IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

Reducing Inspection Interval in
Large-Scale Software Development

Dewayne E. Perry, Member, IEEE Computer Society, Adam Porter, Member, IEEE,
Michael W. Wade, Member, IEEE, Lawrence G. Votta, Member, IEEE, and James Perpich

Abstract—We have found that, when software is developed by multiple, geographically separated teams, the cost-benefit trade-offs of
software inspection change. In particular, this situation can significantly lengthen the inspection interval (calendar time needed to
complete an inspection). Our research goal was to find a way to reduce the inspection interval without reducing inspection
effectiveness. We believed that Internet technology offered some potential solutions, but we were not sure which technology to use nor
what effects it would have on effectiveness. To conduct this research, we drew on the results of several empirical studies we had
previously performed. These results clarified the role that meetings and individuals play in inspection effectiveness and interval. We
conducted further studies showing that manual inspections without meetings were just as effective as manual inspections with them.
On the basis of these and other findings and our understanding of Internet technology, we built an economical and effective tool that
reduced the interval without reducing effectiveness. This tool, Hypercode, supports meetingless software inspections with
geographically distributed reviewers. HyperCode is a platform independent tool, developed on top of an Internet browser, that
integrates seamlessly into the current development process. By seamless, we mean the tool produces a paper flow that is almost
identical to the current inspection process. HyperCode’s acceptance by its user community has been excellent. Moreover, we estimate
that using HyperCode has reduced the inspection interval by 20 to 25 percent. We believe that, had we focused solely on technology
(without considering the information our studies had uncovered), we would have created a more complex, but not necessarily more
effective tool. We probably would have supported group meetings, restricted each participant’s access to review comments, and
supported a wider variety of inspection methods. In other words, the principles derived from our empirical studies dramatically and

695

successfully directed our search for a technological solution.

Index Terms—Code inspections: web-based, meetingless, asynchronous, natural occurring inspection experiment, automated

support for inspections, work, paper and information flow.

1 INTRODUCTION

CODE inspections are a commonly used quality assurance
technique. In fact, in many organizations, all major
software artifacts are inspected. Because of this, changes in
the cost of individual inspections multiply quickly across an
organization. Our previous research, for example, suggests
that the inspection interval (calendar time needed to
complete an inspection) increases when the activities of
multiple developers must be coordinated [2]. We find that
more and more large companies are developing software
using multiple, geographically separated teams. In this
situation, time-zone mismatches, travel, and long-distance
mailings dramatically lengthen interval and are having
noticeable effects on total development interval.

Although companies would like to preserve the benefits
of inspections, the problem of increased interval is

o D.E. Perry is with the Department of Computer Engineering, University of
Texas, Austin, TX 78712-1084. E-mail: perry@ece.utexas.edu.

e A. Porter is with the Department of Computer Science, University of
Maryland, College Park, MD 20742. E-mail: aporter@cs.umd.edu.

o M.W. Wade and]. Perpich are with Lucent Technologies, Naperville, IL
60566. E-mail: {mww, perpichj@lucent.com.

o L.G. Votta is with Motorola, Inc., Arlington Heights, IL 60004.
E-mail: lvottal@email.mot.com.

Manuscript received 25 May 2000; revised 5 Dec. 2000; accepted 11 June
2001.

Recommended for acceptance by P. Johnson.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112193.

becoming acute. Thus, the research challenge is to reduce
the calendar time spent doing inspections without sacrifi-
cing effectiveness.

Our first thought was that Internet technology should
offer some partial solutions because it can help to close the
distance between geographically separated groups. How-
ever, the best way to use this technology and the effects it
might have were not clear. For example, we didn’t know
which specific technology to use: video-conferencing,
groupware, e-mail. Nor could we guess how each technol-
ogy would affect inspection effectiveness—without, that is,
actually building a tool, deploying it, and observing its use.

The general problem is, how do we decide which of
many possible tools we should build? And how do we do
this both cheaply, minimizing costs, and reliably, knowing
the effects beforehand, not by trial-and-error?

Our conclusion is that we cannot solve this problem if we
focus only on technology. We have to understand the
factors that drive the task’s costs and benefits and then
determine how technology affects them. In other words,
tools should be designed to leverage the cost-benefit
drivers, not just to exercise technology.

In this research, we derived inspection cost-benefit
drivers from previous empirical studies, conducted some
new studies to fill in gaps in our knowledge, and then used
this knowledge to reason about the probable effects of
candidate tools.

0098-5589/02/$17.00 © 2002 IEEE

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

We derived two important lessons from the work
reported in this study. First, experimentation can be used
to drive tool development, not just validate the use of a
finished tool. We used empirical studies to determine the
basic requirements of a tool to satisfy the needs of the
developers and we used them to determine choices between
various inspection approaches.

Second, we abstracted a process for doing this empirical-
study-driven tool development. The process is more or less
how we did it ourselves, except for the inevitable stops and
starts here and there. In other words, we are presenting the
polished and ideal version of the process, but, in reality,
there will be iterations, stops, and restarts.

1.1 Our Tool Development Approach

Our approach to tool development involves the following
steps:

1. Select improvement criteria. Software research has
mainly focused on reducing the cost and increasing
the quality of software. However, there is a growing
segment of the industry whose costs and quality are
adequate, but which cannot respond quickly to new
opportunities. For them, it is very important to
reduce development interval (the calendar time
needed to produce software). Since different steps
may have to be taken depending on the improve-
ment criteria, it is important to define these criteria
early in the improvement process.

2. Model the cost-benefit drivers of the process.To
gain control over software development we need to
have validated theories that are 1) general, 2) causal,
and 3) suggestive of control strategies. Such theories
point out the factors that drive a process’” costs and
benefits. They also tell us how to manipulate the
factors to get a desired outcome. Tools will be
effective if they enable us to manipulate a process’
drivers to meet our improvement criteria.

3. Understand the current process and identify key
problems. The starting point of any process im-
provement activity should be understanding the
current process. Once the process is understood,
problem areas can be identified and prioritized
according to an organization’s goals.

