
Computer Science Department

TECHNICAL REPORT

COMPILE-TIME ANALYSIS OF DATA

LIST-FORMAT LIST CORRESPONDENCES

By

COMPILE-TIME ANALYSIS OF DATA

LIST-FORMAT LIST CORRESPONDENCES

By

Paul Abrahams

and

Lori Clarke

February 1979

Report No. 010

Compile-Time Analysis of Data List-Format List

Correspondences

Paul Abrahams*

Computer Science Department

New York University

and

Lori Clarke**

Computer and Information Science Department

University of Massachusetts

*This research was supported in part by the U.S. Department of Energy under

contract EY-76-C-03-3077 , and in part by Control Data Corporation under

contract C08AA.

**This research was supported in part by AFOSR under contract AFOSR-77-/!2B7,

and in part by the National Science Foundation under grant MCS77-02101.

ABSTRACT

Formatted input-output is available in a number of programming

languages. In the most general case, the corresnondence between data

items and format items cannot be determined during comoilation, and so

it is determined dynamically during execution. However, in most oairs

of data and format lists that occur in practice, determination of the

correspondence is in fact possible during compilation. Although some

commercial compilers make this determination, there is little published

literature on the subject. In this paper, we briefly examine three

areas in which compile-time determination of the data-format correspondence

is useful: optimiaation , program validation, and automatic test data

generation. A formalism for stating the problem is given, and a solution

is discussed in terms of formal language theorv. Using this formalism,

an algorithm for determining the correspondence is given, and its appli-

cation is illustrated by examples in both PL/I and FORTRAN.

Keywords and key phrases: formats, compilers, program optimization,

program validation, test data generation, input-output, static program

analysis

.

1. Introduction

Formatted input-output pliiys an important role in FORTRAN and PL/I

,

and is also provided in Algol 68 and Ln certain Algol extensions. A

formatted input-output operation is specified by providing a data list

and a format list. The data list specifies the items to be read or written,

while the format list specifies how the items are represented on the

input or output medium. In most cases that occur in practice, it is

possible to determine during compilation how data items are paired with

format items. That isn't too surprising, since the programmer should have

anticipated the correspondence when the data list and format list were

composed. Consolidating the two lists into one list of pairs eliminates

the need for expensive execution-time linkage mechanisms, and moreover

makes it possible to derive information useful in program validation and

in automatic test data generation. In this paper, we present an algorithm

for converting the two lists into a single list of pairs. Although the

conversion is trivial if the lists are expanded by writing out al].

iterations in full, it is not trivial if we desire to retain as much of

the original iteration structure as possible, which our algorithm does.

In some cases, our algorithm rejects the input because the correspon-

dence cannot be determined until execution. For example, consider the

FORTRAN statements:

WRITE (1,5) (A(I),I = 1,M),B

5 FORMAT (E14. 3,E12.3)

We cannot know prior to execution whether B will correspond to the format

E14.3 or to the format E12.3, since that depends on whether M is even

or odd.

In this paper, we shall consider the application of our al'7Gj.ithm

to Fortran and PL/I; we have not attempted to apply it to other languages.

The current status of our work is that the algorithm has been programmed

(in SNOBOL) and tested, but it has not been incorporated into an actual

compiler. Although the SNOBOL implementation is effective for testing

and experimentation, a practical implementation would necessarily use

lists rather than character strings as its underlying representation.

2 . Applications

The major application of our cdgorithm is the optimization of

formatted input-output. Ordinarily the execution of a formatted inout-

output statement is implemented by a pair of coroutines, one for the

data list and one for the format list. Each coroutine keeps track of

the position in the list, and finds the next item when it is called.

Control shuttles back and forth between the two routines, and when a

data- format pair is obtained, the appropriate input or output action is

taken. The code required for this conversation can be eliminated if the

correspondence is known in advance, since then the proper format can be

compiled directly into the data list. Knuth ' s study of FORTRAN programs

[10] found that about 25% of the overall execution time was spent in the

I/O editing routines. Therefore, we expect compile-time analysis to

produce a noticeable reduction in execution time.

