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ABSTRACT

Software tools can improve the quality and maintain-
ability of software, but are expensive to acquire, deploy
and maintain, especially in large organizations. We ex-
plore how to quantify the effects of a software tool once
it has been deployed in a development environment. We
present a simple methodology for tool evaluation that
correlates tool usage statistics with estimates of devel-
oper effort, as derived from a project’s change history
(version control system).

Our work complements controlled experiments on soft-
ware tools, which usually take place outside the indus-
trial setting, and tool assessment studies that predict
the impact of software tools before deployment. Our
analysis is inexpensive, non-intrusive and can be ap-
plied to an entire software project in its actual setting.
A key part of our analysis is how to control confounding
variables such as developer work-style and experience in
order accurately to quantify the impact of a tool on de-
veloper effort.

We demonstrate our method in a case study of a soft-
ware tool called VE, a version-sensitive editor used
in Bell Labs. VE aids software developers in coping
with the rampant use of preprocessor directives (such
as #if/#endif) in C source files. Our analysis found
that developers were approximately 36% more produc-
tive when using VE than when using standard text ed-
itors.
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1 Introduction

While software tools have the potential greatly to im-
prove the quality and maintainability of software, ac-
quiring, deploying and maintaining a tool in a large or-
ganization can be an expensive proposition. We explore
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how to quantify the effects of existing software tools
in ongoing large-scale software projects, presenting a
simple methodology that correlates tool usage statistics
with effort estimates based on analysis of the change
history of a software project. Our work complements
controlled experiments on software tools, which usually
take place outside the industrial setting, and tool as-
sessment studies that predict the impact of a software
tool before it is deployed.

Our work is based on two observations. The first obser-
vation is that a major effect of a software tool, be it a
documentation tool, source code editor, code browser,
slicer, debugger, or memory-leak detector, is to help a
developer determine how to modify a software entity or
to directly to aid the developer in making modifications.
The second observation is that the change history of a
software entity (i.e., the version control data about the
modifications to the entity) can be used to estimate the
amount of effort a developer expended on a particular
modification or set of modifications. These observations
lead to a simple process for assessing the impact of a
software tool:

1. Record the tools a developer uses in the course of
software development and the software entities to
which they were applied.

2. Correlate the monitoring information recorded in
step 1 to the modifications to software entities that
are recorded by the version control system.

3. Using the data from the previous two steps, analyze
“similar” developers and modifications! to estimate
how the use/non-use of the tool affected developer
effort.

As we will see, this process is automatic, inexpen-
sive, non-intrusive, and applicable to arbitrary software
projects using version control systems. Furthermore, it
can be applied to an entire software project in its actual
setting.

lSection 5 will qualify and quantify the notions of “similar”
developers and modifications.



We apply our process to a real-world example from Lu-
cent Technologies. We present a case study of a soft-
ware tool that provides an elegant solution to the prob-
lem of rampant use of preprocessor directives (such as
#if/#endif) in C source files. These directives typi-
cally are used to create many different variants, or ver-
sions, from a single source file. A developer editing such
files must be careful to make changes to the appropriate
version, so as not to interfere with other versions. [25]
The solution to this problem is a version-sensitive edi-
tor (VE) that hides the preprocessing directives from a
developer. VE allows a developer to edit a particular
version of the source file (i.e., a view of the underlying
ASCII file in which certain preprocessing directives have
been “compiled” away). As the user edits this view of
the source code, VE translates editing operations on the
view back into the underlying source file.

Our hypothesis is that the VE tool reduces the effort
needed to make changes involving pre-processor direc-
tives. We test this hypothesis via a quantitative analysis
of developer effort based on the change history of a very
large software product in which both VE and other text
editors were used. For each change made to the soft-
ware, we were able to determine whether or not VE was
used to make the change. By combining this informa-
tion with the developer effort analysis, we found that
developers who used VE were approximately 36% more
productive than when using standard text editors (when
changing files containing preprocessor directives).

