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On Object Systems and
Behavioral Inheritance

David Harel, Fellow, IEEE, and Orna Kupferman

Abstract—We consider state-based behavior in object-oriented analysis and design, as it arises, for example, in specifying behavior in
the UML using statecharts. We first provide a rigorous and analyzable model of object systems and their reactivity. The definition is for
basic one-thread systems, but can be extended in appropriate ways to more elaborate models. We then address the notion of
inheritance and behavioral conformity and the resulting substitutabiiity of classes, whereby inheriting should retain the system's original
behaviors. Inheritance is a central issue of crucial importance to the modeling, design, and verification of object-oriented systems, and
the many deep and unresolved questions around it cannot be addressed without a precise definition of the systems under
consideration. We use our definition to give a clear and rigorous picture of what exactly is meant by behavioral conformity and how

computationally complex it is to detect.

Index Terms—Object-oriented analysis and design, object systems, inheritance, verification, simulation, trace containment:

1 INTRODUCTION

INHERITANCE is a central issue in the object-oriented
paradigm. It has been introduced mainly to enable reuse.
We want to be able to spend less effort (and to decrease the
chance of errors) when respecifying things that have
already been specified for a more abstract or more general
class. However, reuse is not the only issue; we might also
want to make sure that the respecification leaves certain
aspects of the system’s behavior unchanged. It is this notion
of behavioral inheritance that we wish to investigate here.

The “is-a” subclassing relationship between object
classes is used to declare inheritance. Intuitively, given
two object classes 4 and B, we say that B is a subclass of A
(or B is-a A) if whatever we know about A can be
inherited to B. For example, negation is-a unary opera-
tion. The exact meaning of this, however, is not that clear. In
virtually all approaches to inheritance in the literature, the
is-a relationship between classes entails a basic minimal
requirement of interface conformity. This means that we
should be able to replace A with B without causing
incompatibility. But the mere ability to “plug in” a B
whenever we could have used an A without causing an
immediate compile time or runtime problem guarantees
nothing about the behavioral conformity of A and B. In other
words, interface, or structural, conformity means that B can
be asked to do anything that A can do and to look as if it is
doing what A does, even though it may be actually doing
something quite different. Behavioral conformity, on the
other hand, means not only can B be asked to do anything
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A can do, but it will do so in the very same way and with
the very same results. This notion is not new. It has its roots
in work of Wegner and Zdonik [26] and Liskov and Wing
[13], [14], and is often referred to as the Liskov principle. See
also Abadi and Cardelli [1]. Niestraz [17] discussed this
notion in the framework of state machine modeling, but on
a relatively simple level. Our work can be thought of as
providing a detailed proposal as to how one might define
the Liskov principle in a state-based object model setting
(see Harel and Gery [8]) and shows its connections with
Milner’s notions of simulation and bisimulation.

In object-oriented programming languages, behavioral
conformity is not much of an issue: When specifying the
subclass B we can decide whether to accept or override the
code of an operation (the method). In C**, for example, a
class derived from a base class can either adopt the original
behavior of the bases class or can turn it upside down {23].
In contrast, in OOAD, high-level object-oriented specifica-
tion methodologies are used and behavior is not necessarily
specified by writing code in a programming language, but
by state-based visual formalisms. The one used in most
such approaches is the language of statecharts [7]. This is
also true of the recently standardized UML [25], [8], [19], a
general-purpose modeling methodology that combines the
use-case process of OOSE [11] with two popular approaches
to object-oriented modeling—the one of Booch [2] and the
OMT [21]. In these methodologies, a statechart is attached to
a class and when an instance object of that class is “alive”
the statechart is in execution, controlling both how the
object communicates and collaborates with other objects
and also how it carries out much of its own internal
behavior.

Thus, a typical operation in OOAD will not be
implemented simply by a method consisting of a piece of
code that can be adopted or overridden, but will be
ingrained within the statechart of the class in question
and will often be subtly distributed therein. This means that
in OOAD, behavioral conformity becomes a much more
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complicated issue. What does it really mean to inherit
behavior? How complex is the detection of behavioral
conformity? What can be done to enforce it? How can we
specify that certain “behaviors” are to be inherited and
others not and what does the phrase “behaviors” even
mean? We believe that the OOAD world should address a
variety of such deep issues related to the behavioral
inheritance of state-based specification and should supply
engineers with means to help decide what they really want
and how to achieve it.

Current definitions of inheritance in the OOAD world
have adopted the relatively easy approach of enforcing
structural conformity only. In addition, some of them
provide simple restrictions on what can be changed in a
statechart when going from a class to an inheriting subclass
(see for example [3], [8], [25]). Specifically, a subclass B of A
will be initially based on the same underlying state-
transition topology, but with possible refinements—such
as new substates or modified targets of transitions—that
may enrich A’s behavioral capabilities. However, such
refinements can easily be shown to have the potential for
radically changing the behavior of the class, which may or
may not be what the specifier had in mind. Thus, while
relaxing behavioral conformity enlarges the scope of
inheritance, it places new responsibilities on the specifier
in figuring out the behavioral changes that a substitution
might entail. Since object-oriented models are intended to
be executable and to yield full running code [8], substitut-
ability and the algorithmic issues it raises become extremely
important.

In this paper, we define and study behavioral inheri-
tance. Qur main task is to define a basic, rigorous, and
analyzable model for object-oriented designs. We want it to
be powerful enough to capture the essence of object-
oriented analysis and design and to be set up in the spirit
of the UML and the tools that support it [25], [8], [20], [19].
To keep the model’s mathematics clean enough for our
purposes, we cannot use the full format that a team of
engineers would be using on a large real-world project; for
example, we will have to compromise on many of the
notions and notations that crowd the full UML standard
and which are not defined sufficiently well for our ultimate
quest. We believe that a clean and rigorous definition of
object-oriented designs is acutely needed, given the multi-
tude of levels of discourse appearing in the literature—
propositions versus predicates with variables, single versus
multiple thread designs, flat sequential state machines
versus statecharts, and symbolic directed messages versus
parameterized messages, to mention only a few. If we are
successful in this definitional goal, such a computational
model will enable us to provide precise definitions of
behavioral inheritance, to prove theorems about them, to
import work from other rigorous computational models
appearing in the literature (e.g., finite automata, CSP, CCS,
and Petri nets), as well as from other design paradigms
(e.g., specification, verification, and synthesis), and to
compare various formalisms among themselves (e.g.,
statecharts and live message sequence charts; see, for
example, [5], [9]). Results can then be extended and “lifted

up” to the more detailed and less clean realm of real-world
modeling languages, such as richer subsets of the UML.

This task is addressed in Section 2, where we define
object systems and their reactivity. Our definition is basic and
simple—in the terminology of logics of programs, this
would be called a propositional level model—but it can be
extended without too much trouble. It is also lengthy and
rather detailed, but there is no way around this if one wants
to be formal enough to actually prove things. This section
required the most work on our part and we regard it as the
paper’s main contribution. We believe that it constitutes a
clean and rigorous conglomeration of many of the bare
essentials of object oriented analysis and design modeling.
Essentially, an object system specifies a set of classes and
requests and object behavior is given by simple finite state
machines (which can be replaced by full statecharts — an
extension that is not crucial for our purposes here). An
object of a certain class can send single-thread requests to
other objects, referring to them by their class name and a
direct or indirect index. There are also control requests that
may ask for the creation or destruction of other objects. The
semantics is given by a simple run-to-completion rule.
Section 5 discusses briefly some of the restrictions we have
imposed and related extensions that are possible.

Then, in Section 3, we define what we believe are the
right notions of substitutability and behavioral inheritance.
We follow two approaches, as in classical work on the
verification and specification of concurrency: linear and
branching. In the linear approach, the requirement is that
every execution of the system obtained by substituting 4 by
B is a possible execution of the original system (the one
with A). In the branching approach, the requirement is that
the tree of possible executions of the system obtained by
substituting A by B can be embedded in the tree of
executions of the original system. Our definition is para-
meterized by a refinement mapping, which can be used to
specify the simultaneous substitution of several classes.

Sections 2 and 3 complete the definitions, making it
possible to start investigating the resulting notions of
substitutability. In Section 4, we take a first step in this
direction, by showing the connection between behavioral
inheritance and the classical refinement notions of trace
containment and simulation from the literature on the
semantics of concurrency [15]. From this connection, we
deduce the computational complexity of some relevant
algorithmic problems, such as deciding whether one class is
substitutable for another.

