el

ACCESS CONTROL IN PARALLEL PROGRAMS

James R. McGraw
and
Gregory R. Andrews

TR78-328

Department of Computer Science
Cornell University
Ithaca, NY 14853

ACCESS CONTROL IN PARALLEL PROGRAMS
James R. McGraw*

Gregory R. Andrews

Department of Computer Science
Cornell University

Ithaca, N.Y. 14853

An important component of a programming language for writing
)perating systems, or other large parallel systems, is the set of
3¢2es3 control facilities. 7Two principles for access éontrol,
:pressive power and access validation, are discussed. Then two
1ew lanzuage mechanisms are presented: one for expressing the
static structure and access rights of parallel systems, the other

‘or controlling dynamic access to shared objects (monitors). The

[}

23

of the proposed mechanisms is illustrated by message passing

-

3} ile systems. Finally, the relationship between the mechanisms

(S
14

ind access validation is discussed and a solution to the safety

>reblem for the facilities is given.

“ey Words and Phrases: access control, programming language, protection,
security, processes, monitors, access safety

‘R Categories: 4.20, 4.22, 4.35

This work was supported in part by NSF grants MCS 74-41115 and
s 77-07554.

" Current address: Computing Science Group, Department of Applied
Science, University of California at Davis,
Livermore, CA 94550

1.0 Introduction

In an effort to both fncrease the reliability and correctness
of concurrent systems and decrease the cost of their design anc
implementation, many people have been working on the development of
parallel programming languages [1,2,4,8]. The initial focus has
justifiably been upon the central problem of all concurrent systenms,
namely processes and their interaction. A second impertant prodlen
is access control. If we are to develop reliable and secure soft-
ware, it is important that each module only have access to exactly
those objects it requires. This leads to the need for lancuage
facilities to specify the static (permanent) and dynamic (tempcrary)
access rights of processes and procedures. This paper proposes two
flexible yet simple language features: a grant declaration for
expressing the static structure and permanent access rights of a
system of parallel processes, and capabilitv variables for contrelling
dynamic access to shared objects (monitors).

In the remainder of the paper, we present our proposals in
detail, illustrate their use, compare them to other approaches’
[2,5,6,8), and discuss their relation to access security. Before
proceeding, however, we discuss the two principles, expressive power
and access validation, that guided their developrment and acainst
which they or any access control facilities should be evaluated.

For the purpose of illustration, we use Pascal [7] augmented by
processes and monitors as the language to which our access control
facilities are added. However, our principles and propcsals apply

to many structured languages for parallel.proqrarming (e.g. Concurrent

Pascal and Modula).

2.0 Princizles

A preogramming language provides a set of mechanisms for
implementing systems. Using the mechanisms, one implements algorithms
and organizations which enforce policies. In our opinion, access
control mechanisms should adhere to two principles:

(1) expressive power - they should allow a wide

variety of access policies to

be expressed clearly and exactly;

(2) access validation - they should allow the implemen-
tation of an access policy to be
validated.

Two types of access control mechanisms, static and dynamic, occur
in parallel systerms. The purpose of static mechanisms is to increase
reliability and reduce unwanted interference by controlling the
cbiects that each subject sees. In terms of processes and monitors,
this means that each process should only have access to those monitors
which it neecds to perform its intended task. 1In a dynamic‘system,
such as a f£ile system, objects come and go; consequently, access
péchs come and go. The purpose of dynamic access control mechanisms
is to allow these changes to be represented and efficiently implcmented.

An expressive set of access control mechanisms should make it
ocssible to describe clearly a variety of access policies. 1In

particular, it should be possible to:

(1) 1limit each subject to those objects and operations
which it needs;

(2) irsure that only meaningful and authorized operations
are applied to objects; and

(3) control the order and timing of access to controlled
objects.

-3-

The first two points have been called "access correctness”™ by Jones
and Liskov [5]. To this we have added a third criteria to capture
the fact that an access policy for dynamic objects is often concerned
with the timing of access. Examples of such policies are: access
must be scheduled before it occurs; allocation must precede access:
and access cannot occur after an object has been released.