Our case study points the way to a general methodology
for evaluating software tools in the industrial software
development environment, as outlined above. Through
our case study, we illustrate a number of problems that
must be solved to arrive at an accurate estimate of how
software tools impact developer effort. Primarily, these
are problems of how to control for key sources of varia-
tion such as:

e Developer work-style and experience;
e Size of changes to software;

e Type of changes (new feature, bug fix, code cleanup,
code inspection,).

Our work is complementary to the analysis of tools in
controlled settings and software tool assessment. Con-
trolled experiments on tool use can yield valuable in-
sights about the utility of a tool on small scale exam-
ples; our work seeks to address the ongoing impact of
a tool in the industrial developer population at large.
Software tool assessment compares various tools to one
another and attempts to predict the impact of a tool on
a project before deployment.

The paper is organized as follows. Section 2 provides

background on version control systems. Section 3 de-
scribes the version editor (VE) tool, how it addresses
the problem of preprocessor directives, and how we were
able to monitor the usage of VE over more than a decade
of use in a large software project. Section 4 summarizes
our methodology and algorithm for analyzing version
control data in order to estimate the effort necessary
for developers to make changes. Section 5 presents the
results of applying this algorithm to the version con-
trol data from a large software system in which VE and
other text editors were used. Section 6 describes a gen-
eral framework for repeating this experiment in other
settings. Section 7 discusses related work.

2 Background

The case study here revolves around a commercially suc-
cessful multi-million line software product (a large tele-
phone switching system) developed over two decades by
more than 5,000 developers.

The extended change management system (ECMS) [16],
layered on top of the source code control system
(SCCS) [22], was used to manage the source code.

We present a simplified description of the data collected
by SCCS and ECMS that are relevant to our study.
ECMS, like most version control systems, operates over
a set of files containing the text lines of source code. An
atomic change, or delta, to the program text consists of
the lines that were deleted and those that were added in
order to make the change. Deltas are usually computed
by a file differencing algorithm (such as Unix diff), in-
voked by SCCS, which compares an older version of a
file with the current version.

ECMS records the following attributes for each change:
the file with which it is associated; the date and time
the change was “checked in”; and the name and login
of the developer who made it. Additionally, the SCCS
database records each delta as a tuple including the ac-
tual source code that was changed (lines deleted and
lines added), login of the developer, MR number (see
below), and the date and time of change.

In order to make a change to a software system, a de-
veloper may have to modify many files. ECMS groups
atomic changes to the source code recorded by SCCS
(over potentially many files) into logical changes re-
ferred to as Maintenance Requests (MRs). There is
one developer per MR. An MR may have an English
abstract associated with it that the developer provides,
describing the purpose of the change. The open time of
the MR is recorded in ECMS. We use time of the last
delta of an MR as the MR close time. We use keyword
spotting of the MR abstract to infer the purpose of a
change [17]. Each MR is classified to be the result of new
feature development (NEW), bug fixing (BUG), code
restructuring/cleanup (CLEANUP), or code inspection



fixes (INSPECT) based on the presence of appropriate
words in the one line English text MR abstract recorded
by ECMS.

3 VE: A Version-sensitive Editor

The software product in our case study requires the con-
current development and maintenance of many sequen-
tial versions as well as two main variants for domestic
and international configurations of the product. From
a version management point of view, source code may
be common to as many as two dozen distinct releases
of the code. Some of these releases correspond to de-
ployed products for which only maintenance changes are
made, while others correspond to versions under active
development.

The software releases form a version hierarchy with
two main variants and chronological release sequences
within each of these. Several constraints on the project
management are reflected in the way source changes are
made to preserve this hierarchy. First, it is imperative
that the new development or maintenance changes made
for one software release not impact the previous release
in the sequence or any release in the other main vari-
ant. Second, it is important that as much commonality
of code be preserved as possible: changes made in an
earlier release should automatically appear in the later
releases in that sequence. In the examples that follow,
the two main variant lines are designated as ‘A’ and
‘B’, and the sequential releases within each main line
are designated by ascending numbers, e.g., 1A, 2A, 1B,
2B, and so on. To achieve the second objective, most
of the source files are shared among the releases, with
release specific differences delineated as described in the
following paragraphs.

