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ABSTRACT

The desire to predict the effort in developing or explain the

quality of software has led to the proposal of several metrics in

the literature. As a step toward valldating these metrics, the

Software Engineering Laboratory has analysed the Software Science

metrics, cyclomatic complexity and various standard program meas-

ures fop their relation to 1) effort (including design through

acceptance testing), 2) development errors (both discrete and

weighted according to the amount of time to locate and fix) and

3) one another. The data investigated are collected from a pro-

duction FORTRAN environment and examined across several projects

at once, within Individual projects and by individual programmers

across projects, with three effort reporting accuracy checks

demonstratlng the need to validate a database. When the data

come from individual programmers or certain validated projects,

the metrics" correlations with actual effort seem to be strong-

est. For modules developed entirely by indlvidual programmers,

the validity ratios induce a statistically significant ordering

of several of the metrics" correlations. When comparing the

strongest correlations, neither Software Science's E metrIQ,

cyclomatic complexity nor source lines of code appears to relate

convincingly better with effort than the others.
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I. Introduction

Several metrics based on characteristics of the software

product have appeared in the literature. These metrics attempt

to predict the effort in developing or

that software [11], [17], [19], [23].

to data from various organizations to

and appropriateness [I], [13], [15].

explain the quality of

Studies have applied them

determine their validity

However, the question of

how well the various metrics really measure or predict effort or

quality is still an issue in need of confirmation. Since

development environments and types of software vary, individual

studies within organizations are confounded by variations in the

predictive powers of the metrics. Studies across different

environments will be needed before this question can be answered

with any degree of confidence.

Among the most pQpular metrics have been the Software Sci-

ence metrics of Halstead [19] and the cyclomatic complexity

metric of McCabe [23]. The Software Science E metric attempts to

quantify the complexity of understanding an algorithm.

Cyclomatic complexity has been applied to establish quality

thresholds for programs. Whether these metrics relate to the con-

cepts of effort and quality depends on how these factors are

defined and measured. The definition of effort employed in this

paper is the amount of time required to produce the software pro-

duct (the number of man-hours programmers and managers spent from

the beginning of functional design to the end of acceptance test-

ing). One aspect of software quality is the number of errors

4-5
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reported during the p_oduct°s development, and this is the meas-

ure associated with quality for this study.

Regarding a metric evaluation, there are several issues that

need to be addressed. How well do the various metrics predict or

explain these measures of effort and quality? Does the correspon-

dence increase with greater accuracy of effort and error report-

ing? How do these metrics compare in predictive power to simpler

and more standard metrics, such as lines of source code or the

number of executable statements? These questions deal with the

external validation of the metrics. More fundamental questions

exist dealing with the internal validation or consistency of the

metrics. How well do the estimators defined actually relate to

the Software Science metrics? How

metrics, the cyclomatic complexity

tional metrics relate to one another?

do the Software Science

metric and the more tradi-

In this paper, both sets

of issues are addressed. The analysis examines whether the given

family of metrics is internally consistent and attempts to deter-

mine how well these metrics really measure the quantities that

they theoretically describe.

One goal of the Software Engineering Laboratory [6], [7],

[8], [10], a Joint venture between the University of Maryland,

NASA/Goddard Space Flight Center and Computer Sciences Corpora-

tion, has been to provide an experimental database for examining

these relationships and providing insights into the answering of

such questions.
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The software comprising the database is ground support

software for satellites -. The systems analyzed consist of 51,000

to 112,000 lines of FORTRAN source code and took between 6900 and

22,300 man-hours to develop over a period of 9 to 21 months.

There are from 200 to 600 modules (e.g., subroutines) in each

system and the staff size ranges from 8 to 23 people, including

the support Personnel. While anywhere from 10 to 61 percent of

the source code is modified from previous projects, this analysis

focuses on Just the newly developed modules.

The next section discusses the data collection process and

some of the potential problems involved. The third section

defines the metrics and interprets the counting procedure used in

their calculation. In the fourth section, the Software Science

metrics are correlated with their estimators and related to more

primitive program measures° Finally, the fifth section deterL

mines how well this collection of volume and complexity metrics

corresponds to actual effort and developmental errors.

II. The Data

The Software Engineering Laboratory collects data that deal

with many aspects of the development process and product. Among

these data are the effort to design, code and test the various

modules of the systems as well as the errors committed during

their development. The collected data are analyzed to provide

insights into software development and to study the effect of

various factors on the process and product. Unlike the typical

4-7
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controlled experiments where the projects tend to be smaller and

the data collection process dominates the development process,

the major concern here is the software development process, and

the data collectors must affect minimal interference to the

developers.

This creates potential problems with the validity of the

data. For example, suppose we are interested in the effort

expended on a particular module and one programmer forgets to

turn in his weekly effort report. This can cause erroneous data

for all modules the programmer may have worked on that week.

Another problem is how does a programmer report time on the

integration testing of three modules? Does he charge the time to

the parent module of all three, even though that module may be

Just a small driver? That is clearly easier to do than to propor-

tion the effort between all three modules he has worked on.

Another issue is how to count errors. An error that is limited to

one module is easy to assign. What about an error that required

the analysis of ten modules to determine that it affects changes

in three modules? Does the programmer associate one error with

all ten modules, an error with Just the three modules or one

third of an error with each of the three?- The larger the system

" Efforts [18], [21] have attempted to make this assignment

scheme more precise by the explanation_ a "fault" is a specific

manifestation in the source code of a programmer "error"; due to

a misconception or document discrepancy, a programmer commits an

"error" that can result in several "faults" in the program. With

this interpretation, wha_ are referred to as errors in this study

should probably be called faults. In the interest of consistency

with previous work and clarity, however, the term error will be

used throughout the paper.
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the more complicated the association. All this assumes that all

the errors are reported. It is common for programmers not to

report clerical errors because the time to fill out the error

report form might take longer than the time to fix the error.