4. Explore and evaluate alternative improvements.
Potential improvements will have different strengths
and weaknesses and empirical studies are funda-
mental to determining them. These studies explore
key issues, risks, and costs of alternative improve-
ments and may involve controlled experiments,
surveys, process modeling, and prototype develop-
ment and evaluation.

5. Build and evaluate preferred improvement. Based
on the previous analyses, one or more preferred
improvements will be selected. In many cases, the
preliminary evaluation will not be sufficient to
determine the actual range of the improvement. In
these cases, the improvements must be built and
deployed before they can be properly evaluated.
Again, empirical studies are one of our basic tools
for their evaluation.

1.2 Overview

In the following sections, we show how we followed this
process to improve the code inspection process. After that,
we discuss some open questions and present our conclusions.

2 SELECTED IMPROVEMENT CRITERIA

In this research, we are attempting to develop a tool that
allows geographically separated teams to conduct software
inspections quickly and efficiently. Inspections conducted
with this tool should not have a longer interval nor lower
observed defect density than the current manual inspections.

3 MODELING THE DRIVERS OF INSPECTION COSTS
AND BENEFITS

Over the past 20 years, several inspection methods have
been proposed. We have reviewed many of these propo-
sals and have found that, too often, competing methods are
based on conflicting rationales. For example, one commu-
nity argues that groupware technology can greatly im-
prove inspection meetings and, thus, greatly improve
overall inspection effectiveness. At the same time, another
community argues that even well-conducted meetings
discover very few defects, so meetings should be discarded
all together.

The existence of these and other competing views
indicates a serious problem: We don’t know what the
fundamental drivers of inspection costs and benefits are.
Without this information, we can't tell if we are building
new methods based on faulty assumptions, evaluating new
methods improperly, or inadvertently focusing on low-
payoff improvements. To get this information, we identified
several potential drivers of inspection costs and benefits.
Then, we conducted a family of experiments to evaluate the
effect of different drivers.

3.1 Potential Drivers of Inspection Costs

and Benefits
Many organizations use a three-step inspection process:
Individual Analysis, Team Analysis, and Repair. Based on
the current state of research, we suggest that the costs and
benefits of this process are driven by the following factors:

1. structure (how the steps of the inspection are
organized into a process),

2. inputs (reviewer ability and code quality),

3. techniques (how each step is carried out),

4. context (interactions with other inspections, project
schedule, personal calendars), and

5. technology (tool support).

3.2 Investigating Potential Drivers:

The Experiments

We conducted the following family of experiments to
understand how each class of drivers affects inspection

costs and benefits.

3.2.1 Process Structure

Our first study looked at the effect of process structure.
Prior to this study, we reviewed several inspection methods

PERRY ET AL.: REDUCING INSPECTION INTERVAL IN LARGE-SCALE SOFTWARE DEVELOPMENT 697

and identified key differences in their structure. The main
structural differences were the size of the review team, the
number of teams, and the strategy used to coordinate
multiple teams. One of our null hypotheses was that none
of these factors drives inspection effectiveness. We tested
this hypothesis in an 18-month, controlled experiment on a
live development project at Lucent Technologies Inc.

Although the effectiveness of proposed inspection
methods is supposed to depend in part on how they are
structured, this did not have a significant effect in our
experiment. Consequently, we suspect that simply restruc-
turing the inspection process will not significantly increase
effectiveness. We also found that inspections with only one
reviewer were less effective than those with two, but that
inspections with two reviewers were as effective as those
with four. Furthermore, reviewers of the same code unit
rarely found the same defects (finding many defects in
common might indicate that most defects were discovered).
These results lead us to believe that the performances of
individual reviewers had the largest effect on inspection
effectiveness. See Porter et al. [17] for a complete descrip-
tion of the experiment and its results.

In some of these inspections, multiple teams had to be
coordinated. We found that higher degrees of coordination
led to an increased premeeting interval (the calendar time
from the beginning of the inspection to the inspection
meeting.) Thus, we concluded that some relatively straight-
forward changes to process structure had strong, negative,
effects on at least a part of the inspection interval.

3.2.2 Process Inputs

The inspection performances described above show con-
siderable variation. This suggests that something other than
process structure has a strong effect on inspection effec-
tiveness. One obvious possibility is that the variation is due
to differences in the process inputs (e.g., reviewers and code
quality). We investigated this possibility by modeling
variation in the data as a function of process inputs and
process structure. Our goal was to determine the relative
effects of process structure and process input on inspection
interval and effectiveness.

We found that the code’s size, its functionality, and the
reviewers who inspected the code explained 50 percent of
the variation, while the process structure explained only
3 percent. We also found that, even when the variation due
to these inputs was factored out, process structure did not
have a significant effect on effectiveness. Our interpretation
is that the way the code is constructed and the way it is
analyzed have far more influence on effectiveness than does
the way the process is structured. See Porter et al. [14] for a
more details.

For interval, we found that neither the process structure
nor process inputs had a large effect on the inspection
interval (although process structure had an effect on
premeeting interval). These factors only explained about
25 percent of the variation in the data and the models have
some mathematical irregularities indicating that they
should be interpreted with caution.

3.2.3 Techniques: Inspections With or Without Meetings
The two previous studies suggest that better techniques for
analyzing documents may do more to improve effective-
ness than better inspection processes will. There are two
contexts in which a review team analyzes a document:
individually and as a team. Historically, analysis in the
team context has been the focus of inspection research and,
in fact, this is often called the inspection [6]. Some recent
studies suggest that, in practice, team analysis is not
essential [19]. Since meetings are expensive, it is important
to determine exactly how meetings contribute to inspections
and whether superior alternatives exist.

From the point of view of defect detection effective-
ness, meetings are essential if 1) many faults are found
during meetings and 2) because of these meetings, more
faults are found than would be found otherwise. That is,
whether a group of reviewers is likely to be more effective
working together than working separately. To help
answer these questions, we examined three approaches
for inspecting software. Two approaches involved meet-
ings; a third did not.