The correspondence between the data list and format list can be used

i.n program validation to detect certain types of programming errors. For

instance, we can check whether the type of each data item agrees with

the type of the corresponding format item. When making this check, we

would want to ignore certain distinctions among format items. For

instance, in the example given earlier, the formats E14 . 3 and E12.3

would be treated as one and the same since they both match variables of

type REAL. Since formats are a major source of errors for beginning

FORTRAN programmers, this check would be valuable in diagnostic FORTRAN

compilers. In PL/I, however, all printable data types convert to all

other printable data types, so formats are always correct from this

viewpoint.

Once the correspondence between a data item and a format item is

known, then a range of permissible values for the data item is also known.

This information can be useful for more sophisticated validations. For

example, suppose w(i have the FORTRAN sequence:

WRITE (5,10) N

10 FORMAT (12)

A warning should be issued if N is potentially greater than 99 or less

than -9. Recent work in static program analysis ri,^»5] should be

useful in this type of validation.

In automatic test data generation, a topic investigated by Clarke

in [3] , an attempt is made to determine legal input data that will exercise

particular program paths. Knowing the format specifications of a data

item determines a range of potential values for the data item. This in

turn may limit the range of other variables. For example, in the following

FORTRAN sequence:

READ (5,10) I,

J

10 FORMAT (12, 110)

K = I + J

4

wo note that the tjossiblo range of legal values for I is -9 to °0 and

for J is -99 to 999, while the nossiblo range of values for K is -lOR

to 1098.

Current test data generation systems have ignored format information,

even though FORTRAN and PL/I have been the languages most freauentlv

analyzed tay such systems [3,7,9,12,13]. Of course, it is possible to

compare tlie generated data with the corresoonding format statements,

using the coroutines approach mentioned in connection with optimization.

However, if the generated data is not consistent with the corresponding

format, an expensive reanalysis is necessary. It would be more economical

to extract the data- format correspondence before analysis.

The optimization aspect of formatted incut-output is touched upon by

Lee in his FORTRAN-oriented book on compiler writing [11] . Moreover, the

IBM PL/I Optimizing Compiler [8] does match data lists with format lists.

However, the circumstances under which this matching is done, and the

method used to accomplish it, are proprietary.* Although other commercial

compilers also perform this matching, we are not aware of any published

literature about them. Torsun and Robinson [14] have developed a system

that jireprocesses formats, but their system does not perform any compile-

time analysis on data lists that contain iterations. Their discussion

deals mostly with the numerical encoding of formats, and has little to

say about the problems considered here.

3 . Notation

From now on, we will refer to format items as F-items and to data

items as D-items. Similarly, a format list will be referred to as an

*We wish to emphasize that the methods developed in this oaper were devised
without any knowledge of the IBM method, as neither of us has access to it.

F-list, and a data list as a D-list. We distinguish three kinds of

repetition factors: constant, variable, and infinite. Constant repetition

factors are written explicitly. Variable repetition factors are denoted

by V, , V , ... V and infinite repetition factors by °°. Esse itially the12s
same formation rules, but with different individual items, can be used

for D-lists and F-lists:

(1) An individual item is a component.

(2) If X ,x , . . . ,x are components, then [x ,x ,...,x] is a non-
J. ^ K J. ^ K

repeated sequence with subcomponents x , . .

.

jX, •

(3) If X ,x ,...,x are components and r is a constant, variable or

infinite repetition factor, thenr [x ,x , . . . ,x] is a repeated

sequence with subcomponents x ,x , . . . ,x . A repeated sequence

is a component.

(4) If [x ,x , . . . ,x] is a nonrepeated sequence whose individual
L 2. K

items are all D-items, then [x .x^,...,x 1 is a D-list. If12 k

[x ,x , . . . ,x] is a nonrepeated sequence whose individual items
J. ^ JC

are all F-items, then [x ,x , . . . ,«>[x]] is an F-list.
J. 2. K

These rules require that sequences always appear with repetition factors

except at the outermost level. Thus, an individual item with a repetition

factor must be replaced by a unit list with that repetition fac':or (e.g., we

replace 4F by 4[F]). The asymmetry in rule (4) is accounted 'or by the

facts that infinite repetition cannot occur in D-lists (except)>y error

in certain PL/I situations) and that any F-item following an inl inite

repetition can just as well be ignored. For FORTRAN and PL/I, 1 here are

further restrictions on F-lists. Ln FORTRAN, no variable repetition factor

can occur in the F-list and only the rightmost level-one parenthesized

list has an implied infinite repetition factor. In PL/I, infinite repeti-

tion can be applied only to the entire F-list, so that k must be 1 in

rule (4)

.