As an illustration of these points, Figure 1 presents the abstrac
structure of five common situations in parallel systems. Part (a)
shows the structure when several processcs share an object such as
a device or message channel. Possible access policies in this case
are restricting use of the shared object to a subset of system
processes and, possibly, restricting each process to a subset of the
operations on the object. For example, some processes may be able
to send but not receive messages over a specific channel. Part (b)
shows a message channel which may be implemented by a queue of buffer:
acquired from a common pool. A policy here may be that processes
cannot directly ac¢cess the buffer pool, only message channels can.
This is one example of a multi-level intcraction. Another example,
device scheduling, is shown in Figure 1l(c). Here the policy right
be that all processes must go through the scheduler in order to acces
the shared object.

The first three structures of Figure 1 are static in nature; the
next two are dynamic. In part (d), an allocator controls access to
a shared object. Processes request access from the allocator; when
their request is granted, they receive a dynamic access right that
enables them to directly (hence efficiently) access the object.

Examples of access policies in this case are that an object must be

(a)

(b)

(c)

()

(&)

Key:

Figure 1

System Structure and Access Control

Sharirg

Multi-~level Interaction

Access Scheduling

Dynamic Allocation

File Systenm

process

i 1 T/ shared
processy —7 object

process;y

: message > buffer
proéess ___—r channel pool

N

processy

: \\5\’ scheduler ——=m shared
processy object
processy ~ - T = g

: allocator —— shared
processy — object

- T T =~

~

rocess - file

P 1 1

: T~ fi1e — :
manager]

process
\\ ~— ’;7

—_— —— —

N

———> static access right

—_——_ - dynanic access ricght

-5~

requested before it can be accessed, that once requested it can ke
accessed directly, and that once released it can ro longer be accessed.
In part (e), a file system is modelled. Here many objects (files)

may be controlled by one manager. A process ray potentially have
access to many files at once. The access policy rmay be that a process
can be restricted to a subset of the file operations, that the crea*or
of a file controls all access to it (via the file manager perhags),

and that shared access can be revoked at any time by the owner of

the file.

An expressive set of access control mechanisms should allow any
or all of the above access policies to be implemented by a system
programmer. This is our first guiding principle. A systems' users,
however, are concerned with adequate enforcement of a specific set of
stated policies. In particular, it is desirable to valicdate the cor-
rectness of an implementaticn of the stated policies. This is our

. second guiding principle.

In order to validate an implementation, it is first necessary to
solve the access safety problem. As defined in [3], the safety proble:x
is concerned with deciding whether a given protection system can lead
to a "leak". Here we will take a more global view and define access
safcty to be the problem of determining the potential access rights
of every subject for every object. A program in a language defines,
via declarations,a static set of subjects and objects. It rmay also
define, via type declarations, the patterns for dynarically created
objects that result in dynamic access paths. Referring back to
Figure 1, the static access rights, represented by solid arrcws,

specify the structurc of the different interactions; the dynamic access

-6~

rights, represented by dashed arrows, specify the use of objects
ard can vary dynamically. .

In order to solve the safety problem, we need to be able to
deterxine the access rights that each subject could potentially
acquire. For static rights this can be readily determined at compile
time. Dynamic rights present a difficulty, however, since they change
as a progran executes. Our approach is to model the execution of a
procranm in order to determine the maximum potential access of each
subject, narmely the access which could occur if each execution path
were taxen. This information can then be used to answer access policy
questions such as "Can process P access file F?" If the answer is
yes, our access mocel also determines the access path that must be
followed by the process. So even if the process is not supposed to
be able to access the file, we can pinpoint the spots where leakage
coulé occur. It is then necessary to validate the correctness of the

rotential offencder by using program verification techniques.

3.0 Static Control System

The most common scheme for representing access rights in a
crosran is through static access controls (i.e., scope rules).
Unfcrrtunately, in most languages éhe default access rights of a block
are far too powerful and cannot be easily restricted. As a result,
it is difficult to enforce access policies that prevent harmful or
unexpected interplays between modules. Our system for providing static
access control is based on modifying the common Algol-like approach
to scope rules. Each program object's initial visibility is severely

lirited. It can, however, be expanded through a new grant feature

-7~

which allows one to explicitly state static policies to be enforced

by a compiler.