There has been a related effort at defining substitutability
in OOAD, which is described in [17], [22]. Like our
approach here, the idea is to adopt classical refinement
relations from the theory of concurrency, but there are
differences. In [17], the reduction to the classical notions is
achieved by introducing regular types for active objects. In
[22], it is achieved by translating behaviors given by state-
based visual formalisms (specifically, UML statecharts) to
code in an object-oriented programming language. More-
over, the substitutability discussion in [17], [22] is less
extensive than ours and is not as in-depth. For example, it
uses a simpler domain description (service types in [17] and
a simplified form of transition in [22]) and does not address
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issues like dynamic creation and destruction of objects, or
refinement mappings.

There are many reasons to develop a practical treatment
of behavioral inheritance, e.g., to enable automatic detection
thereof, to find syntactic constraints guaranteeing substitut-
ability, and to specify these constraints in languages such as
MSCs or LSCs [5]. Such a treatment must involve carefully
prepared rigorous definitions of a computational model for
object-oriented models and designs and for behavioral
conformity. Thus, we believe that our work sets the stage
for much further research that is essential on these issues.

2 OBJECT SYSTEMS AND THEIR SEMANTICS

2.1 Classes and Objects

We first define the elements that make up the system itself.
A setting is a tuple

S= (2701)"')07!)’

consisting of a finite set & of simple requests and n classes
0y,...,0, of objects, for some n > 1. We denote the set
{01,...,0,} of object classes by O. Using the simple
requests and the object classes in S, we can define systems.
A system that is based on S consists of instances of the
classes. These instances, which we refer to as the components
of the system, interact via the simple requests and some
more involved control requests which we will define later.
We can have, for instance, a system with three instances of
class 04, no instance of class Oy, and one instance of class
Os. We refer to the different instances of a class by indices in
IN*. For example, in the above system, we can denote the
participating components by O1(1], 01{2], 013}, and O3(1]. In
order to refer to a particular instance of a class O, we use
elements in

R = N* U {min, max}.

Thus, a reference n € R can be either direct, namely, n € N¥,
in which case the referred instance is Oln}, or indirect,
namely, n € {min, max}, in which case the referred instance
is O[z], for the minimal (respectively maximal) index z that
is relevant for the class O. We will later define exactly what
“relevant” means. ’

The evolution of a system involves creation and
destruction of components, initiated by requests. Formally,
a control request is a triple in {destroy,create} x O x R.
Thus, for example, (create, Oz,3) is a request to create an
instance of class O, that would get the index 3. A request is
either a simple request or a control request. We denote the
set of all requests by . Thus,

Q = T U ({destroy, create} x O x R)".

The transitions of the classes in S will be labeled by
guards. Each setting S induces a set G(S) of guards. Each
guard is of the form o/r, where g € Q is a request that
triggers the guard and 7€ (O xR x Q)" is a (possibly
empty) sequence of directed requests. Thus, we might write

GS)=Q/(0OxRxQ).

For example, the guard 01/(01,2,04); (O03,1,02) (for
clarity, we add a ”;” between directed requests) is triggered
by the request ;. In order for the guard to be accomplished,
the component 0,[2] should fulfill the request o4 (we will
soon explain what we mean by “fulfill”) and, sequentially,
the component Os(1] should fulfill the request ;. We term o
the trigger of ¢/7 and term 7 the action of o/r. When 7 is
empty, we omit the /.

We can now define the classes O; in more detail. Each
class O; in § is a finite state machine, given in the form of a

tuple
Oi = <Qia Q?a 61'7 ﬂi)i

where:

e (,is a finite set of states and we require the state sets
of different classes to be pairwise disjoint.

e QY C Q;is a set of initial states.

o §CQ;xGS)xQ; is a transition relation, each
element of which relates a source state with a target
state via a labeling guard.

e fB;eN*U{cc} is a bound on the number of
occurrences (different instances) of O; in a system
based on the setting S. When §; € N*, we say that
the class O; is bounded. Otherwise, (when §; = ), O;
is unbounded. We include B; in the description of O;
as the number of different occurrences that O; may
have plays an important role in the analysis of
systems based on settings with O;

We say that a class ‘O; is deterministic if for all states

g € Q; and requests o € £, at most one transition from ¢ is
triggered by o.

The graphical representation of a class is by standard
state diagrams. In labeling the transitions, we adopt the
notational convention of using “+” as a wildcard, ranging
over all possible values. For example, a transition labeled
(g, (create, O;, ¥),¢') stands for the infinitely many transi-
tions (g, (create, 0;,n),¢) with n € R. '

For a state g € Q;, we denote by into(q) the set of guards
o/7 labeling transitions that enter state g, that is, those for
which there exists a state ¢ with 6;(¢/,0/7, ).

Example 2.1. The setting S in Fig. 1 contains three classes:
HUMAN, COOK, and EGG. The set of simple requests is
{eat, prepare, boil, fry}. In order to fulfill these requests, the
class HUMAN uses control requests too. The bound on
the class HUMAN is 1 and the bound on the classes COOK
and EGG is 2.

We assume a system S that initially contains one
instance of HUMAN, two instances of COOK, and none of
EGG. Note that while the classes HUMAN and EGG are
deterministic, the class cook is nondeterministic. Indeed,
the cook has two choices for fulfilling a prepare request.
In Section 2.9, we will describe an activation of S.

2.2 System Activation

A system is activated by some external directed simple
request that is directed to one of the system’s components.
For example, the directed request (HUMAN, 1, cat) activates
the system S in Example 2.1. When a system is active, each
of its components may be either suspended or attentive. A
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eat/(COOK, 1, (create, EGG, min)); (COOK, 1, prepare);
(CoOK, 2, {destroy, EGG, max))

O

HUMAN

Fig. 1. A setting with three classes.

component is suspended when it makes a transition from a
certain state to another state, which may involve waiting for
the action of the transition’s guard to be accomplished.
Otherwise, the component is attentive.

We describe the status of a component O;{z] by a word
T— g, where g € Q; is the target state of O;[z] and 7€
(O xR x Q)* is the action that should be accomplished in
order for O;[z] to move to q. Thus, a status tells us what is
still expected to happen in the future in the instance in
question. Note that a component is attentive (in state g) iff
is empty. We use O to denote the set of all possible statuses.
For a status p = 17— g, we sometimes refer to 7 by action(p)
and to ¢ by state(p).

With each directed request that is not yet fulfilled, we
associate the component that has requested it and a
modem € {w,a}. Intuitively, the request is in mode w (wait-
ing) if the system has not started yet to take care of it and is in
mode a (active) otherwise. A full request is a 4-tuple
[Ojlz], O:[y}, 0, m), denoting a directed request (O;, y, o), with
mode m, requested by O;[z]. When the directed request is
external, we write env instead of Oj[z} to indicate that the
environment has initiated the request.

2.3 Positions and Configurations

We now define what the system looks like when “frozen” at
a given point in its dynamic behavior.
A position of S is a partial function

p:OxNt -0,

providing a class and an index with a status. The function p

is required to be defined only for pairs (O, z) for which O[z]

is an existing component in S.

When all the components in a position p are attentive, we
say that p is stable. For example, the function p; with
p1(HUMAN, 1) = g, p1(COOK, 1) = — ¢, and
p(COOK,2) =+t is a possible stable position of the
system S from Example 2.1. When some of the components
in a position p are suspended, we say that p is unstable. For
example, the function p; with

p2(HUMAN, 1) = (COOK, 1, prepare);
(COOK, 2, (destroy, EGG, {max)— = q),
p2(COOK, 1) = p2(COOK, 2) = - ¢,
and p2(EGG, 1) = —s is a possible unstable position of S.
Here, the components EGG [1], COOK [1], and COOK [2] are

attentive, and the component HUMAN [1] is suspended: it is
waiting for the directed requests (COOK,1,prepare) and
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(create, EGQ, *)
(destroy, EGG, *)

prepare [(EGG, max, boil} boil
prepare /(EGG, max, fry) fry

COOK EGG

(COOK, 2, (destroy, EGG, max)) to be fulfilled. Upon their
fulfillment, HUMAN [1] would move to g. In every position,
there may be at most §; instances of the class O;. Formally,
p(0;, J) is defined for at most §; integers j.