Some examples are in order to show how the notation corresponds to

reality. Consider the FORTRAN example:

WRITE (5,100) ((A(I,J), J = 1,7), I, I = 1,M)

100 FORMAT (7E10.1, 13, (7E12.2,I2))

The D-list and F-list are then:

[V^[7[D^],D2n

and

[7[F^l,F2,oo[7[F^],F^]]

respectively, with

D^ = A(I,J) , D^ = I, F^ = ElO.l, F^ = 13, F^ = E12.2, F^ = 12, V^ = M.

We have ciiosen to treat A(I,J) as a single item, although for certain

applications of test data generation, a finer distinction may be desirable.

A similar example in PL/I is:

PUT 1;DIT (((A{I,J) do J = 1 to 7) , I DO I = 1 TO M))

((7)E{10,1), F(3), (M-1) ((7)E(12.2), F(2)))

The D-list is represented as in the FORTRAN example, but the F-list is

[-[7[F^] ,F^,y^ll[F^],F^]]]

where V_ = (M-1) and the other symbols are the same as before.

4 . The Co rrectness Problem in Terms of Formal Language Theory

Provided that the F-list contains no variable reoetition factors, the;

correctness problem can be shown to be solvable using results from formal

language theory. If variable repetition factors are present in the F-list,

and nothing is known about them, then formal language theory is of no

help. For consider:

D-list: [V^[D^],D^]

F-list: [V^[F^],F^]

Assume moreover that F and F are valid formats for D and D

respectively. Even though the two lists have the same form, we cannot tell

whether they match correctly.

If there are no variable repetition factors in the F-list, then we

can transform both lists into regular expressions (see, for instance,

Hopcroft and Ullman [6]) as follows:

(1) If D, ,D. ,...,D. are the D-items that match F., then replace F.

by the expression

(D. V D. V. . .V D.)

(2) Replace each variable or infinite repetition factor by *, indicating

zero or more occurrences

.

(3) Expand out each constant repetition factor.

We then have two regular languages, D and F^ respectively, for the D-list

and F-list. We then see:

(1) If D c F^, then the correspondence is valid.

(2) If D n F^ is empty, then the corjespondence cannot bo valid.

(3) In all other cases, the validity of the correspondence cannot be

determined.

These statements follow from the observation that the sentences in
2.
^^^

all the possible sequences of D-items, while the sentences in F are

obtained by taking all the possible sequences of F-items (a necessacily

infinite set) and replacing each F-item bv all possible D-items tnat it

can match. Now the relation between D^ and F^ can be alqorithmically

determined since the containment and intersection problems for regular

languages are solvable (again, see Hopcroft and Ullman) . It follows that

the correctness oroblem is indeed solvable. Since FORTRAN has no variable

repetj tion factors in its formats , the correctness nroblem can be solved

for that language, in the sense that we can determine which of the three

cases given above is applicable. For PL/I, it cannot be solved except for

formats having constant repetition factors.

Although formal language theory shows that the correctness problem

is solvable, and even provides an algorithm for solution, that algorithm

is not a practic:al one. The formal solution requires that all constant

repetitions be fullv expanded, and moreover requires that we construct the

product of two finite-state machines and then test the language defined

by the product for emptiness. For a practical algorithm, we use the same

methods as we use for the other applications, and actually find the

correspond(?nce between data items and format items.

5. Method of Solution

A solution to the correspondence problem can be expressed by replacing

each D in a data list by a pair <D.,F.>, where F. is the format that

matches D . First, we define the inner cardinalitv of a reneated sequence
1

to be the number of individual items in the immediatelv contained nonrepeated

sequence, with repetitions counted. For instance, the inner cardinality of

3[2[D],5[D]] is 7. The inner cardinality is variable if the sequence

9

contains any variable repetition factors. The inner cardinality can

be computed in an obvious way by analyzinq nested repeated seauences from

the inside out.

