com-
putation defined by “f” does not depend on the type of the
parameter “a.” That is, the function will operate as specified
by its input/output assertions independent of the type of the
actual parameter. (The execution, and possibly the compila-
tion, of “f” will, of course, depend on the type of the actual
parameter.)

Defining occurrences of such identifiers appear in formal
parameter lists and are assigned a meaning from the cor-
responding actual parameter. Multiple occurrences of the
same ?identifier are required to have the same meaning in the
same scope. Applied occurrences of ?identifiers may appear
anywhere in the scope of their definition—thus, for example,
they may be used to declare variables of the same type as an
actual parameter.®

Now let us turn to the question of what may be written
between the angle brackets, especially in the context of a

8 There are somewhat pathological situations involving recursive
procedures in which this scheme will not work; in particular in these
cases it is not possible to determine the proper types at compile time.
We choose to ignore these pathologies here.
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formal parameter specification, and to the interaction of the
“<>” and the ?identifiers. To this point we have simply
written the name of a property, which is generally a function
name. This is sufficient in the cases where the type of the
formal is specified, but not when the type is characterized by
a %identifier. Consider an example which involves less sugges-
tive names than those used previously:

function f(a:7T<h>)=.. ;

The intent is, as before, that the function “f”* depend only on
the fact that the actual parameter be of a type which provides
an “h” operation, but not on the name of the type itself.
But suppose that the type of the actual parameter does pro-
vide an operation named “h,” but it has nothing to do with
the operation which the writer of “f” had in mind. In fact,
the writer of “f,” or alternatively the correctness of “f,”
depends on some input-output relation of the “h” operation.
Thus, we permit properties appearing in the angle brackets to
be described in exactly the same manner as properties appear-
ing in the specifications part of a form definition. For
example,

function f(a:?T <h(T,integer) returns (b:boolean)
pre 3; post ,>)=.. .;

When such specifications appear the problem of validating
the legality of an actual parameter is more complex than it was

previously. We must not only establish that the form defining -

the type of the actual parameter provides a property named
“h,” but also that: 1) its parameters and result are of the ap-
propriate type and 2) that the precondition required in the
specification of that property is implied by §; and that the
post condition of that property is sufficient to imply $,. We
do not foresee this proof as part of the compilation process,
but rather as another proof required in the verification of the
program.

CONCLUSIONS

We have presented the basic components of an Alphard form
and explained the reasons for and uses of each component.
We have illustrated the development, verification, and use of
a rather general-purpose form. We have also shown how this
abstraction may be used in the implementation of another
program, and how the specification of the abstraction is used
in the verification of this program; although the example is
small, we hope it illustrates how the decomposition method-
ology supported by Alphard permits the verification of a large
system to be broken into manageable steps.

The length of this paper has prevented us from discussing
many important issues in Alphard and their relation to veri-
fication. For example, we have not explored modification of
the stack example. Suppose, however, we were to change the
representation and the implementation, although not the
specifications. The verification of the stack form changes, of
course, but both the program using it, tipcount, and the
verification of that use would be totally unchanged.

The full generality of the form concept has not beea dis-
played in this paper. Other papers [32], [40] provide a
broader discussion of the Alphard language and our experi-
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ences with it. (The latter report is an expanded version of
this paper.) They contain more examples of Alphard programs
and further evidence of the interaction between additional
language mechanisms (especially iteration) and verification
issues.

It should be noted that, although this paper may appear to
be an explication of a particular language, Alphard, in fact
the strategy we illustrated is applicable to most of the ‘“data
abstraction” mechanisms now beginning to appear in many
languages. We would like to emphasize, however, that merely
adding an abstraction facility to an existing language is un-
likely either to produce a coherent design or to achieve all the
goals set out in the introduction. The degree of interaction
between methodological and verification concerns during the
Alphard design has been substantial, and we doubt that similar
results could have been achieved without the freedom to make
drastic changes to nearly all aspects of the initial language
definition. We have been surprised and extremely pleased at
the degree to which methodology and verification have rein-
forced each other both to produce a coherent language design
and to enable us to reach our other goals.

APPENDIX

INFORMAL DEFINITION OF SEQUENCES

<s;, *",8x>  denotes the sequence of elements specified; in

particular, “<>” denotes the empty sequence,
“nullseq.”

s~X is the sequence which results from concatenat-
ing element x at the end of sequence s.

length(s) is the length of the sequence “‘s.”

first(s) is the first (leftmost) element of the sequence
“S.”

trailer(s) is a sequence derived from “s” by deleting the
first element.

last(s) is the last (rightmost) element of the sequence
G‘S.Q,

leader(s) is a sequence derived from “s” by deleting the
last element.

seq(V,n,m) where “V” is a vector and “n” and “m” are

integers, is an abbreviation for the sequence
“<Vp,Vner, ' Vm>";  alternatively, seq
(V,n,m) =seq(V,n,m - 1) ~ Vp,.

Note: first, trailer, last, and leader are undefined for “<>.”
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Software Development

HARLAN D. MILLS

Abstract—Software development has emerged as a critical bottleneck
in the human use of automatic data processing. Beginning with ad hoc
heuristic methods of design and implementation of software systems,
problems of software maintenance and changes have become unex-
pectedly large. It is contended that improvement is possible only with
more rigor in software design and development methodology. Rigorous
software design should survive its implementation and be the basis for
further evolution. Software development should be done incrementally,
in stages with continuous user participation and replanning, and with
design-to-cost programming within each stage.

Index Terms—Design-to-cost programming, software design, software
development, software maintenance, top-down development.

TWENTY-FIVE YEARS OF DATA PROCESSING
The Data Processing Explosion

N THE PAST twenty-five years a whole new data processing

industry has exploded into a critical role in business and

government. Every enterprise or agency in the nation of
any size, without exception, now depends on data processing
hardware and software in an indispensable way. In a single
human generation, several hardware generations have emerged,
each with remarkable improvements in function, size, and
speed. But there are significant growing pains in the software
which connects this marvelous hardware with the data process-
ing operations of business and government.

Had this hardware development been spaced out over 125
years, rather than just 25 years, a different history would have
resulted. For example, just imagine the opportunity for
orderly industrial development with five human generations of
university curriculum development, education, feedback for
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the expansion of useful methodologies and pruning of less
useful topics, etc. As it is, we see a major industry with mini-
mal technical roots, because almost no one in a responsible
position has an original university education in the subject,
and the universities have no experience in even knowing what
to teach. In comparison, it is worth noting just how many
years and how much give and take has gone into the develop-
ment of the current mathematics curriculum to support engi-
neering and the physical sciences—at least the 125 years
imagined earlier.

Even so, from ground zero, the technical and industrial
progress of society in 25 years of data processing is impressive.
But the needs and frustrations are so great that some perspec-
tive is in order to better understand how we got here and
where we might be going.

Data Processing Then

Before the last 25 years, these same enterprises and agencies
conducted their operations without automatic data processing,
while still processing data in sufficient amounts to manage
their affairs. But the data processing was done by people.
Even if desk calculators, or tabulators, were used here and
there, people still inspected intermediate results, and applied
their common sense, where necessary, to correct obvious
mistakes. If data processing instructions were faulty, or miss-
ing, people used common sense, again, to make the operations
work. In other words, data processing systems were forgiving
systems, because of the intelligence used in their execution.

Such forgiving systems permit the evolution and natural
selection of data processing improvements in an orderly way.
If an improvement is proposed, it is easily adopted with little
risk, because unforeseen side effects will usually be noticed
and suppressed by people. As a result, data processing is done,