Each position contains information about the instances of
each class that are currently “alive,” i.e., they exist in the
system at the present moment. It also indicates whether
these instances are attentive or suspended. This information
enables a straightforward evaluation of references in R. We
distinguish between two types of evaluations, represented
by the partial functions:

eeval,: Ox R—N* and  aeval,:Ox R— N*.

While e.eval, only checks which instances of each class
exist, a_eval, also checks their availability, namely whether
they are attentive. Formally, for a position p and a class O,
we define the sets of indices

e-comp,(0) and  a.comp,(O)

by letting e_comp,(O) denote those indices x such that O[z]
is a component of S in p (i.e., p(0, z) is defined) and letting
a_comp,(O) denote those indices z such that O[z] is an
attentive component of S in p (i.e., p(0, ) = s for some s).
For every class O, we capture the true index pointed at by
the reference 7 by defining the functions e.eval, and a_eval,
as follows: :

e If n € N*, then e.eval,(0,n) = a_eval,(O,n) = 1.
e If » = min, then

e-eval,(0,n) = min e_comp,(O)

and a.evaly(0,7) = min a_comp,(O).

e Ifn = max, then e_eval,(O,n) = max e_comp,(O) and
a_evaly(0,n) = max a.comp,(O).

e In the last two cases, if e_.comp,(O) is empty, then
e-eval,(O,7) is undefined and similarly, if a_comp, (O)
is empty, then a_eval, (0, n) is undefined.

When we create a new instance of a class using an
indirect reference, we define the index of the new instance
to be the first free index for the class. Formally, given a
position p, a class O, and n € R, we define

U] If pe N*.
new,(0,n) = < e-eval,(0O,n)+1 If n = max.
min{v € N* : v ¢ e_.comp,(0)} Ifn= min.

For example, new,,(EGG,min) = new,, (EGG, max) = 2.
Note that when 7 € IN*, it may be that the new instance gets
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an index thatis not free for the class. There are several ways to
cope with this. While the simplest way is to disallow direct
indexing, we think that designers can often benefit from a
direct reference. So instead, one could define the semantics of
object systems so that transitions with control requests that
involves a creation of an instance that already exists are
ignored (that is, no new instance is created). More involved
solutions can refer to the status of the existing instance (e.g.,
create a new instance iff the existing instance is attentive),
they can switch the indexing to an indirect one only in case the
direct index is not free, and they can move to an error state.
A configuration of S is a pair

c= (p’r)’

where p is a position of § and I' is a stack of full requests.
Typically, I contains the external directed request that
initiated the activity of the system, and exactly all the
directed requests that appear in the actions of the statuses in
p. Intuitively, these directed requests still need to be
accomplished in order for S to move to a stable position.
In particular, the configuration c is stable iff p is stable and T’
is empty. The order of the full requests in I’ corresponds to
the order in which they should be fulfilled. Specifically, an
active request is fulfilled exactly when all the requests
above it in the stack have been fulfilled.

A configuration (p,T) is initigl if ' = () is the empty
stack and for all O and ¢ for which p(0, i) is defined, the
action action(p(0, 1)) is empty and state(p(O, 1)) € Q7. We
assume that a system initially has only a finite number of
instances of each class (even the unbounded ones) thus,
p(0,1) is defined for only finitely many pairs. Note that an
initial configuration is stable. A configuration is ripe if the
top element of its stack is an active full request and it is
unripe otherwise. :

We use C to denote the set of all configurations of a given
system S and C°® to denote the set of all its initial
configurations. For example, the set C° = {(p1, { })} contains
the single initial configuration of the system S from
Example 2.1.

2.4 Stack Operations

We describe stacks by tuples, with the left element of the
tuple being the top of the stack. In the definitions of system
dynamics below, we will be using the following functions
on stacks. Let E be a set and let ST (NST) be the set of
stacks (nonempty stacks, respectively) over E.

e top: NST — E. Given a nonempty stack I, the
function top(T') returns its top element. For example,

top({e1, e2,...,€q)) = €1.
e push:ST x E— NST. Given a stack I' and an
element e, the function push(I',e) returns the stack

obtained from T by pushing on it the element e. For
example,

push({er,es,...,eq),e) = {e,e1,€,...,€4).

e append: ST x ST — ST. Given given two stacks I’y
and Ty, the function append(I"), I';) returns the stack

883

obtained by placing the stack T'; on the top of the
stack I'y. For example,

append({ey, €2, ...,€q4), (€], €5,...,€y))
= (elveQa o -3edae’l" C:_,, s 76:1’)'

e pop: NST — ST. Given a nonempty stack I, the
function pop(T’) returns the stack obtained from I by
popping out the top element of I'. For example,

pop(<el,e2a .. -aed>) = (62,- . .,ed).

Finally, for a component Ofz] and an action 7, the stack
compose(O[z],7) of full requests is obtained from 7 by
replacing each directed request (O',n,0) in 7 by the full
request [O[z], 0'[n], o, w]. For example,

compose(O4 {1),{02,min,01 ) ; (O3,max,03) i(02,2,03))=
{{01(1},02[min},o1 ,w],=01 [1},03[max],03,w},[0: [1],02[2],73,w]).

2.5 System Reaction

We now define how one configuration leads to another in
the system’s dynamic behavior and for this we must first
define deadlocks. We say that c is a deadlock configuration if
one of the following holds:

e The first request that needs to be fulfilled in c is
directed to a nonexisting or suspended instance.
Formally, c¢=(p,I') is such that top(l)€
[-,O[n),-,-] and either a_eval,(O,n) is undefined,
or a-eval,(0,n) =z and T contains a full request in
[Olz], -5 --].

As we explain later, Ola.eval,(0,n)] is indeed the
instance to which the first request is directed. Note
that the latter case is possible only if € N*.

e The first request that needs to be fulfilled in c is a
destruction request directed to a suspended compo-
nent. Formally, ¢ = (p,T) is such that

top(T) € [-, -, (destroy, O, n), ., ]

and the component Ole_eval,(0,n)] is suspended.

e The first request that needs to be fulfilled in c is a
creation request to a class O; that has already
reached its allowed bound g; of instances. Formally,
¢ = (p,T) is such that top(T') € [, -, (create,O,n),a},
the bound for O is 8, and new,(O,n) > B.

Given two configurations ¢ = (p,T') and ¢’ = (¢/,T"), we

say that ¢ is a successor of ¢ in S if c is not a deadlock
configuration and one of the following holds (see intuitive

explanation after the definitions).

1. The configuration c is stable, with I = () and there
exist a directed simple request (0;,7,0) and a
transition

5i(5télte(p(0i ’ .’L')), U/Ta (]),
for & = a_eval,(O;,n), such that the following hold:

e p'(0;,z) =7 qand for all other pairs
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(0,2) € O x N,

we have p'(0, 2) = p(0, z).
e TI' = append(compose(O;[z], 7), {env, Oilz], 0, a}).
2. The configuration c is unstable and
top(T) € [, -,-, W]
Let
top(T') = [O;y], Oilnl, 7, w).
Then, there exists a transition

6;(state(p(0;, z)),0/7,9),
for z = a_eval,(O;,7), such that the following holds:

e p/'(0;,z) = 7 q and for all other pairs
(0,2) € O x N*,
we have p'(0, z) = p(0, 2).

I" = append(compose(O;{z), 7),
PuSh([Oj [y]’ O; [z]’ g, a‘], Pop(r)))

3. The configuration c is unstable and
top(T’) € [O1,-,-,a]-
Let
top(T') = [O;[y], O; 2], 0, a).

Then, it must be that p(O;,y) = (Oi,n,0) ; 7+ g for
some 7, T and ¢, and

o If o €X, thenp/(0j,y) = 7+ g and for all other
pairs

(0,2) € O x N,

we have p'(0, 2) = p(0, 2).
e If o = (destroy, Ok, n), then

?'(0;,y) = 7+ g, p'(Ok, e-evaly(Ok,n))

is undefined and for all other pairs
(0,2) € O x N*,

we have p/(0, z) = p(0, 2).

o If o= (create,Ofn), then p'(0;y)=7—gq
9 (Ok, new, (O, 7)) = — ¢f, for some g € Q},
and for all other pairs (0, z) € O x N*, we have
7 (0,2) = p(0, 2).

o I"=pop(D).

4. The configuration ¢ is unstable and T'=
(lenv, O;|z}, 0,a]) for some Oj[z] and o. Then, it must
be the case that p is stable, 0 € T, p’ = p,and I'' = ().

The various successor relations described above can be

understood as follows, where the first two cases involve
unripe configurations and the other two involve ripe ones.

In Cases 1 and 2, ¢ = (p,T) is an unripe configuration.

Moving from c to its successor ¢’ corresponds to the system
deciding how to fulfill a directed request and preparing for

it to be fulfilled, but not actually fulfilling it yet. When ¢ is
stable, the directed request is external, in which case it must
be simple. When ¢ is unstable, the directed request is the
one waiting at the top of the stack. In both cases, the direct
reference z to the instance of the class O; to which the
request is directed is calculated according to the current
position. Thus, an indirect reference in a directed request
becomes direct when the request is activated. Note,
however, that if the request is a control request involving
an indirect reference, then this reference is not yet
calculated. As to the new position in cases 1 and 2, p is
obtained from p by changing the status of the component
O;[z} to which the request is directed. The new status of
O;|z] depends on the transition along which it chooses to
proceed in order to fulfill the request. The new status
consists of the action 7 associated with this transition’s
guard and of its target state. When the directed request,
say (0;,z,0), is external, I' contains the full request
[env, O;[z],0,a). This full request indicates that (O;,z,0)
was requested by the environment and that the system is
now actively taking care of it. It also contains a direct
reference to the instance of O; that is taking care of ¢. Since
accomplishing O;[z]’s action is required in order for the
system to fulfill o, the stack I also contains the directed
requests in the action 7, with indication that they were
requested by O;[z] and that they are still waiting for the
system to take care of them. When the directed request
(0;,z,0) is not external, I' is updated by making the
reference to the instance O;|z] direct, changing the mode of
the request at the top of the stack to a and, as above, by also
containing the directed requests whose accomplishment is
required in order to fulfill o by O;fz].

In both of these cases, 1 and 2, we say that ¢ is a silent
successor of ¢ in S and write s_succs(c, ).

In Cases 3 and 4, ¢ = (p,T") is a ripe configuration and
moving from c to its successor ¢’ corresponds to the system
actually fulfilling a directed request. In both cases, the
directed request, say (O;,z,0), is active and is at the top of
the stack. If p is stable, the directed request is external and
we only need to pop it off the stack (and move to a stable
configuration). Since an external request must be simple,
this involves no changes in the position of the system. If p is
unstable and the directed request was requested by, say,
object O;[y), we also need to update the position of O;[y] by
removing the request (0;,7,0) (for the corresponding
n € R) from its status. Moreover, if the request is a control
request, this may involve the destruction or creation of
some new instance. Since ¢ is not a deadlock configuration,
destruction requests are directed either at an instance that
does not exist (in which case no destruction takes place) or
at an attentive instance. Also, creation requests are directed
at a class that has no more instances than its bound. Then,
the creation results in a new instance or an initialization of
an existing one.

In these cases, 3and 4, when (O;, z, o) is simple, we say that
¢ is a (0;,0)-successor of c in S and write succs(c, 0;.0,¢).
When (0;, z, 0) is a control request, we say, again, that ¢’ isa
silent successor of ¢ in S and write s_succs(c, ¢').

Note that while an unripe configuration may have many
silent successors, a ripe configuration has only a single
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a/{0s,1, (create, 0, max)); {O1, max, a)
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(create, 01, max)

@Q@@

Fig. 2. A setting that is a base for a system with an infinite run.

successor. This unique successor is silent if the directed
request at the top of the stack is a control request and it is
not silent if the request is a simple one. Note also that the
succs relation ignores the particular instance that has
fulfilled the requests and retains its class only.

2.6 Reachability and System Runs

For two configurations cand ¢/, we say that ¢’ is a successor of ¢
if s_suces(c, ¢) or there are O; and o such that succs(e, O;.0,¢').
Then, ¢ is (O;,o0)-reachable from ¢ in § and write
succy(c,0;.0,¢), if there is a sequence cg,c1,...,cm Of
configurations such that

¢ = ¢, tm = ¢, succs(cm-1, 0.0, ¢n),

and for all 1 <i < m, we have s_succs{c;—1,¢). Thus, ¢ is
(O;, 0)-reachable from ¢ in S iff there is a (possibly empty)
sequence of silently successive configurations thatlead from ¢
to a configuration ¢” such that ¢ is an (0;, o)-successor of ¢”.

A configuration ¢ is reachable in the system S if there
exists a finite sequence of successive configurations
Cg,---,Cm, Such that ¢g € C% and ¢, = ¢.

We now discuss sequences of configuration changes,
constituting an entire execution, or run, of the system.

A run of S is a sequence r = ¢, ¢1,... of successive
configurations such that ¢ is stable and either r is infinite,
in which case ¢; is unstable for alli > 0, orr=¢p,...,cn is
finite, in which case ¢; is unstable forall 0 < i < mand ¢, is
either stable or a deadlock. We say that a system S is
deadlock free if there is no reachable deadlock configuration
in S. Thus, if S is a deadlock free system, all the runs of a S
that start in a reachable stable configuration are either
infinite or terminate in a stable configuration.

2.7 Bounded Systems

The definition of runs considers both finite and infinite
sequences of successive configurations. We now suggest a
natural restriction on systems that guarantees the finiteness
of its runs. To motivate this, here is an example of a system
that admits an infinite run:

Example 2.2 The setting in Fig. 2 contains two classes: O,
and O,. The set of simple requests is the singleton {a}.
The bound on class O; is co and the bound on class O is
1. We assume a system based on this setting that initially
contains one instance of O, and one instance of O,.

In order to fulfill the external request (Oy,1,a), the
component O,[1] requests the component O,[1] to create
a new instance of the class O; and then requests this
instance, which receives the index 2, to fulfill a. In order
to fulfill the directed request (Oy,2,a), the component
0, ]2} initiates the creation of another new instance of the
class O;, receiving the index 3, and the same routine

continues, resulting in infinitely many instances of O,
created during an infinite run.

Example 2.2 illustrates an unbounded “creation cycle” of
instances, which we might want to avoid. After formally
defining this notion, we show that acyclic instance creation is
a sufficient condition for guaranteeing the finiteness of runs.

For two classes O and O’ and two requests ¢ and o', we
say that O may ask o’ from O for o if there is a transition
(@1,0/7,q2) of O such that 7 contains a directed request of
the form (O/,.,¢’). In other words, O may fulfill ¢ by
accomplishing an action in which some instance of O’ is
required to fulfill ¢’

For two classes O and O, we say that O may create O if
there is a finite sequence O1,0s,...,0, of classes and a
finite sequence a1y, ..., 0, of requests, such that O, = O, for
all 1 < i < n — 1, the class O; may ask 04 from O;, for g,
and o, is of the form (create, 0, ). Intuitively, O may create
O' if it can take a transition that may eventually lead to the

- creation of an instance of 0. In Example 2.2, O; may create

Oy, but it is not the case that O; may create O,. Indeed,
while Oy can fulfill a requirément to create O, it cannot
initiate such a creation.

We say that a setting S is strictly bounded if all its classes
are bounded. It is said to be bounded if there is no
unbounded class O in § such that O may create 0. A
system is strictly bounded if it is based on a strictly
bounded setting and it is bounded if it is based on a
bounded setting.

Recall that each class O; may have at most §; instances in
a system that is based on a setting in which the bound on O;
is 5;. When the setting is strictly bounded, this guarantees
that every class has only finitely many instances. It can be
shown that when the setting is bounded, we can also bound
the number of instances of all classes by a finite number. For
that, we define, for each class O;, a context-sensitive bound (3;.
Unlike g;, the bound g} depends on the other classes in the
setting, on the fact that the setting is bounded and on the
initial configuration of the system. (Recall that the initial
configuration of a system specifies the initial number of
instances of each class, which must be finite.)

We can now show that a bounded system cannot have an
infinite run. For that, we first bound the number of
configurations that a bounded system may have. When
the system is not strictly bounded, the arguments are
exactly the same, with ] replacing S;.

Lemma 2.3. The number of configurations of a bounded system is
finite.
Proof. Consider a system S over a bounded setting

S =(2,0,,...,0,), in which we have
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0; = (Q:. Q. 6:.8).

We first consider a strictly bounded S, in which case we
prove that the number of configurations of S is bounded

by
(ﬂm)-ﬂ(m-ﬂ( 11 lr|+1))-
i=1 9€Q, \ o/T€into(q)

i=1

In every configuration, each component O;[z] of the class
O; of S has a status p= 7 g. By the definition of
successive configurations, 7 must be a (possibly empty)
suffix of some action in into(g). Accordingly, component
O; may have at most [],cq, [T/reimtorq I7] +1 different
statuses. Consider a configuration ¢ = (p,I'). Once we fix
the status of each of the components in p, we also fix the
set of full requests in T, yet we do not fix their order in T
Such an order is imposed by an order on the set of
components. Indeed, the full requests of an object form a
single ‘block’ in T. Hence the additional factor of
(H?:l Bi)l

To see that the full requests in the stack come in
blocks, assume by way of contradiction that the stack T’
of the configuration ¢ contains two full requests r; and 2
of the form [O;[z], -, -, -] and a full request r3 of the form
Oy}, -, -, -], with (i,z) # (j, ), between them. Without
loss of generality, assume that r; is above r; in the stack.
By the definition of successive configurations (cases 1
and 2), full requests are pushed onto the stack in blocks.
Therefore, when a run reaches the configuration c, the
run must have a prefix that ends in some configuration
¢ = (p',I"), such that the stack I contains r; and r3 but
does not contain ry, and top(I') € [-,O;[z},-,-]. The
configuration ¢ is a deadlock configuration, contra-
dicting the reachability of ¢ in the run. o

For a system S based on a bounded setting S, let
llconfs(S)|| denote the bound on the number of configura-
tions that S may have. As explained above, when some of
the classes in S are unbounded, this bound may depends on
the set CY, of S's initial configurations.

Lemma 2.4. All the runs of a bounded system are finite.

Proof. We actually prove a stronger claim, namely that all
the unstable configurations in a run are different. The
lemma then follows from the fact that S has only finitely
many configurations and from the fact that all the
configurations of a run, with the possible exception of
two, are unstable.

Consider a run r =c¢y,c,... For all indices k, let
¢x = (px, ). We prove that for every depth d >0, no
configuration ¢ = (p,T") with a stack of depth d can lead
to a configuration that agrees with I on the bottom
d elements without visiting a stable configuration. In
particular, if there are two indices 0 < i < j for which
¢ = ¢; = ¢;, there must be a stable configuration ¢, for
i < k < j, contradicting the fact that r is a run.

The proof proceeds by induction on d. First, if d =1,
the stack T is of the form ([env,-,-,a]), and the only
configuration reachable from c is stable. For the induc-
tion step, we distinguish between two cases. If top(T’) is

an active full request [O[z]. O'[y]. 0. a], then the successor
configuration of ¢ has a stack with d — 1 elements, and
the claim follows from the induction hypothesis. If
top(T") is a waiting full request [O[z], O'[y]. o, w], then the
successor configuration of ¢ agrees withI" on all the d ~ 1
bottom elements, and it has the full request
[O]z),O'ly), 0, 4] as its d'th element. In order to reach a
configuration whose stack agrees with I" on its bottom
d elements, this full request has to be popped out. This,
however, involves a stack of depth d — 1, to which the
induction hypothesis applies. a

2.8 The Trace Set

We now abstract away some of the unimportant details of a
system’s runs, to obtain the behavioral “signature” of the
system as a language over an appropriate alphabet of
request symbols. This will enable us to compare behaviors
of different systems, for which we do not care about the
particular instances of classes that have been activated, or
about control requests, etc.

Specifically, a system based on the setting S will generate
a language over the alphabet A= 0.Z. A letter in O.T
corresponds to a directed simple request, which means that
in our definition of the language of a system we ignore
control requests and transitions that move from an unripe
configuration to a silent successor.

Consider a system S, a stable configuration ¢, and a
directed simple request (O, z,0). The trace set of S from c on
(O,z,0) is the language £2° C A* of all words w that
describe a sequence of directed simple requests that the
system in configuration ¢ may fulfill in order to accomplish
the directed request (O,z,0). The language ignores the
particular instances of the classes that are involved in
accomplishing the directed requests and refers to the classes
only (that is, the alphabet is (O.Z) rather than O x R x ).
The order of the directed requests in such a w corresponds
to the order in which they are accomplished, so that, in fact,
we have last(w) = O.0, where last(w) is the last letter in w.
Formally, a word w = wp - w; - - - wk is in /.ZCO"’ iff there exists
a sequence ¢y, . . ., Cy+1 Of configurations of S such that ¢ =
¢ and for all 1 <1 <k, we have succy(ci, w;, ¢iy1). We say
that cg,. . ., cre1 Witnesses the membership of w in [,?'”.

Note that since S is nondeterministic, a word w may
have several witnesses to its membership in £2. For two
configurations c and ¢/, and a word w € A*, we say that w
leads from c to ¢, denoted leads(c,w,c), if there exists a
witness ¢, ..., to the membership of w in £**),

Consider a finite or infinite sequence & = (O°,20,07) -
(04, z1,6%) - (0?%,22,0%) - - - of directed simple requests. The
trace set of S on £ is the language £ C (A" U A¥) such that a
word w = wy-w; - wy--- is In L8 iff for each w; € A*, we
have last(w;) = O'.0’ and there exists a sequence ¢g, 1, ¢; . . .
of stable configurations ¢; € C (these sequences are finite iff
¢ is finite), such that ¢, € CY and for all j >0 we have
leads(cj, wj, ¢j+1). When S is not clear from the context we
denote the trace set of S on & by L5 instead of L.

2.9 More on the Egg/Cook Example

Consider the system S from Fig. 1. The initial configuration
of S is ¢y = (py. ), where
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po(HUMAN, 1) = — ¢, po(COOK, 1) = po(COOK, 2) =+ t,

and T'p = (). The trace set of S from ¢y on the directed
request (HUMAN, 1, eat) contains the finite word

w = EGG.boil; COOK .prepare; HUMAN .eat.

A witness to the membership of w in LAMAN js described
below. We first describe the relevant run of S. Each
configuration ¢; = (p;, ;) is described by p; and I';. When
we describe p;,; we show only pairs in O x N for which
Pi+1 # p;. In particular, p;;1(0, z) = 1 means that, although
in p; the instance O[z] exists, it no longer exists in p;4; (that
is, pi+1(0, ) is undefined).

po(HUMAN, 1) = gq.

po(COOK, 1) = po(COOK, 2) =+ ¢.

Lo = ().

The initial configuration has one instance of HUMAN
and two instances of COOK. The configuration is
stable with an empty stack. Hence, the system is
ready to handle external requests from the environ-
ment. Among the cases described in Section 2.5, this
corresponds to Case 1. The request (HUMAN, 1, eat)
eventually arrives, inducing the full request
[env, HUMAN]1], eat, a]. In order to fulfill the simple
request eat, the class HUMAN asks the first cook to
create an egg and prepare it and then asks the
second cook to destroy the egg. Accordingly, we
have:

p(HUMAN, 1) =
(COOK, 1, (create, EGG, min)); (COOK, 1, prepare);
(COOK, 2, (destroy, EGG, max))— gq.

=
([HUMAN({1],COOK|1],(create, EGG,min),w],[HUMAN([1},
COOK|1},prepare,w],[HUMAN{1],COOK{2],(destroy, EGG,max),w],
lenv, HUMAN(1],eat,a]).
The configuration ¢; is unstable and unripe. This
corresponds to Case 2. The component COOK[1]
takes the transition guarded by (create, EGG,1) in
order to fulfill the control request at the top of the
stack. Since the task of this transition is empty, no
new requests are pushed onto the stack and the
position of COOK[1] does not change:
P2 = Pp1.

Ty=
{[HUMAN[1],COOK(1],(create, EGG,min).a),[HUMAN(1],
COOK(1],;prepare,w] {HUMAN[1],COOK{2],(destroy, EGG.nax),w],
lenv HUNAN(1}.cat,a)).

The configuration ¢, is ripe. This corresponds to

Case 3 and the system fulfills the request at the top
of the stack. This involves an update of the position
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of HUMAN][1], which requested it and a creation of a
new instance of EGG:

p3(HUMAN, 1) = (COOK, 1, prepare);
{COOK, 2, (destroy, EGG, max))— gq.

p3(EGG, 1) = —s.

3=
([HUMAN(1],COOK|[1},prepare,w],
{HUMAN({1},COOK|[2},(destroy, EGG,max),w],[env, HUMAN({1] eat,a}).