We present the algorithm as a sequence of operations, using a semiformal

style of English adopted from the recent PL/I standard [2] . The algorithm

is executed by performing the operation match , whose inputs are a D-list

and an F-list, and whose output is a DF-list, i.e., a list of pairs. The

algorithm proceeds by a sequence of reductions. Wien both the D-list and

the F-list begin with a single item, we can remove those items from the

two lists and construct a new item for the DF-list. Moreover, if both

the D-list and the F-list start with a repeated sequence, and the two

sequences both have the same repetition factor and the same inner cardinality,

then we can add a corresponding repeated sequence to the DF-list, applying

match recursively to obtain the inner nonrepeated sequence. (It Is this

recursion that enables us to retain most of the iterative structure of

the original lists.) The rest of the algorithm is concerned with modifying

the D-list and the F-list so as to get them into a form in which the

initial components can be paired up as we have just described.

In certain cases, when variable repetition factors are encountered,

the correspondence between the D-list and the F-list cannot be determined

until execution. In these cases, the algorithm rejects the inr)ut. To

see that variable repetition factors can cause this difficulty, consider

the case

:

D-list: [V^[D^],D2]

F-list: [F-j^/F^]

10

This case is a translation of the example given in the Introduc<-ion; the

proper pairing of D depends on the value of V,. On the other hand, some

cases involving variable repetition factors can be treated. For instance,

the pair

:

D-list: [V^[D^]]

F-list: [°°[F]]

yields the DF-list [V [<D ,F >]].

match (ds ,fs)

where ds is a D-list and fs^ is an F-list

Result: a DF-list

Note: fs will always include at least .is many items as ds .

Step 1. Let dfs be an empty list.

Step 2. Perform Step 2.1 repeatedly until d£ is empty. Then return dfs

as the value of match .

Step 2.1. Let cde and cfe be, respectively, the first component of ds^

and of fs.

Case 2.1.1. cde and cfe are both individual items.

Append the pair < cde , cfe> to dfs . Delete cde from ds and

delete cfe from f

s

.

Example: ds = [B^,2[T>^]]

fs = [F^,-[F^]]

new pair = <1) »F >

Case 2.1.2. Either cde or cfe is an individual item, while the other is

a repeated sequence with a constant or infinite repetition

factor.]f cfe is the individual item, perform split (1 ,ds) to

obtain a r ew d£. Otherwise perform split (1 ,fs) to obtain a

new fs.

11

Example: ds = [D ,2[D2]]

fs = [6[F^],-[F2]]

new fs = [F^,5[F^],oo[F2]]

Case 2.1.3. Either cde or cfe is an individual item, while the other has

a variable repetition factor.

The input is rejected.

Example : ds = [V [D]

]

Is = [F^, -[F2]]

Note that in this example, V may or may not be greater than 0.

Case 2,1.4. cde and cfe are both repeated sequences with the same inner

cardinality.

Let rd and i^ be the repetition factors of cde and cfe

respectively.

Case 2.1.4.1. rd and r^ are identical.

Let nsd and nsf be the nonrepeated sequences in cde and

cfe respectively. Perforin match (nsd , nsf) to obtain a DF-

list, dfl . If rd^ is one, then append dfl to dfs ; otherwise,

append rd[df

1

] to dfs . Delete cde and c^ from ds and fs

respectively.

Example : ds = [5[D ,D]]

fs = [5[2[F^]],co[F2l]

new component of DF-list = 5[<D ,F >,<D ,F >]

Case 2.1.4.2. rd and r;f_ are different constants, or rf is infinite.

If rd < r;f , perform split(rd,fs) to obtain a new fs

.

Otherwise, perform s))lit (rf ,ds) to obtain a new ds .

Example : ds = [4[D],D]

fs = [-[F^]]

new fs = [4[F^],co[F^]]

12

Case 2. J. A. 3. rd is variable and £f is infinite.

P< rform split (rd,fs) to obtain a new f

s

.

Txample: ds = l^\\-0-^ 1 1

_fs = [MFj]]

new fs = [V [F l,oo[F]]— 1 1 1

Case 2.1. A. A. (otherwise.)

The input is rejected.

Example : ds = [V [D J

]

fs = [3[¥^],^[F^]]

Case 2.1.5. cde and cfe are both repeated sequences with different, but

constant, inner cardinalities, nd and rrf respectively. Let Icm

be the least common multiple of nd and jrf , and let md =

Icm /nd, mf = Icm/nf .* Let rd^ and rf^ be the repetition factors

of cdo and cfe respectively. Let nr = min(rd/md ,rf /mf) if

neither rd nor t_£_ is variable, and let nr be undefined otherwise.

(;ase 2.1.5.]. nr is defined and nr > 1.

Step 2.1.5.1.1. If rd^ > nr*md, perform split (nr'^'md ,ds) to obtain a new ds .

If ri_ > nr*mf , perform split (nr*mf , fs) to obtain a new fs .

(nr will be the new repetition factor for the first component

both of ds^ and of f s .)

Note : It is possible that zero, one or two split operations will be

performed in this step.

Step 2.1.5.1.2. If Tnd_ > 1, replace the first component of d^ by nr [md [s]] ,

where s is the nonrepeated sequence of cde .

*We use "/" to indicate integer division with the remainder discarded.

13

Step 2.1.5.1.3. If mf > 1, replace the first component of jfs by nr [mf [s
|]

,

where s^ is the noni epeated sequence of cfe .

Note : On the next step. Case 2.1.4 1. will apply, since both ds^ and is^

will start with a component liaving repetition factor nr and inner

cardinality 1cm .

Example : ds = [8[D ,D]]

fs = [oo[2[¥^],F^]]

nd=2, ilf=3, 1cm- 6 , md=3, iaf=2, rd=8, rf=°°, nr=2

new d£ = [2[3[D^,D2]],2[D^ ,02]]

new fs = [2[2[2[F^],F2]],-[2[F^],F2]]

Case 2.1.5.2. nr is defined and nr < 1.

If nd > rif, perform split (l,ds) ; otherwise perform split (1 , fs) .

Note : In this case, one or both of the first components of ds and fs contains

too few elements to allow us to extract a common repeated part, so

we expand the longer one. If necessary, the shorter one will be

expanded on the next iteration.

Example : ds =
[i[D]

]

fs = [-'[F^.AIF^]]

nd=l, iif^=5, lcm= 5 , md=5 , mf=l, rd=3, rf="°, nr=0

new fs = [F^,4[F2],-[F^,4[F2]]]

Case 2.1.5.3. rd is variable, rf^ is infinite, and nd^ is a multiple k of n^f.

Let s be the nonrepeated sequence of cfe. Replace cfe by

rd[k[s]],-[s].

Note: Botli ds and fs now start with a component with reiietitlon factor

rd and inner cardinality nd.

Example : ds = [V [D D„]]

fs = [oo[F^]]

new _r_s = [V^I2[Fjn,-|F^ II

14

Case 2.1.5.4. rd is variable, but Case 2.1.5.3 does not apply.

Reject the input.

Example : ds = [V [D]

]

fs = [-[F^,6[F2]]]

Note: Although in practice it may be possible to solve this case, the

solution cannot be expressed in our formalism. The solution would

be:

[.o[<D^,F^>,6[<D^,F2>]]]

with an auxiliary test needed to ensure that only V elements are

proc essed.

Case 2.1.6. (Otherwise.)

Reject the input.

split (k,s)

where k is an integer and s^ is a nonrepeated sequence.

Result : a modified nonrepeated sequence.

Step L. Let c_ be the first component of s^. c^ must be a repeated sequence,

so it has repetition factor _r and contains a nonrepeated seauence

cs .

Step 2. Let k2 be i^ - k. (Note that °° minus anything is °°.)

Replace c^ by the two components k[c^] ,k2[£S^]

.

Step 3. If either k or k2 is 1, replace the corresponding component by cs ,

i.e., delete the repetition factor.

An example of the algorithm applied to a compound case is shown

in Figure 1. Two smaller examples, omitting the intermediate steps, are:

0)

(0

u

(NJ

16

Examp 1 e 2

data list: [3[5[D^ ,0^] ,D^,D^]]

format list: [^[e[Y^,F^]] ,->[e[F^,Y^]]]

resulting list: [3[5 [<D^ ,F^> ,<D2,F2>] ,<D2 ,F^> ,<D^ ,F2>]

]

Examile 3

data list: [200[D^,5 [D^l ,5[D^]]

]

format list: [-[F^^ ,5 [F^] ,5 [F^]]]

resulting list: [200[<D^,F^> ,5<D2 ,F2> ,5<D^,F^>]

]

6 . I reatment of Control Formats

The formal model we have presented does not account for control formats,

e.g., hollerith fields in FORTRAN formats and skips to the next record.

However, control formats are easily accounted for by associating them with

data formats. For applications other than optimization, control formats

are irrelevant and can be ignored.