We hypothesized that inspection methods that eliminate
meetings are at least as cost-effective as methods that rely
heavily on them and probably more so. We expected to see
this result because we expected the benefit of holding a
meeting to be less than the benefit of letting individuals
work alone. To evaluate these hypotheses, we conducted a
controlled experiment with 21 graduate students in
computer science and 27 professional software developers
as subjects. We found that the meetingless inspections
found more defects than those with meetings. We also
found that, when the effort used to hold the meeting was
given instead to additional individual analysis, more
defects were found. Finally, we found very few defects
that were found with greater frequency by inspections with
meetings than by those without. These results are essen-
tially identical to those found by Johnson (see Johnson and
Tjahjono [3]).

3.2.4 Techniques: Defect Detection Methods
Preparation, the first step of the inspection process, is done
by applying defect detection methods. These methods are
composed of defect detection techniques, individual
reviewer responsibilities, and a policy for coordinating
responsibilities among the review team.

Defect detection techniques range in prescriptiveness
from intuitive, nonsystematic procedures (such as ad hoc or
checklist techniques) to explicit and highly systematic
procedures (such as correctness proofs).

A reviewer’s individual responsibility may be general, to
identify as many defects as possible, or specific, to focus on
a limited set of issues (such as ensuring appropriate use of
hardware interfaces, identifying untestable requirements, or
checking conformity to coding standards).

Individual responsibilities may or may not be coordi-
nated among the review team members. When they are not
coordinated, all reviewers have identical responsibilities. In

698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

contrast, the reviewers in coordinated teams might have
entirely distinct responsibilities.

We hypothesized that nonsystematic techniques with
general and identical reviewer responsibilities lead to
overlap and gaps in coverage, thereby lowering the overall
inspection effectiveness, but that systematic approaches
with specific and distinct responsibilities reduce gaps and
improve coverage, thereby increasing overall inspection
effectiveness. To explore this hypothesis, we prototyped a
set of defect detection techniques called Scenarios—collec-
tions of procedures for detecting particular classes of
defects. We then compared their performance against those
of Checklist-driven and Ad Hoc reviewers in a controlled
experiment using 48 graduate students in computer science
and 21 professional software developers as subjects.

The experimental results showed that 1) the Scenario
method had a higher defect detection rate than either ad hoc
or checklist methods, 2) Scenario reviewers were more
effective at detecting the defects their scenarios were
designed to uncover and were no less effective at detecting
other defects, and 3) checklist reviewers were no more
effective than ad hoc reviewers. These results suggest that
improved defect detection techniques may indeed improve
overall inspection effectiveness. See Porter et al. [16] for
more details.

3.2.5 Process Environment

Our earlier studies looked at the effect of process structure
and process inputs on inspection interval. When we
consider total interval, there are no significant differences
due to these factors. However, we did see some effect on
premeeting interval due to process structure. But, the
overall mechanisms were still unclear.

Through direct observation and surveys, we found that
developers often have to choose which of their many
activities to perform at any given time. We hypothesized
that the process environment influences these choices and
that they, in turn, influence inspection interval.

Our analysis suggests that process environment does
indeed influence inspection interval. In particular, we
found that different coding and inspection tasks have
different priorities. Therefore, when a developer’s workload
is high, low priority tasks are deferred. Since some
inspection tasks have very low priority, this lengthens
inspection interval. We also found that approaching dead-
lines affected work priorities. These effects were somewhat
different for premeeting and postmeeting interval. See
Porter et al. [15] for more details.

3.2.6 Summary

For effectiveness, we concluded that technical factors
supporting individual performances, (e.g., defect detection
methods) have more influence on effectiveness than the
nontechnical factors (e.g., structure).

For interval, we concluded that interval is driven by
different factors than effectiveness is. In particular, we
found that certain kinds of process structure (high degrees
of coordination) significantly affected the premeeting inter-
val (from distribution of the code to inspection meeting) and

that environmental factors (workload, priorities, and dead-
lines) significantly effect postmeeting interval.

4 UNDERSTANDING THE CURRENT PROCESS:
IDENTIFY KEY PROBLEMS

Abstractly, the inspection process is divided into three basic
phases: preparation, collection, and repair. The preparation
phases includes such things as initiating the inspection
process, disseminating the inspection package, and the
inspectors preparing (that is, inspecting the artifact) for the
collection phase. The collection phase includes the collec-
tion, recording, and assessment of defects. The agreed upon
defects are then fixed in the repair phase.

4.1 Understanding the Current Process

We first describe the original process in detail and then
present some quantitative data about some critical aspects
of this process.

4.1.1 The Process Description

For ease of comparison with the improved process
discussed below, we present the original inspection process
as a sequence of basic steps.

1. Modification Requests (MRs) are issued whenever
corrections, additions, or enhancements to code are
needed.

2. A developer accepts one or more MRs and develops
the necessary code.

3. The author then makes a code unit available for
inspection. A code unit may implement one or more
MRs.

4. The author selects his or her review team.

5. The author contacts the review team and schedules
the inspection meeting. He or she coordinates the
proposed schedule with project management.

6. The author prepares the inspection package and
distributes paper copies of it to the review team. The
inspection package includes the code unit’s source
text, information about meeting time and location,
and all required forms.

7. Prior to the meeting, the reviewers analyze the code
unit looking for defects.

8. The author and reviewers conduct the collection
meeting. One of the reviewers is assigned to be the
moderator, who makes sure the meeting does not get
bogged down on any single point of discussion.

9. During the meeting, the author creates the consoli-
dated list of issues. Issues are the potential defects
discovered during the inspection.

10. The author determines which issues must be
repaired and does so.

11. The author brings the reworked code to the inspec-
tion moderator, who ensures that all issues have
been addressed and signs off the inspection.

The original process automates much of Step 6: The code
and the changes generated by the MRs are automatically
generated for printing and, then, manually distributed. The
MR and design documents are made available to the
reviewers electronically to save paper.

PERRY ET AL.: REDUCING INSPECTION INTERVAL IN LARGE-SCALE SOFTWARE DEVELOPMENT 699

4.2 Identifying Key Problems

We identified two major contributors to delays in the
inspection process. One is (unnecessary) overhead created
by Lucent’s formal development process. The other is
blocking due to synchronization and sequencing of inspec-
tion subtasks.

4.2.1 Process Overhead

Process overhead comes in several forms. One type comes
from having to create and distribute the documents to be
inspected, the documents upon which they depend (e.g.,
design documents when code is being reviewed), and
defect report forms. As we mention later, this problem is
magnified when inspectors are geographically separated.
Another type of overhead is incurred because inspection
data is used by several other development processes and
must be collected, processed, and managed. For example,
defects must be opened (recorded) in the change manage-
ment system when inspections find them and closed after
they are repaired. This helps developers verify that all
known defects have been repaired before shipment. Also,
project management uses this information to track the
number of defect reports and to ensure that repairs occur in
a timely manner. It is also used to document the quality
assurance processes that have been applied to the system.
These records must be reviewed and signed by manage-
ment and archived to comply with ISO-900x requirements.
This adds substantial overhead to the inspection process
because the data must be collected at inspection time.

4.2.2 Blocking Due to Synchronization and Sequencing

Because of its structure, the inspection process is susceptible
to blocking which can lengthen its interval. For instance, a
previous study [2] found that schedule conflicts among
inspectors often delayed the inspection meeting substan-
tially and, thus, lengthened interval.

This is one example of a more general problem: that
dependencies among inspection tasks force some tasks to
wait while others catch up. We see this behavior in at least
three ways:

1. Many tasks are sequentially ordered. They cannot
start until earlier tasks finish. For example, in the
standard inspection process, defect repair cannot
occur until the collection meeting is finished. Thus,
the repair task blocks even though it might be able to
continue.

2. Some tasks must be synchronized. Group meetings
typically require the simultaneous attendance of all
inspectors. First, a mutually convenient meeting
time must be found. Then, if one or more inspectors
is unable to attend, the meeting cannot occur. Here,
the collection meeting may block even though all or
most participants are ready to proceed.

3. Inspection tasks are sometimes coordinated. In
preparation, inspectors are usually asked to inspect
the same documents. In group meetings, it is often
important that inspectors are examining the same
portions of the document at the same time. In both of
these examples, some tasks may be delayed by
certain consistency management activities.

These problems exist even when developers are
colocated. However, they intensify when developers are
geographically separated (sometimes across different time
zones). In particular, synchronizing tasks and coordinat-
ing the dissemination of critical information becomes
more difficult.

5 EXPLORING ALTERNATIVES

We have analyzed the current process and identified
several key problems. In this step, we consider some
possible approaches for fixing these problems.

5.1 The Solution Space

To reduce delays caused by process overhead and blocking,
we considered three approaches.

e Reduction of paper. Put all inspection documents
online to allow electronic distribution; require
reviewers to record their comments electronically.

e Automatically generate necessary reports. Generate
quality assurance records (ISO-900x) and process
improvement data from online inspection records.

e Reduce synchronization and coordination. Increase
parallelism by reducing synchronous activities and
increasing information sharing.

The first two strategies are somewhat straightforward.
However, we did take care to make the online process
match the existing manual process as closely as possible.
The best approaches for reducing synchronization were less
obvious. We considered three strategies: eliminating the
inspection meeting, sharing preparation results among the
review team, and overlapping preparation and repair.

Eliminating the inspection meeting. Our previous
research suggests that meetings significantly lengthen
inspection interval. In a distributed development environ-
ment, this problem becomes even worse. Therefore, we
eliminated the inspection meeting.

In terms of effectiveness, this step may significantly
reduce the number of defects found and may have other
drawbacks as well.

Sharing preparation results. In the manual process,
reviewers prepare privately. That is, each reviewer’s
findings are unknown to the other reviewers until the
inspection meeting occurs. With this approach, some effort
may be duplicated. Our approach is to make all reviewers’
findings public almost immediately. This shares informa-
tion among all reviewers. In terms of effectiveness, one
possible advantage might be that knowledge of the code
and its defects are shared among the review team (one
reason that meetings are held). On the other hand, this may
introduce some bias that inhibits the discovery and
disclosure of defects.

Overlapping preparation and repair. Since we elected to
eliminate the meeting, the process has only two major
phases, preparation and repair (collection becomes a
byproduct of preparation). These two phases are normally
performed sequentially. That is, preparation is completed
before repair can begin. One possible further improvement
would be to allow these two phases to overlap. That is, we

700

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

TABLE 1
Comparison of Desk and Meeting Inspection Detection Effectiveness for New Code
Desk | Meeting | Both | Significance
Number of Inspections 202 441 643 NA
Average Faults/Inspection 10.1 8.8 9.2 .20
(Faults)
Average Code Size/Inspection 427 327 358 .02
(NCSL)
Average Fault Density /Inspection | .030 .029 .030 .92
(Faults/NCSL)
Average Repair Interval 7.1 8.0 7.7 .10
(Days)

can allow the author to begin repairs as soon as a defect is
found.

This may reduce interval, but may also have some effects
on effectiveness. In particular, repairing defects implies that
the document being inspected will change. If large portions
of the document change or if changes are made frequently,
then it may make inspection difficult for the reviewers.

5.2 Evaluation and Justification

Eliminating the inspection meeting. We have been unable
to conduct a controlled experiment to compare the effec-
tiveness of these two inspection approaches. We do,
however, have other data that sheds some light on this
topic.

If online inspections are better than manual inspec-
tions, then it must be possible to eliminate meetings
without decreasing effectiveness. Previous work [16], [13],
[18] suggests that this is indeed the case, but, until now,
there has been no direct evidence from an industrial
environment.

To answer this question, we are exploiting a naturally
occurring experiment currently running at Lucent Technol-
ogies (see [21] for a similar example). The software
development organization was already measuring the
effects of, and recording the critical data for, two different
inspection processes: desk-based inspections where pre-
paration and collection were done individually and
independently and meeting-based inspections which fol-
lowed the standard process of individual preparation and
group collection. Thus, we took advantage of the empirical
infrastructure that was already in place.

We compare the results of two classes of inspections:
new code (Table 1) and repaired code (Table 2). The
significance is calculated using the Wilcoxon-Mann and
Whitney Rank Order Test [3], a two-sided test assessing
whether the fault densities observed for each inspection
when taken from a desk or meeting are drawn from the
same distribution.

To determine whether the asynchronous desk inspec-
tions are as effective as the meeting collections, we look at
inspection statistics taken from almost 3,000 inspections
conducted in this environment. Table 1 and Table 2 show
these statistics for new and modified code, respectively.

The tables show that there is no difference in the average
fault density of new code using desk inspections or
meeting-based inspections. There is a significant difference
for modified code, but the difference is effectively 0 (.0031
versus .0037). Since this is an order of magnitude smaller
than the densities for new code, we conclude that meet-
ingless inspections are no less effective than inspection with
meetings.

Sharing preparation results. Having eliminated meet-
ings, the next question is whether to share preparation
results. We argue on the basis of Dennis and Valacich [5]
that the effects of sharing comments during the inspection
process will be no worse than keeping them private. In their
paper “Computer Brainstorms: More Heads are Better than
One,” they argue that there are fewer process losses and
useful process gains in sharing information. While the two
contexts are not identical, their results do suggest that
sharing comments during the inspection process may well
have positive results.

TABLE 2
Comparison of Desk and Meeting Inspection Detection Effectiveness for Repaired Code
Desk | Meeting | Both | Significance
Number of Inspections 2152 197 2152 NA
Average Faults/Inspection 163 432 185 < .01
(Faults)
Average Code Size/Inspection 26.0 59.4 28.8 < .01
(NCSL)
Average Fault Density/Inspection | .0031 .0037 .0031 .03
(Faults/NCSL)
Average Repair Interval 1.2 3.3 1.3 < .01
(Days)

PERRY ET AL.: REDUCING INSPECTION INTERVAL IN LARGE-SCALE SOFTWARE DEVELOPMENT 701

Intuitively, the advantages of this shared inspection
knowledge are twofold: It incorporates a useful aspect of
meetings, namely, the discussion about potential faults
among the relevant inspectors and it reduces individual
effort by avoiding duplicate work.

Overlapping preparation and repair. Given that inspec-
tion data is available as soon as the first inspector begins
reviewing the code, there is the possibility of overlapping
the repair cycle with the review cycle and, thus, shortening
the overall inspection and repair cycle even more.

There are obviously a number of problems that this may
induce. First, premature repair may result in repairs on
repairs (which may well increase the potential for code
decay). Second, there are problems of consistency: The code
being inspected is no longer the latest version of the code
and, in fact, may even be inconsistent with it. Third,
overlapping repair and review may increase the overall
effort of the repairer, even though it may shorten the
interval.

Clearly, this is a subject that requires serious study to
determine the effects of the various interactions between
review and repair. Preliminary analysis, however, indicates
that overlap looks like a good idea for shortening the overall
interval. It is, obviously, subject to some level of risk.

Given the level of risk and the implications of the code
changing during the inspection process on the design and
implementation of HyperCode, we decided not to incorpo-
rate the overlapping of repair and preparation into
HyperCode as a formal part of the supported process.

5.3 Buy vs. Build

Our next step was to determine whether we could obtain a
system that met our needs (possibly with some modifica-
tion) or whether we would have to build one ourselves. To
do this, we analyzed several systems that existed at that
time, including: Scrutiny, InspeQ, CSI, ICICLE, ASSIST, and
CSRS.

Ultimately, we decided to build the system ourselves.
One reason for this was that we discovered several
mismatches between our needs and the services provided
by commonly available inspection systems. Another reason
was that it took too much work to update.

We ruled out several systems because we couldn’t
extend them to meet our needs. In particular, some systems
had inflexible processes. For example, Scrutiny [7] only
supported a single, hardcoded inspection process. This
process included inspection meetings, which we didn’t
want to conduct. InspeQ [9], developed by Knight and
Myers supports their phased inspection process. This
process involves inspections made up of several steps or
phases. We, however, want to drastically reduce the
number of steps. So, we decided against using this tool.

We ruled out several other systems because they
provided extra functionality we didn’t want. For instance,
CSI [12] provides facilities for managing sessions and
committing comments. It also makes use of teleconferencing
and audio streams. These facilities are essential for same
time, different-place virtual meetings, but are not needed in
the inspection process we desire.

ICICLE [4] uses knowledge-based techniques to provide
some forms of automated defect detection. We weren't
interested in developing the rules needed to do this.

We ruled out several other systems because we couldn’t
integrate them easily with the processes and tools used in
our environment. In particular, we didn’t find any system
that could easily be interfaced with the proprietary
configuration management system used in our environ-
ment. For example, ASSIST [11] allows users to define and
support their own inspection processes, but the system is
built over its own document database, making it difficult to
integrate with the CMS used in our environment. This
problem of platform dependencies also showed up in our
consideration of the CSRS toolset [8]. CSRS allows flexible
process definition, but relies heavily on supporting tech-
nologies emacs and Unix.

These observations led us to decide that, while we might
have been able to modify one or more existing systems to
meet our needs, it would have been easier to develop a tool
that met only our minimum requirements.

6 BUILDING AND EVALUATING IMPROVEMENTS

Since desk inspections appear to be as effective as
inspections with meetings and since we have to support
geographically separated inspectors, we built a Web-based
inspection tool that supports distributed, asynchronous
code inspections. The tool is called HyperCode.

In the following subsections, we discuss two views of
HyperCode: the process view and the implementation
view. For the process view, we discuss the basic
HyperCode inspection process, describe its characteris-
tics, and show how they support the inspection partici-
pants (see Fig. 1). For the implementation view, we
discuss various implementation details.

6.1 The HyperCode Inspection Process

1. Modification Requests (MRs) are issued whenever
additions or enhancements to code are needed.

2. A developer accepts one or more MRs and develops
the necessary code.

3. The author then makes a code unit available for
inspection by interacting with the HyperCode tool.

4. The author selects his or her review team, again by
selecting their names from a HyperCode form.

5. HyperCode then contacts the review team and
project management who respond to schedule the
closing date of the inspection. (There is no meeting
in the HyperCode process.)

6. HyperCode prepares the inspection package and
notifies the review team of the package’s location.

7. The reviewers analyze the code unit looking for
defects. Reviewers analyze the code concurrently,
with HyperCode automatically collecting all
annotations.

