
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematical and Computing Sciences

Computer Science
���������
	����

������������������
������� �"!��#!��%$

&'���)(�*+	�,-,.,/	�021�0�,%3�465%!��7(�*+	�,8,8,/	�021���,/1
9;:2!����)(<&=��>@?BA CD�FE ��GH��IKJL:2>FI�A M6N6�OA !�>�A ��P
?/�Q��EB(SRTR��D�D�OA :2>FI�A M6N6�OA !T>�A ��P�RUGH�"IQ�"!�G@>@?

VXW=Y[Z]\LW^Y_Z]\+`BabWc\LdeagfXhOijY;k
i"\;lnm�ho`qpsrut7Y�vxw
ps`7yjY�d-w^Y�a{zcY<|8Y�ijhOke}~Y�d�w

�u�����T�����8�)�����)� �x��� ���/�u�������)� �<���8� �����/�����T�"�

�;�����B B¡¢�U£¥¤x¦��U§�¨¥©jª-«o¬®­Q�o¦o­Q¯7°�±T²
³�� ��´Uµ·¶®¸�¸^¹

º¼»�½U¾T¿TÀBÁ�¾
���B¡¢Â�§'£6§��U©�§B©j��Âj�� %ªjÂ�£uªK���F�B B¡ÄÃ®Å7�-¡¢ %Æ¥¨�¤¢Æ ¡¢ BÇ.¡Ä BÈ7��É
�U£6©�ÈBÂ�£¥ BÈÊ©F¨�¤Ë�U§'¤¢£�ÌbªK¨�£¥ÂFÂj¡¢ÂKª�¡¢ 

Í £6Î�¡¢ 7ÇÏÅBÂK�
�U£¥ÂK�ÊÈ7�UÆ¥��¤Ë¨¥§ Í �� ®ª Í ¨¥©j�e£¥�U����ÂjÂj¡ËÐ'¤¢�
£¥ BÈÑÐ��UªKªK�U©.Ç�ÅB¡¢È7��È<Ò8�o�7�bªK���F�B B¡ÄÃ®Å7�
¡¢Â8Ð'£¥ÂK��ÈÑ¨� Óªj�7�e��ÂKªj£6Ð'¤¢¡ÄÂj�7��ÈÓ«O¦O«Ô�U£6©FÈÓªK�����B B¡¢Ã Å7�eÅBÂK��ÈÑÕ)¨¥©.¨¥Ð�ÖK����ª@­×¨¥©F¡Ë�� ®ªK��ÈØÈ7��Âj¡ËÇ� xÒ
Ù  Ú¨�Å7©.ªK���F�B B¡ÄÃ®Å7�¥Û<��ÂFÂK�� %ªj¡Ä£¥¤DÅBÂK�Ê�U£¥ÂK��Âu£6©j�e©j����¨¥©�È7��ÈÚ¨� Ø�U£6©FÈBÂUÛx£¥ 'ÈÚ©j¨�¤Ë�U§'¤¢£�Ì�¡¢Â.ÅBÂK��È
ÕÜ¨¥©�È7�UÆ¥��¤Ë¨¥§ Í �� %ªÝ£¥ BÈÞ©j�UÆ�¡Ë�UßuÒà�o�7�Ú§'£6§��U©Ï§B©j��ÂK�� ®ªjÂÏªj�7�ØªK�����B B¡¢Ã Å7�¥Û.£¥ BÈÞ¨�Å7ªj¤¢¡¢ B��Â
¨�Å7©.��É�§^�U©�¡Ë�� B���e¡¢ Ñ£6§'§'¤ËÌ�¡¢ 7Çá¡ËªUÒ2âØ�eÕÜ¨�ÅB BÈÑªj�7�eªK���F�B '¡¢Ã®ÅB�
ÈB¡ÄÈÑ£¥���B¡Ë�UÆ¥�eªj�7�e��É §�����ªK��È
Ð��� 7��ã'ªjÂUÛ=£¥ BÈÝß�£¥Â���ÂK§����U¡¢£¥¤Ä¤ËÌ�ÅBÂj�UÕÜÅB¤<¡Ä äÈ7�UªK�U© Í ¡Ä B¡¢ 7Çeªj�7��ÂjÌ ÂKªK� Í Ð�¨�ÅB BÈB£6©jÌ¥Ò�âØ�b£¥¤¢ÂK¨
Âj£�ßå¨¥ªj�7�U©uÂj¡ËÇ� '¡#ã=�U£¥ ®ª�Ð��� 7��ã'ªjÂUÛ<ÂK¨ Í �
©F��¤¢£6ªj¡¢ 7Ç¼��ÂK§����U¡¢£¥¤¢¤ËÌÝªK¨Ýªj�B�e '£6ªjÅ7©j�
¨¥Õ���ÂjÂK�� ®ªj¡¢£¥¤
ÅBÂK�u�U£¥Âj��ÂUÒ