3.1 Basic Description

Our default scope rule is that each program block (process,
monitor, or procedure) may only access those objects (e.g., variables,
types, monitors, or procedures) which it defines. This approach is
nearly the opposite of the one used in Algol, PL/I, Pascal, etc.,
where a block may, by default, access any object declared in a
surrounding block. There, the default access rights are by definition
the maximum allowable rights. In contrast, our default provides the
minimum reasonable set of access rights so that any more general
policy must be implemented expliciﬁly.

The grant declaration permits an object’s visibility to be
selectively expanded. 1Its syntax is:

grant <object_list> to <dblock_list>

.

Each block named in the block list. is given permanent access to all
objects specified in the object list. Grant can be used to give a
block access to any program object such as a variable, type, procedure
or monitor. With monitors, which in general define more than one
procedural operation, each operation must be explicitly granted. Thre
syntax used is:

grant monitor name {operation_list} to <block_list>

* FEach list is a sequence of one or more identifier names, separated
by commas.

Grant is not an executable statement and it must appear with
rhe declarations at the beginning of each block. 1In addition, a
>lock ray only grant access rights to blocks which it defines. How-
:ver, crant may be applied at successive levels to pass an object to
\n inner block. . In this paper, we will not impose any restrictions on
¢hich objects. can be given to the various block types. In practice,
however, it is generally cdesirable to prevent processes as well as
sonitors £rom directly accessing global variables (for example, see

(1,2, or 8]).
3.2 Acplications

A small example will illustrate the general usefulness of this
scheme. Assume we have a Message monitor and two system processes,
Job_schecduler and Spooler, that use Message to exchange information. One
crant with two parts provides the appropriate access rights as shown
ip Ficure 2. Each process is able to use directly the Message oper-
ation it needs without having to take any actions or even acknowledge
receipt of the rights. If this is the only grant for Message, other
procram units (like user processes) cannot interfere because the de-
fault scope rule prevents them from accessing the monitor.

¥ore complex policies can also be expressed with this approach.
Corsider the problem of using a type declaration to define a set of
menitors for controlling remote terminal I/0. Users should be allowed
to access the instances defined by the operating system; however they
;hould be prevented from defining any new'instances. In many languages
this is impossible to enforce because users need to specify the type

of any object they acquire; hence they could use the type to declare

Figure 2

Simple use of grant

begin
monitor Message;
operations send, receive;

end Message;

grant Message {receive) to Job_scheduler,
Message {send} to Spooler;

process Jc¢b_scheduler;

Message.receive ();

end Job_scheduler;

process Spooler;

Mes;age.send ()

.
.

end.Spooler:

process User;
/*no access to Message*/

end User;
initialization statements

end System

-10-

rore instances. The crant feature solves this problem by letting

us give each user direct acce;; to a remote terminal monitor. Since
the user need not explicitly acknowledge receipt, he .need not have
the type name available to him. Figure 3 illustrates this point.
Since no grants a{e_applied to type Terminal, users cannot access

the type and therefore cannot declare new terminals which are unknown
to System. On the other hand, the grants applied to Terml and Term2
pernit users to access the terminals defined by System.

We can illustrate the usefulness of nesting by extending this
exarple further. 1If Userl contains a number of blocks, he may not
want all the blocks to be able to do I/0 directly. Grant permits
Userl (or any user) to control the propagation of access rights
within his scope. Consequently, Userl could grant Terml to only those
sub-blocks which are supposed to access the terminal. Erroneous
atterpts by other blocks to use the terminal will then be detected at

compile-time.

3.3 Comparison With Other Approaches

™o agproaches for handling similar problems in parallel progfams
have already been discussed in the literature. Concurrent Pascal (2]
allows each subject to access directly only those objects it declares.
Parameter passing is used at initialization to specify the intercon-
nections of subjects (this allows any kind of object, specifically
monitors and processes, to be used in a type declaration). Since the
receiver must have formal parameters (identified by type) to acquire

access to external objects, he must have access to the object's type

naze. Hence, this approach makes it difficult (if not impossible) to

-11-

Figure 3

Controlling the use of type declarations

System : begin;

type Terminal = monitor;
overations read,write;...
end;

var Terml, Term2 : Terminal;

.grant Terml {read,write} to Userl;

grant Term2 {read,write} to User2;

process Userl;

Terml.read ();

ené Userl;

rocess ,User2
Brocess ..