Like c;, the configuration c3 is unstable and unripe,
corresponding to Case 2. The component COOK][1]
takes the transition guarded by prepare in order to
fulfill the simple request at the top of the stack. Since
the task of this transition is not empty, a new request -
is pushed onto the stack and COOK[1] becomes

suspended:
ps(COOK, 1) = (EGG, 1, boil)— t.

Te=
{[COOK[1),EGG{1],boil,w},(HUMAN(1},COOK|(1),prepare,s),
[HUMAN(1],COOK|2),(destroy, EGG,max),w],lenv,HUMAN(1),eat,a)).

The configuration c4 is also unstable and unripe. The
component EGG[1] takes the transition guarded by
boil in order to fulfill the simple request at the top of
the stack. Since the task of this transition is empty,
no new requests are pushed onto the stack, and the
position of EGG[1] does not change:

D5 = Pa.

5=
{[COOK{1),EGG(1),boil,a},[HUMAN(1],COOK([1] prepare,aj,
[HUMAN(1],COOK{2),(destroy, EGG,max),w],[env,HUMAN(1} eat,a]).

The configuration ¢ is ripe and the system fulfills the
request at the top of the stack. This involves an update
of the position of COOK[1], which requested it.
ps(COOK, 1) = — t.

Ty=
{HUMAN(1],COOK{1] prepure,a),[HUMAN(1], COOK 2],
(destroy, EGG,max),w},[env,HUMAN(1],cat,a}).

The configuration cg is again ripe:

p7(HUMAN, 1) = (COOKX, 2, (destroy, EGG, max))— .

Iy =
((HUMAN([1], COOK(2], (destroy, EGG, max), w],
[env, HUMAN(1], eat, a]).
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The configuration ; is similar to configuration ¢;, only
that here HUMAN([1] waits for the second cook to
destroy the egg. The component COOK[2] proceeds
with the transition guarded by (destroy, EGG, 1):

® =D

Ty =
((HUMAN[1], COOK[2], (destroy, EGG, max), a],
[env, HUMAN(1}, eat, a]).

The configuration c; is ripe and all the requests in it
are active. It is left to update the positions of the
involved components, while popping the requests
from the stack:
o po(EGG,1)= L.
po(HUMAN, 1) = — q.
e Ty = ([env, HUMAN][1}, eat, a]).
The configuration ¢y corresponds to Case 4. The only
request in the stack is active and is an external one:
® Do = Py-
e Ty=() .
The run c,...,co implies that the following succession
relationships hold:

succ(co, EGG.boil, ¢g), succy(cs, COOK.prepare, er)

and succl(c;, HUMAN.eat, ¢y0). Thus, co, ¢, 7, c10 Witnesses
the membership of

EGG.boil; COOK.prepare; HUMAN. .eat

in L‘,E,UMAN'“". Since the cook can satisfy the prepare request
by fulfilling two nondeterministic choices (either boil or fry
the EGG), the trace set CgUMAN'“‘ contains also the word

EGG. fry; COOK .prepare; HUMAN .eat.

3 SussTITUTABILITY: REFINEMENT RELATIONS

We are now finally ready to define the notions of behavioral
inheritance we are interested in. Our main interest is in
capturing substitutability; namely, the ability to replace an
object A with another object B without losing behaviors.
Thus, B inherits from A. We do so in two ways, linear and
branching, in line with the classical dichotomy in the
literature on concurrency and verification (see e.g., {18)).
The study of refinement relations in these areas is
motivated by the need to check that a given system is a
correct implementation of a given, more abstract, specifica-
tion. There, we want every behavior of the implementation
to be also a possible behavior of the specification. Accord-
ingly, we check that the replacement of the specification by
the implementation does not introduce new behaviors. In
the case of inheritance and substitutability, we use refine-
ment relations for the other direction: we check that the
replacement of class A by class B, i.e., B inheriting from 4,
does not involve loss of behaviors.

Some researchers (e.g., [6]) follow the first direction also
when they define subtyping in object-oriented analysis and
design. We partially capture the fact that B may be less
abstract than A by the notion of refinement mapping (see

below) and by the fact that we ignore control requests in the
definition of trace containment and simulation. This allows
us to map a behavior of the original system that no longer
exists in the new system into an alternative behavior that
differs in the objects that carry it out and in the control
requests that were required to accomplish it. In Section 5,
we discuss other relations between the inheriting and
inherited class and how our definitions and results here
extend to them. In particular, we discuss refinement of
requests, which combines the two directions mentioned
above (for example, it allows behaviors to disappear due to
the removal of nondeterminism, or to be replaced by several
other refined behaviors). We do believe, however, that
behavioral inheritance should correspond mainly to adding
new stuff, as is the case when inheriting and object’s
structure (that is, behavioral inheritance is-a inheritance.)

Consider two settings S; and S, over the same set ¥ of
simple requests. Let O; and O, be the set of classes in &
and S, respectively, and let A; = 0;.Z and Ay = 0,.X be
the corresponding alphabets. A refinement mapping is a
function f: @, — O;. We extend the mapping f to letters,
words, and languages in A; in a straightforward way. Thus,
f maps a letter O.0 in Ay to the letter f(O).o in Ay, it maps a
word w € (A3 UAY) to the word obtained from w by
applying f to its letters and it maps a language £ of words
over A; to the language of words over A; obtained from £
by applying f to its words.

3.1 The Linear Case: Trace Containment

Here, we want to capture the simple notion whereby (the
essential part of) any run in the parent class A is also a run
in the inheriting class B. This notion will thus involve single
sequences; hence the term “linear.”

We say that a system S; that is based on &) is trace
contained in a system S, that is based on Sy, denoted
S; C S, if there exists a refinement mapping f: O1 — O
such that for every sequence £ € A;UAj, we have
20 ¢ 7(£49). That'is, 5, is trace contained in 5, iff there
exists a refinement mapping f so that every sequence of
directed requests that S, generates as a reaction to some
input f(&) corresponds to the application of f to a sequence
of directed requests that S, generates as a reaction to §.

When §; C S, with the refinement mapping f, we say
that Sy linearly refines S, by f. Note that since the languages
generated by S and S, ignore control requests and ignore
the particular instances of a class that fulfills a request, so
does our definition of linear refinement.

Linear refinement gives rise to our first notion of
behavioral inheritance, which we call linear substitutability.
A class A is linearly substitutable by B in a system S (or, if
we want to use the terminology of object models and
inheritance, B inherits from A, or B is-a A) if for some f
the system S linearly refines the system obtained from S5 by
replacing A with B and similarly for the simultaneous
substitution of a number of classes. This notion can also be
defined for substituting instances rather than entire classes.

Example 3.1. Consider the setting S in Fig. 3, obtained from
the setting S of Example 2.1 by removing the transition
(t, prepare/ (EGG, max, boil), t) from the class COOK and
removing the transition (s, boil, s) from the class EGG.
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eat/(COOK, 1, (create, EGG, min)); (COOK, 1, prepare);
{COOK, 2, (destroy, EGG, max))

HUMAN

Fig. 3. A nonboiling setting.

Consider a system S, that is based on S; and which
initially contains one instance of HUMAN and two
instances of COOK. It is not hard to see that the system
S| is trace contained in the system S from Example 2.1,
by the identity refinement mapping. On the other hand,
S is not trace contained in 9;. Indeed, while every trace
of 5; can be generated by S, whose cook has more

nondeterministic choices as to how to fulfill a prepare .

request, the traces of § that follow the boiling option are
impossible in 3;. It follows. that the classes COOK and
EGG of S are linearly substitutable by these of S, but not
vice versa.

3.2 The Branching Case: Simulation

Here, we want to capture a more subtle concept of
substitutability, whereby (the essential part of) any behavior
in the parent class A is somehow present in the total
behavior of the inheriting class B. This notion will implicitly
involve trees hence, the term “branching.”

A pair (f,H) consisting of a refinement mapping f:
0Oy — O, and a relation H C C} x C; between the config-
urations of S; and Sy, is a simulation pair from S to S, if for
every ¢; and ¢, with H(c;,¢p) and for every configuration
¢} € C; and simple directed request Oz.0 € O3.X such that
succy, (1, f(O1).0,¢;), there exist a configuration ¢, € C»
such that succ} (¢, 01.0,6) and H(q;, ).

We say that S, is simulated by S2, denoted S < S, if there
exists a simulation pair (f, H) such that for every initial
configuration ¢} € C?, there exists an initial configuration
g e with H(c],&). When S; <S5, with refinement
mapping f, we say that S) branchingly refines S; by f.

Intuitively, S; branchingly refines S; by f if every
behavior of S; (ignoring control requests and ignoring the
particular instances of a class that fulfill a request) is present
also in ;.

Branching refinement gives rise to the second notion of
behavioral inheritance, branching substitutability. A class A is
branchingly substitutable by B in a system S if for some f
the system S branchingly refines the system obtained from
S by replacing A with B and similarly for the simultaneous
substitution of a number of classes.

Example 3.2. Consider the setting Sa in Fig. 4, obtained
from the setting S of Example 2.1 by replacing the class
COOK by two classes, BOILING-COOK and FRYING-
COOK, such that BOILING-COOK is obtained from COOK
by removing the transition

(t. prepare/ (EGG, max. fry), t),
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(create, EGG, *)
(destroy,EGG, %)
prepare /(EGG, max, fry)

fry

(D

COOK EGG

and FRYING-COOK is obtained from COOK by removing
the transition (t, prepare/(EGG, max, boil), t). In addition,
the class HUMAN is modified in S, so that the eat request
can be fulfilled by two nondeterministically chosen
transitions, one that activates BOILING-COOK and one
that activates FRYING-COOK. Thus, while in § HUMAN is
deterministic and COOK is nondeterministic, in S; HU-
MAN is nondeterministic and the two cooks are
deterministic.

Consider a system S, that is based on S; and which
initially contains one instance of each of the classes
HUMAN, BOILING-COOK, and FRYING-COOK. It is not
hard to see that the system S is trace contained in the
system Sy, with the refinement mapping

F(HUMAN) = HUMAN, f(BOILING-COOK)
= f(FRYING-COOK) = COOK, and f(EGG)
= EGG.

On the other hand, § is not simulated by S;.
Intuitively, in S the nondeterministic choice of boiling
of frying an egg is left to the class COOK and is therefore
taken only after the prepare request is pushed onto the
stack. In contrast, in Sy the nondeterministic choice of
boiling of frying an egg is taken by the class HUMAN,
before the prepare request is pushed onto the stack.
Another way to view this is that while the system §
satisfies the specification “after the cook creates an egg
he/she has the option of either boiling it or frying it,” the
system S, does not satisfy this specification. Note that
the specification refers to the branching behavior of the
system, namely to the possible nondeterministic choices
its components may or may not take. Since the system §
is trace contained in Sy, all its linear behaviors are
allowed by S,. In particular, in both systems, the cook
boils or fries an egg after creating it. It follows that the
classes HUMAN, BOILING-COOK, and FRYING-COOK of §
are linearly substitutable by those of S,, but they are not
branchingly substitutable by them.

3.3 Branching is Stronger

Recall that trace containment refers to the trace sets of
systems, whereas simulation refers also to their branching
structures, namely to the trees induced by systems. The
ability to embed trees of one system in trees of another
system is at least as hard as the ability to embed traces.
Specifically, Milner showed that for systems given by state-
transition graphs, simulation implies trace containment but
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cat/(FRYING-COOK, 1, (create, EGG, min)); (FRYING-COOK, 1, prepare); (FRYING-COOK, 2, (destroy, EGG, max))
eat/{BOILING-COOK, 1, (create, EGG, min)); (BOILING-COOK, 1, prepare); (BOILING-COOK, 2, (destroy, EGG, max))

HUMAN K’

I

(create, EGG, *)
(destroy, EGG, %)

prepare [(EGG, max, fry)

FRYING-COOK
Fig. 4.5, C S, yet S, £ S.

not vice versa [15]. As illustrated in Example 3.2, this is true
for our object systems too:

Proposition 3.3. Branching substitutability implies linear
substitutability, but not vice versa.

We note, however, that as with state-transition graphs,
when all the components of the systems are instances of
deterministic classes, simulation and trace containment
coincide.

4 DETECTING SUBSTITUTABILITY

Both refinement relations, trace containment and simulation,
are witnessed by a refinement mapping. Usually, the
refinement mapping is known and one wants to check
whether it indeed witnesses a linear or a branching refine-
ment. In simpler words, we make a decision about which
classes in one system we want to be replaced by, or to
correspond to, classes in the other, and we can then talk about
one system inheriting behavior from the other, i.e., substitut-
ing one for the other. In this section, we address the
algorithmic/computational problem of detecting whether
indeed the inheritance proposed by the mapping is behavio-
rally correct. That is, we want to detect substitutability.
Technically, we have to solve the following problem:

Problem 4.1. Given two systems Sy and S; and a refinement
mapping f : Oy — O,, does f witness a linear or a branching
refinement of Sy by Si? '

We first define labeled state transition graphs and refinement
relations for them (see, e.g., [18]).

A labeled state transition graph (graph, for short) is a tuple
G = (A, V,E,V®, where A is an alphabet, V is a finite set of
states, E C V x A x V is a set of directed edges, labeled by
letters from A, and V° C V is a set of initial states. A path in
G is a (finite or infinite) sequence m = vp,ay,v1,01,...
satisfying vp € V¥ and E(v;,a,vi41), for all i>0. The
path 7 induces the trace 74 = ag-a;--- in A*U A

Consider two graphs G; = (4,4, E, V) and Gi =
(A, Vo, E5, V) over the same alphabet. We say that G| is
contained in G, (denoted G, C G») if every trace of G is also
a trace of G». A relation H C V; x V4 is a simulation relation

BOILING-COOK

(create, EGG, )

(destroy, EGG, ) boil
prepare [ (EGG, max, boil) fry

EGG

from G, to G, if for all v; and v, with H(v;,1;), and for all
vy € Vi and a € A such that E;(vy, a,v}), there exists v, € V;
such that E(ve, a,v;) and H(u}, u)). A simulation relation H
is a simulation from G to G, if for every v; € Vl0 there exists
vz € V@ such that H(vy, v;). If there exists a simulation from
S to ', we say that G, simulates G and we write G, < Gs.

The time complexity of checking trace containment and
simulation between two graphs is well known. The trace
containment problem is PSPACE-complete and the simula-
tion problem is PTIME-complete [16], [24], [12].

Getting back to our subject matter, an object system can
be seen to induce a labeled state transition graph, by taking
the states of the graph to be the reachable configurations of
the system and its labeled transitions to be the relation succ.

Formally, we set this up as follows: Consider a system §
over a setting S = (,0;,...,0,) with a set C of reachable
configurations. By Lemma 2.3, C is finite. The graph
induced by § is then taken to be

Gs = (0.%, C, succs, C°).

We refer to Gg as a flat system. Given a flat system with
classes O and a refinement mapping f: O — O, the new
flat system f(Gg) is obtained from G simply by applying f
to the labeling function of Gs.

Proposition 4.2 Given two systems Sy and S, and a refinement
mapping f: Oy — Oy,

1. S linearly refines Sy by f iff Gs, € f(Gs,)-
2. 8 branchingly refines S; by f iff Gs, < f(Gs,).

The complexity of checking substitutability now follows
from the known bounds for checking trace containment and
simulation stated above, along with the blowup involved in
going from a system S based on a setting S to its flat system
Gs. By the definition of G, this blowup is a function of the
bound |jconfs(S)|| on the number of configurations in § and
as detailed in Lemma 2.3, it may be very significant. In fact,
under certain assumptions, the blowup may be even
doubly-exponential: If we assume that the bounds §; are
given in binary, then a class with a description of length
O(m) may have 2" instances. So, if the class has two states,
it contributes a factor of 22 to the size of a flat system,
giving rise to a double-exponential blowup even for a single
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class with two states. In the theorem below, we assume that
the bounds 3; are either constants or are given in unary.
Then, |confs(S)|| is at most exponential in the description
of S, implying an exponential increase in the complexity of
the trace-containment and simulation problems with
respect to the complexity of the same problems for graphs.

In [10], we study the complexity of verifying concurrent
transition systems and show it to be exponentially harder
than verifying flat systems. In particular, we prove EXP-
SPACE and EXPTIME lower bounds for the trace-contain-
ment and the simulation problems, respectively, for
concurrent systems. The lower-bound proofs use concur-
rent systems whose components are identical up to some
parameters (the proofs are done by reductions from Turing
machines and each component corresponds to a location in
the description of a configuration of the machine). As such,
they can also be described as instances of the same class,
implying that the exponential increase in the complexity of
the trace-containment and simulation problems cannot be
avoided in our setting either.