These subtleties exist in most observation processes and must be

addressed in a fashion that is consistent and appropriate for the

environment.

The data discussed in this paper are extracted from several

sources. Effort data were obtained from a Component Status

Report that is filled out weekly by each programmer on the pro-

Ject. They report the time they spend on each module in the sys-

tem partitioned into the phases of design, code and test, as well

as any other time they spend on work related to the project,

e.g., documentation, meetings, etc. A module is defined as any

named object in the system; that is, a module is either a main

procedure, block data, subroutine or function. The Resource Sum-

mary Form, filled out weekly by the project management,

represents accounting data and records all time charged to the

project for the various personnel, but does not break effort down

on a module basis. Both of these effort reports are utilized in

Section V of this paper to validate the effort reporting on the

modules. The errors are collected from the Change Report Forms

that are completed by a programmer each time a change is made to

the system. While the collection of effort and error data is a

subjective process and done manually, the remainder of the

software measures are objective and their calculation is

4-9
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automated.

A static code analyzlng program called SAP [25] automati-

cally computes several of the metrics examined in this analysis.

On a module basis, the SAP program determines the number of

source and executable statements, the cyclomatio complexity, the

primitive Software Science metrics and various other volume and

complexity related measures. Computer Sciences Corporation

developed SAP specifically for the Software EnglneePing Labora-

tory and the program has been recently updated [14] to incor-

porate a mope consistent and thorough counting scheme of the

Software Science parameters. In an earlier study, Basili and

Phillips [3] employed the prellminary version of SAP in a related

analysis. The next section explains the revised ccuntlng pro-

cedure and defines the various metrics.

III. Metric Definition

In the application of each of the metrics, there exist vari-

ways to count each of the entities. This section interpretsous

the counting procedure used by the updated version of SAP and

defines each of the metrics examined in the analysis. These

definitions are given relative to the FORTRAN language, since

that is the language used in all the projects studied here. The

counting scheme depends on the syntactic analysis performed by

SAP and is, therefore, not necessarily chosen to coincide exactly

with other definitions of the various counts.
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Primitive Software Science metrics Software Science

defines the vocabulary metric n as the sum of the number of

unique operators nl and the number of unique operands n2. The

operators fall into three classes.

I) Basic operators include

÷ _ • / am =

• GE. .OT. .AND.

ii) Keyword operators include

// .NE. .EQ. .LE. .LT.

• XOR. .NOT. .EOV. .NEQV.

IF() THEN

IF{) THEN ELSE

IF() , ,
IF() THEN ENDIF

IF() THEN ELSE ENDIF

IF() THEN

ELSEIF() THEN

• .. ENDIF

DO

DOWHILE

GOTO <tarEet>

GOTO (TIJ..Tn) <expr>

/e logical if m/

le logical if-then-else e/
/e arithmetic if e/

/e block if ml

/o block if-then-else m/

/n case if i/

/e do loop m/

/m while loop m/

/m unconditional goto: distinct

targets imply different operators m/

/m computed goto: different number of

tangets imply different operators m/

GOTO <ident>, (T1...Tn) /_ assigne4 goto: distinct identifiers

<subr>(, ,

END=

ERR=

ASSIGNTO

EOS

e<target>)
imply different operators e/

/e alternate return m/

/_ read/write option m/

/m read/write option m/

/m target assignment m/

/_ implicit statement delimiter m/

iii) Special operators consist of the names of subroutines,
functions and entry points.

Operands consist of the all variable names and constants. Note

that the major differences of this counting scheme from that used

by Basili and Phillips [3] are in the way goto and if statements

are counted.

The metric n I represents the potential vocabulary, and

Software Science defines it as the sum of the minimum number of
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operators nle and the minimum number of operands n2 s. The poten-

tial operator count nl m is equal to two; that is, nl • equals one

grouping operator plus one subroutine/function designator. In

this paper, the potential operand count n2 s is equal to the sum

of the number of variables referenced from common blocks, the

number of formal parameters in the subroutine and the number of

additional arguments in entry points.

Source lines This is the total number of source lines that

appear in the module, including comments and any data statements

while excluding blank lines.

Source lines - comments This is the difference between the

number of source lines and the number of comment lines.

Executable statements This Is the number of FORTRAN exe-

cutable statements that appear in the program.

Cyclomatic complexity Cyclomatic complexity is defined as

being the number of partitions of the space in a module°s

control-flow graph. For programs with unique entry and exit

nodes, this metric is equivalent to one plus the number of deci-

sions and in this work, is equal to the one plus sum of the fol-

lowing constructs: logical If's, if-then-else's, block-lf*s,

block if-then-else's, do loops, whale loops, AND*s, OR's, XOR's,

EQV's, NEQV's, twice the number of arithmetic if*s, n - I deci-

sion counts for a computed Eoto with n statement labels and n
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decision counts for a case if with n predicates.

A variation on this definition excludes the counts of AND's,

OR*s, XOR*s, EQV*s and _EQV's (later referred to as

Cyclo_cmplx_2).

Calls This is the number of subroutine and function invo-

cations in the module.

Calls and _ This is the total

decisions as they are defined above.

number of calls and

Revisions This is the number of versions

that are generated in the program library.

of the module

Changes This is the total number of changes to the system

that affected this module. Changes are classified into the fol-

lowlng types (a single change can be of more than one type)_

a. error correction

b. planned enhancement

c. implement requirements change

d. improve clarity
e. improve user service

f. debug statement insertion/deletlon

g. optimization

h. adapt to environment change
i. other

Weighted changes This is a measure of the total amount of

effort spent making changes to the module. A programmer reports

the amount of effort to actually implement a given change by

4-13



indicating either

a. less than one hour,
b. one hour to a day,

e. one day to three days or
d. over three days.

The respective means of these durations,

hours, are divided

change. The sum of

involving a given

module.