Term2.write ();

end User2;

end System

-12-

permit a user to access objects without allowing him to create new
instances as we did with terminals in Figure 3. Also, Concurrent
Pascal cdoes not allow either sclective or nested control over indi-
vicdual non%to: operations. Although it could be modified to do so,
care would need to be taken in order to avoid the necessity of run-
tire checks. éoncur:ent Pascal is intended for programming fairly
small systems; our proposals apply to all sizes of systems and there-
fore generalize some of the Concurrent Pascal concepts. In particular,
in the next section we present a more general approach to passing
access rights by paraenmeter.

Another method for specifying static access control is Modula's
use list (8]. In Modula, each block identifies all objects that are
imported for use within the block's range. Although this feature was
not really intended for enforcing security policies, it can be used
by introducing extra dummy blocks into a program. The dummy blocks
employ use to specify the objects an inner block can then further
irport. Conceptually, the problem with use for enforcing access
policies is that an inner block takes what it needs, rather than being
told what it can use. For specifying security policies, grant is more
approgriate.

In sumnary, our approach to static access control is based on a
desire to incorporate security policies directly into programs. The
default scope rule forces a designer to specify his access policy
exzlicitly through the grant feature. Any errors of omission in
detailing that policy cannot lead to security violations because no
accesses are granted by default. Furthermore, since policy specifica-

tion is accomplished with scope rules, enforcement and implementation

-13-

can be handled entirely within the compiler where only the symbol

table routines require significantmodification. But the most irpor-
tant advantage is that this scheme is conceptually simple yet expzeésiv
enough to implement a wide range of policies not easily handled with

existing mechanisms.

4.0 Dynamic Control System

In systems applications there is often a need for dynamically
allocating rights for objects such as files or buffers. The problen
is to allow movement of rights among different processes, in contrast
to movement within:one process environment (which can be handled by
standard procedure calls and parameter passing). For cxemple, if.a
file is defined as a monitor, how can we "give" it to some process
which will use it and later return it to us? The solution we propose
is based on the concept of a capability [9]. All dyramically-controlle
.objects (in our case monitors) are referenced and managed solely
through capability variables, which name objects and access rights.
Access rights are transmitted between processes by passing capabilities
as parameters to and from other monitors (such as allocators). This
system permits a wide range of dynamic access policies to be expressed,

and it also combines well with the static system.

4.1 Basic Description

In order to control a monitor dynamically, it must first be
described in a type definition, using the attribute dynamic. For

example:

-14-

tvpe Tile = dynamic monitor;

opérations read,write;
< normal internal structure >

end

Synamic indicates that all instances of File will be accessed solely
through capabilitiés. Except for the manner of access, dynamic moni-
tors are identical to the standard (static) ones.

Capabilities for referencing monitors are declared in the same

way as other variables:

var My File : File capability

A capability variable contains two items: (1) a reference to a
monitor and (2) a list of access rights (i.e., monitor operations)
currently authorized for that monitor. Initially each capability is

enpty. Dynamic monitor instances are created by executing a new type

of statement:
My File := File.create

nis create comnand generates a new File monitor and puts a reference

[

nd £ell access rights for it in My_File. If a dynamic monitor type

is parameterized (e.g. to specify the size of a file), actual parameters
are passed to the new instance by create.

The notation for accessing dynamic monitors is similar to that
for standard monitors; the underlying mechanism is more complex, however.

wWe can access the file just created by the call:

My File.read ()

~15-

Each time a call is made using a capability, the rights list of the
capability is checked for the particular operation (in this case
read). If the right is present, the monitor currently referenced

by the capability is invoked; otherwise the call is undefined (in
practice it should result in a trap similar to an arithmetic exceptic

Access rights for monitors can be manipulated by performing
operations on capabilities. The most important operations are:

(1) assignment - Your_File := My File {read} and

(2) parameter passing - Output (My File)

The assignment operation permits several capabilities to share access
to a monitor, with the possibility that the actual access rights Qiff
between them. The left side capability variable receives a copy of ¢
contents of the right side capability variable except it receives cnl
those access rights listed in the brackets. The constraints are

that the granting capability must have all rights it is transanitting
and further, it must have the language defined copy right. This righ
is the one special right stored in a capability variable used in a
create operation. Its purpose is to allow a subject, for example an
allocator, to control the number of outstanding capabilities for a
dynamic monitor. Copy itself may be assigned with other rights, as
the programmer chooses.

