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Abstract—Real-time systems (RTS) are those whose correctness depends on satisfying the required functional as well as the

required temporal properties. Due to the criticality of such systems, recovery from faults is an essential part of a RTS. In many

systems, such as those supporting space applications, single event upsets (SEUs) are the prevalent type of faults; SEUs are transient

faults and affect a single task at a time. This paper presents a scheme to guarantee that the execution of real-time tasks can tolerate

SEUs and intermittent faults assuming any queue-based scheduling technique. Three algorithms are presented to solve the problem of

adding fault tolerance to a queue of real-time tasks by reserving sufficient slack in a schedule so that recovery can be carried out

before the task deadline without compromising guarantees given to other tasks. The first algorithm is a dynamic programming optimal

solution, the second is a linear-time heuristic for scheduling dynamic tasks, and the third algorithm comprises extensions to address

queues with gaps between tasks (gaps are caused by precedence, resource, or timing constraints). We show through simulations that

the heuristics closely approximate the optimal algorithm. Finally, the paper describes the implementation of the modified admission

control algorithm, the nonpreemptive scheduler, and a recovery mechanism in the FT-RT-Mach operating system.

Index Terms—Fault tolerance, operating system, real-time, scheduling, transient faults.
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1 INTRODUCTION

REAL-TIME systems (RTS) are those whose correctness

depends on satisfying the required logical and func-

tional as well as the required temporal properties. It has been

recognized for at least a decade that real-time computing

systems have to support real-time application programs by

maintaining an environment that satisfies timing, reliability,

and availability requirements [36]. They encompass operat-
ing systems designed and engineered to accommodate the

requirements of mission critical systems [1]. For these

systems, aside from the functional and timing correctness,

the ability to provide noninterrupted service is also

essential.
Due to the criticality of RTSs, threads in such systems

must always finish within user-specified deadlines. Fault

tolerance techniques provide for successful completion of

tasks within the deadlines in spite of hardware and

software failures [8], [15], [22], [30]. When a fault occurs,

extra time is required to handle fault detection and error

recovery. For real-time systems in particular, it is essential

that the extra time be considered and accounted for on a

per-thread basis. Methods explicitly developed for fault

tolerance in real-time systems must take into consideration

the number and type of faults, while ensuring that timing
constraints are obeyed.

Tolerating permanent hardware failures naturally re-
quires redundant processing elements [12], [16], but
intermittent and transient failures can often be tolerated
using task reexecution on the same hardware [11], [26], [16],
which is typically less expensive. This approach was
introduced in the recovery block approach of [31].

In this paper, we depart from the traditional approach
and decouple runtime recovery from admission control (the
procedure that accepts or rejects tasks) for fault tolerance.
We assume that some nonpreemptive real-time scheduling
policy is used and we focus on mapping a non-fault-
tolerant nonpreemptive schedule of real-time threads to a
fault-tolerant schedule. Our goal is to guarantee that a
thread will complete within its deadline taking into account
the time for error recovery.

1.1 Problem Definition

In our model, we start by considering only transient and
intermittent faults, which are short-lived malfunctions in a
hardware component, affecting at most one thread execut-
ing on that hardware component. These faults are common
in many applications, such as satellite and space stations,
where transient faults are called single event upsets (SEUs).

We say that a service executes correctly if it finishes
within the specified deadline and delivers correct results
with respect to the functional specification. Otherwise, we
say that a service failure has occurred. We assume that all
inputs occur at the beginning of thread execution, and
outputs are generated only at the end of the threads, so that
the whole thread can be reexecuted if it has to be aborted
due to a fault. Any thread with input or output in the
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middle of its execution can be broken into smaller threads
to satisfy this condition [25], [28], [23].

We also assume error detection capabilities, such as
those presented in [6], [13], [29]. Error checking is
performed before any change to the environment takes
place, and such changes are committed only if no error is
detected. When an error is detected, a recovery action takes
place. Possible actions include reexecuting the thread,
executing a backup thread, executing a recovery block, or
rolling-back to a checkpoint. In this paper, we are not
concerned with specific recovery policies, but rather with
providing a guarantee that the recovery will not cause
thread deadlines to be violated, assuming that the worst-
case execution time of the recovery action is known.

We consider a real-time system in which a scheduling
policy imposes a total ordering on the threads, based either
on the timing constraints of the threads (e.g., Earliest
Deadline First [17]) or on their priorities (e.g., derived from
their importance). This total ordering of threads is
implemented in the form of a queue. The algorithms in
this paper insert “slack” into that queue to create a fault-
tolerant schedule which guarantees that recovery will not
cause any thread to miss its deadlines.

When a thread, Tn, arrives in the system, it is inserted
into the scheduling queue according to the scheduling
scheme used; examples of algorithms that use a queue are
Earliest Deadline First (EDF), Least Laxity First (LLF), First
In First Out (FIFO), among others. In a fault-free environ-
ment, scanning the queue determines if each thread will
meet its deadline. However, in a faulty environment,
recovery from a fault during Ti’s execution may cause the
deadline of Ti or of the threads following Ti to be violated.
This is because the task execution will be delayed by the
time needed for the recovery of Ti.

We model a thread by a tuple Ti ¼ hai; ri; di; cii, where ai
is the thread arrival time, ri is its ready time (earliest start
time of the thread), di is its deadline, and ci is its worst-case
execution time. For simplicity of presentation, we assume
until Section 5 that 8i; ai ¼ ri.

We also assume that the worst-case recovery time for
thread Ti is �cci. The window of a thread is defined as di ÿ ri and
the window ratio is defined as wi ¼ diÿri

ci
. It is assumed that

wi � 1þ �cci
ci

(i.e., ci þ �cci � di ÿ ri) since, without this assump-
tion, it is impossible to recover from a fault and still meet the
time constraints. Applications with or without precedence
constraints can be abstracted by the queue model used in this
paper since the scheduling discipline will impose an
ordering on the threads [5].

1.2 Road Map

In the following sections, we describe algorithms that
guarantee fault recovery assuming that there exists a
�f > maxifci þ �ccig, such that no more that one fault occurs
in any time interval of length �f . If no such �f exists, then
no guarantees can be given since additional faults can occur
during fault recovery. In Section 2, we describe an optimal
algorithm that schedules backup slots in a queue of real-
time threads, and in Section 3, we describe a greedy
algorithm which approximates the optimal one. In Section 4,
we evaluate the two algorithms and present simulation
results to study the performance of the algorithms when

faults are not necessarily separated by �f (i.e., a violation of
the fault assumption). In Section 5, we describe the
enhancement to the greedy algorithm to consider threads
with ri � ai, which may be the result of precedence and/or
resource constraints; in that section, we also consider static
and dynamic thread requests, negotiated levels of recovery,
and periodic threads. Section 6 describes the implementa-
tion on the FT-RT-Mach system, including the performance
and measured overhead of the system. Section 7 outlines
related work while Section 8 concludes the paper.

2 REAL-TIME GUARANTEES IN THE

PRESENCE OF FAULTS

Let QT be a queue of n threads T1; . . . ; Tn to be scheduled for
nonpreemptive execution starting at the current time, t0. In
the absence of faults, if 8i; t0 þ

Pi
j¼1 cj � di, then each

thread Ti in QT will meet its deadline. In the presence of
faults, however, some threads may need to recover and the
time needed to complete i threads may be larger thanPi

j¼1 cj. If lei is the latest end of thread Ti (i.e., the time at
which the first i threads in QT will complete execution even
if faults occur), then Ti will meet its deadline if lei � di.

A simple estimate for lei, which allows each thread to
recover from a fault is t0 þ

Pi
j¼1ðcj þ �ccjÞ. This estimate is

overly conservative if faults do not occur frequently.
Specifically, if we assume that the time between any two
faults is at least �f , then it is possible to create a schedule
that incorporates recovery slots that are separated by �f

and that can be used for fault recovery. That is:

lei ¼ t0 þ
Xi
j¼1

cj þ
Xb
k¼1

lbk; ð1Þ

where lb1; . . . ; lbb are the lengths of some slots B1; . . . ; Bb

reserved for recovery.1 These slots will be called “backup
slots.” Specifically, if the threads T1; . . . ; Ti are divided
into segments (subsets) B1; . . . ;Bb such that B1 ¼
fT1; . . . ; Tj1g, B2¼ fTj1þ1; . . . ; Tj2

g; . . . ;Bb ¼ fTjbÿ1þ1; . . . ; Tig,
and, for k ¼ 1; . . . ; b,

lbk þ
X
Tu2Bk

cu � �f ; ð2Þ

lbk � maxf�ccujTu 2 Bkg; ð3Þ

then lei given by (1) is the maximum time needed to execute
T1; . . . ; Ti, including recovery time. Note that all threads in
segment Bk are assigned to backup slot Bk for recovery.

In the following, we state and prove that the equations
above are sufficient to provide guarantees for all threads
and recovery from faults when needed.