º � ¾����'¿����
	��'¿
� ÀB¾������
�o�7�Ý£¥Å7ªj�7¨¥©FÂÊ£6©F�Ï¤¢����ªjÅ7©j�U©FÂÊ¡¢ �«+¨ Í §=Å7ªK�U©�¬��U¡Ë�� B���Ý£6ª��.¡¢��ªK¨¥©F¡¢£��8 B¡ËÆ¥�U©FÂF¡ËªQÌ ¨¥Õ-âØ��¤¢¤¢¡¢ BÇ¥ªK¨� <Û��-�Uß
� ��£¥¤¢£¥ BÈ<Ò



Use Case Cards and Roleplay
for Object Oriented Development

Robert Biddle, James Noble, Ewan Tempero
School of Mathematical and Computing Sciences

Victoria University of Wellington
Wellington, New Zealand�

robert,kjx,ewan � @mcs.vuw.ac.nz

Abstract

This paper presents a technique involving index cards
and roleplay to assist in making use case development more
accessible and better guided. The technique is based on the
established CRC card technique used for object-oriented
design. In our technique, essential use cases are recorded
on cards, and roleplay is used for development and review.
The paper presents the technique, and outlines our experi-
ence in applying it. We found the technique did achieve the
expected benefits, and was especially useful in determining
the system boundary. We also saw other significant benefits,
some relating especially to the nature of essential use cases.

1 Introduction

We have been exploring ways to improve the techniques
we use in the early stages of object-oriented development.
In particular, we have been investigating how to better de-
termine use cases that capture requirements and can drive
design. We were looking for techniques that would ensure
active engagement by team members, provide more opera-
tional guidance, and also make the techniques more accessi-
ble to learners and system stakeholders. This paper presents
a technique we have developed using index cards and role-
play.

A use case describes a sequence of interaction between
a user and a system. Identification and employment of use
cases is now common practice in software development, and
the use case is now a recognised concept in modeling lan-
guages and in development processes. As with many other
aspects of object-oriented analysis, however, use cases re-
quire understanding and experience before they begin to de-
liver their potential. Moreover, these activities need tech-
niques that are lightweight, inclusive, and flexible, so to

best ensure insight and agreement about desirable system
behaviour.

The paper is organised as follows. In the next section we
provide some background, discussing use cases and their
role in object-oriented development, and also reviewing the
CRC card design technique we adapted to use cases. In
section 3 we describe the technique itself, and in section
4 we review our experience. In section 5 we explain our
use of essential use cases, and the implications. In the final
section we present our conclusions.

2 Background

2.1 Use Cases

In his 1992 book[6], Ivar Jacobson defines a use case
as “a behaviorally related sequence of transactions in a di-
alogue with the system”. The general idea is to represent
intended sequences of interaction between a system, even
if not yet implemented, and the world outside that system.
This idea is very powerful, for several reasons.

In the early stages of development, use cases help to
focus on interactions as a way of eliciting intended or de-
sirable system behaviour and so capture requirements and
help determine specifications. This technique is effective
because interactions can be described in forms very easy for
people to recall or imagine, such as narratives or dialogues.

In the later stages of development, use cases help again
because of the focus on interactions. The interactions can
now be regarded as the embodiment of specifications that
the system must meet. In design and implementation, a
structure must be determined and created that will meet
these specifications. In review and testing, use cases can
be used to drive system behaviour for examination.

Use cases are based on sequences of interaction, and de-
sirable interactions typically follow a structure of coherent
progression, on a limited scale, toward a goal or sub-goal.

1



This allows a useful partitioning of specifications. The par-
titioning into use cases is helpful in overall management
throughout development, because use cases can be organ-
ised by selecting, grouping, filtering, prioritising, and so on.

2.2 CRC Cards

When looking for a technique to make use cases more
accessible, we were inspired by a technique that ad-
dresses a later activity in object-oriented development. This
technique is CRC (class-responsibility-collaborator), which
uses cards and roleplay to facilitate designing a system as
a set of collaborating objects [2, 9, 3]. Each class is rep-
resented by an index card, and members of a design team
play the roles of classes, verbally simulating the behaviour
of the system. The cards themselves are used to record the
responsibilities and collaborators of the class. A responsi-
bility is an abstract idea of what the class should know or
do, and the notion of responsibility is used as a heuristic to
distribute intelligence in the system.