Capabilities can be moved between subjects (e.g. processes . and
monitors) by passing them as parameters. The rules here are a
variation on the value-result rules. On a call, the capability's
reference and access rights are transferred from the actual to the
formal parameter (i.e., the actual parameter is emptied); on return

the reverse procedure is followed. (The copy right is not requiread

-16-

to pass a capability as a paramcter.) The purpose of this approach

is to permit processes to acquire and release access rights to monitors
while simultaneously preventing parameter passing from being used to
make rore copies of some access right. Within a procedure a capability
parameter can be assigned null; this erases the value in the actual
parameter when the procedure returns. It is used by allocators to

take access away from a process once the process releases a monitor.

4.2 Arrlications

Two cifferent cesigns of a file system serve to illustrate the
Power and flexibility of these dynamic access controls. Figure 4
sketches a simple program organization that permits Users to create
and manage their own instances of files. The operating system defines
the type File, thus insuring that Users cannot directly access the
Sisk and gain illegal access to other data. However, Users can create
their own files using the type name File, which is known to them.
Further, each User is the sole manager of his files - not even the
operating system can acquire a capability for a file without the User
explicitly giving away the rights.

A more complex access policy for a file system is illustrated in
Tigure 5. Here, the operating system creates and manages access to
all files through a Supervisor monitor. It rectains the master capa-
bility for each file (in this case only one called Sysfile) in its
permanent cata area. When a User requests the file, he passes in an
empty capability and receives a copy of the master giving him read
access. Notice that the User does not receive the copy right. When

a Uscer calls relcasec, he passces in a full capability which is then

-17-

Figure 4

Usexr managed file system

System : begin

type File = dynamic monitor ()

operations read,write;

procedure read ();

Di;k.read ():

end

end;

grant File to (Userl,...,UserN); (*grants type name, hence
- ability to declare File

capabilities®)

monitor Disk;

operations read,write;

end Disk;

grant Disk {read,write} to File; (*grants Disk to all instan
- of File*)
process Userl;

var My File : File capability;

My File := File.create ():

end Userl;
process UserN (*same access rights as Userl - can do the
same things*)

end UserN;

end Sistcm

-18-

nullifieéd so that on return his rights are gone.

The organization of this.solution is critical for insuring that
users cannot create files. The default scope rules prevent each
User from accessing the File type name; since that name is nceded for
creating instances, users cannot create files. However, we need to
allow users to access files and for that purpose they need to be able
to define capabilities. The declaration and grant of Filecap fills
this requirement.
One weakness in the simple file sclieme outlined in Figure 5 is
the Supervisor canaot be sure whether a User is actually returning
nis Zile or is instead returning an empty capability. A useful exten-
sion to our capability system are two Boolean primitives for inter-
rogating the contents of a capability:

object(capl, cap2) - true if capl and cap2 reference the same

object; false otherwise.

rights(capl, rights list) - true if capl contains all of the
rights in rights list (it may contain

more); false otherwise.
with these extensions, Supervisor could check to see exactly what was
béinq returned by a User before nullifying his rights. Such a check
‘would be particularly important if Supervisor were managing several

£iles instead of just one and were allowing users to share files.

4.3 Compariscn With Other Approaches

‘Two other language facilities have becen proposed to permit
dynanic allocation of objects. Silberschatz et. al. [6] introduced the

manager construct which is actually a new type of monitor with special

-19-

Figure 5

Supervisor managed file system

System : begin
type File = dynamic monitor ();
operations read,write;

end;
tvpe Filecap = File capability;
grant File to Supervisor;

grant Filecap to (Supervisor, User);

monitor Supervisor;

operations request, release,...;

var Sysfile : Filecap; '

grant Sysfile to request, release;

procedure request (var id : Filecap);

id := Sysfile {read};
end request;

procedure release (var id : Filecap):
(*check validity - not shown*)
id := null /*empties id*/
end release;
other operations;
(*initialization -~ create file*)
Sysfile := File.create ()
end Supervisor;

grant Supervisor {request,release} to User;

process User;
var Sysfile : Filecap;

(*User cannot crcate a file because User was
not granted Pilev¥)

-20~-

Figure 5 Continued

Supervisor managed file system

begin

Supervisor.request (Sysfile);

.

