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AXIOMATIZING SOFTWARE TEST DATA ADEQUACY

Elaine J. Weyuker

1. INTRODUCTION

One of the most Important problems in software engineering Is how to

determine whether or not a program has been tested enough that it can be

released to users with reasonable confidence that it will function

"acceptably". Of course, what is meant by "acceptable" will vary with the

particular application, based on factors such as criticality of function,

anticipated consequences of malfunction, and expected frequency of use.

In view of its importance, it is surprising that there has been relatively

little research activity in this area. Most of the research effort in software

testing has involved the development of test data selection strategies rather:

than adequacy criteria. Furthermore, industry standards for determining

whether or not enough testing has been performed appear to be close to

nonexistent. Myers [MY79] states:

"The completion criteria typically used in practice are

both meaningless and counterproductive. The two most

common criteria are
1. Stop when the scheduled time for testing expires.
2. Stop when all the test cases execute without
detecting errors."

We shall call the criterion used to determine whether or not testing may

terminate, an adequacy criterion . Rather than developing a particular

criterion for test data adequacy, we develop a general axiomatic theory of test

data adequacy in this paper. Thus we shall attempt to identify and abstract
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essential properties which must hold for any such criterion. We will also

discuss properties which, although desirable, do not appear to be really

essential.

There are two primary motivations for this work. Although, as mentioned

above, there has been relatively little research done to find good, usable,

adequacy criteria, there have been some criteria defined. The work in this

paper should help in understanding Che strengths and weaknesses of these

previously proposed criteria. In addition, the axlomatization should

facilitate the definition of good adequacy criteria by indicating the most

important characteristics of such a criterion.

We say that a set of test data T is adequate to test program P relative to

specification S provided that It fulfills some set of prespecified

characteristics. We call this set of characteristics, which may relate T to

the program, the specification, or both, an adequacy criterion. One well-known

adequacy criterion, for example, is branch adequacy . If a program is

represented by a flowchart, then a branch is an edge of the flowchart. T is

branch adequate for P, provided for every branch b of P , there is some t in T

which causes b to be traversed. This is an example of an adequacy criterion

which is entirely program-based in the sense that It is independent of the

specification (except, of course, for comparing the results produced by the

program for a given input with the Intended results as defined in the

specification). Other adequacy criteria are discussed in Section 3.

We are primarily interested in this paper in adequacy criteria which are

largely program dependent, and will thus generally omit reference to the

specification. In such a case we may speak of "a program being adequately

tested by a test set."

We have chosen to consider program-based adequacy criteria since almost
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all adequacy criteria which have been proposed are program-based. Such

strategies are ouch more amenable to mechanization than specification-based

ones, as they permit the program to be treated as a purely syntactic object,

and hence the large, well-understood theory of graphs can be applied. In

addition, the focus on program-based criteria also reflects an inherent problem

associated with specification-based criteria. In particular, given any

specification and test set, there are infinitely-many programs which are

correct on the test set (i.e. match the specification) but are wrong elsewhere.

We now define our programming language. Although most of the ideas of the

paper are not really dependent on the particular details of this language, it

is nonetheless necessary to have an explicit syntax.

Our language will contain a finite number of identifiers whose range is

the integers (positive, negative, or zero). The language also contains a -*'

finite number of constants representing particular integers; we will assume

that all numbers encountered as input or output values can be represented by

corresponding constants of the language. Thus, although a function may be

defined over an infinite set, we will only be able to represent a finite number

of these using constants of the language, and thus all test cases should be

chosen from this finite set. Arithmetic expressions are to be constructed

using constants, identifiers, and the arithmetic operators +, -, *, /, in the

usual manner. An assignment statement has the form:

VAR EXP

where VAR is an identifier and EXP is an arithmetic expression. A continue

statement has the form:

continue

This is a dummy statement, much like the continue statement of Fortran, and can
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be thought of a* simply an abbreviation for an assignment statement of the

form:

VAR <- VAR

where the same identifier occurs on the left as on the right.

A predicate is a condition having one of the forms:

B1=B2, B1*B2, BKB2, BKB2,

where Bl and B2 are each either a constant or an identifier. A program body is

defined recursively:

(1) An assignment statement is a program body.

(2) if_ PRED then P

else Q

end

is a program body if PRED is a predicate and P and Q are program bodte9.

(3) if_ PRED then P end

is a program body if PRED is a predicate and P is a program body.

(4) while PRED do P

end

is a program body if PRED is a predicate and P is a program body.

(5) P

Q

is a program body if P and Q are program bodies.

A declaration statement has the form:

declare VAR1 ,VAR2 VARn

where VAR1 ,VAR2 , . . . ,VARn are distinct identifiers. They are known as the

declared identifiers.

An input statement has the form:

input
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This statement causes a constants of the language to be used as Input values to

be assigned to the n declared Identifiers in the order specified In the

declaration statement.

An output statement has the form:

output

This statement causes the current values of the n declared identifiers to be

output in the order specified in the declaration statement.

Finally, a program consists of a declaration statement, followed by an

input statement, followed by a program body, followed by an output statement.

Since our language consists of entirely familiar locutions, there is no need

for us to specify further its formal semantics.

By definition, programs are single-entry/single-exit. It thus makes sense

to speak of composing programs, or more properly composing program bodies. It

Is true that the formats of the last three statement types are rather

artificial and unlike most real programming languages; they are, however, a

technical convenience that will be used in Section 2, when composition is

discussed. If P and Q are programs, we write P;Q to mean that the . instruction

following Q's unique input statement is to be executed immediately following

the instructions preceding P's unique output statement, and the declaration

statement has been modified when appropriate.

The domain of a_ specification S is the set of all values for which S is

defined. This definition may be either an explicit or implicit prescription,

or a proscription. Values not included in the domain are considered "don't

care" conditions.