8. Once the inspection is closed the author receives the
consolidated list of issues from the HyperCode
system.

9. The author determines which issues must be
repaired and does so.

10. The author brings the reworked code to the inspec-
tion moderator, who ensures that all issues have
been addressed and signs off the inspection.

702

Traditional Process

Initial Preparation

y

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

hyperCode Process

Initial Preparation

/ \

Inspector Inspector

Preparation Preparation

\

Collection &
Resolution

|

Repair

TIME

Fig. 1. Comparison of the inspection processes.

The primary differences between the manual and
HyperCode processes are as follows:

e automated support for inspector selection,

e automatic notification by e-mail that the package is
available,

e all annotations are visible to all reviewers and
the author throughout the process (concurrent
preparation),

o there is no meeting in the HyperCode process
(asynchronous team interaction).

6.2 User Interface

HyperCode is a Web-based code inspection system. During
a designated inspection interval, inspectors use a Web
browser at their desktop computers to view and annotate
the code under inspection. All annotations are viewable by
all participants. This inspection process does not require the
simultaneous participation of the inspectors nor do inspec-
tors need to be geographically colocated. All that is required
for participation is access to the intranet via a Web browser.
At the end of the inspection interval, the author and
moderator resolve inspector annotations and the author
makes code changes as appropriate. All aspects of the code
inspection are performed via Web pages. E-mail notification
replaces paper meeting notices, status reports, etc.

HyperCode makes use of an already existing tool that
generates code inspection packages called sinspect (see
Fig. 2). The essential part of the code inspection package is a
diff-marked code listing that highlights new and modified
lines of source code. Traditionally, this code inspection
package is printed on paper and distributed to the
inspectors. A HyperCode Web-based inspection package
is generated by running the output of the already existing
inspection package generation tool through a filter that
generates an HTML version of the package (line numbers
become hyperlinks that provide the ability to annotate, page
numbers in the table of contents become hyperlinks to the
corresponding pages, etc.).

The HyperCode inspection package has the same layout
as the paper version—experienced developers are therefore

Inspector Inspector
Preparation * * ° Preparation
& Collection & Collection

| /

Resolution
& Repair

immediately familiar with HyperCode inspection packages.
The ability to create and view inspection packages, create and
manage annotations, send e-mail notifications, etc., is
provided by a set of CGI scripts maintained at the Webserver.
No special purpose software is needed by users of
HyperCode.

An author creates a HyperCode inspection package by
bringing up the package creation Web form and entering
information about the package, including the usernames of
those who are to be inspectors. The author also designates
one of the inspectors to be the moderator of the inspection.
Standard WWW username/password authentication is
used to identify users and control access. The author then
submits the form, which causes the Webserver to invoke the
standard inspection generation tool and feed the results to
the HTML filter, the output of which is the HyperCode
inspection package, which is deposited in a node managed
by the Webserver.

A HyperCode inspection package goes through a life-
time consisting of four states: pending, in progress,
resolution, and done. Packages can be viewed in any state,
but annotations can only be made by the inspectors when
the package is in the in progress state. A package is initially
created by the author in the pending state. The author then
moves the package to the in progress state, which causes
e-mail notification to be sent to the inspectors and other
interested parties (project management, quality team, etc.).
The designated inspectors may now inspect the code and
make annotations.

At the end of the designated inspection interval, the
author moves the package to the resolution state. This state
transition again generates e-mail notification to the inspec-
tors and other interested parties. The author then deter-
mines the disposition of each annotation and records (via a
HyperCode Web page) whether any code changes will be
required. After the disposition of all annotations has been
determined, the author then informs the moderator via
e-mail that the package is ready for moderator sign-off. The
moderator then verifies the disposition of the annotations.

PERRY ET AL.: REDUCING INSPECTION INTERVAL IN LARGE-SCALE SOFTWARE DEVELOPMENT 703

Traditional Inspection
Process

MR list

|

sinspect

HTML
filter

inspection package

printing tool

Distribute paper,

have a meeting

Fig. 2. Generating the inspection packages.

The moderator then moves the package to the done state.
This state transition generates a final e-mail notification to
inspectors and other interested parties. The inspection report
is then generated from the package and its annotations.

6.3 Implementation

Source code line numbers are hyperlinked to a form that
allows inspectors to enter annotations. That is, when an
inspector clicks on a source code line number, a Web form
containing a text input area is presented. The inspector
enters the annotation and submits the form, which causes
the Webserver to make a record of the annotation. The
record contains the username of the inspector, the line
number, and source code file name, along with the text of
the annotation.

For each inspection package, HyperCode provides a
page that lists all annotations that have been made to date
by the package inspectors. The annotation list contains
hyperlinks to the annotation text and to the relevant source
code page. The annotation list is ordered by source file and
line number. The annotation list page is generated via a
CGI script, so the page is up to date each time it is reloaded
by a Web browser.

If a source code line has been annotated by an inspector,
a graphical element appears in the lefthand margin of the
source code display page as a visual cue to inspectors or
other viewers of the package. The graphical element is
hyperlinked to the text of the corresponding annotations.

In addition to source file-specific annotations, inspectors
may also make general annotations that do not refer to any
particular line of source code in the package. These types of
annotations may be used to record general concerns or
issues that are global to the source code under inspection.
At the top of each source code display page is a hyperlink to
a Web form that allows these types of annotations to be
made. General annotations also appear on the annotation
list page.

Weh-based Inspection

HTML inspection
package

inspector
annotations

6.4 Evaluation, Experience, and Evolution

The initial acceptance of the inspection tool was excellent.
We attribute this to four basic facts: First, the cost savings
just from the reduction in paperwork and the time savings
from the reduction in distribution interval of the inspection
package (sometimes involving international mailings) were
substantial. Second, the new intranet tool-based process
integrated seamlessly into the existing environment and
workflow. This point is both a subtle and a critical one. The
disruption of existing workflow almost always causes both
resistance and unexpected side-effects. Third, the new
process opened up new possibilities for concurrency and
inherent speedups of the elapsed time interval. Fourth, the
ubiquity of the Web with its distribution and random
accessibility, as well as its browser platform independence,
made it a natural platform for such an approach as ours.

In the standard inspection cycle, the distribution of the
inspection package takes one to two days, two weeks is the
standard time for inspector preparation, the collection
meeting is usually two hours in length but may take longer,
and the overall time interval from generation through the
collection meeting is four to five weeks (due to the delay
induced by conflicting schedules).

Anecdotal evidence gathered from interviewing users of
HyperCode indicates that its use has resulted in a reduction
of the total inspection interval of about 20-25 percent and
has provided a significant improvement in the overall
inspection process as well.

e It eliminates the time spent in reproduction and
distribution.

e It improves the effectiveness and reduces (on
average) the amount of time spent in the defect
detection process. This comes about because the
other inspector’s comments are there for all the
inspectors to see and the time spent on each
inspector detecting the same defects is eliminated.

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

e The primary work product of the collection meeting
becomes a by-product of the defect detection process
(eliminating about one day’s worth of work on the
part of the author and moderator). The comments
are collected as a part of the individual inspections
rather than as a major component of an inspection
meeting.

e Moreover, the inspection report has improved
significantly as a result of HyperCode use.

- There are more low, medium, and observation
category defects, but no fewer severe category
defects reported.

- The defects descriptions for all categories are
much more detailed and complete (as opposed
to the often cryptic defect descriptions that
result from the gathering the defects at the
collection meeting).

- There are recorded discussions of some of the
defects because each inspector can see the
other’s comments. What normally takes place
in the collection meeting now takes place as part
of the defect detection process.

e The need for a collection meeting is often eliminated,
thereby reducing the overall interval of the inspec-
tion process because the delay induced by conflict-
ing schedules is eliminated. In those cases where a
meeting is held, the use of HyperCode has two
important effects.

- The quality of the meeting is significantly better
because the focus is on only the critical issues
(the minor issues have already been resolved by
inspector discussions recorded in the online
comments).

- The meeting is significantly shorter since there is
no time spent in collecting the defects discov-
ered and the time is spent only on those
unresolved issues.

Thus, the time spent in the collection meeting, if

there is one, is on average about a half hour instead

of two to three. This results in an overall decrease in
the delay induced by the conflicting schedules for
the scheduling of the meeting because it is easier to
find a free half hour rather than a free three hours.
Interest in HyperCode quickly spread beyond its
original project. This resulted in several portings to
different environmental contexts (different configuration
management tools and different Web servers). As a result of
these iterations, we created a self-installing portable version
of HyperCode in which we separated HyperCode entirely
from configuration management issues and evolved the
server interfaces so that it now runs on the major Web
servers.
The current portable version of HyperCode is now in
use in a dozen Lucent projects spread within and across a
half dozen countries.

7 SUMMARY

The HyperCode inspection process is clearly more cost
effective than the existing paper—driven code inspection
process with meetings. First, there is the elimination of the
paper production and distribution costs which include such
things as special delivery services for time-constrained and

critical inspections. Second, there is the elimination of the
travel costs that often occur when inspectors are in
separated geographical locations for the synchronous meet-
ing to take place.

Furthermore, the HyperCode inspection process is more
interval effective. The interval is shortened in several ways.
First, the asynchronous approach eliminates the delay
inherent in scheduling the inspection meeting [20]. We note
that the empirical data we report here is the first such data
showing specifically that asynchronous code defect collec-
tion is as at least as effective as synchronous code defect
collection. Second, we have removed the compartmentali-
zation and sequencing of the typical inspection process and
induced a concurrent inspection process in which each
inspector proceeds at a pace and time convenient to his or
her schedule. Third, if there is a meeting, it is much shorter
and easier to schedule.

Finally, there is anecdotal evidence that the HyperCode
process is qualitatively better as well. More defects (albeit
less significant ones) are detected, the defect descriptions
are more complete in the resulting inspection report and,
when meetings do occur, they are better because they focus
only on unresolved (and, generally, important) issues.

With respect to related work, we note that, while there
has been much work on inspection structures, inspection
techniques, and automated inspection support, we believe
we are the first to report on the use of an intranet-based tool
to support asynchronous (that is, meetingless) code inspec-
tions. The primary effort in prior automation is in the
application of CSCW support for inspection collection
meetings—that is, in the support for synchronous meetings
(see, for example, [10], [1]). But, as we have shown above,
asynchronous code inspections are more cost effective and
at least as quality effective as synchronous inspections.
Moreover, the cost of asynchronous automated support is
significantly less than that of synchronous.

In this context of synchronous versus asynchronous, we
also note that our use of an empirically driven tool design
process was a significant contributing factor to the success
of this research and technology transfer project. Instead of
having a preconceived solution to this problem, we
empirically isolated the significant factors in the problem
and tuned the solution, via experimental techniques, to the
problem. Another significant contributing factor to our
technology transfer success was the fact that the imple-
mentor of HyperCode was a member of both the research
team and the project where it was to be used.

In the end, we had a simple and elegant solution that has
been easily and quickly adopted in a dozen or so projects
with participants in a half a dozen countries and that is
being used by over 1,000 people.

REFERENCES

[1] RM. Baecker, Readings in Groupware and Computer-Supported
Cooperative Work. San Mateo, Calif.: Morgan Kaufmann, 1993.

[2] K. Ballman and L.G. Votta, “Organizational Congestion in Large
Scale Software Development,” Proc. Third Int’l Conf. Software
Process, pp. 123-134, Oct. 1994.

[31 G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experi-
menters. New York: John Wiley & Sons, 1978.

[4] L. Brothers, V. Sembugamoorthy, M. Muller, “Icicle; Groupware
for Code Inspection,” Proc. Conf. Computer Supported Cooperative
Work, pp. 169-181, Oct. 1990.

PERRY ET AL.: REDUCING INSPECTION INTERVAL IN LARGE-SCALE SOFTWARE DEVELOPMENT 705

[5] AR. Dennis and].S. Valacich, “Computer Brainstorms: More
Heads Are Better than One,” |. Applied Psychology, vol. 78, no. 4,
pp- 531-537, Apr. 1993.

[6] M.E. Fagan, “Design and Code Inspections to Reduce Errors in
Program Development,” IBM Systems |., vol. 15, no. 3, pp. 182-211,
1976.