Sysfile.read «)

Sysfile.write ();

Supervisor.release (Sysfile);

end User;

end System

|

-21-

internal primitives. This feature is very high-level, and as a

result imposes a significant amount of policy. For example, only

the manager for some object type may alter any process' access richts
for instances. Hence, managers could be used to solve our second
example (control of system files - Figure 5) in a relatively straight-
forward manner by modifying Supervisor and making it a manager. How=
ever, managers cannot directly solve the first problem where User
processes control access rights for their files. We feel that our
approach is less complicated (while covering their applications),
imposes fewer policy restrictions, and is easier touncderstand and use.

The other proposal, by Jones and Liskov [5], is similar in nature

to ours. All access to dynamically controlled objects is throuzh
capability-like variables; but in their case each variable has its
access rights (qualified type) set at declaration. Hence all use arnd
movement of rights (via assignment or parameter passing) can be checke
. at compile-time to insure access correctness. One drawback of their
approach is that if many different sets of access rights are nceded
for some object, at least one new capability must be defined for each
set. In particular, they state in (5] that their static mechanisnm
cannot be used to build a file system. Our system, on the other hand,
requires run-time checking in the form of a bit-vector test. This
test is limited to capability assignments and dynamic monitor calls,
however, and costs very little. In our opinion both approaches are
viable; the main difference is that Jones and Liskov focus on sequenti
object oriented languages (e.g. CLU and ALPHARD) whereas we focus on
parallelism and dynamic.control.

Our dynamic access control scheme is intended to be a basic tool

-22-

for building cemplex policies into a system. As such, we make no
atzempt to emded policies (such as ownership) into the features.

The capability concept has often been used to describe dynamic

access control, but almost always from a hardware viewpoint. Here

we have shown that it also is useful in software. Although we have
assumed that capabilities are only used with dynamic monitors, they
can also be used with dynamic processes in an analogous way - the
rights would authorize whatever process operations, such as activate,
that the language defines. Having both dynamic processes and monitors,
we could easily describe a spooling system such as the one programmed
in Concurrent Pascal in [2]. In parallel programs, we cannot im-
mediately use capabilities for other types of objects, however,

seciuse of the potential for simultaneous access to shared variables.

O
)

b
124
HI
O

~onitors and processes have built in exclusion. With suitable
restrictions, capabilities could potentially be applied to other types
¢f variadbles; one such proposal for safely sharing variables such

as buffers is described in [1]).

5.3 Access Security

As argued in Section 2, true protection requires the validation
of a system's access policy. One key to accomplishing this goal is
solwving the safety problem which has been d:scribed by Harrison, Ruzzo
and Ullman [3]. We now present a solution to the safety problem for
our access facilities. Even though the solution is simple, it is
important both because it shows that the problem can be dpcided for
a reasonadle class of systems (an open question in [3]) and because

it enadbles us to valicdate some szcurity policies. However, we also

-23-

show that being able to solve the safety problcem dces not guarantce
that we can validate cvery security policy; hence, we have cnly parti
reached our initial goal.

The safety problem is normally formulated in terms of leakirg
access rights to untrustworthy subjects. A protection system can ke
described in terms of subjects, objects, gereric rights, protection
commands, and protection states. An invocation of a protection comma
can change some subject's access rights for an object, thus altering
the current protection state. Such a change is defined to ke safe
only if the newly acquired rights cannot be used in conjunctica with
the protection commands to give away access rights in the future. It
we can decide safety for every invocation of a protection command
within a specific system, then we have solved the safety problem for
that system. Clearly, the heart of this question is deciding what
each subject could potentially do in the future.