CRC cards were originally written up as a way of learn-
ing about design, where the cards helped make the idea of
objects more concrete, and the roleplay fostered an aware-
ness of object collaboration. CRC cards are now widely
regarded as a sensible design technique in general, and not
only something for beginners. Bellin and Suchman Simone
refer to CRC as a “meta-cognitive” process, where the op-
erational nature of the technique assists thinking about key
issues in the design[3]:

Each person on the team literally takes on the
role of a class and, using the CRC card as a
script, acts out the system. The value of this strat-
egy is that the act of pretending to “be a class”
and figuring out what you have to do triggers the
same responses as brainstorming. Playing with
the cards triggers unanticipated insights. Role
play does this successfully because it makes team
members active participants.

3 Use Case Cards and Roleplay

We have used and admired CRC cards for some time, and
when looking for a way to make use cases more accessible,
we decided to take a similar approach. Our basic idea was
to use index cards for use cases, and to somehow involve
roleplay as well.

Use cases describe interaction with a system, but there
are several ways to describe interaction. We chose the form
of a dialogue between a user and the system. We partic-
ularly hoped this would facilitate roleplay, because a use
case in dialogue form resembles a script. The script has

Figure 1. A use case card describing an es-
sential use case for a banking system.

two roles, user and system, so use case roleplay can simply
involve two people, each with a part in the script.

We decided that each use case card should represent a
single use case, and should show the name of the use case,
and the dialogue script. To easily distinguish the two roles,
we split the card with a vertical line down the centre, and
write the user’s lines on the left, and the system’s lines on
the right, as shown in figure 1. This layout resembles the
two-column format used by Wirfs-Brock [12]. This kind
of layout is especially good for functional requirements be-
cause it highlights how the system is used, and how the sys-
tem behaves. Non-functional requirements can also be ac-
commodated, simply by making brief notes at the bottom of
the card, or on the reverse side.

Use case cards and roleplay assist primarily in elaborat-
ing use case “bodies”, determining the steps of the interac-
tion. Before that can happen it is first necessary to identify
the use cases. This initially involves background analysis to
come up with suggestions for the different ways users may
interact with the system. In large system development, even
use case identification can constitute an activity of signifi-
cant size and scope. Our approach is to use analysis tech-
niques to identify a wide variety of candidate use cases, and
then prioritise them, selecting a few “focal” use cases that
represent critical interactions.

We then start to work on these focal use cases by elab-
orating their steps with cards and roleplay. We generally
suggest doing this with a small team of 3 to 6 people, simi-
lar to that recommended for CRC cards. We begin to work
with cards by writing brief names for the focal use cases on
the cards. For example, a banking system might have focal
use cases called depositing cash, checking account balance,
and withdrawing cash.

We then select a card and begin to work out the dialogue.
We select people for the roles of user and system, and use



Figure 2. A team performing use case roleplay
while others review the dialog.

an exploratory kind of roleplay rehearsal. The team works
together on determining the steps in the dialogue. When
ideas seem reasonable, the roleplayers “play-act” through
the script, as shown in figure 2. The rest of the team au-
dit, and afterwards the dialogue is discussed and improved
where necessary. Increasing availability of document cam-
eras means cards can easily be projected on a large screen
for larger groups to follow. This process is applied itera-
tively until the team is satisfied the dialogue represents the
way the user and the system should interact. Sometimes it
helps to leave one use case and work with another, returning
later to improve the earlier one.

The primary use of roleplay is for exploratory and iter-
ative development of the use cases. We also use roleplay
as a way of presenting use cases for review, however. Such
reviews may be conducted by peer developers, by people
working on other aspects of a project, or by stakeholders or
experts in the system domain.

After the index cards and roleplay have helped determine
the use case bodies, the full details may be recorded in re-
quirements documentation or in CASE tool databases. The
use cases can be used to drive system design and review, and
again later in system testing and demonstration. The cards
and roleplay may still prove useful in some later activities,
where their immediate and lightweight nature support rapid
review and exploration of interaction alternatives.