The domain of a program is the set of all values for which the program is

defined. A program can be undefined for an input either because it abnormally

terminates (yielding an error message for example) or because it enters a loop
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and fails to halt. The former type of situation can be detected

algorithmically, the latter cannot. By definition, therefore, a program halts

on every element of its domain, although one cannot, in general, determine the

set of values for which the program halts, or the function being computed by

the program. Due to these problems, and the fact that the specification

defines what should be computed, we take the position that test cases should be

selected from the specification's domain. There is not much point in testing a

program on an input if any output (or no output) is acceptable, as is the case

for points outside the specification's domain.

For program P, we let P(x) denote the result of P executing on input

vector x. If x is in the specification's domain, then we let S(x) denote the

value which a program intended to fulfill S should produce on input x. For x

not in the domain of S, we shall say that S(x) is undefined. If T is a set of

input vectors and P a program, we let P(T) denote the set of output vectors

produced by P on each of the members of T. If P and Q are programs, we write

P = Q (P is equivalent to Q) if and only if P(x)=Q(x) for every element x. In

particular, this implies that for each x, P(x) is defined if and only if Q(x)

is defined, and hence that P and Q have the same domain. It is tempting to

extend the notion of equivalence to permit us to speak of "the equivalence of

program P and specification S". Informally, this would mean that the program

fulfills the given specification, or, more formally, that S(x) P(x) for all x

in the domain of S. The problem with such an extension is that this notion of

equivalence would not be an equivalence relation. In particular, for x outside

the domain of S, we are willing to accept any program behavior. Thus, it is

perfectly possible that both P and Q fulfill specification S, but P and Q are

not equivalent. Thus, transitivity would not hold, and hence equivalence would
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not be an equivalence relation. We thus retain our original restriction that

equivalence is defined only for pairs of programs.

We do want to have a way of indicating that a program fulfills a

specification. Thus, we introduce a notion of correctness. We shall say a

program P is correct for a specification S if P(x) S(x) for every element in

the domain of S. Note that it is perfectly reasonable for two programs to be

correct for S without being equivalent.

In Section 3, we will need a notion of size of a program. The question of

how to measure the size or complexity of a program is a difficult one which

many people have considered [C, E, EM, G, HAL75, HAL77, HAN, MC , MI, MY77,

WHH] . As in [DAW], we shall find it most useful to define the size of P

(denoted |P|) to be the maximum of two quantities associated with the program

P:
"**'

(1) The number of arithmetic operations in P plus the number of «-'s.

(Note that since the continue statement is an abbreviation for a statement of

the form VAR VAR, each such statement adds one to this count.)

(2) The number of occurrences of predicates in P.

We also compute |R|, where R is a program body, In the same way, and say

that |q|, where q is an assignment statement, is one plus the number of

arithmetic operations in q. Note that with this definition, there are only

finitely-many different programs P such that |P|<n, for each positive integer

n, since we have only finitely many Identifiers and constants.

In Section 2, we will need notions of what we mean when we say that two

programs are close to one -mother. Of course, such a notion could refer to

either syntactic or semantic closeness, or some combination of the two.

We shall say that two programs P and Q are almost the same provided PHQ
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and P can be transformed into Q by applying exactly one instance of the

following textual changes to P:

(1) Replace a relational operator rl in a predicate in P with relational

operator r2

.

(2) Replace a constant cl in a predicate in P with constant c2.

(3) Replace a constant cl in an assignment statement in P with constant

c2.

(4) Replace an arithmetic operator al in an assignment statement in P with

arithmetic operator a2

.

Two programs which are almost the same are as close as two programs can be

without being identical. They are the same size, have the same form, and

compute the same function in essentially the same way, using the same

variables

.

""'

A notion of closeness which is somewhat less restrictive than "almost the

same" permits multiple textual changes to the program of the type permitted by

rules 1-4, provided these changes do not alter the semantics of the program.

We shall say that P and Q are similar provided P=Q and P can be transformed

into Q by applying the above change rules 1-4 any number of times. Like

programs which are almost the same, two similar programs are the same size,

have the same form, and compute the same function using the same variables in

the same roles, but now there may be somewhat more substantial differences in

the way the computation is performed. Again syntactic data flow

characteristics are maintained. In Section 3, we shall mention the reason for

distinguishing the special case of a single change.

We shall say that P and Q are the same shape if P can be transformed into

Q by applying the above change rules 1-4 any number of times. Whereas the

notions "almost the same" and "similar" require that the two programs be both
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semantically and syntactically related, this notion requires only syntactic

closeness. Note that all three are reflexive and symmetric and that similarity

and the same shape are transitive relations.

We shall require that a program halt on every member of a test set. Of

course it is not decidable whether or not a given program actually does halt on

a given input and there are certainly programs which are not intended to halt

on some or all inputs. Still, we can pick some large, fixed, upper bound and

say that if a program runs longer than this amount of time (or executes more

than this number of statements), that it is not a suitable test case. Of

course, such an excessive running time may well signal a problem and indicate

that the code should be carefully scrutinized, but that is tangential to the

current discussion.

Now, it is possible that an adequacy criterion requires that P(t) S(t) w

for every t in T. We shall call such a requirement the correctness condition .

It is our view that a certification that a program has been adequately tested

by a test set implies that It is reasonable to terminate the testing phase of

the development cycle. Surely, as long as errors are being uncovered, testing

is not complete. Thus, we believe that an adequacy criterion should only be

invoked after the program agrees with the specification on the entire test set.

In that case, a certification of adequacy implies that the correctness

condition holds.

In Sectioa 2 we develop an axiomatic theory of program-based adequacy

notions. Our purpose is to identify characteristics which should hold for any

adequacy criterion which is program-based. We also clarify the reasons for our

decision to exclude an explicit requirement of correctness on the test set from

the notion of test data adequacy. In addition, we discuss properties which

have an intuitive appeal, and thus might seem to be potential axioms. We
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explain the reasons why, on deeper consideration, each such proposal was

discarded. Finally, we introduce properties which we consider desirable, but

not essential, for adequacy criteria. In Section 3 we consider six previously

defined adequacy criteria, and in each case consider which of our axioms and

properties are satisfied.

2. AN AXIOMATIC THEORY OF TEST DATA ADEQUACY

We shall use the following notation in the sequel. P, Q, P, 1*1,2,...

denote programs or program bodies, S denotes a specification, and T, T'

,

T. 1-1,2,... denote sets of test data.

The first and most important property of an adequacy criterion is

applicability. Every program must be testable, regardless of the quality of

the program. There are certainly properties of programs which are desirable

and should be encouraged, and other properties which are to be highly

discouraged. Still, the solution to poor programming practice is not to make

poor programs untestable. Thus we have:

AXIOM 1 (Applicability): For every program, there exists an adequate test set.

Due to our requirement that there be only finitely-many representable

points even when the domain is infinite, Axiom 1 can be rephrased as:

AXIOM 1 : For every program, there exists a finite adequate test set.

We shall say that a program has been exhaustively tested if it has been

tested on all representable points of the domain. Such a test set, called an
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exhaustlve test set, should always be adequate. But, of course, an Important

point of testing. Is to be able to select a subset of the domain which in some

sense stands in for the entire domain. If a criterion satisfies the

applicability axiom, it follows that if a program has an infinite domain, we

can always select a proper subset which adequately tests the program. Programs

with very small (finite) domains, however, might well require exhaustive

testing using any reasonable criterion. In fact one only needs to be able to

do non-exhaustive testing when the domain is large. The extreme case is, of

course, the case of a domain of size one. In this case the only alternative to

exhaustive testing is not testing the program on any member of the domain at

all, surely an unacceptable solution. Thus, although a criterion may well

require exhaustive testing in some cases, one which always requires exhaustive

testing is unacceptable.

With this in mind, we introduce our next axiom. Intuitively it says that

a criterion must be fulfilLable by some non-exhaustive test set.

AXIOM 2 (Non-exhaustive Applicability): There is a program P and test set T

such that P is adequately tested by T, and T is not an exhaustive test set.

In fact, we really want to require more than Axiom 2. Not only do we want

to mandate that there be some program which is adequately testable by a

non-exhaustive test set, we want to make sure that this does not occur only for

our "best" programs. We shall say a program is optimal provided there is no

shorter equivalent program. Obviously, people do not In general write optimal

programs, and we must therefore be able to adequately test non-optimal ones.

AXIOM 3 (Non-optimal Applicability): There is a non-optimal program P and test
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set T such that P ia adequately tested by T, and T Is not an exhaustive test

set.

Clearly, the satisfaction of Axiom 3 implies satisfaction of Axiom 2, but

not the converse. In Section 3 we shall see an example of a criterion which

satisfies Axiom 2 but not Axiom 3. Furthermore, these axioms are not simply

refinements of Axiom 1. In fact, they are independent of Axiom 1 in the sense

that the truth value of Axiom 1 for a given test data adequacy criterion is

independent of the truth value of Axioms 2 and 3. In Section 3, we shall see

examples of adequacy criteria such that Axiom 1 is true while Axiom 3 is false,

Axiom 1 is false while Axiom 3 is true, and Axioms 1 and 3 are both true.

A final comment on exhaustive testing. There is one truly fundamental and

ideal property of test data selection and adequacy criteria which has been """'

frequently discussed: a program should be correct on every element of the test

set, if and only if the program is correct. But we know that this is an

impossible goal even though for every program such a test set exists. Whenever

a program has not been tested on every possible input, there are

infinitely-many programs which are correct on a given test set but incorrect

elsewhere. Thus, any criterion which permits anything less than exhaustive

testing of any program is not going to satisfy this property. But, in fact,

the point of testing is not to guarantee correctness. The goal is to uncover

errors

.

It is easy to argue that our next axiom is a reasonable one on intuitive

grounds. Surely if a program has been adequately tested, running the program

on some additional ("unnecessary") tests should not make the program

inadequately tested.
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AXIOM 4 (Monotonicity): If T is adequate for P, and T <^ T' , then T' is adequate

for P.

Deeper reflection on this axiom, however, reveals an unfortunate

implication. If one of the requirements of the adequacy criterion is that the

program produce the correct results on every element of the test set, then

unless the criterion guarantees correctness, this requirement implies that the

criterion does not satisfy the monotonicity axiom. That is:

THEOREM 1_: If a test data adequacy criterion is raonotonic and implies the

correctness condition, then the existence of any adequate test set for P

implies that P is correct.

PROOF : Let T be an adequate test set for P. Assume the adequacy criterion is
"""

monotonic and implies the correctness condition. Assume there is a t' such

that P(t')*S(t'). Since the criterion is raonotonic, Tlj{t') is adequate for P.

But this contradicts the requirement that P be correct on every element in the

test set.

We also have the following immediate corollary:

COROLLARY : If a test data adequacy criterion is monotonic and implies the

correctness condition, then no incorrect program can be adequately tested, and

hence the applicability axiom does not hold.

It is this theorem, in conjunction with our conviction that monotonicity

is an important axiom, that led us to conclude that the correctness condition

should not be included in a notion of adequacy. As mentioned in Section 1,
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however, we believe that in general an adequacy criterion should not be applied

until the tester believes that the testing process is complete. This then

implies that the program is correct on the test set. Hence, one can expect

that the correctness condition will in practice hold when the adequacy

criterion is invoked.

Since the correctness condition is not required for adequacy, if P has

been adequately tested by T using a monotonic adequacy criterion, and P(t)=S(t)

for all t in T, then even if new test data T' is added including some points on

which the program is not correct, the new set T T' is adequate for P. In

practice, when the presence of an error is detected by the test data in T' , the

program would be returned for debugging, and retested before being certified as v

adequately tested and released. However, a certification that a program has

been adequately tested does not guarantee that the program is correct. It —B"

means, rather, that the program is ready for release and hopefully, if the

adequacy criterion is a good one, the program contains few errors which occur

rarely.

Suppose a criterion C satisfies the applicability axiom. Then for program

P there is an adequate test set T, where T is a finite subset of the domain D.

If C is also monotonic, then D is adequate for P as it should be. Thus we

have:

THEOREM 2; If C is a monotonic adequacy criterion which satisfies the

applicability axiom, then exhaustive testing is adequate for every program.

We next consider a property which categorizes specification-based

(black-box) adequacy criteria. It states that a semantic closeness is

sufficient to imply that two programs require the same test data.
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Extensionallty Property : If T is adequate for P and P = Q then T is adequate

for Q.

It is clear that this is a property which is inappropriate for

program-based adequacy criteria. Essentially it says that the adequacy of test

data Is independent of the implementation. Since, by definition, a

program-based criterion depends primarily on the Implementation, this is

clearly an unacceptable characteristic. (See the introduction for a discussion

of the reasons why we consider program-based criteria.) Thus we have the

following axiom:

AXIOM 5 (Antiextensionality) : There are programs P and Q such that P = Q, T is

adequate for P, but T is not adequate for Q.

We do not want to say that no two equivalent programs can be adequately

tested by the same test set. Certainly that would be inconsistent with

monotonicity . Thus, all antiextensionality requires is that the adequacy

criterion consider the algorithm used in implementation, at least in some

cases

.

Having decided that semantic closeness (equivalence) is not enough to

insure that two programs require the same test data, we now consider

syntactically close programs. We said two programs have the same shape

provided one can be transformed into the other using a set of four simple

change rules. Viewed as graphs, such programs have the same structure and the

same syntactic data flow characteristics, but there is no necessary

relationship between the functions computed by the two programs. Clearly, we

cannot expect such programs to necessarily require the same test data for
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adequacy, even if we restrict attention to program-based adequacy criteria.

That is, the syntactic closeness of two programs is also not sufficient to

demand that they require the same test data.

Again, in view of the monotonicity axiom, one does not want to say,

however, that whenever two programs are the same shape but not similar (and

hence inequivalent) , they should require different test data for adequacy. But

there should certainly be some pair of programs which, although they are the

same shape, have different adequate test sets.

AXIOM 6 (General Multiple Change): There are programs P and Q and test set T,

such that P and Q are the same shape, T is adequate for P, but T is not

adequate for Q.

The next theorem underscores a consequence of using an adequacy criterion

which fails to satisfy axiom 6, but requires the correctness condition to hold.

The intuition is that test data that satisfies an adequacy criterion which does

not satisfy the general multiple change axiom and which requires the

correctness condition, will not detect errors. Of course, what one would hope

is just the opposite, namely that T would be sensitive enough to expose errors

in inequivalent programs even though they are the same shape.

THEOREM 3^: Let C be an adequacy criterion which does not satisfy the general

multiple change axiom and implies the correctness condition. Then the

existence of any adequate test set T for program P implies that any program

which has the same shape as P is correct on every element of T.

PROOF : Let T be adequate for P and let P^ , 1-1,..., n be the set of all programs

which have the same shape as P. Since C does not satisfy the general multiple
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change axiom, T is adequate for every P.. Since adequacy implies the

correctness condition, each P. is correct on every element of T. Q

The next property we introduce is superficially analogous to the

monotonicity axiom. Monotonicity required that If a set of test data T is

adequate for a given P, then a superset of T should certainly be adequate.

Similar intuition might lead one to feel that if Q is a "subprogram" of P, then

T should be adequate for Q. Of course, we don't really mean that T should be

adequate for Q, but rather that the values that the elements of T are

transformed into on "entrance" to Q should be adequate for Q.

We have to be careful about specifying just what we mean by a "subprogram",

or else there may be multiple entry points to Q. Also, although a statement may*

look like an entry point syntactically, it may in fact never be executable a&-*:

the first statement of the subprogram.

To deal with these problems, we introduce the notion of a component. A

component of a program P is any program body of P. By definition, a component

is single-entrant, and represents a (contiguous) subcomputation within P. We

will sometimes speak of a program Q being a component of program P, by which we

mean that the program body formed by removing the declaration, input, and

output statements from Q is a component of P.

Note that our definition of a component is a purely syntactic one. In

particular, one can obviously recursively decide whether or not Q is a

component of P. Furthermore, this can be determined relatively quickly. When

we consider components as programs, of course, we assume that appropriate

declaration, input, and output statements have been added.

Component Decomposition Property : Let T be adequate for P, let Q be a component
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of P, and let T' be the set of all vectors of values that variables can assume

on entrance to Q for some input of T. Then T' is adequate for Q.

Thus, if a program has been adequately tested, each of the pieces that

make up the program have been adequately tested. Of course, it is not

decidable whether or not Q can actually ever be executed within P, but since by

assumption P halts on every element of T, we can effectively obtain T'

.

However, it is possible that although P appears to be more "complicated" than

Q, in the sense that it physically contains Q, it is actually simpler by some

other (semantic) measure of complexity. This is particularly significant when

Q is unexecutable in P . The following theorem underscores this point.

THEOREM 4: Let P be a program containing an unexecutable component Q, and let T

be a test set for P fulfilling adequacy criterion C. Then the component

decomposition property does not hold for C unless the empty set is an adequate

test set for Q.

Intuitively, this theorem states that if a criterion C satisfies the

applicability axiom, and if there are programs which are not adequately

testable by the empty set, then this decompostion property does not hold for C.

Thus, one should not expect the component decomposition property to hold for

any criterion which can be satisfied for programs containing unexecutable code.

Since people do write programs containing unexecutable code, and there is no

algorithm to decide of an arbitrary program whether or not it contains

unexecutable code [WEY] , one does not want to require fulfillment of the

component decomposition property as stated above.

But unexecutable components are not the only reason why we do not want
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this decomposition property to hold in general, despite its intuitive appeal.

Let the domain of. a component Q be the set of all vectors of values that the

variables may take on at entrance to Q for any element in P's domain. The

problem is that Q's domain may be very small (and is in general indeterminable)

so even exhaustive testing of P may mean that Q is only lightly tested for its

function. The extreme case of this is the problem cited above in which Q is

unexecutable in P, and hence its domain is the empty set.