The safety problem has a fairly natural mapping into a programmi
environment. A language defines a class of protection systens and
each program is a specific instance. The subjects are the program
units that define the various execution environments - in our case
each process, procedure, or monitor block constitutes a different
subject. The objects of interest in a parallel system are the progra
units that can be shared, namely monitors and procedures. (ke assune
here that processes cannot access shared variables directly.) Final
the protection commands of a program are its uses of grant, capabilit
and parameter passing since they are the only tools for changing the
access rights of any subject.

Given this mapping, we need to compute the direct access rights

-24-

that each subject could acquire for every program object. By direct
access rights, we mean those rights that a subject can use immediately
without first changing environments. For example, if a process must
call a monitor to access a disk, we neced only know that the process
can call the monitor and that the monitor can use the disk. If we
have the inforration on direct access rights, it should be clear that
we can cormpute full access rights (@irect plus those resulting from
_Pprocedure calls) and hence solve the safety problem.

Direct access rights in our programming environment can only be

[

cguired in two ways - statically via grant or dynamically via capa-
? b Y Y Y

ifficulty is in computing the maximum possible dynamic rights

ci each subject. Our solution here is to model each subject's use

;f capability variables. The graph we construct will identify the
raximum f£lew of rights between each pair of capabilities. So when

a new object is created (and the reference stored in a capability) we
can use the graph to determine where rights could propogate; we cannot
distinguish between different objects created at different times with
the same capability, however.

The algorithm is actually very simple. Each node in the graph

Tepresents an instance of a capability in the program. The directed

[

rcs represent possible access right transfers between nodes. In
addition, the arcs are labeled to indicate the type of rights that
could move. The algorithm has the following four steps:

1. For each capability variable C which is not a formal parameter,

add a node € to the graph. FL C is a formal paramcter add

-25-

a node Ci for each differenct place in the program where C
could be passed rights via a call.

2. For each call that passes a capability (between P and Qi)

add two arcs P_iii Qi and Qi_illa P where ail stands. for
all of the possible rights for the object referercecd by
P and Oi.

3. For each capability assignment Q := P {rights list}; acd

arc P + Q with the rights list as the label.

4. Compute the transitive closure of the graph constructed in

the previous steps; namely, for each path from A to B, add

an arc A + B, where the label is the intersection of tke

labels on the path (labels are regarded as sets of rights).
The first three steps set up the basic information on rights mcvement.
Rights can flow from A to B only if a path exists in the proper
direction. The final step consolidates this data so path searches
.are not necessary to decide flow between pairs of nodes.

We illustrate this algorithm on a very simple system which passes
messages. Figure 6 outlines code for a program that has three com-
municating processes. Senderl and Sender2 transmit messages (instance:
of the dynamic monitor Message) to Receiver through the static monitor
Channel. 1In Figure 7, parts A and B show the access graph before and
after closure. The final graph verifies that access rights only flow

from the two scnders to the receiver. In particular, the sencers cane
not exchange rights. (Notice that we could not verify this if we had
only one node for cach formal parameter, specifically in; we must
distinguish between each.call.)

The strength of this modol of our language facilitics is that

26~

Figure 6

Outline of message passing system

System : becin
“tvece Message = dvnamic monitor;

operations read,write;

.
.

end;
grant Message to (Channel,Senderl, Sender2, Receiver);
ronitor Channel;
overations send,receive;

var store : Message capability:;

procedure send (in : Message capability)

.

store := in {read,copy};

end send;
procedure receive (var out : Message capability);

out := store {read};

end receive;

end Channel;

grant Channel {send) to (Senderl,Sender2);
grant Channel {receive} to Receiver;
process Scnderl;

var ml : Message capability;

begin ...

ml := Message.crecate;
ml.write ()
Channel.send (ml);

end Senderl;

-27-

Figure 6 Cocntinued

Outline of message passing system

process Sender2;
var m2 : Message capability;

begin ...
m2 := Message.create;
m2.write ();
Channel.send (m2);

end Sender2;

process Receiver;
var m3 : Message capability;
begin ...