In associating control formats with data formats, we must distinguish

between control formats that are executed only if a following data format

is used, and those that are executed whenever the preceding data format is

used. Tn FORTRAN, the rule is that following control formats are

executed unless the end of the entire format is encountered. Thus, if

we execute:

WRITE(u,10)A,B

10 FORMAT (IHl, 15, IH*, 15, IH*)

both stars are printed. Hence the first 15 has two control formats (IHl and

IH*) associated with it, while the second 15 has the second IH* associated

with it.

17

In FORTRAN, we must also account for the peculiar behavior of end-of-

line. An end-of-line is generated whenever the right end of the format is

encountered. Hence a line skip must be associated as a post-format for the

last data format in the list. A line skip also occurs at the completion of

the entire operation, unless one has just been produced; this final skip

can be generated independently of our algorithm.

In PL/I, control formats are not used unless tie following data format

is also used. Hence in PL/I, all control formats are associated as pre-

formats with data formats.

7. Actual Experience

To demonstrate the effectiveness of the algorithm in determining data-

format correspondence, a group of programs were analyzed. Thirteen programs

were chosen, all written in FORTRAN. The programs were selected randomly;

listings were obtained from the graduate students a mailable one Satjrdav

afternoon. Some of the programs were large and had been coded by numerous

people. In all, the programs were the work of about 25 nroarammers.

Two hundred and fifty-one data and format statements were examined and

only fifteen could not be completely analyzed by the algorithm. Thus, this

technique failed in only six percent of the cases examined.

A few observations about the formats are also of interest. About 2 5

percent of the data lists were empty and, thus, the format list had only

foinmat control information. About 40 percent of the data and format lists

examined could be analyzed completely by using just Case 1 of the algorithm.

None of the examined lists were as complex as those presented in th(; previous

examples; none required the use of Case 2.1.5. Though PL/I programs were

not analyzed, we have no reason to believe the results would be substantially

different.

18

Acknowledgement

We wish to thank the referees for several helpful criticisms of an

(^arlior ilraft of this paf^er.

19

References

[I] F.E. Allen, and J. Cocke, "A Program Data Flow Analysis Procedure,"
CACM, 19,3, March 1976, pp. 137-147.

[2] American National Standards Institute, "American National Standard:
Programming Language PL/I," ANSI X3. 53-1976.

[3] L.A. Clarke, "A System to Generate Test Data and Symbolically Execute
Programs," IEEE Trans. Software Engineering, Vol. SE-2, Sept. 1976,

pp. 215-222.

[4] L.D. Fosdick, and L.J. Osterweil, "Data Flow Analysis in Software
Reliability," Vol. 8-3, Sept. 1976, pp. 305-330.

[5] W.H. Harrison, "Compiler Analysis of the Value Ranges for Variables,"
IEEE Trans. Software Engineering, Vol. SE-3, May 1977, pp. 243-250.

[6] J. Hopcroft, and J. Ullman, "Formal Languages and Their Relation to
Automata," Addison-Wesley, Reading, Mass., 1959.

[7] W.E. Howden, "Methodology for the Generation of Program Test Data,"
IEEE Trans. Comput. , Vol. C-24, May 1975, pp. 554-559.

[8] IBM Corporation, "OS PL/I Checkout and Optimizing Compilers: Language
Reference Manual," Order Number GC33-0009-3.

[9] J.C. King, "A New Approach to Program Testing," in Proc. Int. Conf.

Reliable Software, April 1975, pp. 228-2 33.

[10] D.C. Knuth, "An Empirical Study of FORTRAN Programs," Software-Practice
and Experience, Vol. 1, 1971, pp. 105-133.

[II] J.A.N. Lee, "The Anatomy of a Compiler," 2 ed. , Van Nostrand Reinhold,

New York, 1975.

[12] E.F. Miller, and R.A. Melton, "Automated Generation of Test Case
Datasets," in Proc. Int. Conf. Reliable Software, April 1975, pp. 51-58.

[13] C.V. Ramamoorthy, S.F. Ho, and W.T. Chen, "On the Automated Generation
of Program Test Data," IEEE Trans. Software Engineering, Vol. SE-2,

Dec. 1976, pp. 293-300.

[14] I. Torsun, and S. Robinson, "Non- 'Interpretive' FORTRAN Input/Output,"
Software-Practice and Experience, 7(2), March-April 1977, po. 205-213.