The industrial source code management technology of
the early 1980’s did not have good support for branch-
ing. That is, there were no tools for maintaining source
that was mostly common to many releases but contained
some release specific changes, and no tools for auto-
matically merging separate changes to a common code
base. To address the multiple release requirements of
the project under study, a specialized directive #ver-
sion was used to allow for release specific variations in
the code, as shown in Figure 1. The #version construct
permits a single source file to be extracted to produce a
different version for each software release. We can think
of this construct as a C preprocessor #if where only
one Boolean symbol is used for control, the symbol may
be negated, and the symbol comes from a restricted set
that contains one symbol for each software release. Var-
ious tools are used to verify the consistent use of these
constructs according to a release hierarchy maintained
by the system. For example, the tools guarantee that a
change checked in for 5A will not affect the source ex-
traction for 4A or earlier or any of the ‘B’ releases. Tools

if (!PreCheckRoute(route))
return FAIL;
#version (4A)
dest = GetDest(route);
if (dest.port == 0) {
return(RouteLocal(route));
}
#endversion (4A)
DoRoute(route);

if (!PreCheckRoute(route))
return FAIL;
#version (4A)
dest = GetDest(route);
#version (! 5A)
if (dest.port == 0) {
#endversion (!5A)
#version (5A)
if (dest.port == 0 || dest.module == 0) {
#endversion (5A)
return(RouteLocal(route));
}
#endversion (4A)
DoRoute(route);

Figure 1: Before and after a Release5A change. Em-
boldened lines are the code added by the programmer.

are also provided to perform the extraction of the source
code for building each software release, again according
to the version hierarchy. For example, extraction for
release 4A implies that all version directives for 4A, 3A,
2A, and 1A are true and all other version directives are
false.

When a developer introduces new code for a release,
the new code must be bracketed by a #version con-
struct for the specific release for which the change is
targeted. When a developer changes existing code for
a release, the existing code must be logically removed
with a #version construct using the negation of the tar-
get release, and the change introduced with a #version
for the target release. Figure 1 shows how these con-
structs are used to change the expression in an if-then
statement for Release 5A. The original if-then state-
ment, was code inserted for Release 4A.

As the example shows, even a one line change to the
code requires the developer to add five lines to the file
(four control lines and the changed code line). The de-
veloper must bracket the original line with the negated



if ('PreCheckRoute(route))
return FAIL;
dest = GetDest(route);
0 if (dest.port == 0 || dest.module == 0) {
return(RouteLocal(route));

}

DoRoute(route);

MR 12467 by dla,97/9/21,assigned [Local routing]
Versioning: 5A inside 4A
"route.c” [modified] line 67 of 241

Figure 2: Release 5A view in VE with change in bold

#version control to omit it for release 5A. Then the de-
veloper makes a copy of the line and brackets it within
#version controls for release 5A. Finally, the change is
made to the copied line. In addition to all these actions
for just a logical one line code change, the version con-
trol lines also make the source file more difficult to read
and understand. For the project being studied, sev-
eral dozen distinct releases have accumulated; some core
source files may contain #version directives for most of
these releases. In worst case files, only 10% of the lines
of the file are the extractable source code for a release,
with 50% of the lines being #version/#tendversion lines
and the other 40% being source that extracts for other
releases.

To make this situation more manageable for the devel-
oper, a version-sensitive editor (VE) was made avail-
able [7, 20, 2]. This tool allows the developer to edit in
a view that shows only the code that will be extracted
for the release being changed. The tool also performs
the automatic insertion of any necessary control lines.
For example, the insertion of a new line for release 5A in
an area that does not have any release 5A code will au-
tomatically produce the required #version around the
line. Likewise, a change to a line will automatically
produce the #version for the negation of 5A which will
exclude the existing line for 5A, and insert the changed
line with #version to include the change for 5A.

The developer’s view is of normal editing in the ex-
tracted code; VE manages the changes to the #version
constructs according to the described constraints. Fig-
ure 2 shows the view presented by VE for the file from
Figure 1. In VE, the developer only has to use standard
editing commands to effect the change to the if-then
statement, and VE inserts the required #version direc-
tives (behind the scenes). VE behaves like either vi or
emacs, the two standard editors used by most of the

developers in the project. In fact, the appearance to
the developer is that of using the standard editor with
the extended behavior of dealing with #version lines
automatically.

For this study, a noteworthy aspect of VE is that it
leaves a signature on all of the #version/#endversion
control lines that it generates. This signature consists
of trailing white space (a combination of space and tab
characters) that uniquely distinguishes the control line
from any control line generated for any other change.?
This was done to avoid unwanted dependencies caused
by SCCS’s use of the Unix diff. Source files can contain
many identical #version/#tendversion, and this similar-
ity can in some cases cause SCCS to store a change as
if it affected #version lines that the developer did not
touch. VE essentially mimics an observed manual prac-
tice done to avoid this type of dependency. However,
VE produces the trailing white space on every #ver-
sion line it generates with an algorithm that uniquely
identifies the lines as produced by VE. Since the use
of VE is optional in the project, this “feature” of VE
allows us to distinguish when VE was used to make a
change involving #version lines from when the change
was made using an ordinary editor.

Figure 3 shows the history of VE usage in the consid-
ered project, which consists of approximately 600,000
MRs. The three lines show the percentage of MRs that
were done with VE (V: MRs such that all deltas of the
MR, contained #version lines with the VE signature),
without VE (H: MRs such that some delta of the MR
contained a #version line without the VE signature),
and without #version lines (N: MRs such that no delta
in the MR contained a #version line). The usage of VE
increased dramatically over time.

4 Developer Effort Estimation

Since VE leaves a visible signature in the version his-
tory, all the necessary data are in place for measuring
how helpful VE can be to developers. We hypothesize
that when making changes involving #version lines, de-
velopers are more effective when using VE than when
using standard text editors. In this section we describe
a general methodology, introduced in [10], for measur-
ing the influence of various factors on the effort required
to make a change, using the change history of a version
control system and periodic time sheet data. In Sec-
tion 5, we apply this methodology to the problem of
measuring the effect of the VE tool.

In principle, if measurements of effort for each change

2In fact, the trailing spaces and tabs encode the current delta
number. As a result, even if developers copy VE-generated #ver-
sion lines using an ordinary text editor, we can determine that
this was a hand change with high probability (because the delta
number of the signature will most likely disagree with the current
delta number of the underlying SCCS file).
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Figure 3: VE usage over time.

completed by developers were available to us, we could
fit a regression model such as

E(effort) =apgRy X ﬂTYPE x Size” x GTOOL (1)

in order to obtain estimates of the effects on effort of
the following variables:

e DEV: developer identity;

e TYPE: type of change, which ranges over the values
NEW, BUG, CLEANUP, INSPECT;

o Size: size of change, which is the number of deltas
in an MR;

e TOOL: use or non-use of VE, which ranges over
the values VE, HAND, NONE (NONE means the
change did not contain any #version lines).

For a discussion of which variables it is important to
include in the model, see [11].

Unfortunately change management systems do not
record measurements of developer effort, so our algo-
rithm makes use of monthly time sheet data instead.
Table 1 illustrates, for a single developer, the data we
normally have available to us. Rows in the table cor-
respond to changes completed by the developer, and
columns to months, so that each cell in the table is the
amount of effort the developer devoted to a particular
change in a given month. Monthly time sheet data tell
us the sums of the entries in each column: how much
total effort a developer expended in a month. We also
know which changes a developer worked on during each
month, and a developer’s total effort needs to be divided
across these changes.

Jan Feb Mar Apr | Total

Effort for MR A ? ? ? ? ?7?
Effort for MR B 0 ? ? 0 ?7?
Effort for MR C 0 0 ? ? ??

reported effort | 0.8 1.2 0.9 0.8 3.7

Table 1: Data available in effort estimation problem.

The row sums, if we knew them, would be effort mea-
surements for each change, and we could use regression
to relate these measurements to quantities such as the
size of the change or whether the tool was used. The
idea behind the algorithm is to begin with a guess at
the change efforts and alternately use regression mod-
els and the time sheet data to refine our initial guess.
In the process we will refine our understanding of the
factors that affect change effort through the changing
coefficients in the regression models. To construct an
initial guess, we divide up each known monthly effort
equally across all changes open in that month, and then
repeat the following four steps until convergence:

1. Compute row sums to obtain estimates of total MR,
efforts, for each developer.

2. Fit a regression model of imputed MR effort on
the factors that predict MR effort. We prefer to
use generalized linear models [15] of the form of
Equation (1).

3. Rescale the rows in the imputed monthly MR effort
table so that the new row sums are equal to the re-
gression’s fitted values. Do this for each developer.

4. For each developer, rescale the columns of the table
so that the column sums are equal to the observed
monthly efforts.

The algorithm has converged in every application we
have tried, and in fact there appears to be an underly-
ing descent algorithm; see [11]. Ten or fewer iterations
are generally sufficient for establishing the regression co-
efficients to three significant figures. After convergence,
we report the coefficients in the final regression model.

Since the regression model is necessary for improving
our estimates of change effort, it is necessary to make
sure that the model includes quantities which are known
to be closely related to change effort. We have found
that the models should include coefficients which de-
pend on the developer, since variations in developer pro-
ductivity are often quite large [3, 8]. The model should
also include a measure of the size of a change, such as
the number of lines changed or the number of atomic
changes making up the change. Whether the change is



a bug fix, new feature development, cleanup effort, or
inspection rework, is also important.

We have found that because reported monthly efforts
are similar across months, one can replace these data
using the assumption that each developer contributes
one unit of effort each month, without changing the re-
sults substantially.

An important component of the inference methodology
is assessing how certain one can be about the values esti-
mated for the coefficients in the final regression model.
As discussed in [10], we use the “jackknife” method,
which consists of removing one developer from the list
we used, running the algorithm again, repeating once
for each developer, and observing how much the coeffi-
cients change depending on which developer is omitted.

5 Effectiveness of the Version-Editor Tool
This section tests our hypothesis that the VE tool re-
duces the effort needed to make changes involving #ver-
sion lines. Our analysis proceeds in three steps:

1. Tag each delta and MR with VE signature infor-
mation;

2. Select a balanced set of developers;

3. Estimate the effect of the VE tool using the effort
estimation algorithm of the previous section.

At the end of the section we summarize measures taken
to ensure the validity of the results.

Extraction of VE signature for each delta

As described in Section 3, VE leaves a signature in
SCCS files because of the trailing white space it inserts
after the #version/#endversion lines. We wrote a pro-
gram that processed all 27 gigabytes of SCCS records for
the software project under consideration and identified
three attributes for each delta:

1. number of #version lines;
2. number of #version lines with VE signature;

3. number of #version lines without VE signature.

This information was used to identify the deltas where
the usage of VE was not likely to have impact (i.e., those
deltas that contain no #version/#tendversion lines), and
where the usage should have an impact (presence of
#version/#endversion lines).

As defined in Section 2, an MR typically consists of sev-
eral deltas. It is possible that some of the deltas in one
MR have a VE signature and others do not. This does
not happen frequently: only 1.8% of the MRs had this
property in the entire dataset of 600,000 MRs and in the

analyzed sample of 3,400 MRs (we selected this sample
of MRs by choosing a subset of developers as described
below. We marked such changes for analysis purposes
as made by hand, since according to our null hypothesis
(VE does not reduce developer effort for changes involv-
ing #version lines) such marking should not have any
impact. If, however, VE reduces developer effort, then
such marking would only make it more difficult for the
VE effect to show up as statistically significant.

Developer selection

The variability in project size, developer capability and
experience are the largest sources of variability in soft-
ware development (see, for example, [3, 8]). The effects
of tools and process are often smaller by an order of
magnitude. To obtain the sharpest results on the effect
of a given tool in the presence of developer variability, it
is important to have observations of the same developer
changing files both using the tool and performing the
work without the aid of the tool.

We focused on developers who made substantial
numbers of changes requiring modifications of #ver-
sion/#endversion lines, both with and without the VE
tool. Also it is preferable to consider developers that
had similar work profiles (i.e., made similar numbers of
changes). Given the considerable size of the version his-
tory data available, both tasks were easy: we selected
developers who made between 300 and 500 MRs in the
six year period between 1990 and 1995 and had similar
numbers (more than 40) of MRs done with and without
VE.

Effort drivers
We fitted the model (Equation (1) from Section 4), esti-
mated standard errors using the jackknife method, and

obtained the following results, as summarized in Ta-
ble 2.

The penalty for failing to use VE in the presence of
#tversion lines is the ratio of 0 anp to Oy g, which in-
dicates an increase of about 36% in the effort required
to complete an MR. (This coefficient was statistically
significant at the 5% level). Restated, if a developer
performs three changes to code involving #version lines
in a given amount of time without VE, the same de-
veloper using VE could perform, on the average, four
changes of the same size and type to the same code. At
the same time, changes performed using VE were of the
same difficulty (requiring a statistically insignificant 7%
increase in effort) as changes with no #version lines at
all (QVE versus aNONE)-

We were successful in selecting similar developers: the
ratio between the largest and smallest developer coeffi-
cients was 2.2, which would mean that the least efficient
developer would require 120% additional effort to make
a change compared to the most efficient developer, but



Factor Estimates Significance
Developer | 252t = 2.2 Not significant
IE] — o —
Type o = 1.26 Significant, p = 0.06
Mé‘fﬂ < 1 | Not significant
NEW
g”\’i <1 Not significant
NEW
Size v=0.19 Not significant
VE Use | #axp —136 | Significant, p = 0.05
Q(’L = 1.07 | Not significant
NONE

Table 2: Results from model fitting.

the jackknife standard errors indicated that a difference
of this size was not large enough to be distinguishable
from random fluctuations (i.e. there was no statisti-
cally significant evidence that the developers differed).
This fact indicates that we were successful in selecting
“similar” developers for our sample.

The type of a change was a significant predictor of the
effort required to make it, as bug fixes were 26% more
difficult than comparably sized additions of new func-
tionality. Improving the structure of the code, the third
primary reason for change (see, for example, [26]) was
of comparable difficulty to adding new code, as was a
fourth class of changes, implementing code inspection
suggestions.

The variable v in Equation (1) was estimated to be 0.19.
That is, the size of a change did not have a particularly
strong effect on the effort required to make it.

Validity of the results
To ensure that the estimated effects were valid, a num-
ber of steps were taken.

First, we took a conservative approach (under the null
hypothesis) to mark all changes that contained deltas
with the VE signature and without the VE signature as
done by hand. To verify that this choice had no effect
on the results, we repeated the analysis but randomly
assigned each change one of the two conditions (see Ta-
ble 3).

Second, we selected a balanced set of developers with
similar change profiles to reduce inherent variability in
developer performance. This was achieved by choosing
developers who were actively changing the code in the
considered six year period (1990 to 1995) and making
similar numbers of changes (300 to 500) in that period.

Third, we made sure the tool effect would be identifi-
able from the sample given other key factors affecting

Factor Estimates Significance
Developer | 2852 = 2.2 | Not significant

Size v=0.15
VE Use | Zzaxe =136
VE

Not significant
Significant, p = 0.1

Fve_ =107

ONONE

Not significant

Table 3: Results for a model with no type factor and
a random assignment of VE factor for MRs contataing
delta done with and without the use of VE.

the change effort - size, type, and developer. In linear
regression, this is referred to as checking for collinear-
ity. Ignoring such relationships could lead to situations
where the tool effect would be indistinguishable from
other factors affecting change effort.

We first checked for interactions between the developer
and VE usage. Such interaction occurs frequently (de-
velopers tend either to use VE or not to use VE). From
the set of developers selected in the second step we chose
only those that had similar numbers of changes with
and without VE and performed at least 40 changes un-
der each condition. This brought us to the final sample
of 9 developers we used in the analysis.

The relationship between the tool usage and the size of a
change was insignificant. However, the interaction with
the type of change was strong. New code was more likely
to be done without VE, while bug fixes were more likely
to be done with VE. This interaction confounds the tool
effect with a factor known to influence the difficulty of a
change. However, the interaction works in favor of the
null hypothesis - bug fixes require more effort and are
more often done using VE.

To verify that the interaction is not affecting the re-
sults we fitted the model with no factor for the type of
change. In addition, the MRs that contained both VE
and HAND deltas were randomly marked as being done
by hand or with VE. The results are in Table 3. The
estimated VE coefficient did not change from the orig-
inal model in Table 2, but the variance of the estimate
increased because of the additional variability caused by
not adjusting for the change type factor.

Fourth, we validated the model using the jackknife
method. We compared the effect of VE for changes
that have similar values of the primary cost drivers (de-
veloper, size of change, type of change). These drivers
were found to affect the effort significantly in [10]. Us-
ing the jackknife, we measured the significance of the
effects given by the model. More details on validation,
the model fitting and the algorithm are in [10].



Despite all these checks, the results warrant some cau-
tion. Although the selected developers performed simi-
lar numbers of changes with and without the tool, the
pattern was not independent of time. Eight out of nine
developers gradually moved towards exclusive usage of
the tool, while one abandoned usage of the tool over
the considered period. Because of this imbalance, the
tool usage factor is confounded with time and other fac-
tors such as natural decay of the software architecture.
Because of the nature of the observational study, other
confounding factors might be present despite all the pre-
cautions.

6 A General Framework for Evaluating Soft-
ware Tools

In this section, we consider how to generalize the process

used in our case study to other software development

environments and software tools.

In our case study, the effort analysis (Sections 4 and
5) made use of generic change data that are present
in any modern version control system (as described in
Section 2). Thus, the repeatability of our experiment in
other settings relies primarily on the ability to correlate
tool usage with change history. The particulars of the
VE tool provided a very direct link between tool usage
and changes, for two reasons:

e VE is an editor and so is used directly to make
changes to the software;

e VE leaves a trace because of the trailing white space
it inserts at the end of #version lines.

In general, we cannot expect to be so fortunate. Many
software tools, such as debuggers, source code analyz-
ers, profilers, etc., are not editors. They are used to
examine and analyze software source but not to modify
it. This is not terribly problematic, since software tools
can be instrumented to record when they are applied to
a software entity. Of greater importance, the VE trace
is a direct causal link between the use of VE and the
change history; we cannot expect to find such a direct
link for all software tools. Instead, we must rely on tem-
poral locality as a substitute for causality. That is, we
must assume that a change made to software entity e
at time ¢ by developer d is (partially) aided by software
tools that developer d applied to e (or entities related
to ) in some window of time before ¢. This assumption
is quite reasonable for many software tools such as er-
ror detectors and debuggers, though it may not apply
as well to general program comprehension tools which
could be used far before a change is made.

This leads us to the following general process:

1. Via automated non-intrusive monitoring, record
the tools a developer uses in the course of software

development and the software entities to which they
were applied.

2. Correlate the monitoring information recorded in
step 1 to the modifications to software entities that
are recorded by the version control system, using
temporal locality to link the application of a soft-
ware tool to entity e (and related entities) to mod-
ifications to e.

3. Use the effort analysis algorithm of Section 4 on the
data from steps 1 and 2 to estimate how the use
of the tool affected developer effort, code quality,
interval, etc.

As described in Section 5, it is important to control
confounding variables such as developer experience and
type of change in the above process. In other environ-
ments, additional variables may come into play.

This approach could be used to evaluate new tools as
well as existing tools. To assess the impact of a new tool
(or an enhancement of an existing tool) the usage data
have to be collected from the set of developers who use
the tool before the large scale deployment. When the
effects of the tool usage become apparent the tool may
be recommended for the wide-scale deployment. The
effects should be estimated by comparing the changes
done by the developers before and after the introduction
of a tool.

The approach should work well for organizations where
developers work on a single project at a time until com-
pletion. In some organizations the code changes are
recorded in the version control system only at the time
of completion. In such cases the start of an MR should
be recorded as the date of completion of the previous
MR done by the same developer. In organizations where
developers work on multiple projects simultaneously the
approach might require more substantial modifications.