4 Experience

We have now observed many teams applying use case
cards and roleplay. We have used the approach in working
with more than twenty teams in industry, where the teams
typically included non-technical staff such as business an-
alysts and line managers. We have also introduced the ap-
proach in teaching and project mentoring at our university,
especially in our undergraduate courses in object-oriented
development and software engineering. Our experience has
been very positive.

We had explicitly sought active and immediate engage-
ment by team members, and that has happened as expected.
As with CRC cards, the concrete element of the index cards,
together with the behavioural element of the roleplay, to-
gether focus attention and command active participation.
This alone is valuable because it ensures a focus on deter-
mining requirements that involves the whole team.

The index cards also help in a way that, as with CRC
cards, relates to their simple nature as cards: they are
discrete and concrete, and only a lightweight investment.
Cards can be arranged or prioritised on a table top, needed
cards can be selected while leaving others, and cards can
held during roleplay. A card can be changed or discarded
easily without disturbing others, and the change can made
immediately.

The advantages of roleplay go deeper. People, even non-
developers, are good at following dialogue. Moreover, they
are familiar with the dramatic device of roleplay and the
willing suspension of disbelief on which drama depends.
People are typically able to watch roleplay, and imagine the
interaction with the finished system with real understand-
ing. This is a form of fast prototyping, and it allows fast
review and feedback that allows iterative improvement.

Bellin and Suchman Simone point out that CRC roleplay
leads to unanticipated insights, and the same thing happens
in use case roleplay. In CRC roleplay, the insights typically
concern how best to distribute intelligence among a set of
collaborating objects. In use case roleplay, the insights re-
late to how best to communicate across the boundary of the
system.

The cards and roleplay technique themselves are not
always sufficient in themselves to determine whether use
cases are reasonable or not. There are many aspects to use
cases, and developers need to be aware of the issues. In par-
ticular, developers need to be aware of studies about how
use cases model systems [7, 1], and studies of what mades
use cases actually useful [4]. Wirfs-Brock [13] discusses
how good use cases resemble “meaningful conversations”,
and this especially relates to our technique. Roleplay makes
the conversations come to life, and makes it easier to assess
how meaningful they really are.

In our experience, one critical issue in determining re-
quirements is simply determining the boundary of the sys-
tem, distinguishing what the system should do from what it
should not do. It can be very difficult reach the agreement
necessary to make such distinctions while involving all the
people involved, analysts and stakeholders.

Use case cards and roleplay have proven very useful in
determining the system boundary. Our approach is to apply
an approach familiar in design: we regard the system as
a “black-box”. The internal workings are not specified, but
the way the system is used is specified by the use cases. The
two-column dialog form of each use case card clearly shows



Take 1:

User: I say which performance I want and the system
shows me the performance details.

CUT! — it’s the system’s job to say what the system
does. This is often just an error made by the role-
player, but can also indicate confusion as to where the
system boundary is.

Take 2:

User: I say which performance I want.

System: I display the performance details and say whether
or not the seats are available.

CUT! — the seats haven’t been specified yet.

Take 3:

User: I say which performance I want.

User pauses waiting for a response, then looks over to
the person playing the system, who is still looking at
the use case card, and doesn’t realise he’s being cued.

System?

System: You’re supposed to say what seats you want to
know about too. Points at card.

User: Oh, right

CUT. The roleplay does not allow anyone to hide — all
participants have to engage with what the use case is
about.

Take 4:
. . .

Figure 3. A sample dialogue from roleplay of
a use case in a theatre booking system, illus-
trating how roleplay leads to early detection
of use case difficulties.

the role of the user distinct from the role of the system, and
the line dividing these roles is the boundary of the system.

There are several ways in which use case roleplay as-
sists to determine the system boundary. In early exploratory
roleplay, it can quickly become clear if team members differ
in their understanding about what the system is required to
do. People reading the same analysis documents can come
up with different interpretations, and it is especially com-
mon for differences to arise between technical designers and
business analyst or domain experts. It is important to detect
and resolve such differences early, and determining actual
interaction sequences for roleplay tends to expose these dif-
ferences.

The exploratory roleplay can also expose unreasonable
assumptions about both the user and the system roles. For
the user, it can become apparent that actions specified in a
use case are inconsistent with how an actual user is likely
to behave. For the system, it can become apparent the re-
quired behaviour is not possible because critical informa-
tion will not be available. Figure 3 illustrates anomalies
can be detected while roleplaying. Actually play-acting the
roles seems to make such anomalies more obvious than if
the use case was just read carefully.

To resolve such anomalies, the use case steps may have
to be modified, or the use case may need to be structured
in a different way. Such changes may require modifications
made to other use cases, and may even require even creation
of new use cases. The important result is that problems can
be identified and fixed at this early point, rather than at later
more expensive points in development.

Roleplay also makes use case interaction understandable
to observers outside a development team. This is especially
useful in presenting use cases to stakeholders. Roleplay is
quick, immersive, and very accessible. Without heavy in-
vestment, it makes is possible to discuss issues, compare
alternatives, and possibly detect flaws.

To support use case roleplay and discussion about the
system boundary, we have found use case diagrams help-
ful. We use a UML [8] use case diagram that shows actors
(the UML term for users) as stick figures and their involve-
ment with use cases as ellipses. We also explicitly show
the system boundary, depicted as a box surrounding the use
cases, with the lines between the actors and the use cases
crossing the boundary, as shown in figure 4. The conven-
tion of showing the system boundary in use case diagrams
was used by Jacobsen [6] but does not typically feature in
UML. The depiction of the system boundary is helpful in
visualising the system as a unit, and the boundary line is
consistent with the line dividing the user and the system on
the use case cards.



Figure 4. A use case diagram, explicitly show-
ing the boundary around the system object.

5 Essential Use Cases

While we have described the cards and roleplay as in-
volving use cases, we in fact typically work with a refine-
ment of use cases known as essential use cases. This refine-
ment was developed by Constantine and Lockwood as part
of “Usage-Centered Design” [5], a process for developing
user interfaces. They make an important observation:

“In particular, conventional use cases typically
contain too many built-in assumptions, often hid-
den or implicit, about the form of the user inter-
face that is yet to be designed.”

Constantine and Lockwood define essential use cases as
“a simplified and generalized form of use case”. They use
the term essential because these use cases: “are intended to
capture the essence of problems through technology-free,
idealized, and abstract descriptions”.

The abstraction in an essential use case does not relate to
the use case as a whole, but more to the steps of the use case.
In this way an essential use case does specify a sequence of
interaction, but a sequence with abstract steps. For example,
figure 5 shows an ordinary use case for a banking system,
detailing specific concrete steps in the dialogue such as in-
sert card and read magnetic stripe. Figure 6 shows an
equivalent essential use case that begins with the more ab-
stract “identify self”. Also, note that the ordinary use case
labels the roles “user action” and “system response”, stress-
ing an actual concrete interaction. The essential use case
instead takes a more abstract yet also more rich approach,
by casting the user part of the dialogue as “intention”, and
the system part as “responsibility”.

We have adopted this form of use case for our cards and
roleplay for several reasons. The abstraction keeps essential
use cases brief, and so able to fit on an index card. Also, the
abstraction helps avoid unnecessary debate about irrelevant

gettingCash
User Action System Response
insert card

read magnetic stripe
request PIN

enter PIN
verify PIN
display transaction menu

press key
display account menu

press key
prompt for amount

enter amount
display amount

press key
return card

take card
dispense cash

take cash

Figure 5. An ordinary use case for getting
cash from an automatic teller system. (From
Constantine and Lockwood.)

implement details, so allowing more rapid progress to be
made. The focus on intention and responsibility also has
important consequences.

Our experience with essential use cases has shown that
the simple benefits are realised, and there are also more pro-
found effects. As we had hoped, the abstraction does keep
the use cases brief enough for an index card, and also helps
avoid premature debate about implementation.

On a deeper level, we have seen there is heuristic merit
in casting the user role as expressing “intention”, and the
system role as expressing “responsibility”. Together, these
lead to use case dialogues that better reflect the real motiva-
tion of the user, and better capture the requirements of the

gettingCash
User Intention System Responsibility
identify self

verify identity
offer choices

choose
dispense cash

take cash

Figure 6. An essential use case for getting
cash from an automatic teller system. (From
Constantine and Lockwood.)



system, while at the same time avoiding premature design
decisions.

We have found there are some adjustments needed in
working with essential use cases. One adjustment is that
use case roleplay will itself be abstract, and so not as real-
istic as if it involved specific interface details. In our ex-
perience this has not been problematic, although teams do
find it helpful to sometimes consider concrete enactments of
the use case to check their understanding. Another possible
adjustment is that essential use cases could easily accom-
modate system responsibilities that do not directly involve
interaction. For example, the use case in figure 5 might
well involve responsibilities to maintain account balance in-
tegrity and to audit trail entries.