To make this somewhat more concrete, consider the example of a program

which has as a component a sorting routine. Whenever the routine is entered,

however, the data is already sorted, and hence the component can only be tested

within the context of the larger program on already sorted data. Now surely ve>

would not consider already sorted data alone, an adequate test set for a sort,

routine, even though its domain within the larger program contains only such
*"*

data. With this in mind, we propose the following axiom:

AXIOM 7 (Antidecompostion) : There exists a program P and component Q such that

T is an adequate test set for P, T' is the set of vectors of values that

variables can assume on entrance to Q for some input of T, and T' is not

adequate for Q.

Now what if each of the pieces of a program have been adequately tested?

Should the entire program be considered adequately tested? The next property

asserts that it should.

Weak Composlton Property : If T Is adequate for P and P(T) is adequate for Q,

then T is adequate for P;Q.
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At first glance, this property might seem intuitively reasonable, but of

little practical' value. After all, how often can one expect the outputs

produced on an adequate test set for one program to be adequate for another

independent program. One might therefore suggest the following intuitively

stronger property:

Strong Composition Property : Let T^ be adequate for P and let T
2 be a test set

such that P(T
2
)=T where T is adequate for Q. Then Tj Lft"

2
is adequate for P;Q.

Closer reflection indicates that the two properties are equivalent

provided monotonicity holds. That is:

THEOREM 5^: The strong composition property holds for an adequacy criterion if

and only if both the weak composition property and the monotonicity axiom hold

for the criterion.

The real problem with the weak composition property is unfortunately not

solved by this strengthening. A traditional way to test programs has been in a

"bottom-up" fashion. The lowest level modules are tested first, and

successively combined to form larger and larger pieces until the entire program

is complete. Acceptance of the composition properties as axioms would be

analogous to saying that it is sufficient to stop testing once the lowest level

modules have been tested. The composition properties do not take into account

the added complexity and interactions which may result when two program bodies

are composed. Examples of this will be shown in Section 3.

Thus we propose our final axiom:
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AXIOM 8 ( Antlcoraposition) : There exist programs P and Q such that T is adequate

for P and P(T) itf adequate for Q, but T is not adequate for P;Q.

We close this section by considering proposals for appropriate notions of

two programs being both syntactically and semantically close. If two programs

perform the same computation in "substantially the same way", one could argue

that they should require the same test data. We first use the notion of two

programs being "almost the same" as a way of defining closeness. As pointed

out earlier, two programs which are almost the same are as close as two

programs can be without being identical. One might therefore consider the

following property.

Equivalent Single Change Property : If T is adequate for P, and Q is almost the""

same as P, then T is adequate for Q.

A somewhat less restricted notion of closeness is based on our definition

of "similarity".

Equivalent Multiple Change Property : If T is adequate for P, and Q is similar

to P, then T is adequate for Q.

Of course, antiextensionality , the general multiple change axiom, and

these two equivalent change properties are not Independent. Axiom 5 states

that the semantic closeness of programs is not sufficient reason for them to

require the same test data, while axiom 6 states that syntactic closeness Is

not sufficient either. The two equivalent change properties, however, state

that programs which are both semantically and syntactically close should
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require the same test data. Thu9 we have that the failure of either axioms 5

or 6 implies that the equivalent multiple change property, and hence the

equivalent single change property, holds. Of course it also follows then that

one way to guarantee that axioms 5 and 6 hold is to devise a criterion for

which the equivalent change properties fail. In any case, it is not clear that

this is the most appropriate or reasonable way to capture this idea, and thus

we feel they should not determine whether or not an adequacy criterion is

acceptable

.

The transformation rules used to define "almost the same" and "similar"

are purposely highly restrictive. Instead of rules 3 and 4, for example, we

could have a single rule such as:

(3') Replace any assignment statement ql in P with an assignment statement q2"

provided that |ql|=|q2|.

Such a rule subsumes our rules 3 and 4, and would permit many operations to be

changed at once within an assignment statement, and also permit such things as

the replacement of one variable by another. Recent work to develop criteria

for the selection of test data recognized the need to include data flow

information in such decisions [RW, N, LK] . Similar arguments hold for test

data adequacy criteria. Thus the use of rule 3' as the basis of a desirable

property of adequacy is unsatisfactory, for it would say that programs which

may have different data flow characteristics would nonetheless necessarily have

the same adequate test sets provided they were equivalent and syntactically

close.

We introduce one final notion of syntactic and semantic closeness. If Q

is a component of P and P = Q, then Q might be considered a simpler
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lmplementation of the computation performed by P in a much more real sense. It

thus might be reasonable to argue that an adequate test set for P should

necessarily be adequate for Q. Note, too, that the adequate empty set problem

of Theorem 4 does not arise here since we are not looking at the set of values

which the elements of T can assume at entrance to Q, but rather to T itself.

Also, whereas we rejected the extensionality property as a potential axiom on

the grounds that it stated that adequacy should be independent of

implementation, here P and Q are intimately related both syntactically and

semantically . Thus it is interes ting to consider:

Equivalent Component Property : If Q is a component of P and Q = P, then if T is

adequate for P, T is adequate for Q.

We feel these last three properties are desirable, but not necessary

characteristics of adequacy criteria. We therefore do not include them among

our set of axioms.

3. A SURVEY OF PROGRAM-BASED ADEQUACY CRITERIA

Having proposed a set of axioms, we now investigate to what extent various

program-based adequacy criteria satisfy our theory.

The first adequacy criterion we consider is statement adequacy: T is

statement adequate for P provided for every statement q of P, there is some t

in T which causes q to be executed. For this criterion, the applicability

axiom fails. For any program which contains unexecutable statements, there can

be no adequate test set. In contrast, the non-exhaustive applicability axiom,

non-optimal applicability axiom, and monotonicity clearly hold for statement

adequacy.





-24-

The equivalent single change property, and hence the equivalent multiple

change property* does not hold for statement adequacy. For example, consider

the program Pll

PI : declare x

input
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P3: declare x

Input

If x<2 then x+tc-1

else x-K)

end

If x=l then x<K)

else continue

end

output

For program P3 , the test set {2, 3} Is statement adequate,

P4: declare x

input

if x<0 then x-nc-1

else x<-0

end

if x=l then x<-0

else continue

end

output

P4 is almost the same as P3, but there can be no statement adequate test

set for P4 since the predicate x=l can never evaluate to true and hence the

statement "x«-0" in the second _if_ statement can never be executed using any test

set. This example brings out an important and interesting point. It might

seem that the change axioms require too much. Programs which perform the same

Ji
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computation in essentially the same way, as made precise in Sections 1 and 2,

should certainly require test sets which are very close, but maybe not the

same. Perhaps if Q is similar to P and can be formed by applying the change

rules k times, we should only require that there be points t,,...,ti. and

C k+1 ' " *
" » c2k sucn that if T is adequate for P, then

(T-{t^
, . . . ,tk} ) \J {t^+i, . . . ,t2k.} is adequate for Q. That is, for each change

made to P to form Q, one point in the adequate test set may be changed.

We have just seen that there are cases for statement adequacy, for which

no amount of modification of an adequate test set for P will make it statement

adequate for Q which is almost the same as P. P4 is also an example which shows

that the applicability axiom is not satisfied for statement adequacy.

Of course, the failure to satisfy these change axioms shows that the

antiextensionality axiom and the general multiple change axiom hold.

Furthermore, the component decomposition property holds and hence the

antidecomposition axiom does not hold. Notice that if a program P contains

unexecutable code, there is no statement adequate test set for P. Even

exhaustive testing is not adequate in such a case. It is also easy to see that

the composition properties hold for statement adequacy, and hence the

anticomposition axiom does not hold.

Finally, the equivalent component property does not hold. Consider the

following programs:

M
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P5: declare x

Input

x -x

If x>0 then If x>3 then continue

else continue

end

else continue

end

x *

output

P6: declare x

Input ""*

if x>0 then if x>3 then continue

else continue

end

else continue

end

x «

output

P6 is a component of P5. The test set T - {-^, 0, 1} causes every

statement of P5 to be executed, but the first continue statement of P6 (i.e.

the one corresponding to the predicate "x>3" being true) is never executed as a

result of running P6 on T.

Thus, of the eight axioms and three desirable properties, only five hold

for statement adequacy.
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Branch adequacy was defined in Section 1 , and is reported to be one of the

most widely used non-trivial adequacy criteria. It is easy to see that branch

adequacy implies statement adequacy. It is also easy to see that precisely the

same five axioms hold for branch adequacy as held for statement adequacy.

These results are summarized in Table 1 at the end of Section 3.

If P is a program represented by a flowchart, a path in P is a finite

sequence of nodes (n, , ....n^) k>2 such that there is an edge from n^ to n1+1

for i=l ,2 , . . . ,k-l in the flowchart representing P. Our definition of path is a

purely syntactic one. We assume there is a path from the declaration statement

to every statement of the program. We say that T is path adequate for P if for

every path p of P, there is some t in T which causes p to be traversed. It is
.

easy to see that path adequacy implies branch adequacy. Again, non-exhaustive

applicability, non-optimal applicability, monotonicity , antiextensionality , and

the general multiple change axioms hold, while applicability,

antidecoraposition, and the equivalent component, equivalent single and multiple

change properties do not hold. However, unlike the cases of statement and

branch adequacy, anticomposition does hold. Consider the following programs:

P7: declare x

input

If x<ll then x<0

else x«-l

end

output
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P10: declare x

input

if x<0 then x «- -x

else x 1-x

end

if x=-l then x * 1

else x * x+1

end

output

P9 is adequately path tested by the set {0, 1, 2, 3}. P10, in contrast,

cannot be adequately path tested by any test set as there can be no input which

will cause the true exit to be taken from both decisions.

A final overall problem with these three code-coverage measures of

adequacy is: a determination that certain statements of a program have never

been executed by a given set of test data could either mean that the program

requires additional (or more carefully selected) test data, or that the

unexecuted portion of the program is not executable. But, since there can be

no algorithm to decide for an arbitrary program whether or not it contains

unexecutable code, or whether a particular statement, branch, or path is

executable [WEY] , one cannot in general hope to determine which situation

prevails.

Mutation analysis [B, BDLS , DLS] is an adequacy criterion which is

substantially different from the criteria considered so far. Given a program

P, specification S, and a test set T such that P is correct on every member of

T, a set of alternative programs known as mutations or mutants of P is
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produced. Each mutant P. is formed by modifying a single statement of P in

some predefined way, similar to the transformations permitted by our definition

of "almost the same". Each mutant is then run on every element of T, and T is

said to be mutation adequate for P provided that for every inequivalent mutant

Pj of P, there is a t in T such that P
i (t)'

tP(t). A similar idea was proposed

and implemented by Hamlet, and is described in [HAM].

Unlike the other adequacy criteria mentioned so far, mutation adequacy is

not monotonic because it requires that the correctness condition hold. If this

condition were removed from the requirements, however, mutation adequacy would

be monotonic. Again, due to the correctness condition, the applicability axiom

does not hold for mutation adequacy. Certainly it is true that a mutation

system can produce only finitely-many mutants, and therefore a finite set

always suffices to distinguish a program from its inequivalent mutants. But,"*

if P is incorrect at point t, and P' is a mutant which differs from P only at

t, then no test set is mutation adequate for P. Since the correctness condition

does not play any fundamental role in mutation adequacy, however, and if it

were removed both of these axioms would be satisfied, we will consider that

mutation adequacy satisfies these two axioms for comparison purposes and list

them as such in the chart at the end of this section.

Mutation adequacy, like all the other program-based adequacy criteria

discussed, is clearly antiextensional . Two programs which perform the same

computation in substantially different ways will surely have different sets of

mutations and require different sets of test data to distinguish the program

from the mutants in general. It Is less obvious, however, that two programs

which are equivalent and perform the computation in essentially the same way

may also require different test data. Consider, however, the following

equivalent programs which return the index of the first occurrence of a maximal
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element In an integer vector A of length at least 2. They appear in [DLS] and

have been rewritten to conform to the syntax of our programming language. (We

consider each "element of the vector A as a separate identifier to conform to

the syntax of our programming language.)