0.5, 4.5, 16 and 32

equally among all modules affected by the

these effort portions over all changes

module defines the weighted changes for the

Errors This is the total number of errors reported by pro-

grammers; i.e., the number of system changes that listed this

module as involved in an error correction. (See the footnote at

the bottom of page q regarding the usage of the term "error".)

Weighted errors This is a measure of the total amount of

effort spent isolating and fixing errors in a module. For error

corrections, a programmer also reports the amount of effort spent

Isolating the error by indicating either

a. less than one hour,

b. one hour to one day,

c. more than one day or

d. never found.

The representative amounts of time for these durations, 0._, 4.5,

16 and 32 hours, are combined with the effort to implement the

correction (as calculated earller) and divided equally among the

modules changed. The sum of these effort portions over all error

corrections involving a given module defines the weighted errors

for the module.
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IV. Internal Validation of the Software Science Metrics

The purpose of this section is to briefly define the

Software Science metrics, to see how these metrics relate to

standard program measures and to determine if the metrics are

internally consistent. That is, Software Science hypothesizes

that certain estimators of the basic parameters, such as program

length N and program level L, can be approximated by formulas

written totally in terms of the number of unique operators and

operands. Initially, an attempt is made to find correlations

between various definitions of these quantities based on the

interpretations of operators and operands given in the previous

section. Then, the family of metrics that Software Science pro-

poses is correlated with traditional measures of software.

Program length Program length N is defined as the sum of

the total number of operators NI and the total number of operands

_2; i.e., N = NI + N2. Software Science hypothesizes that this

can be approximated by an estimator N* that is a function of the

vocabulary, defined as

N M = nllog2(nl) ÷ n21og2(n2).

The scatter plot appearing in Figure 1 and Pearson correlation

coefficient of .899 (p < .001; 179q modules)" show the relation-

ship between N and N" (polynomial regression rejects including a

second degree term at p = .05). Several sources [12], [16],

[26], [27] have observed that the length estimator tends to be

" The symbol p will be used to stand for significance level.
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high for small programs and low for large programs. The correla-

tions and significance levels for the pairwise Wilooxon statlstlo

[20], broken down by exeoutable statements and length, are

displayed in Table 1. In our environment, either measure of size

demonstrates that N* signifioantly overestimates N in the first

and seoond quartileS and underestimates it (most significantly)

in the fourth quartile. Feuer and Fowlkes [15] assert that the

aoouraoy of the relation between the natural logarithms of

estimated and observed length changes less with program size. The

soatter plot appearing in Figure 2 and ooPrelation ooeffioient

for In S vs. in _" of .g27 (p < .0011 179q modules) show moderate

improvement.

<< Figure I >>

Table 1. Observed vs. estimated length broken down by program siz__._ee.

_. N vs. H" broken down by exeoutable statments.
XQT STMTS MOD3 R" ESTIMATION WILCOXON 3IGNIF

0 - 19 _6 .601 over <<.0001

20 - 40 4_2 .511 over <<,0001

_1 - T8 q5T .478 under ,0367
79 <= _qg .751 under <<.0001

_. N vs. N* broken down by N.
Length N MODS R- ESTIMATION WILCOXO_ SIGNIF

0 - 114 449 .750 over <<.0001
115 - 2_3 445 ._47 over <<.0001

24_ - 512 _53 .348 under .0010

513 <= 447 .731 under <<.0001

- (p < .OOl)

<< Figure 2 >>
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Prqgram volume A program volume metric V defined as N

log2 n represents the size of an implementation, which can be

thought of as the number of bits necessary to express it. The

potential volume V t of an algorithm reflects the minimum

representation of that algorithm in a language where the required

operation is already defined or implemented. The parameter V I is

a function of the number of input and output arguments of the

algorithm and is meant to be a measure of its specification. The

metric V" is defined as

V m = (2 ÷ n2 m) log2 (2 ÷ n2m).

The correlation coefficient for V vs. V m of .670 (p < .001;

modules) shows a reasonable relationship

necessary volume and its specification.

1794

between a program's

Program level The program level L for an algorithm is

defined as the ratio of its potential volume to the size of its

implementation, expressed as

L ffi Ve/V.

Thus, the highest level for an algorithm is its program specifi-

cation and there L has value unity. The larger the size of the

required implementation V, the lower the program level of the

implementation. Since L requires the calculation of V e, which is

not always readily obtainable, Software Science hypothesizes that

L can be approximated by

2 n2

nl N2
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The correlation for L vs. L* of .531 (p < .001; 1794

modules) is disappointingly below that of .90 given in [19].

Roping for an increase in the correlations, the modules are par-

titioned by the number of executable statements in Table 2.

Although the upper quartiles show measured improvement over the

correlation of the whole sample, a more interesting relationship

surfaces. The level estimator significantly underestimates the

program level in the second, third and fourth quartiles, with the

hypothesis being rejected in the first quartile. The increase in

magnitude of the n2 t parameter does not appear to be totally cap-

tured by the definition of L'.

Table 2. Relationship of observed vs. estimated program level

broken down by program size.

XQT STMTS MODS R" ESTIMATION WILCOXON SIGNIF

0 - 19 _46 .484 ....

20 - 40 4_2 .672 under <<.0001

_1 - 78 _57 .597 under <<.0001

79 <= _49 .615 under <<.0001

all 1794 .531 under <<.0001

- (p < .001)

the

gram level L have an inverse relationship; D is expressed

D = 1/L •

An alternate interpretation of difficulty defines it

inverse of L M, given by

Program difficult 7 The program difficulty D is defined as

difficulty of coding an algorithm. The metric D and the pro-

as the

4-18

I

I
I

I
I
i

I
I

I
I

I
I

I

I

I
I

I
I



I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I

I
I

1 nlN2

D2 = --- = ......

L" 2 n2

Christensen, Fitsos and Smith [12] demonstrate that the unique

operator count nl tends to remain relatively constant with

respect to length for q90 PL/S programs. They propose that the

average operand usage N2/n2 is the main contributor to the pro-

gram diffleulty D2. The scatter plot appearing in Figure 3 and

Pearson correlation ooefflelent of .729 (p < .001; 1794 modules)

display the relationship between N2/n2 and D2 for our FORTRAN

modules. The application of polynomial regression brings in a

second degree term (p < .001) and results in a oorrelation of

.738.

<< Figure 3 >>

However, after observing in Figure q that nl varies with program

size, it seems as if the n1"s inflation might possibly better

explain D2. The scatter plot appearing in Figure 5 and the

correlation of .865 (p < .001; 179q modules) show the relation-

ship of D2 vs. nl. Step-wise polynomial regression brings in a

second degree term initially, followed by a linear term (p <

.001), and results in a correlation of .879. In our environment,

the unique operator count nl explains a greater proportion of the

variance of the difficulty D2 than the average operand usage

N2/n2.

<< Figure q >>
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<< Figure 5 >>

Program effort The Software Science effort metric E

attempts to quantify the effort required to comprehend the imple-

mentation of an algorithm. It is defined as the ratio of the

volume of an implementation to its level, expressed as

V (v)e"2

L V e

The E metric increases for programs implemented with large

volumes or written at low program levels; that is, it varies with

the square of the volume. An approximation to E can be obtained

without the knowledge of the potential volume by substituting L M

for L in the above equation. The metric

V nl N2 V nl N2 N lo,g2 n
E M

L" 2 n2 2 n2

defines the product of one half the number of unique operators,

the average operand usage and the volume. In an attempt to

remove the effect of possible program impurities [9], [19], N _ is

substituted for H in the above equation, yielding

H" log2 n

L _

nl N2 (nllog2nl + n21og2n2) log2 n

2 n2

The correlation coefficients for E vs. E', E vs. E" , in E vs. In

E _ and In E vs. In E _M are given in Table 3a. A fit of a least

squares regression line to the log-log plot of E vs. E" produces
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the equation

Equivalently,

in E = .830eln E: ÷ 1.357 •

E = exp(1.357) " (E')''0.830 .

Due to this non-linear relationship and the improved correlation

of In E vs. in E', the modules are partitioned by executable

statements in Table 3b. The application of polynomial regression

confirms this non-linearity by bringing in a second degree term

(p < .001), resulting in a correlation of .698. In Table 3b,

notice that the correlations seem substantially better for

modules below median size. The significant overestimation in the

upper three quartiles attributes to the relationship of L and L*

described earlier.

Table 3. Observed vs. estimated Software Science E metric.

5" Pearson Correlation (E < .00___!1;1794 modules).
R

E vs. E _ .663

In E vs. In E* .931

E vs. E'* .603

In E vs. in E "* .890

_. E vs. E" broken down by executable statements.
XQT STMTS MODS R- ESTIMATION WILCOXON SIGNIF

0 - 19 446 .708 under .0050

20 - 40 442 .709 over <<.0001

41 - 78 457 .qll over <<.0001

79 <= 449 .550 over <<.0001

" (p < .001)

Program _ Software Science defines the bugs metric B as

the total number of "delivered" bugs in a given implementation.

Not to be confused with user acceptance testing, the metric B is
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the number

pletion of a

expressed by

of inherent errors in a system component at the com-

distinct phase in its development. Bugs B is

B z

E V

Eo Eo

where Eo is theoretically equivalent to the mean number of ele-

mentary discrimlnations between potential errors in programming.

Through a calculation that employs the definitions of E, L and

lambda (lambda = LV m is referred to as the language level), this

equation becomes

(lambda)''I/3 (E)mt2/3

Eo

The derivation determines an Eo value

(lambda)lel/3 "= I and obtains

of 3000, assumes

(E)_m2/3

B _ = •

3000

The correlation for B vs. B M is •789 (p < .001; 179_ modules).

In summary, the relationship of some _f the Software Science

metrics with their estimators seems to be program size dependent.

Several observations lead to the result that the metric N" signi-

Ficantly overestimates N for modules below _he median size and

underestimates for those above the median size• The level estima-

tor L" seems to have a moderate correlation with L, and its sig-
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nificant underestimation of L in the upper three quartiles

reflects its failure to capture the magnitude of n2 m in the

larger modules. With respect to the g metric, the effort estima-

tor E" correlates better over the whole sample than g "A, and

their strongest correlations are for modules below median size.

The estimator g A shows a non-linear relationship to the effort

metric g. The correlation of In g vs. in g" significantly

improves over that of g vs. g *, with the E A metric's overestima-

tion of g for larger modules attributing to the role of L A in its

definition. With the above family of metrics, Software Science

attempts to quantify size and complexity related concepts that

have traditionally been described by a more fundamental set of

measures.

Table 4 displays the correlations of the Software Science

metrics with the classical program measures of source lines of

code, cyclomatic complexity, etc. There are several observations

worth noting. Length M and volume V have remarkably similar

correlations and correspond quite well with most of the program

measures. Several of the metrics correlate well with the number

of executable statements, especially the program "size" metrics

of MI, H2, M and V (also B). The level estimator L A and its

inverse D2 seem to be much more related to the standard size and

complexity measures than their counterparts L and DI. The

language level lambda does not seem to show a significant rela-

tionship to the standard size and complexity measures, as

expected. The g AA metric relates best with the number of execut-
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able statements and the modified cyclomatic complexity, while

correlating with all the measures better than the g metric and

slightly better than g*. Mone of the Software $cienoe measures

correlate especially well with the number of revisions or the sum

Table 4. Comparison of Software Science metrics against more

traditional software measures.

Key: ?

a

otherwise

not significant at .05 level
significant at .05 level

significant at .01 level
significant at .001 level

Source_Lines Source-Cmmts Cyclo_cmplx_2
I I I I
I Execut_Stmtsl Cyclo cmplx I Revisions I
I I I I

Calls &_Jumps

Calls

nl .776 .854 .778 .796 .818 .361 .802 .542
n2 .852 .867 .853. .767 .774 .430 .809 .614
N1 .824 .964 .868 .881 .889 .328 .869 .552
_2 .826 .9_9 .871 .858 .870 .355 .870 .597
n2 _ .792 .691 .754 .635 .629 .501 .683 .541

II

V
Vl

L

• 829 .961 .873 .874 .884 .343 .874 .571
• 864 .897 .864 .800 .811 ._20 .836 .621
• 837 .962 .875 .873 .883 .343 .876 .58_
• 776 .677 .734 .618 .611 .q85 .66_ .525

-.098 -.179 -.112 -.170 -.173 ? -.158 -.083

_

DI=I/L
D2=I/L *
N2/n2
Lambda

-.383 -._11 -.39_ -.389 -.396 -.216 -.386 -.250
.067a .2_ .113 .178 .196 -.093 .134 ?
.696 .872 .7_5 .816 .839 .269 .791 ._78
• 365 .5_4 .437 .508 .517 .106 ._70 .2_1
• 136 ? .108 ? ? .134 ? .051 n

E
E"

B "
B"

• 439 .629 .500 .535 .556 .106 .506 .282
.663 .831 .711 .771 .797 .224 .748 .452
• 738 .871 .760 .799 .829 .268 .788 .501
• 831 .962 .875 .873 .883 .3_3 .876 .58_
• 5_6 .7_9 .610 .650 .670 .1_9 .620 .355

" B and V will have identical correlations since they are linear
functions of one another.
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of procedure and function calls. The primary measures of unique

operators nl and unique operands n2 correspond reasonably well

overall with n2 being stronger with source lines and nl stronger

with the cyclomatic complexities. In the next section, an

analysis attempts to determine the relationship that these param-

eters really have with the quantities that they theoretically

describe.

V. External Validation of the Software Science and Related Metrics

The purpose of this section is to determine how well the

Software Science metrics and various complexity measures relate

to actual effort and errors encountered during the development of

software in a commercial environment. These objective product

metrics are compared against more primitive volume metrics, such

as lines of source code. The reservoir of development data

includes the monitoring of several projects and the analysis

examines several projects at once, individual projects and indi-

vidual programmers across projects. To remove the dependency of

the distribution of the correlation coefficient on the actual

measures of effort and errors, the nonparametric Spearman rank

order correlation coefficients are examined in this section [22].

(The ability of a few data points to

deflate the Pearson product-moment

well recognized.) The analysis first

artificially inflate or

correlation coefficient is

examines how well these

measures correspond to the total effort spent in the development

of software.
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A. Metrics" Relation to Actual Effort

Initially, a correlation across seven projects of the

Software Science E metric vs. actual effort, on a module by

module basisusing only those that are newly developed, produces

the results in Table 5. The table also displays the correlations

of some of the more standard volume metrics with actual effort.

These disappointingly low correlations create a fear that there

Table 5. Spearman rank order correlations Rs with effort for

all modules (73__!) fro____mall projects.

Key: ?

a

otherwise

not significant at .05 level

significant at .05 level

significant at .01 level

significant at .001 level

E .345

E" .445

E'" .488

Cyclo_cmplx .463

Cyclo_cmplx_2 ._67
Calls ._14

Calls_&_Jumps .494
D;=I/L .126

D2=I/L" .417

Source Lines .522

Execut Stmts .456
Source-Cmmts .460

V .448

.434

eta1 .485

eta2 .461

B .448

B" .3_5

Revisions .531

Changes .469

Weighted_Chg .468
Errors .220

Weighted Err .226
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may be some modules with poor effort reporting skewing the

analysis. Since there is partial redundancy built into the effort

data collection process, there exists hope of validatinE the

effort data.

Validation of effort data The partial redundancy in the

development monitoring process is that both managers and program-

mers submit effort data. Individual programmers record time spent

on each module, partitioned by design, code, test and support

phases, on a weekly basis with a Component Status Report (CSR).

Managers record the amount of time every programmer spends work-

ing each week on the project they are supervising with a Resource

Summary Form (RSF). Since the latter form possesses the enforce-

ment associated with the distribution of financial resources, it

is considered more accurate [24]. However, the Resource Summary

Form does not break effort down by module, and thus a combination

of the two forms has to be used.

Three different possible effort reporting validity checks

are proposed. All employ the idea of selecting programmers that

tend to be good effort reporters, and then using Just the modules

that only they worked on in the metric analysis. The three pro-

posed effort reporting validity checks are:

a. Vm -

number of weekly CSR's submitted by programmer

number of weeks programmer appears on RSF's
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b. Vt -

sum of all man-hours reported by programmer on all CSR's

sum of all man-hours reported for programmer on all RSF's

e. Vi = 1 -

number of weeks programmer's CSR effort > RSF effort

total number of weeks programmer active in project

The first validity proposal attempts to capture the frequency of

the programmer's effort reporting. It checks for massing data by

ranking the programmers according to the ratio Vm of the number

of Component Status Reports submitted over the number of weeks

that the programmer appears on Resource Summary Forms. The second

validity proposal attempts to capture the total percentage of

effort reported by the programmer. This proposal ranks the pro-

gram_ers according to the ratio Vt formed by the sum of all the

man-hours reported on Component Status Reports over the sum of

all hours delegated to him on Resource Summary Forms.

Note that for a given week, the amount of tame reported on a

Component Status Report should be always less than or equal to

the amount of time reported on the corresponding Resource Summary

Form. This is not because the programmer fails to "cover" him-

self, but a consequence of the management's encouragement for

programmers to realisticly allocate their time rather than to

guess in an ad hoc manner. This observation defines a third vall-

dity proposal to attempt t_ capture the frequency of a

programmer's reporting of inflated effort. This data check ranks
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the programmers according to the quantity Vi equal to one minus

the ratio of the number of weeks that CSR effort reported

exceeded RSF effort over the total number of weeks that the pro-

grammer is active in the project.

Metrics" relation to validated effort data Of the given

proposals, the systems development head of the institution where

the software is being developed suggests that the first proposal,

the missing data check, would be a good initial attempt to select

modules with accurate effort reporting [24]. The missing data

ratios Vm are defined for programmers on a project by project

basis. Table 6 displays the effort correlations of the newly

developed modules worked on by only programmers with Ym >: 90_

from all projects, those with Vm

developed modules. Most of the

included in the Vm >= 90% level seem

>: 80_ and for all newly

correlations of the modules

to show improvement over

those at the Vm >: 80_ level. Although this is the desired effect

and several of the Vm >= 90_ correlations increase over the ori-

ginal values, a majority of the correlations with modules at the

Vm >= 80_ level are actually lower than their original coeffi-

cients. Since the effect of the ratio's screening of the data is

inconsistent and the overall magnitudes of the correlations are

low, the analysis now examines modules from different projects

separately.
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Table 6. Spearman ran..___korde_____ correlations Rs with effort for modules
across seven projects wit_ various validity levels.

Key: ?

a

otherwise

not significant at .05 level
slKnlflcant at .05 ievel
siEnlficant at .01 level

slgnlfioant at .001 level

Validity ratio Vm (#mods)

a11(731) 80_(398) 905(215)

E .3a5 .307 .3fi7
E" ._5 .422 .467
E'* ._88 .480 .513
Cyclo_omplx ._63 ._57 ._79
Cyolo_cmplx_2 ._67 ._5_ .506
Calls ._1_ .360 ._02
Calls_&_Jumps .qgq ._75 ._79
DI=I/L .126 .0881 ?
D2=I/L" ._17 .371 ._21

Source_Lines .522 .519 .501
Exeeut_Stmts ._56 ._29 ._75
Souroe-Cmmts ._60 ._20 ._39

._q8 ._3_ ._75

M ._3_ ._16 ..60
etal ._85 .462 .493
eta2 .q61 .467 .503

B ._a8 .q3q ._75
B* .345 .307 .357
Revisions .531 .580 .565
Chanses ._69 ._95 .385
Weighted Oh8 .q68 .521 .q62
Errors .220 .381 .205
Weighted_Err .226 .382 .247

The Spearman correlations of the various metrics with effort

for three of the individual projects appear in Table 7.
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Table _. Spearman rank order oorrelations Rs with effort for

various validity rankinEs of modules from individual
prqJects $I, S3 and S7.

Key: ?

a

otherwise

Z

not significant at .05 level

significant at .05 level
significant at .01 level

significant at .001 level

unavailable data

Project

Sl S3"
Validity ratio

Vm all 80_ 90_ 80_ 90_
#modules 79 29 20 132 81

$7"-

all 80_
127 49

E .613 .647 .726 .469 .419 .285 .409a
E" .665 .713 .746 .602 .585 .389 .569

E'" .700 .747 .798 .638 .640 .430 .567

Cyclo_cmplx .757 .774 .792 .583 .608 .463 .523

Cyclo_cmplx_2 .764 .785 .787 .609 .664 .491 .523
Calls .681 .698 .818 .442 .492 .404 .485

Calls &_Jumps .776 .813 .822 .594 .619 .488 .569
DI=I/L .262a ? ? .156 • ? ? ?

DZfl/L" .625 .681 .745 .507 .442 .377 .499

Source Lines .686 .672 .729 .743 .734 .486 .499
Execut Stmts .688 .709 .781 .609 .594 .408 .515
Source_Cmmts .670 .710 .778 .671 .654 .416 .471
V .657 .692 .774 .627 .637 .377 .497

• 653 .680 .755 .613 .619 .360 .484
eta1 .683 .740 .848 .553 .533 .439 .431
eta2 .667 .701 .747 .643 .698 .365 .445

B .657 .692 .774 .627 .637 .377 .497
B" .613 .643 .726 .469 .419 .285 .409a
Revisions .677 .717 .804 .655 .632 .449 .510
Changes .687 .645 .760 .672 .639 .238a .380a

Weighted_Chg .685 .629 .749 .673 .649 .238a .256 •
Errors z z z .644 .611 .253a .438

Weighted Err z z z .615 .605 .245a .2761

- All modules in project S3 were developed by programmers
with Vm >= 80_.

"- There exist fewer than a significant number of modules developed

by programmers with Vm >= 90_.
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Although the correlation coefficients vary considerably between

and among the projects, the overall improvement in projects $1

and $3 is- apparent. Almost every metric's correlation with

development effort increases with the more reliable data in pro-

Jects $I and $7. When comparing the strongest correlations from

the seven individual projects, neither Software Science°s E

metrics, cyolomatic complexity nor source lines of code relates

convincingly better with effort than the others. Note that the

estimators of the Software Science E metric, E * and E **, appear

to show a stronger relationship to actual effort than E.

The validity screening process substantially improves the

correlations for some projects, but not all. This observation

points toward the existence of

interactions. In an attempt

effects, the analysis focuses on

project dependent factors and

to minimize these intraproJect

individual programmers across

projects.

programmer differences have a large effect on

many individuals contribute to a project.

mers

Note that Basili and Hutchens [2] also suggest that

the results when

The use of modules developed solely by individual program-

significantly reduces the number of available data points

because of the team nature of commercial work. Fortunately, how-

ever, there are five programmers who totally developed at least

fifteen modules each. The correlations for all modules developed

by them and their values of the three proposed validity ratios

are given in Table 8. The order of increasing correlation coef-

ficients for a particular metric can be related to the order of
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Table _. Spearman rank orderr correlations Rs with effort for modules
_ by. fiv____e individ--ua_-p-rprogrammers--_-

Key: ?
e

a

otherwise

not significant at .05 level

significant at .05 level
significant at .01 level

significant at .001 level

Programmer (#roods)

PI(31) P2(17) P3(21) P"(2_) P5(15)

E .593 ? ? .561a ?
E" .718 .526* .375* .555a .507*

E'" .789 .570a ? .539a .511m
Cyclo_cmplz .592 ._69 e .521a .565a ?
Cyclo cmplz_2 .68_ .583a ._811 .5_6a ?