Channel.receive (m3);
m3.read ();

end System

-28~-

Figure 7

Capability flow graph for program in Figure 6

A. Direct flows caused by assignments and parameter passing.

read, copy

all

store |read ﬂ

read, copy

all = read, write, copy

B. Closure of flows on graph in Part A.

~-29-

it is relatively inexpensive to compute the flow of rights. It can
be done once, at compile-time, and then used for several types of
analysis. Also, the information on maximum flow could be very close
to the actual flow, depending on the systenm design and required
protection. For example, all of the flows in Figure 7 are almost
certain to occur. Hence it could be a practical tool for a system
designer to validate his access policy.

The major weakness goes back to the definition of safety, which
ignores program code. For an analysis such as we have developed, we-
must know a great dcal about a subject's code - such as which
capabilities are used in calls to the various monitors. This reguires
that we examine the entire program, and yet we do not use any infor-
mation about the actual algorithms. Conceptually, our flow analysis
assumes that a subject first acquires all rights and then gives away
as much as possible. The program may actually do considerably less.
.Consider, for example, the message system of Figure 6 with one rore
receiver process. The flow graph would show full transmission through
Channel from both senders to both receivers, even if Channel were
coded in such a way that each sender is actually tied to only onre
receiver. The same problem would result if the file Supervisor of
Figure 5 were extended to manage files for several users; tke flow
graph would show that each user could potentially access each file.
This is not surprising, however, since a potential flow schere can-
not validate policies implemented in program code. The potential
access graph for the modified message or file system would identify
the source of the ptobleﬁ but it remains to prove formally that an

unintcended transfer of access does not occur. For the file system

-30-

this means that the correct file is returned; this obviously requires

that each process (or user) is correctly identified.

6.0 Summary

At the beginning of this paper we identified two principles,
expressive power and access validation, for access control mechanisms.
An oxpressive mechanism should make it possible to limit the access
of cach subject to those objects it needs to know, to restrict the
set of allowed operations, and to control the order and timing of
authorized actions. Our static access control facility, grant, allows
the use of static objects and capability variables to be controlled
07 a need-to-know basis. Individual monitor operations and nested
access paths can also be controlled via grant and capability assignment.
Finally, capability operations can be used to control the timing
required for many dynamic access policies.

In order to validate access policies, in Scction S we defined the
access safety problem and showed how to determine the potential access
.of cach subject. While many nced to know and access restriction
policies can be validated by examining the potential access graph,
in order to verify access policies.for dynamic objects it is usually
nccessary to examine and verify the code manipulating capabilities.
The potential access graph pinpoints the problem; it remains to
develop techniques for program verification which include the ability

to treat protection problems.

Acknowledgements

Trhe work reported here has profited greatly from numerous

-31-

discussions we have had with our colleagues David Gries, Carl Hauser,
and Richard Reitman. Each of them also carefully reviewed an earlier

draft of this paper.

I N2

-32-

Bibliography

Andrews, G.R. and J.R. McGraw. Language features for process
interaction. Proc. of ACM Conference on Language Design for
Reliable Software, Sigplan Notices 12, 3 (March 1977), 114-127.

Brinch, Hansen, P. The programming language Concurrent Pascal.
IEEE Trans. on Software Engineering SE-1, 2 (June 1975), 199-207.

Harrison, M.A., Ruzzo, W.L., and J.D. Ullman. Protection in
operating systems. Comm. ACM 19, 8 (August 1976), 461-471.

Hoare, C.A.R. Monitors: An operating system structuring concept.
Comm. ACM 17, 10 (October 1974), 549-557.

Jones, A.K., and B.H. Liskov. A language extension for controlling
access to shared data. IEEE Trans. on Software Engineering SE-2,
4 (December 1976), 277-285.

Silberschatz, A., Kieburtz, R.B.,and A. Bernstein. Extending
Concurrent Pascal to allow dynamic resource management. IEEE
Trans. on Software Encineering SE-3, 3 (May 1977), 210-217.

Wirth, N. The programming language Pascal. Acta Informatica 1,
1 (1971), 35-63.

Wirth, N. Modula: A language for modular multiprogramming.
Software-Practice and Experience 7, 1 (January 1977), 3-35.

Wulf, W. et. al. Hydra: the kernel of a multiprocessor operating
system. Comm. ACM 17, 6 (June 1974), 337-345.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif

