IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.5, MAY 2002 449

A State-of-the-Art Survey on Software Merging

Tom Mens

Abstract—Software merging is an essential aspect of the maintenance and evolution of large-scale software systems. This paper
provides a comprehensive survey and analysis of available merge approaches. Over the years, a wide variety of different merge
techniques has been proposed. While initial techniques were purely based on textual merging, more powerful approaches also take the
syntax and semantics of the software into account. There is a tendency towards operation-based merging because of its increased
expressiveness. Another tendency is to try to define merge techniques that are as general, accurate, scalable, and customizable as
possible, so that they can be used in any phase in the software life-cycle and detect as many conflicts as possible. After comparing the
possible merge techniques, we suggest a number of important open problems and future research directions.

Index Terms—Software merging, large-scale software development, merge conflicts, conflict detection, conflict resolution.

1 INTRODUCTION

AS clearly pointed out by Perry et al. [49], support for
software merging is a necessity during large-scale
software development, where separate lines of develop-
ment are carried out in parallel by different software
developers and have to be merged at regular intervals.
The need for software merging arises in the context of
distributed applications, computer-supported collabora-
tive work and concurrency control [14], [15], [43], and
in the context of software configuration management in
particular [12].

Software configuration management is the discipline of
managing the evolution of large and complex software
systems [61]. As a development-support discipline, it
provides techniques and tools to assist developers in
performing coordinated changes to software products.
These techniques include version control mechanisms [12] to
deal with the evolution of a software product into many
parallel versions and variants that need to be kept
consistent and from which new versions may be derived
via software merging.

Note that the need for software merging depends on the
chosen version control mechanism [56]. With pessimistic
version control, all participants work on the same set of
software artifacts and parallel editing of the same artifact is
prevented by locking. Such a pessimistic locking protocol
assumes a strict consistency model, in the sense that all
participants have exactly the same views and data at all
times. In practice, this approach is inadequate as soon as
the number of software developers working in parallel
exceeds a certain—typically very low—threshold. With
optimistic version control, each developer can work on a
personal copy of a software artifact. The advantage of this
approach is that software developers are allowed to work

o The author is with the Programming Technology Lab, Vrije Universiteit
Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
E-mail: tom.mens@uub.ac.be.

Manuscript received 29 Feb. 2000; revised 14 Feb. 2001; accepted 26 Apr.
2001.

Recommended for acceptance by A.A. Andrews.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111615.

completely separate for some time. The price for this is the
need for merging. From time to time, the personal copies
need to be integrated into a new shared version and
conflicts between parallel changes need to be resolved
during this merge process.

Nevertheless, software merging remains a time-consum-
ing, complicated, and error-prone process because many
interconnected elements are involved and merging depends
on both the syntax and semantics of these elements.
Unfortunately, most existing approaches to software mer-
ging lack either flexibility or expressive power.

Commercially available merge tools are usually based on
textual merge techniques. This makes them very flexible
since any program can be considered as a piece of text,
irrespective of the programming language in which it was
written. To some extent, textual merging can even be used
to merge other kinds of software artifacts, such as code
documentation. An inherent limitation of textual merging is
that it can only detect very basic conflicts. It does not take
the specific semantics of software artifacts into account
because everything is treated as an ordinary piece of text.

To cope with this problem, a number of research
prototypes have been developed that deal with syntactic
and semantic merge conflicts. Unfortunately, detecting all
possible semantic conflicts between two versions of an
arbitrary software artifact is undecidable [5], [53]. To
reduce this problem, one could narrow down the merge
algorithm to a well-defined domain, e.g., a specific
programming language, a particular phase in the software
life-cycle, or a particular type of application (such as
distributed applications).

On the other hand, sometimes a more widely applic-
able merge technique is required. This is, for example, the
case if we want a merge tool that does not only deal with
implementation artifacts but also with software artifacts
in the higher life-cycle phases of software development.
In such a case, a domain-independent approach is more
suitable [14], [39], [43], [63]. Unfortunately, this typically
results in a decreased accuracy. A domain-independent
tool cannot rely on the detailed semantics of the software
artifacts being considered, as these differ significantly in

0098-5589/02/$17.00 © 2002 IEEE

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

version la

MAY 2002

1 program Math;
/* version la */

func fac(arg:int) :int

5 var i:int
begin
result := 1;

P

proc fac(n:int, var r:int)

version [

1 program Math;
/* version 1 */

10 end fac;
begin

end Math.

for 1 = 1 to arg do
result := result*i;

merge of versions la and 1b |

1 program Math;
/* version la */

func fac(arg:int) :int

5 /* calculate factorial ni */
var i:int
begin

5 wvar i:int

result := 1;

>

begin

begin version 1b if n>1 then
r :=.l; 1 program Math; 10 for i=1 to arg do .
for 1 = 1 ton do . result := result*i;
/* version I1b */ —_— —_—
r := r¥i; - end fac;
0 end fac; proc fac(n:int, var r:int) begin

s /* calculate factorial n! */

var i:int
begin

r := 1;
if n>1 then
10 for i=1 to n do

r 1= rv¥i;
end fac;
begin

end Math.

15 fac(5,R);
write(R);

end Math.

15 fac(5,R);
write(R);

end Math.

Fig. 1. A possible three-way line-based textual merge scenario.

different domains. Therefore, instead of detecting all
possible conflicts, approximative techniques are required
that try to detect as many conflicts as possible without
compromising efficiency.

In order for a merge tool to detect syntactic and semantic
merge conflicts rather than purely textual ones, a formal
foundation is required. The complexity of the underlying
formalism tends to increase with respect to the number of
detectable syntactic and semantic conflicts. In order not to
overly restrain the efficiency of a merge tool, a lightweight
approach is often taken to detect as many conflicts as
possible with a formalism that is as simple as possible.

The outline of this paper is as follows: Section 2 presents
an overview of the different kinds of merge techniques and
associated merge conflicts that can be distinguished.
Section 3 elaborates on the mechanisms for detecting and
resolving these conflicts. Section 4 relates merge techniques
to delta algorithms that calculate the difference between
two versions of a software artifact. Section 5 addresses some
important criteria that need to be taken into account when
designing and developing a merge tool. Finally, Section 6
concludes and proposes a number of future research
directions.

2 OVERVIEW OF MERGE TECHNIQUES

This section provides a comprehensive overview of various
merge techniques (used in research prototypes, as well as in
commercial tools) that have been reported in literature and
categorizes them according to a number of orthogonal

dimensions. More precisely, the following alternatives are
discussed: two-way or three-way merging; textual, syntac-
tic, semantic, or operation-based merging; state-based or
change-based merging; and reuse versus evolution.

2.1 Two-Way or Three-Way Merging

A first distinction can be made between two-way and three-
way merge techniques. Two-way merging attempts to merge
two versions of a software artifact without relying on the
common ancestor from which both versions originated.
With three-way merging, the information in the common
ancestor is also used during the merge process. This makes
three-way merging more powerful than its two-way
variant, in the sense that more conflicts can be detected.
Consequently, almost all currently available merge tools
make use of three-way merging.

To illustrate the difference more clearly, let us take a
closer look at the merging of text files. As a prerequisite to
achieve two-way or three-way textual merging, we need to
be able to identify the differences between text files. The
Unix diff utility [27], [28] provides such support for two-
way merging, while the Unix diff3 utility does the same for
three-way merging.

To show the difference between two-way merging and
three-way merging more clearly, consider the example of
Fig. 1, which represents version 1 of a program Math for
calculating mathematical functions and two of its evolved
versions (la and 1b). The changes made to obtain each of
these evolved versions are displayed in underlined italics.

MENS: A STATE-OF-THE-ART SURVEY ON SOFTWARE MERGING

With two-way merging, we only compare the differ-
ences between versions la and 1b. For example, line 4 in
version 1b contains proc fac(n:int,var r:int),
while the corresponding line in version la contains func
fac (arg:int) : int. Similarly, version 1b contains a line
fac(5,R); (line 15) that is not present in version la.
Unfortunately, this information is insufficient to deter-
mine whether the differences are caused by a line
addition, removal, or modification in only one of the
evolved versions or by a simultaneous modification in
both versions.

Three-way merging does not have this shortcoming. For
example, line proc fac (n:int,var r:int) of version 1b
is also present in ancestor version 1, implying that only
version la made a modification to this particular line.
Similarly, because the line fac (5, R) ; of version 1b did not
occur in version 1, it must have been newly introduced by
version la. This extra information is used by the merge
algorithm to infer which lines of version la and version 1b
should be included in the merged version. A possible
outcome of the line-based merge is shown on the right in
Fig. 1. The merge incorporates all changes/additions/
deletions from both versions 1a and 1b and the changes of
version la take precedence when there is a merge conflict.
Note that this textual merge is not semantically correct, as
will be explained in the next section.

2.2 Textual, Syntactic, Semantic,
or Structural Merging

An important distinction between merge tools can be made
based on how software artifacts are represented. Text-based
merge tools treat software as a flat text file. A better
alternative is to use a more structured form of software
artifacts (such as a parse tree), or even to consider semantic
information. More specifically, a distinction can be made
between textual, syntactic and semantic merging.

2.2.1 Textual Merging

Text-based merge tools consider software artifacts merely
as text files (or binary files). The most common approach is
to use line-based merging, where lines of text are taken as
indivisible units [27]. Examples of this are the rcsmerge tool
in the Revision Control System (RCS) [60], Sun®’s filemerge
tool [1], the DOMAIN Software Engineering Environment
(DSEE) [33], [34], [37], the Concurrent Version System (CVS)
[4], and merge tools that can be found in commercial
configuration management tools.

With line-based merging of text files, common text lines
can be detected in parallel modifications, as well as text
lines that have been inserted, deleted, modified, or moved.
Fig. 1 already showed an example of such a line-based
merge. Because of its too coarse granularity, however, line-
based merging has the disadvantage that it cannot handle
two parallel modifications to the same line very well. Only
one of the two modifications can be selected, but the two
modifications cannot be combined.

In spite of its disadvantages, line-based merging remains
a very useful technique because of its efficiency, scalability,
and accuracy. According to some measurements performed
with a three-way, line-based merge tool in an industrial case
study [49], about 90 percent of the changed files could be

451

merged without asking any questions. The more challen-
ging task lies in providing automated ways to deal with
those 10 percent of the situations that cannot be merged
automatically. The reason why text-based merging fails in
those cases has to do with the fact that text-based merge
tools do not consider any syntactic or semantic information.

2.2.2 Syntactic Merging

Syntactic merging [10] is more powerful than textual
merging because it also takes the syntax of software
artifacts into account. A text-based merge technique often
gives rise to unimportant conflicts such as a code comment
that has been modified in parallel by different developers or
conflicts that arise because of the introduction of some line
breaks and tabs that make the code easier to read. A
syntactic merger can ignore all these conflicts. It will only
issue a merge conflict when the merged result is not
syntactically correct. As a concrete example, consider the
conditional program statement if (n mod 2)=0 then
m:=n/2. Two parallel developers decide to change this
program fragment in a different way, but with the same
overall effect. The first developer extends the fragment to
if (nmod2)=0thenm:=n/2 elsem:=(n-1) /2, while
the second developer modifies it to m: =n div 2 (where div
is the whole division). Although both changes have exactly
the same effect, a purely textual merge will probably
combine these two evolutions into something like m: =n div
2 else m:=(n-1) /2, which is syntactically incorrect. A
syntactic merger will detect this conflict, so that appropriate
actions can be taken to resolve the problem. (In this case, it
would suffice to remove the else part manually.)

General syntactic merge techniques can be categorized
according to their underlying data structure: the ones that
use (parse) trees as an underlying data structure and the
ones that use graphs as data structure.

References [2], [63], and [67] are examples of tree-based
merging that propose a domain-independent, three-way
merge tool that can detect syntactic conflicts when merging
parse trees or abstract syntax trees. Cdiff [20], another tree-
based merge approach, is used to find differences between
C++ programs by comparing their parse trees. The
approach is restrictive because it relies on two-way merging
and can only be used to merge C++ programs. A similar
tool that allows merging C++ programs in a syntactic way is
TurboMixer, which was developed in the course of the
BeyondSniff project [9].

Rho and Wu [52] use attributed graphs as an underlying
representation for software artifacts. The same is true for
Mens [40], who additionally makes use of graph rewriting
techniques in order to provide a formal foundation for
software merging.

2.2.3 Semantic Merging

Syntactic merge tools are unable to detect some frequently
occurring conflicts. For example, in the merge of versions 1a
and 1b in Fig. 1, we encountered a problem on line 9 (1 £ n>1
then), where a variable n was used that is not declared in
the program. This is because version la and 1b each use
another variable name (arg and n, respectively) for the same
purpose. A syntactic merger is unable to detect this conflict
since the program is still syntactically correct. Therefore, we

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

=D

class Point;

var x,y:int;

method distance (p:Point):£float
return sqrt(p.x"2+p.y"2)

end class

class Point;

var x,y:int;

method distance (p:Point) :float
return sqrt(p.x"2+p.y"2)

end class

class PolarPoint inherits Point;
method radius():float
return distance (self);
method angle() :float
return arctan(y/x)
end class

Fig. 2. Behavioral conflict due to late-binding.

will call it a semantic conflict. More specifically, it is a static
semantic conflict since most compilers will detect the problem
and issue an “undeclared variable” error. Observe that the
merge of versions la and 1b contains a second semantic
problem. Line 15 contains a procedure call fac(5,R);
while the procedure definition has been replaced by a
function definition func fac(arg:int) :int on line 4.
Obviously, these two changes at different locations in the
code are incompatible and give rise to an error when the
merged program is compiled.

Tree-based merge approaches based on parse trees
cannot detect this kind of conflict because the relationship
between procedure (or function) definition and procedure
(or function) invocation is not made explicit in a parse tree
or abstract syntax tree. Graph-based merge approaches (such
as [40]) can detect this conflict because a graph representa-
tion maintains an explicit link between a definition and its
invocations, thus making it easy to detect incompatibilities
between them. This was also the idea of the context-sensitive
merge approach of Westfechtel [63], where the abstract
syntax tree is augmented with context-sensitive relation-
ships that express the bindings of identities to their
declarations.

Sometimes, even static semantic merging is insufficient
because independent changes by parallel developers may
still give rise to unexpected behavior in the merged result.
Indeed, one has no guarantees about how the execution
behavior of the merged program relates to the behavior of
the programs being merged. The resulting behavioral
conflicts can only be countered by resorting to even more
sophisticated semantic merge techniques that rely on the
runtime semantics of the code. Most approaches for
detecting behavioral conflicts—like [7], [8], [24], [65]—rely
on complex mathematical formalisms, such as denotational
semantics, program dependence graphs, and program
slicing. There are also more lightweight approaches

MAY 2002

class Point;

var x,y:int;

method distance (p:Point) :int
return abs (p.x)+abs(p.y)

end class

available, such as Semantic Diff [31], which makes use of
local dependence graphs.

An example of a merge that leads to a behavioral conflict
due to the unexpected interaction of object-oriented
inheritance with merging is shown in Fig. 2. A class Point
contains two variables x and y, and a method distance to
calculate the Euclidean distance of a given point to the
origin. One software developer decides to add a new
subclass PolarPoint that additionally implements two
methods radius and angle. radius is implemented by
performing a self-send to distance. A second software
developer decides to change the implementation of distance
by calculating the Manhattan distance instead. Because of
this, however, the implementation of radius becomes invalid
in the merge of these two evolutions. Indeed, radius should
always be calculated using the Euclidean distance, which is
not the case anymore.

2.2.4 Structural Merging

Restructuring and refactoring have been advocated as
techniques to increase the maintainability of software
systems and to reverse the effects of software aging and
software erosion [18], [21], [45]. To this extent, refactoring
and restructuring transformations are introduced that have
the special property of being behavior preserving, i.e., they
do not change the semantics of a software artifact, although
its structure may change significantly. Structural merge
conflicts arise when one of the changes to a software artifact
is a restructuring and the merge algorithm cannot decide in
which way the merged result should be structured. As an
example of such a conflict, consider the situation of Fig. 3.
The software artifacts used in this example represent an
object-oriented class hierarchy (shown in UMLTM notation).
Starting from an abstract class Shape with three subclasses
Circle, Rectangle, and Square, one modifier decides to create a
new subclass Parallelogram (by means of the operation
CreateSubclass). Another modifier independently decides to

MENS: A STATE-OF-THE-ART SURVEY ON SOFTWARE MERGING

453

InsertClass
A ‘' (Shape,Quadrangle, £

| : [Rectangle,Square]

| Circle | | Rectangle || Square |

w CreateSubclass
(

Shape,Parallellogram)

)> | Circle | | Quadrangle |

| Rectangle | | Square |

| Circle | | Rectangle || Square | | Parallellogram

Fig. 3. Structural conflict.

refactor the subclasses Rectangle and Square by introducing a
new intermediate superclass Quadrangle that captures the
common behavior of both (using the operation InsertClass).
When merging, the question arises whether Parallelogram
should be made a subclass of Quadrangle or should it
remain a direct subclass of Shape? In the case of a
parallelogram, we should clearly choose the first alterna-
tive. In the case of a triangle, however, the second
alternative should be selected. Hence, input from the user
is necessary in order to resolve the conflict.

Unfortunately, most of the existing merge tools and
techniques provide no support whatsoever for detecting
structural merge conflicts. The main reason is that the
information required to detect these conflicts is usually
implicit and cannot be inferred from the source code only.

2.3 State-Based, Change-Based,

or Operation-Based Merging
Yet another distinction can be made between state-based
and change-based merging. With state-based merging, only
the information in the original version and/or its revisions
is considered during the merge. In contrast, change-based
merging additionally uses information about the precise
changes that were performed during evolution of the
software. Obviously, two-way merge techniques are always
state-based since they can only compare two revisions
without taking into account how these revisions have been
obtained.

Operation-based merging is a particular flavor of change-
based merging that models changes as explicit operations
(or transformations) [3], [17], [36], [40]. These evolution
operations can be arbitrarily complex and typically
correspond to the commands issued in the software
development environment. For this reason, the sequences
of change operations are sometimes referred to as
command histories [3].

Operation-based merge approaches can improve conflict
detection and allow for better support when solving these
conflicts [17], [35], [36], [39]. An example of this enhanced
expressiveness is shown in the example of Fig. 1. We
already mentioned the presence of a semantic conflict
because of the fact that version 1a introduces a call to the
fac procedure somewhere in the main body of the Math

program, while version 1b changed the procedure fac into
a function. With an operation-based versioning tool, both
changes can be expressed in terms of evolution operations
AddInvocation (Math, fac) and ProcToFunc (fac),
respectively. To detect the conflict, we simply need to
compare both operations to see that they affect the same
entity fac in incompatible ways.

In other words, in order to detect merge conflicts, we do
not need to compare the parallel revisions entirely since it
suffices to compare only the evolution operations that have
been applied to obtain each of the revisions. For certain
combinations of operations, conflicts will be reported.
Although the used operations, reported conflicts, and
proposed resolution strategies may vary from one approach
to another, the underlying idea seems to be generally
agreed upon [14], [17], [39], [43], [57].

Operation-based merging is general in the sense that it
can be used for detecting syntactic, structural, and even
some kinds of semantic conflicts. For example, Edwards
[14] takes an operation-based approach to detect and
resolve semantic conflicts that arise purely from applica-
tion-supplied semantics. Although only the applications
themselves “know” how their behavior can create the
presence of conflicts, this knowledge is captured by
specifying the particular operations that can be performed
in each application and how these operations can give rise
to conflicts.

An operation-based approach makes it easier to imple-
ment a multiple undo/redo mechanism. For undo, it suffices to
perform the last applied operations in the opposite
direction and, for redo, we simply reapply the operations.
In the collaborative application framework GINA [3],
merging of command histories is achieved by selectively
using a redo mechanism to apply one developer’s changes to
the other’s version. This approach is not very efficient in the
case of long command histories or when the granularity of
the history is too fine.

2.4 Reuse vs. Evolution

Merge conflicts do not only arise when changes are made to
the same software by different software developers. They
also occur if there is only one developer that makes changes
to a piece of software that is being reused by other parts of

454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

Set evolution Set.2
add(Element) {§ .. | add(Element) {
addAll(Set) {add) a%giﬁff_’:gg}' addAll(Set) §

herit Refinement:
inheritance | "4 fisize)
CountingSet

size
add(Element) {size}
addAll(Set) {add}

dd(Element) {size}
addAll(Set) {add}

Fig. 4. Base class exchange.

the software. This is, for example, the case in object-oriented
software development, where a class can be “reused” by
employing inheritance or some other incremental modifica-
tion mechanism. In this particular context, a merge conflict
corresponds to the so-called fragile base class problem, which
indicates undesired effects in independently developed
subclasses of a given base class when this base class evolves
in unexpected ways.

Just like we can have syntactic and semantic merge
conflicts, there is also a syntactic and semantic variant of the
fragile base class problem. The syntactic variant is dealt
with in the SOM approach [30], allowing a base class
interface to be modified without needing to recompile
clients and derived classes dependent on that class. In the
reuse contract approach [57], the semantic variant is
addressed as well. Mezini [41] proposes a prototype tool
based on this technique.

As an illustration of the reuse contract approach, let us
take the example of Fig. 4, which is adopted from Steyaert
et al. [57]. A class Set has two methods add and addAll for
adding a single element or a set of elements, respectively.
addAll is implemented by calling add repeatedly (indicated
between curly braces). CountingSet is a subclass of Set that
specializes its behavior by keeping an extra attribute size
that is augmented each time new elements are added to the
set. For efficiency reasons, the method call from addAll to
add is inlined in a new version of Set (base class exchange).
As a result, CountingSet will not have the intended
behavior anymore. It relied on the assumption that addAll
always invokes add, which is not the case in the evolved
version of Set.

Steyaert et al. [57] detect this semantic conflict using an
operation-based merge approach: The changes are explicitly
documented by means of predefined operations (in this
case, Refinement and Coarsening) and these operations are
compared in a conflict table. In this case, they yield an
inconsistent method conflict.

3 MERGE CONFLICTS

Section 2 distinguished three kinds of inconsistencies that
can arise during a merge: syntactic, structural, and semantic
conflicts. Moreover, the semantic conflicts can be subdi-
vided further depending on whether they can be detected at
compile-time or at runtime. This section discusses several

MAY 2002

issues related to these conflicts in some more detail. First,
we examine the various approaches that can be used for
detecting merge conflicts. Next, we discuss some techniques
for resolving merge conflicts. Finally, we address some
heuristics for trying to reduce the—sometimes very high—
number of detected conflicts.

3.1 Conflict Detection

In this section, we discuss some interesting conflict
detection techniques and see how and which kinds of
conflicts they can detect.

3.1.1 Merge Matrices

Many merge tools take an ad-hoc approach for detecting
merge conflicts. With an operation-based merge approach,
conflicts can be detected in a more disciplined fashion by
comparing the modification operations that have been
applied in parallel by different developers. All pairs of
operations that lead to an inconsistency are summarized in
a so-called conflict table or merge matrix. This makes it
possible to detect merge conflicts by performing a simple
table lookup. Steyaert et al. [57] followed this approach to
deal with the fragile base class problem.

A slightly more general approach is taken by Feather [17].
Instead of storing the operations directly in the merge
matrix, they are analyzed to determine what changes to
specification properties they induce and this information is
stored instead. Conflicts can then be detected by comparing
all possible changes to specification properties. This makes it
easier to introduce new modification operations. One only
needs to determine how the newly introduced operations
can be decomposed in terms of changes to specification
properties.

Munson and Dewan [43] propose a merging framework
that is entirely based on the idea of merge matrices. In this
framework, the matrices do not only specify the conflicts
that can occur, but also the action that should be performed
to resolve the conflicts. Merge matrices are consistently
used at each level of granularity (i.e., they deal with
operations on atomic as well as on composite software
artifacts) and for each kind of software artifact being
considered. Many different merge matrices may be used,
depending on factors such as the kind of user doing the
merge, the time when the operations were performed, or
any other factor that is deemed relevant to steer the merge
process.

Another way to generalize the merge matrix approach
is explored in the domain-independent formalism of
Mens [39], where software artifacts are represented as
graphs, evolution is represented by graph rewriting, and
type graphs are used to specify domain-specific con-
straints that have to be satisfied by all graphs in a
particular domain. By relying on formal properties of
graph rewriting (more precisely, the notion of parallel
dependence), one can formally define which pairs of
modification operations (formally represented as graph
productions) yield a syntactic merge conflict. This leads to
a formal and domain-independent characterization of the
intuitive notion of merge matrix.

The main problem with merge matrices arises when we
want to merge more than two versions. For example, if there

MENS: A STATE-OF-THE-ART SURVEY ON SOFTWARE MERGING

are M kinds of operations and there are N versions that need
to be merged, we would get an N-dimensional merge matrix
that requires polynomial space complexity of O(M™).

3.1.2 Conflict Sets

As an alternative to merge matrices, conflict sets are used by
Edwards [14] in the context of collaborative applications to
group together potentially conflicting combinations of
operations based on the application-supplied semantics.
Depending on the kind of application (e.g., a multiuser
software development environment, a collaborative draw-
ing editor, a distributed office furniture layout program),
the kinds of operations and associated merge conflicts can
differ dramatically. Conflict sets correspond to the types of
conflicts that may exist in an application. As such, they are
statically defined, in the sense that they remain fixed as long
as the application semantics does not change. For example,
in a distributed layout application one could distinguish
between temporal and spatial conflicts. Operations that
belong to the same conflict set may potentially cause
conflicts when merged together. Any given operation may
simultaneously participate in multiple conflict sets. Conflict
sets address scalability since they restrict the number of
operations that we must consider when searching for
conflicts.

3.1.3 Semantic Conflict Detection Techniques

Horwitz et al. [24] were the first to develop a powerful
algorithm for merging (or “integrating”) program versions
without semantic conflicts, based on the semantics of a very
simple assignment-based programming language. The
merge algorithm uses the underlying representation of
program dependence graphs [26] and uses the notion of
program slicing [25] to find potential merge conflicts. Despite
its power, the algorithm poses a number of limitations. For
example, if one version of a program changes the way a
computation is performed without changing the external
behavior (i.e., input/output), while another variant adds
code that merely uses the results of the computation, a
conflict will be issued. Yang et al. [65] overcome this
limitation by introducing semantic-preserving transforma-
tions. Binkley et al. [8] propose another extension to handle
programs that contain procedures (which may be mutually
recursive). While all these approaches allow us to detect
behavioral conflicts, they have the important disadvantage
that they remain restricted to a particular implementation
language.

Berzins [7] takes a more general approach, by providing
a language-independent definition of semantic merging. To
this extent, a generalization of traditional denotational
semantics [58] is used in order to provide the additional
structure necessary to formally define semantic merge
conflicts. More specifically, Brouwerian algebras—which
are a generalization of Boolean algebras—are used [38]. A
realistic example of a semantic domain that needs to be
modelled with Brouwerian algebras is PSDL, a language
with hard real-time constraints. Dampier et al. [13] describe
a method for merging changes in this particular language.

The main shortcoming of Berzins’ approach is that it
works on the underlying semantic interpretation of a model
directly, so that it cannot be used to diagnose and locate

455

conflicts between changes in the concrete syntactic repre-
sentation of a program. This makes the approach imprac-
tical because it cannot be used to pinpoint the actual source
of a semantic conflict in the software. Berzins [6] addresses
this problem to some extent by restricting the general
formalism to only some special cases.

Another technique, which appears to be more practical
in the sense that it can be applied to real programming
languages such as C, is used by Semantic Diff [31]. This two-
way merge tool identifies differences between two versions
of a procedure by using local dependence graphs to
compare their observable input-output behavior. This
approach is fully automatic, fast, and easy to use, but is
limited in the sense that it can only find local semantic
differences because it only compares procedures with each
other. Hence, it cannot detect more global interprocedural
semantic conflicts. While the approach has been illustrated
for C programs, it seems to be generalizable to other
programming languages as well. However, the presence of
late binding and polymorphism in object-oriented pro-
grams makes it far from trivial to apply the approach in an
object-oriented setting.

Mens [39] presented an alternative lightweight approach
to detect semantic merge conflicts. To illustrate it, reconsi-
der Fig. 4 of Section 2.4. The inconsistent method conflict
occurred because the implicit assumption that addAll
always invokes add was broken. This conflict can be
detected by looking at the merged result only, if we
document which changes have been introduced by which
developers. In this particular case, a call from method add to
attribute size was added by developer 1, while a call from
method addAll to method add was removed by developer 2. If
we use graphs to represent software artifacts, this conflict
situation can be detected as an instance of a more general
graph pattern (where we ignore the names of the entities
that are removed). If an instance of this graph pattern can be
found in the result of the merge, an inconsistent method
conflict is reported. In a similar way, other semantic
conflicts, such as unanticipated recursion can be detected by
looking for instances of other predefined graph patterns.
One disadvantage of this approach is that complex
behavioral conflicts cannot always be detected. Another
disadvantage is that looking for a subgraph in a graph can
be a very expensive operation, so that the approach cannot
be scaled up to large software systems.

3.2 Conflict Resolution

Once merge conflicts have been detected, techniques are
needed to resolve these conflicts. These can range from a
manual—and often time-consuming—process, over an
interactive process where the resolution algorithm requires
interaction with the software developer, to a fully auto-
mated conflict resolution tool. A lot depends on the kinds of
conflicts the tool intends to solve and the level of accuracy
that needs to be reached.

Depending on the kind of merge conflict, different
resolution strategies may be necessary. One particular kind
of conflict occurs when two parallel changes can only be
merged if they are applied in a certain order because the
inverse order gives rise to an inconsistency. This is typically
the case when a renaming is involved. Since renaming is a

456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

global operation that can affect many different places in the
code, it should always be applied after the other parallel
modifications to ensure that all references to the artifact
being renamed are renamed as well. This is only one
particular example of a situation where we need to impose
an ordering on the parallel modifications that are involved.

Another automatic resolution strategy needs to be
followed when the same modification is applied in parallel
lines of development. For example, the same procedure or
function can be introduced or removed twice. This conflict
can be resolved easily by ignoring one of both identical
modifications.

As an example of a conflict that cannot be resolved in an
automated way, consider the situation where a function is
renamed differently in parallel modifications. If this is the
case, the merge algorithm cannot automatically decide
which of both renamings is most appropriate. To deal with
such situations, a tool could provide automated assistance
for negotiating the resolution of conflicts in the style of the
Programmer’s Apprentice [54]. Negotiation of changes is also
an important aspect of Infuse [47], the change management
component of the Inscape environment [48], which is an
integrated environment for developing large-scale software
systems with large groups of developers.

In the context of operation-based merging, Edwards [14]
proposes a number of interesting resolution strategies. The
explosion strategy calculates all possible paths that may lead
to a valid solution. Afterwards, the user can choose the
most appropriate solution. The main disadvantage of this
strategy is that it can lead to a combinatorial explosion of
potential solutions. The promotion strategy tries to avoid
conflicts by reducing the dependencies in a sequence of
modification operations. Some operations that depend on
earlier operations can be promoted into new operations that
do not cause a dependency anymore. The recursive
acceptance strategy represents a “what if” scenario in which
the user can iteratively resolve cascading conflicts. If an
operation conflicts with earlier operations, one can either
remove the current operation or remove one of the earlier
conflicting operations. This process is applied recursively
until all conflicts have been resolved.

Munson and Dewan [43] also propose a number of
different merge strategies (which they refer to as merge
policies) for three-way merging. All these resolution strate-
gies are implemented in a uniform and customizable way
using merge matrices that can be fine-tuned by the user. We
will only discuss two of these strategies here. Consolidation
is used when two revisions of a common base version need
to be merged and it is expected or known that most of the
parallel changes are complementary (e.g., when the changes
are made to different program modules). In case of
deletions, the merge proceeds automatically. In case of
overlapping changes, one of both changes is chosen
interactively. Reconciliation is used when the revisions to
be merged are likely to introduce merge conflicts. In that
case, simply selecting the appropriate revision in case of an
overlap is not sufficient since one may interactively want to
combine the changes that lead to the conflict. Reconciliation
is typically needed if different software developers make
independent changes to the same part of the code. If they

MAY 2002

make changes to different weakly coupled parts of the code,
however, consolidation is the more appropriate strategy. In
addition, in the case where one developer restructures the
code (in a behaviorally-preserving way), while the other
developer makes changes to part of the code, consolidation
is probably more appropriate.

Note that it is not always necessary to resolve conflicts
after they have been detected. In some cases, one might
decide to tolerate conflicts temporarily [14]. Conflict tolerance
means that the merge technique allows conflicts that have
not been resolved in the merged result. The Infuse change
management tool [47] provides such explicit support for
handling temporary inconsistencies during changes.

3.3 Reducing Conflicts

One of the most important problems with software
evolution is that small changes often have a large impact.
This is referred to as change propagation or the ripple effect
[68]. In practice, it implies that merge tools often give rise to
an abundance of conflicts being reported. There are a
number of ways to try to reduce the number of reported
conflicts to a more manageable number.

The most obvious way to localize the effect of changes
and, consequently, to reduce the likelihood of merge
conflicts is by resorting to information hiding techniques. This
is not always sufficient since changes often have effects
beyond the imposed encapsulation boundaries. Never-
theless, approaches like Semantic Diff [31], that only detect
local changes within each procedure of a program, but
ignore interprocedural effects, seem to perform fairly well
in practice.

A related approach that allows us to detect local
inconsistencies first and inconsistencies that are more global
later is based on graph partitioning. If we use graphs to
represent software artifacts and their dependencies, we can
partition all the nodes in the graph according to their
number of dependencies. This yields a number of sub-
graphs for which the conflicts will be detected first. As soon
as all conflicts in each subgraph have been resolved (local
consistency), we start looking for conflicts between different
subgraphs (to obtain global consistency). Both [36] and [47]
use this idea. The main difference is that [47] supports a
hierarchy of graph partitionings, which makes it possible to
limit the number of potential conflicts at each phase and to
resolve all conflicts in an incremental fashion. Because
graph partitioning is intractable [19], efficient heuristics are
needed to obtain partitions that approximate the ideal case.
Another problem is that each modification that is being
made can alter the dependencies, so that a new partitioning
might be needed after each iteration.

Another way to reduce the number of reported conflicts
is by ignoring temporary inconsistencies. This typically occurs
when small changes are being made that are part of a larger
coordinated change.

Asklund [2] proposes to minimize the number of
reported merge conflicts by using fine-grained revision
control, where the software changes should be as small as
possible. By evolving the software with small increments,
the number of merge conflicts will remain small in each
step. This idea is supported by Perry et al. [49], who have
noticed on a statistical basis in a large-scale industrial case

MENS: A STATE-OF-THE-ART SURVEY ON SOFTWARE MERGING

that making large changes tends to lead to parallel versions
that cannot be merged without some very costly overhead
and coordinated effort.

Still another way to reduce conflicts is by keeping
parallel developers aware of each other’s changes, so that
they can proactively use this information to anticipate
overlapping changes and take appropriate actions to avoid
future merge conflicts. Tool support is very important here,
to allow developers to find and resolve potential conflicts
even before the merge actually takes place.

Finally, in situations where we have one main develop-
ment line and several branches constituting parallel devel-
opment, Bruegge and Dutoit [11] give two additional
heuristics for minimizing merge conflicts. First, changes to
the main development line should be restricted to bug fixes,
and important new changes should be made in separate
development branches. Second, the number of branches
should be as small as possible. Only use branches when
parallel development is required. Creating a branch is a
significant event that should be carefully planned and
approved by management.

4 DELTA ALGORITHMS

Delta algorithms or difference algorithms are used to calculate
the difference (or delta) between a version and one of its
revisions. Version control tools—that typically make use of
text-based merging—rely on delta algorithms to reduce
storage space [29]. Delta algorithms also speed up programs
because there is less I/O required to read a delta from disk
and the amount of time saved is higher than the decom-
pression time required to regenerate the entire revision
from the delta.

In this section, we will take a closer look at how the
different kinds of delta algorithms are related to the various
merge techniques described in the previous sections. The
discussion will be structured according to the types of
deltas that can be distinguished: symmetric versus directed
deltas; textual, syntactic, or semantic deltas; forward or
backward deltas; and state-based or change-based deltas.

4.1 Symmetric vs. Directed Deltas

A symmetric delta calculates the difference between two
versions v; and vy as the set difference vi\vy or vo\v;. A
directed delta specifies the difference between two versions
as a sequence of modification operations. Symmetric deltas
are typically used in the context of two-way merging,
whereas directed deltas are most useful in the context of
three-way operation-based merging.

However, using directed deltas could give rise to
unexpected redundancy [36]. Given an arbitrary sequence
of operations, it is often the case that some operations can
safely be omitted because they are redundant with earlier
or later ones in the sequence. For example, an operation
can make a change to an entity that is deleted afterwards or
an update operation can be overwritten by later updates.
Removing all this redundant information is necessary to
reduce storage space, speed up conflict detection, and
remove some unnecessary intermediate conflicts. Typically,
redundancy removal can be performed during a prepro-
cessing phase before the actual conflict detection algorithm

457

is applied. Mens [39] describes such a redundancy removal
algorithm and even combines it with a normalization
algorithm. Given a predefined set of modification opera-
tions, each operation sequence can be transformed into a
unique canonical form (provided that we impose a certain
order on the operations). However, it is still unclear how
this idea can be scaled up in the presence of more complex
operations.

4.2 Textual, Syntactic, or Semantic Deltas

The difference between textual, syntactic, and semantic
merging is also directly reflected in the differencing
algorithm that is used.

If we want to perform textual merging, we need to
compare two text files, which can be achieved by finding
the longest common substring and then computing a
distance delta from this common substring [28]. An
example of a textual delta algorithm (used in RCS and
some commercial products) is the Unix diff utility [27]. A
finer-grained approach is taken by the algorithms bdiff [59]
and vdelta, which have empirically shown to be more
efficient than diff in time as well as compression ratio [29].

If we want to perform syntactic merging, we first need to
compare the delta between two syntax representations (e.g.,
parse trees). Yang [66] describes a comparison tool for
detecting syntactic differences between programs. An
example of a syntactic delta algorithm specifically destined
to find the difference between UMLTM diagrams is the
Rational Rose™ Visual Differencing tool.

If we prefer semantic merging, we need to calculate
semantic differences between two versions of a program.
This is achieved by Semantic Diff [31], which expresses its
results in terms of the observable input-output behavior.

4.3 Forward or Backward Deltas

Delta algorithms can also be distinguished based on how
subsequent versions of a software artifact are stored. With
backward deltas, the latest revision is stored entirely and
previous versions are stored as deltas. With forward deltas, it
is the original version that is stored entirely, while newer
versions are expressed as a delta of the original one.

Forward deltas may be more intuitive, but backward
deltas are often more useful because they speed up retrieval
of the last and probably most frequently accessed revision.
SCCS [55] is an example of the use of forward deltas, while
RCS [60] and most other approaches make use of backward
deltas.

4.4 State-Based or Change-Based Deltas

In Section 2.3, we already discussed the distinction between
state-based and change-based merging. The way deltas are
stored is tightly related to whether a state-based or change-
based approach is adopted. Approaches like the Source
Code Control System (SCCS) [55] and RCS [60] are state-
based, while approaches like EPOS [22], [35] are change-
based.

Delta algorithms in state-based version control systems
calculate the difference between a revision and its ancestor
version and store only this difference instead of the entire
revision. To reconstruct the revision from the delta, the
inverse process is applied.

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

Within the change-based approach, a distinction can be
made between intensional and extensional versioning
(following the terminology of Conradi and Westfechtel
[12]). With the extensional variant (also referred to as
embedded deltas), changes are annotated to each version in
order to specify its difference relative to another version.
This is the approach taken by Asklund [2], who uses
embedded deltas to specify the differences between two
versions of a parse tree and by Rho and Wu [52], who use
embedded deltas for specifying differences between graphs.

With intensional change-based versioning (also referred
to as the change set model, used in systems like EPOS [22]),
changes can be specified independently from the versions
to which they are applied. This makes them more flexible
since the same changes can be applied more than once, for
example, to parallel versions of the software under
development. This is very useful for making bug fixes
and improvements to a piece of software after it has been
released.

Approaches for operation-based merging rely on an
intensional change-based model since the delta records
the operations that have been used to obtain the revision
from the base version, rather than the actual differences
between both. In order to reconstruct a revision, the
operations simply have to be replayed using the original
version as a starting point.

5 DESIGN CRITERIA

Many criteria influence the design of a merge tool. This
section discusses the impact of each of the following design
criteria: degree of formality, accuracy, domain indepen-
dence, granularity of the considered software artifacts,
scalability and efficiency of the chosen merge approach, and
degree of customizability of the associated merge tool.

5.1 Degree of Formality

A first distinction is based on the degree of formality of a
merge tool. One can opt for an ad hoc informal approach, a
lightweight formalism, or a completely formal approach.
More sophisticated formalisms typically allow us to detect
more semantic merge conflicts. On the other hand, the
degree of formality tends to be inversely proportional to the
efficiency or practical use of the merge tool. Therefore, a
balance should be made between these two conflicting
goals.

Approaches such as line-based textual merging are
typically ad hoc and can only be used to detect straightfor-
ward merge conflicts.

Most operation-based merge techniques [17], [36], [55]
fall in the category of lightweight formal approaches. Even
Semantic Diff [31], which allows us to detect semantic
conflicts, can be considered a lightweight approach.
Semantic differences between two versions of a procedure
are detected by comparing local dependence graphs that
express the dependency between the arguments and
variables that are used inside the procedure. The local
nature of this approach makes it impossible to detect
interprocedural semantic inconsistencies. This was a delib-
erate choice of the designers of this merge technique, in
order not to sacrifice the efficiency of the approach.

MAY 2002

Binkley et al. [8] propose a full-fledged formalism that
heavily relies on program dependence graphs [26], [46] and
interprocedural program slicing [25], [62] in order to detect
semantic inconsistencies. Horwitz [23] proposes an alter-
native to program slicing, by using a graph partitioning
algorithm. If programs are represented as graphs, the
partitioning ensures that programs belonging to the same
partition have equivalent behaviors [64]. Another example
of a completely formal approach is given by Berzins [7],
who relies on Brouwerian algebras, an extension of the
mathematical formalism of denotational semantics [58].

5.2 Accuracy

It is a utopia to try and create merge tools that can detect
any kind of conflict when merging arbitrary software
artifacts because any nontrivial property of a program’s
execution behavior—in this case the guarantee that there
are no undesirable semantic interactions—is undecidable
[5], [53]. For this reason, existing merge techniques always
make a restriction on the kind of conflicts they can detect. In
some situations, certain conflicts will remain undetected
(false negatives) or conflict situations will be reported while
in fact no problem exists (false positives).

In the case of line-based textual merging, measurements
performed in a large-scale industrial case study showed
that about 90 percent of the changed files could be merged
automatically [49]. Only 1 percent of these merges were
false positives, in the sense that the merge tool made an
inappropriate decision. Moreover, most of these false
positives could be detected easily since they resulted in
compiler syntax errors. Nevertheless, a textual merge
approach remains unsafe since there are no guarantees
about how the execution behavior of a merged program
produced by a textual merge tool relates to the execution
behavior of the programs that have been merged [8].

So-called conservative approaches provide safe approx-
imations, in the sense that they prohibit false negatives and,
hence, guarantee that the merge is behaviorally correct. An
example of such an approach is the semantic merge
technique of [8], [24]. This approach avoids false negatives
by restricting the software artifacts to a very simple
programming language. False positives, on the other hand,
cannot be avoided in general.

One of the disadvantages of conservative approaches is
that they sometimes prohibit merges because the correct-
ness of the merge cannot be guaranteed, even if the
software developer knows that the merge will work
correctly. For example, if one modification changes the
way a computation is performed (without changing the
values computed), while another modification adds code
that uses the result of the computation, the merge algorithm
of Horwitz et al. [24] will issue a conflict. This problem is
addressed by Yang et al. [65] by relying on semantics-
preserving transformations.

5.3 Domain Independence and Customizability

Another distinguishing feature of merge techniques is
how domain independent they are. An ideal merge tool
should be general enough to merge all kinds of software
artifacts, independent of the chosen programming lan-
guage, the adopted paradigm, the problem domain, the

MENS: A STATE-OF-THE-ART SURVEY ON SOFTWARE MERGING

considered phase in the development process, the kind of
application, or the available technology. This generality is
essential if we want to provide uniform support for
evolution of software artifacts throughout the entire
software development life-cycle.

To a certain extent, text-based merging can be
considered as a domain-independent technique since any
kind of software artifact can be treated as a pure text file
or binary file.

Although domain independence appears to be in direct
contradiction with semantic and syntactic merging, a few
merge approaches have been proposed with the specific
aim of being domain-independent [14], [39], [43], [63]. Their
underlying idea is that they provide a domain-independent
merge framework that can be customized with domain-
specific and user-provided information. In order to obtain a
language-independent merge tool, Yang [67] suggests to
carefully separate language-dependent modules from lan-
guage-independent ones. Additionally, Munson and
Dewan [43] suggest making a clear separation between
user-independent and user-specified information and be-
tween user interface issues and algorithmic details. Finally,
there should be a clear separation between conflict detec-
tion and conflict resolution, so that each of them can be fine-
tuned without influencing the other.

Operation-based merging seems to be particularly
suitable to achieve domain independence. Mens [40]
proposes to use graph rewriting as an underlying formalism
for domain-independent operation-based merging. Munson
and Dewan [43] propose a flexible domain-independent
merging framework-based on the underlying technique of
merge matrices-that can be used for textual, syntactic, as
well as semantic merges. Edwards [14] proposes a domain-
independent (object-oriented) framework based on conflict
sets. In order to customize the framework to a particular
application domain, typically only a small amount of code
must be written. The approach features a clear separation
between conflict detection and conflict resolution. Domain-
specific conflict detection mechanisms must be provided to
detect domain-specific conflicts. Conflict resolution is based
on “pluggable” resolution policies that are capable of
managing any set of detected conflicts, irrespective of their
domain-specific semantics. If desired, however, policies
with more intimate domain-knowledge may be provided as
well. The policies can also cope with conflict tolerance and
user interface issues.

5.4 Granularity

Yet another way to distinguish merge techniques is
according to their level of granularity, i.e., the amount of
detail to which merge conflicts can be detected.

Let us first look at text-based merging. The most fine-
grained approach would be to use single characters (or
bytes) as indivisible units, but this leads to algorithms that
are too inefficient to be useful in practice. A more coarse-
grained approach can be taken by using substrings or
blocks (of characters or bytes). This is the approach taken by
algorithms such as bdiff [59] and vdelta. An even more
coarse-grained approach such as diff [60] considers lines
instead of characters as indivisible units [27]. In the context
of collaborative writing, Neuwirth et al. [44] propose a

459

textual merge tool where the granularity can be controlled
in a flexible way (either word, phrase, sentence, or
paragraph).

Syntactic merge techniques can also have different levels
of granularity depending on the amount of syntactic
information that is taken into consideration. Yang [67]
proposes to express syntactic differences up to the level of
individual tokens in the parse tree, thus allowing fine-
grained conflict detection between single program state-
ments. For efficiency reasons, however, it is possible that
the generated parse trees only represent code up to a certain
level of detail, e.g., the parsing may stop at the level of
procedures, thus not considering intraprocedural informa-
tion. With this approach, the merge algorithm cannot detect
conflicts between parallel changes that are made inside the
same procedure. The opposite approach is also possible.
Jackson and Ladd [31] only consider semantic information
at a very fine level of granularity (intraprocedural merging),
but ignore information at a more coarse-grained level
(interprocedural merging) for efficiency reasons. Because
of this, they only detect semantic conflicts that occur when
making parallel changes inside the same procedure.

We conclude that, although an ideal merge tool should
be able to merge software at any level of granularity, for
efficiency reasons, we sometimes need to restrict the
amount of information that is taken into consideration.

5.5 Scalability and Efficiency

Another important feature of a merge technique is its
scalability. This has to do with how well the employed
algorithms scale up in terms of efficiency (i.e., performance
and memory usage) as the size of the software system
increases. If the complexity of the algorithm grows
polynomially—or even worse, exponentially—the merge
technique is not scalable. This is the case with syntactic
merge approaches that resort to global impact analysis
techniques such as program dependence graphs [8], [24]. To
address this problem, Jackson and Ladd [31] merge at the
level of procedures only (intraprocedural merging). Because
this approach only detects local semantic effects of a change,
it gives rise to another scalability problem. Due to the
propagation of changes, local semantic changes might affect
the behavior in many other parts of the software, some quite
remote from the site of the change. Despite this short-
coming, preliminary experiments with this approach in a
large real-time software system involving several hundred
developers seem promising.

Another aspect of scalability is the ability of the merge
technique to cope with arbitrarily complex modifications.
This heavily depends on the chosen approach. Line-based
textual merge tools only detect conflicts by comparing lines
of text in parallel revisions of the same version. As such,
more global conflicts that have to do with modifications
that change many lines simultaneously (such as changing
the layout of a certain piece of code or performing a global
renaming of some variable) will give a conflict for each line
involved in the modification. For these situations,
preferably, a more global conflict should be reported. This
is only possible if we take an operation-based approach,
where the actual modification operations are taken into
account as well.

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 5,

Operation-based merge approaches seem to be very
promising from the viewpoint of scalability. Lippe and van
Oosterom [36] address scalability issues on a more or less
formal basis, by relying on a notion of local and global
commutativity between primitive operations. This property
is used to detect conflicts between two sequences of
primitive operations. First, potentially conflicting primitive
operations are partitioned into blocks using global commu-
tation properties. Next, for each block, local commutation
properties are used to identity the precise conflicts. This
technique can be used to limit the number of reported
merge conflicts as the system grows in size. Other
techniques to address this problem have already been
discussed in Section 3.3.

Mens [39] addresses the scalability of operation-based
merging by combining primitive operations into composite
ones and by defining merge conflicts directly in terms of
these composite operations. Moreover, certain conflicts
between the primitive constituents of a composite operation
can be ignored by relying on the precise semantics of the
composite operation.

The conflict set approach of Edwards [14] addresses
scalability by partitioning the search space while looking for
conflicts. Only operations that belong to the same conflict
set can cause a semantic conflict.

In spite of all these research efforts, empirical results
about the practical applicability and scalability of operation-
based merging in large-scale collaborative software devel-
opment are still missing.

5.6 Degree of Automation

Merge tools can range from a manual—and often time-
consuming—process, over a semiautomated process that
requires interaction with the user, to a fully automated
approach. While differencing and conflict detection is
usually fully automatic, conflict resolution is typically
interactive. Only in very specific situations is it possible to
fully automate the merge process. In the flexible merge
framework of Munson and Dewan [43], one can make a
fine-grained combination of interactive and automatic
approaches.

In order to resolve merge conflicts in an automated way,
one can resort to automatic or default conflict resolution
strategies [2], [42], [43]. For example, if all changes are
tagged with a timestamp, we can decide to keep the entity
with the most recent timestamp in case of a conflict.
Another strategy would be to keep a list of user priorities
and the change by the user with the highest priority is
included in the result.

Although using default resolution strategies is useful, it
is not foolproof. Occasionally, the proposed solution needs
to be revised manually after the merge has been performed
because the merge tool took the wrong decision. Addition-
ally, some conflicts are too complex to be resolved in an
automatic way. For these conflicts, user interaction will
always be required.

6 CONCLUSION AND RESEARCH DIRECTIONS

Software merging is essential to deal with parallel software
modifications carried out by different software developers

MAY 2002

that are not necessarily aware of each other’s changes. This
paper presented an overview of the state-of-the-art merge
techniques and compared them based on a number of
important criteria, such as expressiveness, formality, gran-
ularity, domain independence, customizability, scalability,
efficiency, and accuracy.

Three-way operation-based merging is a particularly
powerful approach that can detect syntactic and semantic
merge conflicts rather than only textual conflicts. It is also
able to detect structural conflicts caused by restructuring
operations. Operation-based merge techniques can also be
scaled up to deal with more complex modification
operations.

Nevertheless, when looking at commercially available
tools, most of them stick to the primitive approach of textual
merging. This allows them to deal with a number of simple
merge conflicts, but renders them inadequate in many
situations. An interesting avenue of research would be to
find out how to combine the virtues of different merge
techniques. For example, one could combine textual mer-
ging with more formal syntactic and semantic approaches in
order to detect and resolve merge conflicts up to the level of
detail required for each particular situation.

Graphs look promising as an underlying representation
for evolvable software and can provide a domain-indepen-
dent approach to software merging. Many semantic merge
techniques rely on graph theory: graph rewriting [39], [40],
local dependence graphs [31], program dependence graphs
[8], [24], graph partitioning [23], [36], [47], graph-based
deltas [52], etc. It remains to be investigated, however,
whether graph-based merge algorithms scale up to large
software development efforts with dozens of parallel
versions and with hundreds of changes per day.

In general, we need more empirical and experimental
research on the validation and scalability of syntactic and
semantic merge approaches, not only regarding conflict
detection, but also regarding the amount of time and effort
required to resolve the conflicts. We also need ways to
manage the number of reported merge conflicts as the
software system grows in size. A final aspect of scalability is
how well existing merge techniques can cope with multiple
developers. According to Perry et al. [49], in many
situations, more than two (sometimes even up to 16)
software developers make parallel changes to the same
software artifact. This means that we need techniques for
merging more than two parallel versions simultaneously.
Unfortunately, most existing merge techniques only allow
us to merge two parallel changes at a time.

While most approaches to software merging have been
validated on imperative programming languages, it is not
trivial to port these ideas to an object-oriented paradigm.
Especially for semantic merging, this is a nontrivial
problem, due to the concepts of late binding and poly-
morphism in object-oriented programming languages.

More research is also needed for the detection and
resolution of structural merge conflicts that arise in the
presence of restructuring transformations. To this extent,
we need to provide more domain-specific information
because the information that can be inferred from the
source code only is insufficient to decide whether a

MENS: A STATE-OF-THE-ART SURVEY ON SOFTWARE MERGING

structural conflict occurs. In general, more domain-specific
information can also be helpful to improve application-

specific conflict detection and conflict resolution.
Finally, there is a need for a detailed-but language-

independent-taxonomy of the kinds of changes (and
corresponding conflicts) that can be made to software. This
can lead to more efficient conflict detection and conflict
resolution algorithms and to a better understanding of the
underlying mechanisms of software evolution in general.

ACKNOWLEDGMENTS

The author would like to thank Tom Tourwé, Johan Fabry,
and, especially, Kim Mens and Dirk Deridder for providing
valuable comments on drafts of this paper. He also thanks
Anneliese A. Andrews, editor-in-chief of TSE, as well as the
anonymous reviewers, for their useful recommendations.
Tom Mens is a Postdoctoral Fellow of the Fund for Scientific
Research—Flanders (Belgium) (F.W.O.-Vlaanderen). This
research has been partially funded by the Brussels Region
(Brussels Hoofdstedelijk Gewest) in the context of a
research project with Getronics and by the Institute for
Science and Technology (IWT) in the context of a research
project with EDS Belgium and MediaGeniX.

REFERENCES

[1] E. Adams, W. Gramlich, S.S. Muchnick, and S. Tirfing, “SunPro:
Engineering a Practical Program Development Environment,”
Proc. Int’l Workshop Advanced Programming Environments, pp. 86-
96, 1986.

[2] U. Asklund, “Identifying Conflicts During Structural Merge,”
Proc. Nordic Workshop Programming Environment Research, pp. 231-
242, 1994.

[3] T. Berlage and A. Genau, “A Framework for Shared Applications
with Replicated Architectures,” Proc. Conf. User Interface Systems
and Technology, Nov. 1993.

[4] B. Berliner, “CVS II: Parallelizing Software Development,” Proc.
The Advanced Computing Systems Professional and Technical Associa-
tion (USENIX) Conf., pp. 22-26, 1990.

[5S] V. Berzins, “On Merging Software Extensions,” Acta Informatica,
vol. 23, pp. 607-619, 1986.

[6] V. Berzins, “Software Merge Models and Methods,” Int’l]. System
Integration, vol. 1, no. 2, pp. 121-141, Aug. 1991.

[71 V. Berzins, “Software Merge: Semantics of Combining Changes to
Programs,” ACM Trans. Programming Languages and Systems,
vol. 16, no. 6, pp. 1875-1903, 1994.

[8] D. Binkley, S. Horwitz, and T. Reps, “Program Integration for
Languages with Procedure Calls,” ACM Trans. Software Eng. and
Methodology, vol. 4, no. 1, pp. 3-35, 1995.

[9] W.R. Bischofberger, T. Kofler, K.-U. Matzel, and B. Schiffer,

“Computer Supported Cooperative Software Engineering with

Beyond-Sniff,” UBILAB Technical Report 94.9.1, 1994.

J. Buffenbarger, “Syntactic Software Merging,” Software Configura-

tion Management: Selected Papers SCM-4 and SCM-5,]J. Estublier,

ed., pp. 153-172, 1995.

B. Bruegge and A.H. Dutoit, Object-Oriented Software Engineer-

ing—Conquering Complex and Changing Systems. Prentice Hall,

2000.

R. Conradi and B. Westfechtel, “Version Models for Software

Configuration Management,” ACM Computing Surveys, vol. 30,

no. 2, June 1998.

D. Dampier, Luqi, and V. Berzins, “Automated Merging of

Software Prototypes,” Int’l |. System Integration, vol. 4, no. 1,

pp- 33-49, 1994.

W.K. Edwards, “Flexible Conflict Detection and Management in

Collaborative Applications,” Proc. Symp. User Interface Software and

Technology, 1997.

[10]

[11]

[12]

(13]

[14]

(15]

(16]

(171

(18]
(19]

[20]

(21]

(22]

(23]

(24]

(23]

[26]

(27]

(28]

[29]

[30]