This discussion thus gives rise to the following:

Theorem 4.3. Consider two systems S; and S, based on
settings Sy and Sy, respectively, and a refinement mapping
f . 02 - 01. -

1. The problem of deciding whether Sy linearly refines So
by f is EXPSPACE-complete. Specifically, it can be
solved in space polynomial in

llconfs, (S1)I| - llconfs, (S2)l-

2. The problem of deciding whether S, branchingly
refines Sy by f is EXPTIME-complete. Specifically,
it can be solved in time polynomial in

llconfs, (Sl - liconfs,(S2) -

In practice, however, the algorithms implicit in the upper
bounds often require time and space much lower than the
discouraging lower bounds. In addition, it is possible to
come up with conditions that guarantee lower complexity
(e.g., when S, is deterministic or when the guards are of
bounded length). Of course, coming up with more practical
syntactic restrictions and efficient algorithms to go along
with them is a matter for extensive further research. In this
sense, our results are but a first step, as explained in the
Introduction.

5 ALTERNATIVES AND EXTENSIONS

- We now briefly discuss some of the choices made in
defining object systems and substitutability, along with
possible alternatives and extensions.

5.1 Object Systems

-Propositional versus first-order level reasoning. Our
systems have simple symbols for requests. They admit
no variables, no assignment statements, no parameters,
etc. As a result, our action language, for example, is also
very modest. In fact, we are working here within what is
often called the propositional level of reasoning, rather

than on a first-order level. The propositional level is basic,
i.e., more abstract, than the first-order level and indeed
should be considered first. In future work more detailed
and less abstract levels of reasoning should also be
investigated. In general, bad news (e.g., the high
computational complexity we have exhibited) will
remain at least as bad when the investigation is carried
out on a less abstract and more expressive level.

Single versus multiple thread designs. The semantics of
our object systems assumes single-thread requests only,
in the full run-to-completion sense. Thus, as long as an
object is in the process of fulfilling a request it is

- suspended until after the request is fulfilled. Extending
our model to multiple-thread designs is possible and to
do so we would have to decide upon a clear concurrency
model (interleaving versus full parallelism), a particular
type of memory access, perhaps a notion of fairness, etc.
Of course, if we want all of this to be UML-compliant,
some of these decisions will not be ours to make. Other
issues and extensions that are relevant here are the
possible classification of requests into synchronous and
asynchronous (see, e.g., [8]), into those that suspend the
objects fulfilling them and those that do not (this and the
synchrony/asynchrony issue are not unrelated), anno-
tating classes with upper bounds on the maximal
number of threads for their attentive objects and more.

Finite state machines versus statecharts. One obvious
restriction we have put on our models is the use of
simple flat finite state machines to describe the behavior
of a class, although most OOAD modeling languages use
the richer language of statecharts [7]. Many of the
features in statecharts can be incorporated into our
definitions without too much trouble, e.g., hierarchy,
default transitions and history. Orthogonal (concurrent)
components within a statechart are of course what give
them their exponential succinctness [4] and with this one
would have to be more careful, both in the definitions
and in the resulting complexity bounds. Here is an
example. In our definition of object systems, the behavior
of an object is independent of the status of the other
objects. Now, in the spirit of the bounded concurrency
extension of classical automata given in [4], which is
based on languages like statecharts, we might wish to
increase the cooperation between the different classes by
augmenting the transitions in a class with direct
(message-less) probe-like queries on the status of other
components. This amounts to allowing limited kinds of
cross-object broadcasting. For instance, we might have a
transition labeled

oj]? — o/,

which would correspond to a transition labeled o/7 in
our object system, but which can be taken only if O[] is
attentive. Similarly, one object could ask about the state
of another, the requests it has to fulfill in case it is
suspended, etc. Such extensions are possible, yet they
may significantly increase the complexity of checl‘<i.ng
substitutability, as shown in [10]. On the more positive
side, concurrency in statecharts can be used beneficially
to model the behavioral aspects that an inheriting class
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supports beyond those that it inherits. These new pieces
of behavior would be modeled naturally by separate
concurrent components added to the original statechart.
This idea requires further research, especially into trying
to find reasonably moderate syntactic restrictions that
would guarantee some measure of substitutability.

Index-dependent behavior. In our definition of object
systems, the behavior of an instance O[j] is independent
of its index j, which is known to it. By adding an indirect
reference self, which returns the index, we could allow
suicidal requests like (destroy,O, self), which actually
leads to a deadlock, or more useful ones of the form
(destroy, O, self — 1). We could have an object directing
requests to its “next-door neighbor,” O[self + 1], which
may be very helpful in some applications. Such an
extension is possible and relatively easy.

The language of a system. In our definition of the
language Eg of a system, the order of requests in a trace
corresponds to the order in which the requests are fulfilled.
Alternatively, one could define traces of the system to
reflect the order in which requests are made. Similarly, in
our definitions of reactions, the evaluation of indirect
references is given when the requests containing them
become active. Thus, the evaluation of min and max is
carried out with respect to the existing and attentive
components when a request becomes active. Alterna-
tively, one could evaluate indirect references when the
request containing them is pushed onto the stack. Such
alternative definitions are possible and they too are quite
easy. It is interesting to contemplate the subtle differences
such changes might make in what constitutes behavioral
conformity.

5.2 Substitutability

Recall that we identify substitutability with the ability to
replace an inherited class by an inheriting class without
losing behaviors, which is defined in terms of trace
containment or simulation. Our definitions of linear and
branching refinement can be easily modified to capture
other desired relations between systems. We mention here
several such modifications.

Parameterized substitutability. Qur definition of trace
containment requires ng) c f(l.',.fggﬁ) )} to hold for every
sequence § € Aj U AY. One may sometimes want to check
containment only for some special sequences of external
requests, say those in some given set £ C A} U AY. Such
an extension makes it possible to check substitutability
with respect to a designated set of events, say, when
some assumptions are known about the environment. By
applying techniques such as intersecting the language of
a system with another given language, it is easy to adjust
the algorithms for checking refinement relations to
handle this extension.

Two-way refinement relations. Sometimes, one may want
to check a condition that is stronger than one-way
refinement, namely that the behavior of the inheriting
and inherited classes are exactly the same. In other
words, that not only do we not lose behaviors, but we
also do not introduce new behaviors. The corresponding

refinement relations from concurrency theory are frace
cquivalence and bisimulation. Our definitions of linear and
branching substitutability can be easily made to be based
on these relations and so can our method for detecting
substitutability. As in classical concurrency theory,
checking trace equivalence and bisimulation is not
harder than checking trace containment and simulation,
respectively.

Refinement of requests. Consider two classes A and B such

that B is inherited from A. Being more refined, the set of
simple requests in the guards in B may be richer than
that of A. For example, if in the cook example we
substitute HUMAN by POLITE-HUMAN, this may involve
the introduction of new requests, like ¢ip, which could be
requested in addition to the existing requests, or please-
prepare, which could replace the existing prepare request.
Such a change in the alphabet should be accompanied by
a corresponding adjustment in the definition of the
refinement relations. We mention here two possible
adjustments. Let §4 and Sp be, respectively, the original
system with A and the one obtained from it by
substituting B for A. One adjustment, which handles
the addition of requests, is to project the (larger) alphabet
of Sp on requests that are used by both S4 and Sp.
Formally, this means that if B can request o and A
cannot, we refer to a (B, o)-successor of a configuration as
a silent successor. The second adjustment, which handles
the replacement of requests by more refined ones, is to
extend the refinement mapping f to map also requests of
A to requests of B. For example, we can map prepare to
please-prepare. Thus, in the definition of trace containment
and simulation we would require agreement between
requests with respect to f, exactly as we do for the
agreements between classes.

Inheritance of control. Our definitions of substitutability

ultimately ignore control requests and particular in-
stances. One may be interested in inheriting some such
elements too, such as the number of instances of a class
that have been alive during the execution or the number
of instances alive once the execution has terminated.
Such tighter relations can be used to check that not only
do we not lose behaviors, but we also achieve them in the
very same way. These can be tested either by adding
orthogonal checks or by extending the alphabets of the
systems. :
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