Calls .622 .787 ? .669 ?

Calls_&_Jumps .701 .60_a ._51 • .579a ?
DI=I/L .31_" ? ? ? ?

D2=I/L" .713 ._60 • ? ._97a ._67e

Source_Lines .863 .682 .605a .62_ ?

Execut Stmts .747 .5_Oe ._36 e .631 .53_"
3ource-Cmmts .826 .576a .530a .612 .509"
V .718 "5_oe -453 e .579a .451,
N .676 .526e -_61 e .556a ._71"
eta1 .811 .575a ? .536a ?
eta2 .765 .701 .527a .597 ?

B- .718 .5_Oe ._53 • .579a
B" .593 ? ? .561a
Revisions .675 .523e .777 .468e
Changes .412 e ._68e .600a ?

Welghted_Chg .q28a .527e .502a ?
Errors .386e ? .668 ?
Weighted_Err .342 • ? .62_ ?

._51"
?
?
?
?

.596a

.545"

_ALIDITT _ATIO$ (%)

Vm

Yt

Vl

Ave. Vm,Vt

Ave. Vm,Vi

92.5 96.0 87.7 83.9 7;.1
97.9 91.8 98.8 82.1 7_.1
78.6 69.5 77.6 80.0 87.5
95.2 93.9 93.25 83.0 74.1
85.5 82.75 82.65 81.95 80.8
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increasing values for a Eiven validity ratio using the Spearman

rank order correlation. The significance levels of theserank

order oorrelatlons for several of the metrics appear in Table 9.

The statistlcally significant correspondence between the program-

mers" validity ratios Vm and the correlation coefficlents Justi-

fies the use of the ratio Vm in the earlier analysls; possible

improvement is sugEested if Vm were combined with either of the

ether two ratios.

Table 9. Significance level____!sfor the Spearman rank order correlation

between the programmer's validit_ ratios and the correlati
coefficients for several of the metrics.

Batlo

Metric Vm Vt Vi Ave(Vm,Vt) Ave(Vm,Vi) Ave(Vt

g'" .09 .09
Cyolo_cmplx

Cyalo_emplx_2 .05 .02 .02
Calls_&_Jumps .05 .02 .02

Source_Lines .05 .02 .02

Source-Cmmts .09 .09

V (B) .09 .09

eta2 .05 .02 .02

Revisions .001 .09" .09 .09

.05

" Hegative oorrelatlon.

In summary, the strongest sets of correlations occur between

the metrics and actual effort for certain validated projects and

for modules totally developed by individual programmers. While

relationships across all projects uslng both all modules and only

validated modules produce only fair coefficients, the validation

process shows patterns of improvement. Applyin_ the validity
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ratio screening to individual projects seems to filter out some

of the project specific interactions while not affecting others,

with the correlations improving accordingly. Two averages of the

validity ratios (Vm with Vt a.d Vm with Vi) impose a ranking on

the indlvidual programmers that statlstlcally agrees with an ord-

ering of the improvement of several of the oorrelatlons. In all

sectors of the analysis, the ineluslon of L* in the Software Sol-

enoe g metric in its estimators E" and E'" seems to improve the

metric correlations with actual effort. The analysis now attempts

to see how well these metrics relate to the number of errors

encountered during the development of software.

B. Metric's Relation to Errors

This section attempts to determine the correspondence of the

Software Science and related metrics both to the number of

development errors and to the weighted sum of effort required to

isolate and fix the errors. A correlation across all projects of

the Software Science bugs metric B and some of the standard

volume and complexity metrics with errors and weighted errors,

using only newly developed modules, produces the results in Table

10. Most of the correlations are very weak, with the exception

of system changes. These disappointingly low correlations attri-

bute to the discrete nature of error reporting and that 340 of

the 652 modules (52_) have zero reported errors. Even though

these correlations show little or no correspondence, the follow-

ing observations indicate potential improvement.
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Table 10. Spearman rank order correlations Rs with errors and

weighted-ennors fen all modules (65__2) fnom six pnoJects.

Key: ?

a

otherwise

not slgnifiQant at .05 level

signlfloant at .05 level
signifloant at .01 level

signifloant at .001 level

Errors Weighted_err. i

B .083 _ .101a
E" .151 .171
E'" 163 186
cyolo_o.pIx _196 _2o5 III

Cyelo_emplx_2 .189 .200
Calls .220 .236

Calls_&_Jumps .235 .2_8
DI=I/L ? ?
D2ffil/L" .124 .1_0

Source_Lines .255 .265

Exeout_Stmts .177 .198
3ouree-Cmmts .288 .298
Y .168 .186
H .162 .180
eta1 .102a .132
eta2 .181 .199

i
l
l
i

B .168 .186
B" .083" .101a
Revisions .375 .375
Changes .677 .636
Weighted Chg .627 .677

I
!

Design Elf .219 .185
Code_Elf .285 .316
Test_Elf .1_9 .16_
Tot_EffoPt .324 .332

- ProJect 31 has no data to distinguish errors from changes.

!
I
I

Weiss [q], [5] conducted an extensive error analysis that

involred three of the projects and employed enforcement of error

reporting through programmer interviews and hand-checks. For two
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of the more recent projects, independent validation and verifica-

tion was performed. In addition, the on-site systems development

head asserts that due to the maturity of the collection environ-

ment, the accuracy of the error reporting is more reliable for

the more recent projects [24]. These developmental differences

provide the motivation for an examination of the relationships on

an individual project basis.