[7]1 J. Gintell, J. Arnold, M. Houde,].K. McKenney, R. McKenney, and
G. Memmi, “Scrutiny: A Collaborative Inpection and Review
System,” Proc. Fourth European Software Eng. Conf., Sept. 1993.

[8] P.M. Johnson and D. Tjahjono, “Assessing Software Review
Meetings: A Controlled Experimental Study Using CSRs,” Proc.
1997 Int’l Conf. Software Eng., pp. 118-127, May 1997.

[9] J. Knight and E. Meyers, “An Improved Inspection Technique,”
Comm. ACM, vol. 36, no. 11, pp. 51-61, Nov. 1993.

[10] R.E. Kraut and L.A. Streeter, “Coordination in Software Develop-
ment,” Comm. ACM, vol. 38, no. 3, pp. 69-81, Mar. 1995.

[11] F. Macdonald and J. Miller, “A Comparison of Tool-Based and
Paper-Based Software Inspection,” technical report, Dept. of
Computing Science, Univ. of Strathclyde, Glasgow, Scotland, 1997.

[12] V. Mashayekhi, J. Drake, W.-T. Tsai, and]. Riedl, “Distributed
Collaborative Software Inpection,” IEEE Software, vol. 10, no. 5,
Sept. 1993.

[13] D.E. Perry, N.A. Staudenmayer, and L.G. Votta, “Understanding
and Improving Time Usage in Software Development,” Trends in
Software: Software Process, A. Wolf and A. Fuggetta, eds., vol. 5,
John Wiley & Sons., 1995.

[14] A.A.Porter, A. Mockus, H.P. Siy, and L.G. Votta, “Understanding
the Sources of Variation in Software Inspections,” ACM Trans.
Software Eng. and Methodology, vol. 7, Jan. 1998.

[15] A.A. Porter, H. Siy, and L. Votta, “Understanding the Effects of
Developer Activities on Inspection Interval,” Proc. 20th Int’l Conf.
Software Eng., May 1997.

[16] A.A. Porter, L.G. Votta, and V.R. Basili, “Comparing Detection
Methods for Software Requirements Inspections: A Replicated
Experiment,” IEEE Trans. Software Eng., vol. 21, no. 6, pp. 563-575,
June 1995.

[17] A.A. Porter, L.G. Votta, H.P. Siy, and C.A. Toman, “An
Experiment to Assess the Cost-Benefits of Code Inspections in
Large Scale Software Development,” IEEE Trans. Software Eng.,
vol. 23, no. 6, pp. 329-346, June 1997.

[18] H. Siy, “Identifying the Mechanisms Driving Code Inspection
Costs and Benefits,” PhD thesis, Univ. of Maryland, College Park,
June 1996.

[19] L.G. Votta, “Comparing One Formal to One Informal Process
Description,” Proc. Eighth Int’l Software Process Workshop, pp. 145
147, Mar. 1993.

[20] L.G. Votta, “Does Every Inspection Need a Meeting?” Proc. ACM
SIGSOFT 93 Symp. Foundations of Software Eng., Dec. 1993.

[21] L.G. Votta and M.L. Zajac, “Design Process Improvement Case
Study Using Process Waiver Data,” Proc. Fifth European Conf.
Software Eng., Sept. 1995.

Dewayne E. Perry is currently the Motorola
Regents Chair of Software Engineering at the
University of Texas at Austin. The first half of his
computing career was spent as a professional
programmer, with the latter part combining both
research (as a visiting faculty member in
i3 Computer Science at Carnegie-Mellon Univer-
P sity) and consulting in software architecture and
N \'\ design. The last 16 years were spent doing
b b software engineering research at Bell Labora-
tories in Murray Hill, New Jersey. His appointment at UT Austin began in
January 2000. His research interests (in the context of software system
evolution) are empirical studies, formal models of the software
processes, process and product support environments, software
architecture, and the practical use of formal specifications and
techniques. He is particularly interested in the role architecture plays
in the coordination of multisite software development, as well as its role
in capitalizing on company software assets in the context of product
lines. He is a coeditor-in-chief of Wiley’s Software Process: Improve-
ment & Practice, a former associate editor of the /EEE Transactions on
Software Engineering, a member of ACM SIGSOFT and the IEEE
Computer Society, and has served as organizing chair, program chair,
and program committee member on various software engineering
conferences.

Adam Porter earned the BS degree summa
cum laude in computer science from California
State University at Dominguez Hills, Carson, in
1986. In 1988 and 1991, respectively, he earned
the MS and PhD degrees from the University of
California at Irvine. He has been an associate
professor with the Department of Computer
h Science and the Institute for Advanced Compu-
4 ter Studies at the University of Maryland since
: 1992. His current research interests include
empirical methods for identifying and eliminating bottlenecks in industrial
development processes, experimental evaluation of fundamental soft-
ware engineering hypotheses, and development of tools that demon-
strably improve the software development process. Dr. Porter is a
member of the ACM, the IEEE, and the IEEE Computer Society.

-

Michael W. Wade obtained the PhD degree
from the University of lllinois, Urbana-Cham-
paign, in 1984. He came to Bell Labs as a
software engineer. At Bell Labs, he has de-
signed and implemented large scale, fault-
tolerant real-time databases, and human inter-
face software for cellular switching systems. He
has also designed and implemented Web-based
software development tools. He is a member of
the IEEE.

Lawrence G. Votta received the BS degree in
physics from the University of Maryland, College
’ Park, in 1973 and the PhD degree in physics
b from the Massachusetts Institute of Technology,
o - Cambridge, in 1979. He currently leads the
) / A performance and availability modeling and ana-
il lysis group of the Common Platform Develop-
il 1 ment Department in Motorola’s Network
Systems Sector. His research interests are high
availability computing (new) and empirical soft-
ware engineering (his old favorite). Larry has authored or coauthored
more than 40 articles and book chapters in software engineering,
including empirical studies of software development from highly
controlled experiments investigating the best methods for design
reviews and code inspection to anecdotal studies of a developer’s time
usage in a large software development. He is a member of the IEEE and
ACM and is currently serving as an associate editor of the IEEE
Transactions on Software Engineering.

James Perpich’s biography is not available.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