Pll: declare I, N, R, A(N)

input

R<-1

1+2

while KN do if_ A(I) > A(R) then R*I

else continue

end

I-I+l

end

output

P12: declare I, N, R, A(N)

input

R+l

I<-1

while KN do if A(I) > A(R) then R+I

else continue

end

1*1+1

end

output
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In [DLS] , the authors outline the argument that the test set T - {(1 2 3),

(1 3 2), (3 1 2)', (1 2 2)} constitutes a mutation adequate test set for Pll.

(Technically, -the" test data should also Include values for variables other than

the elements of A. These are omitted to simplify notation and focus attention

on the characteristics of the test data which are important to us.) If the

domain of Pll is some set which properly includes T, then since T is not an

exhaustive test set, mutation adequacy satisfies the non-exhaustive

appllcablility axiom. However, T is not mutation adequate for P12. Consider

P13, a mutation of P12:

P13: declare I, N, R, A(N)

input

R<-2 —

I<-1

while KN do if_ A(I) > A(R) then R«-I

else continue

end

1*1+1

end

output

Even though this program is not equivalent to P12, (for example (2 2 1)

distinguishes between the two programs) they produce the same output on every

input in T. This example thus serves to show that mutation adequacy does not

satisfy the equivalent single change property, and hence the equivalent

multiple change property. As mentioned above, T = {(1 2 3), (1 3 2), (3 1 2),

(1 2 2)} is mutation adequate for Pll, and Pll is almost the same as P12, yet T
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is not mutation, adequate for P12. As we pointed out in Section 2, the failure

of mutation adequacy to satisfy these properties guarantees that the general

multiple change and antiextensionality axioms hold for mutation adequacy.

A variation of this example shows that the non-optimal applicability axiom

holds for mutation adequacy. Consider the following program:

P14: declare I, N, R, A(N)

input

R+l

1+1

while KN do if A(I) > A(R) then R<-I

else continue

end

1*1+1

end

output

Clearly P11=P14 and |P14|=7 while |P11|=6. so P14 is non-optimal. T, a

non-exhaustive test set, is mutation adequate for P14.

Since it is possible to have a mutation adequate test set for a program

containing unexecutable code, and the empty set would not in general be

mutation adequate for such a program, the antidecomposition axiom holds. The

anticomposition axiom also holds for mutation adequacy. To see this, let P and

Q be programs and T a test set such that T Is mutation adequate for P and P(T)

is mutation adequate for Q. Let P' be an inequivalent mutant of P. Since T is

mutation adequate for P, there must be a t in T such that P(t)*P'(t). Let Q be
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such that Q(P(t))=Q(P'(t)) but such that P;Q is not equivalent to P';Q. In

that case, even though T is mutation adequate for P, and thus distinguishes P

from every inequivalent mutant, and P(T) is mutation adequate for Q, and thus

distinguishes Q from every inequivalent mutant, T does not distinguish P;Q from

the inequivalent mutant P';Q.

In contrast, the equivalent component property does not hold for mutation

adequacy. If Q is a component of P and P = but Q is not executable in P,

then any mutant of P which involves a change within Q, yields a program which

is equivalent to P. But this change to Q, (when Q is considered an independent

program) could obviously yield a program which is inequivalent to Q but not

distinguished from Q by T.

The class of changes to a program which are made in order to create the

set of mutants is closely related to the class of changes permitted by our

definition of "almost the same" and in fact provided the basis for our decision

about which changes should or should not be permitted. All or our changes are

examples of mutations. However, a mutation system would permit the replacement

of one identifier by another, a change we rejected for reasons discussed

earlier. Also, mutation analysis is the reason we differentiated between

single changes and multiple changes. A mutant of a program P is formed by

making a single modification of P.

The next adequacy criterion to be considered was introduced in [DAW]. We

say that a test set T is size adequate for a program P if for every program P'

which is not equivalent to P, but for which P'(t)=P(t) for each t in T, we have

IP'IMPI •

Since we cannot hope for a test set to distinguish a program from all

inequivalent programs, the above might be considered a reasonable approximation
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to the ideal. If each mutant P. of a program P had the property |Pj_|<|P|,

mutation adequacy could in turn be thought of as an approximation to size

adequacy. Instead of requiring test data to be sufficient to distinguish P

from all inequivalent shorter programs, it need only distinguish P from a

predefined subset of these programs. In fact, it is possible in some

implemented mutation systems for |P,| = |P|+1. In that case, our definition of

size would have to be slightly, but not essentially, modified for this to be

true

.

It is obvious that size adequacy is monotonic. The antidecomposition

axiom holds since there can be size adequate test sets for programs containing

unexecutable code for which the empty set would not be size adequate. The

applicability axiom holds since exhaustive testing will distinguish any pair of

inequivalent programs

.

To see that the equivalent multiple changes property, and hence the

equivalent single change property, hold for size adequacy, one need first

recognize that the permitted changes are all size preserving. That is, if P

and Q are the same shape, then |P|=|Q|. If P is similar to Q, then P=Q. Thus,

any program which is inequivalent to P and no longer than P, is inequivalent to

Q and no longer than Q, so T is size adequate for P if and only if It Is size

adequate for Q.

We next check the general multiple change axiom. Consider programs PI 5

and P16:
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P15: declare x

input
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adequacy, as well as the equivalent component and two equivalent change

properties, the next theorem (the proof of which appears in [DAW]) makes it

clear that this is not a completely satisfactory adequacy criterion.

THEOREM 6: Suppose that the program P is non-optimal. Then no test set T can

be size adequate for P unless T is exhaustive.

Thus, the non-optimal applicability axiom does not hold for size adequacy,

a very important deficiency. The difficulty arises from the possibility of

constructing programs in which an equivalent of P is "embedded". This led us

to introduce [DAW] the last adequacy criterion which we consider. In Section 2
x

we defined a component of a program. We now introduce a second, less

restrictive notion of what It means for one program to be a part of another. —

=

The definition of a component required that the statements be physically

adjacent to one another. The notion of "reduction" removes this requirement.

We first introduce seven simplification rules:

(1) Replace some assignment statement by continue

(2) Replace the program body:

if PRED then P

else Q

end

by P.