The focus on the system part of the dialogue as doc-
umenting responsibilities has interesting and far-reaching
implications for system development. When use cases
have been determined, one of the later activities in object-
oriented development is the design of the system as a set of
collaborating classes and objects. One approach to deter-
mining this set is to focus on responsibilities: this is a key
part of using CRC cards, and is used more thoroughly in
responsibility-driven design [10, 11].

Responsibility is good heuristic for designing objects
that involve behaviour and date working together, because
the word “responsibility” suggests both a duty to do some-
thing, and the resources with which to do it. Responsibility
also allows delegation, allowing large responsibilities to be
managed by delegating smaller responsibilities to others.

Essential use cases capture the system role as a set of re-
sponsibilities. This means that when all the use cases are
determined, we also have the set of responsibilities for the
whole system. We can regard the system as a single object,
and the responsibilities as the specification for the object.
We can design as set of collaborating objects as a decompo-
sition of the system object, with the system responsibilities
distributed appropriately.

Techniques such as CRC and responsibility-driven de-
sign already address how to distribute responsibility. But
these techniques begin with responsibilities associated with
objects and classes identified using domain analysis. Essen-
tial use cases deliver a set of responsibilities specific to the
system being designed, which presents valuable opportuni-
ties.

Ultimately, the system responsibilities and the object set
responsibilities must match. There are two major implica-
tions. Firstly, we can begin CRC or responsibility-driven
design with responsibilities informed by the essential use
case responsibilities, as well as the results of domain anal-
ysis. Secondly, we can check the set of object responsi-
bilities at any time to see if they indeed will meet the sys-
tem requirements. Even if we rapidly explore design al-
ternatives, or consider existing reusable design assets such

as patterns, frameworks, or components, we will always be
able to check that the objects work together to fulfill the re-
sponsibilities specified by the use cases. The first implica-
tion means better operational guidance in beginning design.
The second implication means better traceability between
design and requirements.

6 Conclusions

We have presented our technique involving index cards
and roleplay to help determine use cases. We were look-
ing for ways to make use case development more active,
accessible, and better guided. We based our technique on
the established CRC card technique used for object-oriented
design.

Our technique is lightweight and low in formality, but
it is easily employed and in our experience has been very
effective. We did get the benefits we set out to achieve:
the technique gets people involved rapidly, and guides use
case development in a sensible way. We also found the
techniques were effective in exposing potential flaws and
anomalies in use cases, and was especially helpful in deter-
mining the system boundary.

Other benefits related to our adoption of essential use
cases. These use abstraction in their steps by emphasising
user intention and system responsibility. We found these
characteristics worked well with our use of index cards
and roleplay, and made use case analysis both easier and
more powerful. In particular, the identification of system re-
sponsibilities provides opportunities to better guide object-
oriented design, and leads to better traceability between de-
sign and requirements.

References

[1] F. Armour and G. Miller. Advanced Use Case Modeling:
Software Systems, Volume 1. Addison-Wesley, 2001.

[2] K. Beck and W. Cunningham. A laboratory for teaching
object-oriented thinking. In Proc. of OOPSLA-89: ACM
Conference on Object-Oriented Programming Systems Lan-
guages and Applications, pages 1–6, 1989.

[3] D. Bellin and S. Suchman Simone. The CRC Card Book.
Addison-Wesley, 1997.

[4] A. Cockburn. Writing effective use cases. Addison-Wesley,
2001.

[5] L. L. Constantine and L. A. D. Lockwood. Software for
Use: A Practical Guide to the Models and Methods of Usage
Centered Design. Addison-Wesley, 1999.

[6] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard.
Object-Oriented Software Engineering. Addison-Wesley,
1992.

[7] D. Rosenberg and K. Scott. Use case driven object modeling
with UML: A practical approach. Addison-Wesley, 1999.

[8] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1998.



[9] N. Wilkinson. Using CRC Cards - An Informal Approach to
OO Development. Cambridge University Press, 1996.

[10] R. Wirfs-Brock and B. Wilkerson. Object-oriented design:
A responsibility-driven approach. In N. Meyrowitz, editor,
Proc. of OOPSLA-89: ACM Conference on Object-Oriented
Programming Systems Languages and Applications, pages
71–75, 1989.

[11] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing
Object Oriented Software. Prentice Hall, 1990.

[12] R. J. Wirfs-Brock. Designing scenarios: Making the case
for a use case framework. The Smalltalk Report, 3(3), 1993.

[13] R. J. Wirfs-Brock. The art of meaningful conversations. The
Smalltalk Report, 4(5), 1994.