7 Related Work

There is a substantial amount of work on evaluating
software tools, which falls into three broad categories:
controlled experiments on software tool use, software
tool assessment, and case studies of software tool use.
We also review related work on effort estimation in soft-
ware projects.

Controlled Experiments on Software Tool Use

Controlled experiments on software tools typically use
two groups to evaluate a tool on a given task: a study
group that uses the tool and a control group that
does not use the tool. Such experiments have been
done on program slicing tools [14], algorithm anima-
tion tools [13], and structured editors [19], to name but
a few. The study of Ormerod [19] is interesting because
of the detailed level of tool instrumentation: a log of all



keystrokes entered into the structured editor for Prolog
was recorded and used to identify edits, edit times, and
errors made. There is a huge body of work in the Hu-
man Computer Interaction community that deals with
the related issue of user interface design and evaluation.
Many such studies evaluate analyze how different user
interfaces affect task performance [9, 24].

Of course, our study is not a controlled experiment, al-
though we did attempt to control for developer variabil-
ity (see Section 5). Our work is a mix of a case study and
a quasi-experiment. We have analyzed historical project
data (tool usage analysis, time sheet data, and version
control data), controlling for confounding variables, and
have defined a general framework so that others can use
our approach in different settings.

Software Tool Assessment

Software tool assessment is an industry of substantial
size. As summarized by Poston and Sexton [21], the
software tool assessment process consists of the follow-
ing basic steps:

[y

identifying and quantifying user needs;
2. establishing tool-selection criteria;
3. finding available tools;

4. selecting tools and estimating the return on invest-
ment;

5. acquiring a tool and customizing it to better fit the
environment;

6. monitoring of tool usage to determine the impact
of a tool.

Many tool assessment processes and standards (such
as IEEE Standard 1175) focus on the use of forms to
gather data to guide the first five steps of the above
process [18, 21]. These include forms for needs analy-
sis, tool-selection criteria, tool classification, and tool-
to-organization and tool-to-tool relationships. Our work
complements such work by addressing the final point (6)
above. We use a highly-automated technique combin-
ing tool usage information with change effort analysis
to estimate the impact of a tool in an organization.

Brown and Wallnau [5] present a framework for evalu-
ating software technology. They observe that:

Technology evaluations are generally ad-hoc,
heavily reliant on the evaluation staff’s skills
and intuition.

Their framework is based on the idea of “technology
deltas”, by which they mean two things: how one tool

differs from another, and how the differences between
tools address specific needs. In our case study, the
“delta” between VE and a standard text editor is the
ability to manage certain pre-processor directives for the
developer.

Case Studies

Kitchenham, Pickard and Pfleeger present a framework
and guidelines for performing case studies of software
tools and methods [12]. They observe that:

A case study is usually preferable to a formal
experiment if the effect of the change [the in-
troduction of a new tool or change to a process|
cannot be identified immediately. For exam-
ple, if you want to know if a new design tool
increases reliability, you may have to wait until
delivery to assess the effect on failures.

It is exactly this scenario that our work addresses, as
it makes use of historical data to identify the impact of
a tool over some period of time. Exactly how long one
needs to collect data in order to make such an assess-
ment is an open question.

Bruckhaus et al [6] present a case study of how
requirements-management tools affected the productiv-
ity of requirements planners, across several projects.
Their goal was to find which projects would benefit from
new tools. In this study, they measured productivity
(after the fact) by the ratio of the number of features in
a project to total effort expended in the project (number
of minutes). They examined how the presence/absence
of a tool, project size and software process (simple or
complex) affect productivity. Measuring at this macro
level makes it difficult to separate the impact of the
tool from other confounding variables (such as experi-
ence, and size of the feature). Project and process could
be included as factors in our model.

Effort Estimation

Previous work on developing models of effort (of which a
recent example is [23]; see also its references) has dwelt
on predicting the effort that will be required to complete
a nascent project. The COCOMO model [4] and func-
tion points [1] are frequent contributors to these predic-
tions. Our problem is substantially different as it works
with smaller changes (MRs as opposed to projects).
Also, we derive estimates of the effort that was required
for changes that were part of already completed projects
instead of concentrating on prediction.
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