B31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

461

C.A. Ellis and S.J. Gibbs, “Concurrency Control in Groupware
Systems,” Proc. ACM SIGMOD Conf. Management of Data, June
1989.
J. Estublier and R. Casallas, “The Adele Configuration Manager,”
Configuration Management: Trends in Software, pp. 135-154, 1994.
M.S. Feather, “Detecting Interference when Merging Specification
Evolutions,” Proc. Fifth Int'l Workshop Software Specification and
Design, pp. 169-176, 1989.
M. Fowler, Refactoring: Improving the Design of Existing Programs,
Addison-Wesley, 1999.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman 1979.
J.E. Grass, “Cdiff: A Syntax Directed Diff for C++ Programs,” Proc.
The Advanced Computing Systems Professional and Technical Associa-
tion (USENIX) Conf. C++, pp. 181-193, 1992.
W.G. Griswold, “Program Restructuring as an Aid to Software
Maintenance,” PhD Thesis, Univ. of Washington, Aug. 1991.
B. Gulla, E.-A. Karlsson, and D. Yeh, “Change-Oriented Version
Descriptions in EPOS,” Software Eng. |., vol. 6, no. 6, pp. 378-386,
1991.
S. Horwitz, “Identifying the Semantic and Textual Differences
Between Two Versions of a Program,” Proc. SIGPLAN "90 Conf.
Programming Language Design and Implementation, pp. 234-244, 1990.
S. Horwitz,]. Prins, and T. Reps, “Integrating Non-Interfering
Versions of Programs,” ACM Trans. Programming Languages and
Systems, vol. 11, no. 3, pp. 345-387, 1989.
S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing
Using Dependence Graphs,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 35-46, 1989.
S. Horwitz and T. Reps, “The Use of Program Dependence Graphs
in Software Engineering,” Proc. Int’l Conf. Software Eng., pp. 392-
411, 1992.
J.W. Hunt and M.D. Mclllroy, “An Algorithm for Differential File
Comparison,” Technical Report 41, AT&T Bell Laboratories Inc.,
1976.
J.W. Hunt and T.G. Szymanski, “A Fast Algorithm for Computing
Longest Common Subsequences,” Comm. ACM, vol. 20, no. 5,
pp. 350-353, 1977.
JW. Hunt, K.-P. Vo, and W.F. Tichy, “Delta Algorithms: An
Empirical Evaluation,” ACM Trans. Software Eng. and Methodology,
vol. 7, no. 2, pp. 192-214, 1998.
IBM, The System Object Model (SOM) and the Component Object
Model (COM): A Comparison of Technologies from a Developer’s
Perspective, White Paper, IBM Co., 1994.
D. Jackson and D.A. Ladd, “Semantic Diff: A Tool for Summariz-
ing the Effects of Modifications,” Int’l Conf. Software Maintenance,
1994.
D.B. Leblang, “The CM Challenge: Configuration Management
that Works,” Configuration Management: Trends in Software, pp. 1-
38, 1994.
D.B. Leblang and R.P. Chase, “Computer-Aided Software En-
ineering in a Distributed Workstation Environment,” Proc.
SIGPLAN/SIGSOFT Software Eng. Symp. Practical Software Develop-
ment Environments, ACM SIGPLAN Notices, vol. 19, no. 5, pp. 104-
112, 1984.
D.B. Leblang, R.P. Chase, and H. Spilke, “Increasing Productivity
with a Parallel Configuration Manager,” Proc. Int’l Workshop
Software Version and Configuration Control, pp. 21-38, 1988.
A. Lie, R. Conradi, T.M. Didriksen, and E.-A. Karlsson, “Change-
Oriented Versioning in a Software Engineering Database,” Proc.
Second Int’l Workshop Software Configuration Management, ACM
SIGSOFT Software Eng. Notes, vol. 14, no. 7, pp. 56-65, 1989.
E. Lippe and N. van Oosterom, “Operation-Based Merging,” Proc.
Fifth ACM SIGSOFT Symp. Software Development Environments,
ACM SIGSOFT Software Eng. Notes, vol. 17, no. 5, pp. 78-87, 1992.
D. Lubkin, “Heterogeneous Configuration Management with
DSEE,” Proc. Third Int’l Workshop Software Configuration Manage-
ment, pp. 153-160, 1991.
J.C.C. McKinsey and A. Tarski, “On Closed Elements in Closure
Algebras,” Annals Math, vol. 47, no. 1, pp. 122-162, Jan. 1946.
T. Mens, “A Formal Foundation for Object-Oriented Software
Evolution,” PhD Thesis, Dept. Computer Science, Vrije Univ.
Brussel, Belgium, 1999.
T. Mens, “Conditional Graph Rewriting as a Domain-Independent
Formalism for Software Evolution,” Proc. Int'l Agtive 99 Conf.,
2000.

462

[41]

[42]

[43]

(44]

(45]

[40]

[47]

(48]

(49]

[50]

(51]

[52]

(53]
[54]
(53]
[50]

(571

(58]
[59]
[60]

[o1]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.5, MAY 2002

M. Mezini, “Maintaining the Consistency of Class Libraries
During their Evolution,” Proc. Object-Oriented Programming Sys-
tems, Languages, and Applications, (OOPSLA '97), ACM SIGPLAN
Notices, vol. 32, no. 10, pp. 1-21, 1997.

T. Mikkelsen and S. Pherigo, Practical Software Configuration
Management. Hewlett-Packard Professional Books, 1997.

J.P. Munson and P. Dewan, “A Flexible Object Merging Frame-
work,” Proc. ACM Conf. Computer Supported Collaborative Work,
pp. 231-241, 1994.

C.M. Neuwirth, R. Chandok, D.S. Kaufer, P. Erion,].H. Morris,
and D. Miller, “Flexible Diff-ing in a Collaborative Writing
System,” Proc. ACM Conf. Computer Supported Cooperative Work,
pp- 147-154, Oct. 1992.

W.F. Opdyke, “Refactoring Object-Oriented Frameworks,” doc-
toral dissertation, Technical Report UIUC-DCS-R-92-1759, Univ.
of Illinois at Urbana-Champaign, 1992.

K.J. Ottenstein and L.M. Ottenstein, “The Program Dependence
Graph in a Software Development Environment,” Proc. ACM
SIGSOFT/SIGPLAN Software Eng. Symp. Practical Software Develop-
ment Environments, ACM SIGPLAN Notices, vol. 19, no. 5, pp. 177-
184, May 1984.

D.E. Perry and G.E. Kaiser, “Infuse: A Tool for Automatically
Managing and Coordinating Source Changes in Large Systems,”
Proc. ACM Computer Science Conf., pp. 292-299, Feb. 1987.

D.E. Perry, “The Inscape Environment,” Proc. 11th Int'l Conf.
Software Eng., May 1989.

D.E. Perry, HP. Siy, and L.G. Votta, “Parallel Changes in Large
Scale Software Development: An Observational Case Study,” Proc.
Int’l Conf. Software Eng. (ICSE "98), pp. 251-260, 1998.

T. Reps, “Algebraic Properties of Program Integration,” Science of
Computer Programming, vol. 17, pp. 139-215, 1991.

T. Reps and T. Bricker, “Illustrating Interference in Interfering
Versions of Programs,” ACM Software Eng. Notes, vol. 17, no. 7,
pp. 46-55, 1989.

J. Rho and C. Wu, “An Efficient Version Model of Software
Diagrams,” Proc. Fifth Asia-Pacific Conf. Software Eng., pp. 236-243,
1998.

H.G. Rice, “Classes of Recursively Enumerable Sets and their
Decision Problems,” Trans. Am. Math. Soc., vol. 89, pp. 25-59, 1953.

C. Rich and R. Waters, The Programmer’s Apprentice. Addison-
Wesley, 1990.

M.J. Rochkind, “The Source Code Control System,” IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, 1975.

D. Schefstom and G. van den Broek, Tool Integration Environments
and Frameworks, John Wiley & Sons, 1993.

P. Steyaert, C. Lucas, K. Mens, and T. D’'Hondt, “Reuse Contracts:
Managing the Evolution of Reusable Assets,” Proc. OOPSLA "96,
ACM SIGPLAN Notices, vol. 31, no. 10, pp. 268-286, 1996.

J. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press 1977.

W.F. Tichy, “The String-to-String Correction Problem with Block
Moves,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 309-321, 1984.
W.F. Tichy, “RCS: A System for Version Control,” Software Practice
and Experience, vol. 15, no. 7, pp. 637-654, 1985.

W.F. Tichy, “Tools for Software Configuration Management,”
Proc. Int'l Workshop Software Version and Configuration Control,
pp- 1-20, 1988.

[62] M. Weiser, “Program Slicing,” IEEE Trans. Software Eng., vol. 10,
no. 4 pp. 352-357, July 1984.

B. Westfechtel, “Structure-Oriented Merging of Revisions of
Software Documents,” Proc. Third Int’'l Workshop Software Config-
uration Management, pp. 68-79, 1991.

W. Yang, S. Horwitz, and T. Reps, “Detecting Program Compo-
nents with Equivalent Behaviors,” Technical Report 840, Dept.
Computer Sciences, Univ. of Wisconsin Apr. 1989.

W. Yang, S. Horwitz, and T. Reps, “A Program Integration
Algorithm that Accommodates Semantics-Preserving Transforma-
tions,” ACM Trans. Software Eng. and Methodology, vol. 1, no. 3,
pp- 310-354, July 1992.

W. Yang, “Identifying Syntactic Differences between Two Pro-
grams,” Software-Practice and Experience, vol. 21, no. 7, pp. 739-755,
1991.

W. Yang, “How to Merge Program Texts,”]. Systems and Software,
vol. 27, no. 2, pp. 129-135, 1994.

S.S. Yau, J.S. Collofello, and T. MacGregor, “Ripple Effect Analysis
of Software Maintenance,” Proc. Int’l Computer Software and
Applications Conf., pp. 60-65, 1978.

[63]

[64]

[65]

[00]

[67]

[68]

Tom Mens finished his PhD on “A Formal
Foundation for Object-Oriented Evolution” in
September of 1999. He has been a postdoctoral
fellow of the Fund for Scientific Research—
Flanders (Belgium) since October 2000. As a
researcher in software engineering, he is asso-
ciated with the Programming Technology Lab of
the Vrije Universiteit Brussel. His main research
interest lies in the use of formal techniques for
improving support for (object-oriented) software
evolution and he published several papers on this research topic. In
1998, he was part of the organizing team of the European Conference
on Object-Oriented Programming. Until October 2000, he was a
scientific advisor for two industrial research projects carried out between
the Programming Technology Lab and several industrial partners. At the
end of 2000, he cofounded an international scientific research network
on Foundations of Software Evolution (involving nine research institutes
from five different European countries), which he is currently coordinat-
ing. In this context, he coorganized an international workshop on Formal
Foundations of Software Evolution (Lisbon, Portugal, March 2001), as
well as a European Conference for Object-Oriented Programming
(ECOOP) workshop on Object-Oriented Architectural Evolution (Buda-
pest, Hungary, June 2001).