Table I; displays the attributes of the projects and the

correlations of all the metrics vs. errors and weighted errors

for three of the individual projects. The correlations in 37, a

project involved in the Weiss study, are fair but better than

those of project $5 (not shown) that was developed at about the

same time. Project Sq and $6 (also not shown) have very poor

overall correlations and unreasonably low relationships of revi-

sions with errors, which point to the effect of being early pro-

Jects in the collection effort. The trend

produce is not very apparent, although

reporting enforcement do seem to have some

that the attributes

chronology and error

effect. In another

attempt to improve the correlations, the analysis applies the

Table 11. Spearman rank order correlations R s with errors and
weighted-errors for modules from three individual

projects.

Key: ? not significant at .05 level

• significant at .05 level

a significant at .01 level

otherwise significant at .001 level

Err errors

W err weighted-errors
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Project (#Nods)

S3(132) 34(35)

Err W err Err W err

E .401 .378
E" .536 .482
E'" .579 .522
Cyclo_cmplx .542 .481
Cyclo_omplx_2 .553 .489
Calls .445 .432

Calls_&_Jumps .566 .518
DI=I/L ? ?
D2=I/L* .491 .426

S7(127)

Err W err

7 7 .397 .391
? ? .507 .503
? 7 .492 .505
7 ? .393 .368
? ? .405 .400

.300 • .316 • .423 .419
? ? .432 .412
? ? .168 m .178 t
? ? .563 .559

Source_Lines .648 .622
Exeout Stmts .538 .505
Source=Cmmts .599 .568

V .541 .495
.526 .480

eta1 .550 .500
eta2 .541 .500

.339 n ? .490 .487
? ? .478 .465
? ? .501 .483
? ? .461 .456
? ? .457 .4_9
? ? .488 .522
? ? .3_8 .367

B .5qi .495

B" .401 .378

Revisions .784 .694

Changes .939 .864

Weighted_Chg .8_0 .885

? ? .461 .456
? ? .396 .390

.686 .630 .567 .500
• 770 .761 .727 .670
.661 .757 .62q .714

Design_Elf ? ?
Code Elf .620 .632
Test Eft .473 .481
Tot Effort .6_4 .615

? ? ? ?
.413a .398a .274 .264
.312" ? ? ?
.455a ._47a .253a .245a

PROJECT ATTRIBUTES

Weiss s_udy
IV & V X

Chronology recent

X X

early middle

previous section's hypothesis of focusing on individual program-

mers. Table 12 gives the correlations of the metrics with errors

and weighted errors for modules that two of the individual pro-

grammers totally developed. Even though it is encouraging to see
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Table 12. Spearman rank order correlatlons Rs with errors and

weighted-errors for modules totall_ developed by tw_._So
individual _rogrammers.

Key: ?

a

otherwise

not significant at .05 level

significant at .05 level

significant at .01 level
significant at .001 level

Err

W err

errors

weighted-errors

Programmer (#roods)

P2(17) P3(21)

Err W err Err W err

E .514t .447 m
E" .527 e .493*
E'" .515 u .473 •
Cyclo_cmplx .575a .558a
Cyclo_cmplx_2 .661a .616a
Calls ? .498a

Calls_&_Jumps .545" .560a
DI=I/L ? ?
D2=I/L* .558a .526"

.368e ?

.600a .563a

.666 .649

.463e .428t

.484e ._49 n

.506a .469 •
• 598a .557a

? ?
.4591 .429 •

Source Lines ? ?

Execut Stats .624a .577a
Source-Cmmts ? .436 m

V .491" .472 e
M ._94" .479 m
etal .497" .448_
eta2 ? ?

.662 .646
• 579a .533a
• 635 .594a
• 679 .655
.641 .610a
.611a .589a
• 715 .717

S .491e .472*
B" .514" .4_7 e

Revisions ? ?
Changes .716 .662a
Weighted_Chg ? .510 •

• 679 .655
.368t ?
.830 .811
• 855 .828
.863 .861

Design_Eft ? ?
Code Elf ? ._50 e
Test Elf ? ?
Tot Effort ? ?

m

._60 m .392 •
• 699 .667
.668 .644
.668 .624
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the correspondences of the metrics B, E "" and eta2 with errors as

among the best for programmer P3, the same metrics do not relate

as well for other programmers.

In summary, partitioning an error analysis by individual

project or programmer shows improved correlations with the vari-

ous metrics. Strong relationships seem to depend on the Indivl-

dual programmer, while few high correlations show up on a project

wide basis. The correlations for the projects reflect the posi-

tive effects of reporting enforcement and collection process

maturity. Overall, the correlations with total errors are

slightly higher than those with weighted errors, while the number

of revisions appears to relate the best.

VI. Conclusions

In the Software Engineering Laboratory, the Software Science

metrlos, cyclomatic complexity and various traditional program

measures have been analyzed for their relation to effort,

development errors and one another. The major results of this

investigation are the followlng: I) _one of the metrics examined

seem to manifest a satisfactory explanation of effort spent

developing software or the errors incurred during that process;

2) neither Software Science's E metric, cyclomatic complexity nor

source lines of code relates convincingly better with effort than

the others; 3) the strongest effort correlations are derived when

modules obtained from individual programmers or certain validated

projects are considered; 4) the majority of the effort correla-
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tions increase with the more reliable data; 5) the number of

revisions appears to correlate with development errors better

than either Software Science's B metric, E metric, cyclomatic

complexity or source lines of code; and 6) although some of the

Software Science metrics have size dependent properties with

their estimators, the metric family seems to possess reasonable

internal consistency. These and the other results of this study

contribute to the validation of software metrics proposed in the

literature. The validation process must continue before metrics

can be effectively used in the characterization and evaluation of

software and in the prediction of its attributes.
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