(3) Replace the program body:

if PRED then P

else Q

end

by Q.
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(4) Replace the program body:

if PRED then P end

by P.

(5) Replace the program body:

If PRED then P end

by continue .

(6) Replace the program body:

while PRED do P end

by P.

(7) Replace the program body:

while PRED do P end

by continue .

We say that program M reduces to N if the program N can be obtained from M

by applying these reduction rules, or more times. We say that P is embedded

in Q if Q reduces to some program which is equivalent to P. Clearly, if M = N

then M is embedded in N and N is embedded in M. The converse of this statement

is not true. Also, if M = N then M is embedded in P if and only if N is

embedded in P. Finally, we shall say that a program P is self-embedded if there

is a program Q such that P reduces to Q, Q=P, and Q is not identical to P. It

is easy to see that every component of a program P is embedded in P. Of course

the semantic relationship between a program and one of its components is

generally much clearer than that of an arbitrary program which is embedded in

another

.

We say a finite test set T Is modified size adequate for a program P if

for each program P' such that P is not embedded In P', but for which P'(t)=P(t)
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for each t in T", we have |P'|>|P|. We are requiring here that T be sufficient

r

to distinguish F froa a very large class of non-pathological shorter programs.

We have shown [DAW] that modified size adequacy essentially subsumes

branch adequacy and mutation adequacy. In particular we have shown that:

THEOREM 7: If P is a program which is not self-embedded, and T a modified size

adequate test set for P, then T Is branch adequate for P.

THEOREM 8: If P is a program which is not embedded in any of its inequivalent

mutants and T is modified size adequate for P, then T is mutation adequate for

Each of the axioms 1 through 8 holds for modified size adequacy as well as

the equivalent component and two equivalent change properties. The examples

used to show that the antlcomposltlon axiom and antiextensionality hold for

size adequacy, also demonstrate that they hold for modified size adequacy. One

need only observe that P17;P16 is not embedded in P18. The example used to

show that the general multiple change axiom is satisfied for size adequacy,

also demonstrates that it holds for modified size adequacy.

Similarly, the same argument which was used to prove that the equivalent

single and multiple change properties hold for size adequacy can be applied for

modified size adequacy, provided one observe that since P 1 6 = P 1 7 , they are

embedded in exactly the same programs. Monotonicity obviously holds, and the

arguments used to show that the applicability and antidecoraposition axioms hold

for mutation adequacy and size adequacy, can be used for modified size

adequacy. Finally, the equivalent component property holds since If P = Q, P

is not embedded in R if and only if Q is not embedded in R, and R(T)»P(T) if
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and only if R(T)-Q(T). Also, If Q Is a component of P, |Q|<|P|, so |R|>|P|

implies |R|>|Qf."

In fact, for both size adequacy and modified size adequacy, essentially

the same arguments work to show that the following stronger statement is true:

If P = Q and |Q|<|P| then if T is adequate for P, T is adequate for Q.

From the point of view of our theory, the critical difference between

these two adequacy criteria Is that the non-optimal applicability axiom does

hold for modified size adequacy. As mentioned above, this adequacy criterion

was originally introduced In [DAW] because of the result described in Theorem

6.

To see that the non-optimal applicability axiom, and hence the

non-exhaustive applicability axiom, hold for modified size adequacy, consider

programs P19 and P20:

P19: declare x, y

Input

y«-x-x

output

P20: declare x, y

Input

y«-0

output

Clearly, P19 = P20, and since |P19|=2 while |P20|-1, P19 is non-optimal.
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It has been shown [DAW] that for any test set T, if T Is modified size adequate

for P19, then |TJ>3. In fact any size 3 test set is modifed size adequate for

P19. For such a test set to be inadequate for P19, there would have to be some

program Q such that P19 is not embedded in Q , |Q|<2, and Q agrees with P19 at

three or more points. This has been shown in [DAW] to be impossible.

Table 1 summarizes the results for the eight axioms and three properties,

and the six adequacy criteria surveyed above.
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TABLE 1

statement branch path mutation size modified size

applicability " no no no yes yes yes

non-exhaus applicability yes yes yes yes yes yes

non-opt applicability yes yes yes yes no yes

monotonicity yes yes yes yes yes yes

antiextenslonality yes yes yes yes yes yes

general multiple change yes yes yes yes yes yes

antidecomposition no no no yes yes yes

antlcomposition no no yes yes yes yes

equiv single change no no no no yes yes

equiv multiple change no no no no yes yes

equiv component no no no no yes yes
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4. SUMMARY

We have developed an axiomatization of software test data adequacy for

program-based adequacy criteria. The first four axioms stated that every

program must be testable, and that an adequacy criterion must be satisfiable in

a non-trivial way for arbitrary programs. Also, once a program has been

adequately tested, no amount of additional test data can transform it into an

inadequately tested program.

Four axioms were in a sense "negative" axioms. They said that programs

which are closely related either syntactically or semantically but not both,

may well require different test data. Also, the fact that each of the pieces

of a program have been adequately tested, does not necessarily imply that the

entire program has been adequately tested. Finally, and less intuitively

obvious, even though a program has been adequately tested, it does not

necessarily follow that each of its components have been tested. This is due

in part to the fact that programs may contain unexecutable code.

Having developed this system of axioms, we considered six previously

defined adequacy criteria to see which of the axioms each satisfied. We found

that the two best known of these criteria satisfied only five of the axioms.

Only two of the criteria satisfied all eight of the axioms, and only one of

these criteria fulfilled the three desirable properties as well.

At this point, we have a consistent set of axioms, as evidenced by the

fact that modified size adequacy and mutation adequacy satisfy all of the

axioms. On the other hand, there Is no reason to believe that they are at

present a complete set of axioms in the sense of being satisfied by every

intuitively appropriate adequacy notion, and only by such. We propose to

continue developing this theory, and attempt to classify adequacy criteria

according to the axioms they satisfy. Hopefully this work, will also encourage
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others to identify essential characteristics of adequacy criteria and propose

additional axioms. Eventually it should be possible to prove an appropriate

completeness theorem for the system of axioms which is ultimately developed.
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