Definition 1. Let QT be a queue containing n threads at time t0,
that is, QT ¼ fT1; T2; . . . ; Tng. Let lei be the latest end time of
thread Ti in QT , assuming that threads recover when faults are
detected. A FT-feasible schedule is a schedule in which
8i; lei � di.
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1. Note that the recovery slots do not use resources, but are simply a
guarantee that the schedule will contain enough idle time (slack) for
recovery from faults, if needed.



Theorem 1. For all threads in QT , let lei be computed from (1),
(2), and (3), for a given �f (�f � maxiðci þ �cciÞ). If at most
one fault occurs in any time interval of length �f , then QT is a
FT-feasible schedule.

Proof. Assume that a fault occurs during the execution of a
thread in Bk. Condition (2) specifies that there is enough
slack for any one thread from Bk to recover if at most one
fault occurs in any time interval of length �f , and
condition (3) specifies that the recovery of any thread in
Bk will not require more time than lbk, which is
accounted for in the computation of lei in (1). tu

Note that the values of lei computed from (1), (2), and (3)
are not unique since the constraints in (2) and (3) do not
have to be tight. Specifically, the sets Bj do not have to be
the maximal sets that satisfy (2).

Example 1. We intuitively show how backups can be
inserted into a queue conforming to Theorem 1, through
an example: Threads in a queue are of lengths 2, 3, 3, and
1, their deadlines are 4, 10, 14 and 14.5, respectively; the
EDF scheduling policy is used. Assuming that �f ¼ 10,
and that �cci ¼ ci, Fig. 1 shows the placement of two
backups in the queue creating a FT-feasible schedule.
The recovery from a fault occurring in T2, T3, or T4 will
use the time “reserved” in backup 2. Note that the
recovery of these threads will be carried out immediately
after the fault is detected, thus postponing the execution
of the following threads in the schedule.

We can interpret the insertion of backup slots as a

mapping from a non-fault-tolerant queue of threads to a

fault-tolerant one. Therefore, the problem we are trying to

solve is: Given a queue of threads, find a mapping which

will lead to a FT-feasible schedule; such mapping is a

placement of backups in the schedule and an assignment of

tasks to backup slots. Our solution is to apply a dynamic

programming algorithm to a queue of threads by creating a

layered graph as described next.

2.1 Construction of Graph

Given QT ¼ fT1; . . . ; Tng, we construct a layered graph, G,

to keep track of the possible positions of backup slots in

the queue. The graph has several layers, with layer i

corresponding to thread Ti. Layer i has several nodes,

each representing a particular placement of thread Ti in

the queue and its backup assignment. The jth node on

layer i is denoted by Ni;j and an edge between a node,

Niÿ1;j, in layer iÿ 1 and a node, Ni;k, in layer i is denoted

by Eiÿ1;j
i;k . In addition to the n layers corresponding to the

n threads, we create a source node (at layer 0) and sink

node (at layer nþ 1). Fig. 2 shows the graph correspond-

ing to the four threads in Example 1.
The nodes in layer i represent the possible options for

placing Ti in the queue given that T1; . . . ; Tiÿ1 are already on
the queue. The queue will contain one or more backup slots,
with one backup slot placed at the end of the queue. This
slot will be called the “last backup.” Given a queue
configuration containing T1; . . . ; Tiÿ1 and the corresponding
backup slots, the first node Ni;0 in layer i corresponds to
placing Ti after the last backup in the queue and creating a
new backup slot after Ti. All other nodes in layer i

correspond to the placement of Ti before the last backup
(i.e., without creating a new backup, if the existing last
backup can accommodate the new task). Hence, from each
node Niÿ1;j on layer iÿ 1, one edge leads to node Ni;0 and
the other edge leads to a node Ni;jþ1.

Each path in G corresponds to a unique placement of
backup slots in the queue. For instance, consider the four
tasks in Example 1. The queue configurations correspond-
ing to three different paths in the graph of Fig. 2 are shown
in Fig. 3. Fig. 3a shows the queue configuration for the path
through nodes N1;0, N2;1, N3;0, and N4;1, where moving from
node N2;1 to node N3;0 corresponds to placing T3 after B1

and creating a new backup. In Fig. 3b, we show the queue
configuration for the path through nodes N1;0, N2;1, N3;2,
and N4;0, where moving from node N2;1 to node N3;2

corresponds to placing T3 before B1. Fig. 3c is similar,
showing path N1;0, N2;0, N3;0, and N4;1.

To check the deadline of a task, we use the notion of the
span of a queue configuration, which is defined to be the
completion time of the last thread in the queue associated
with that schedule. Each edge in G is assigned a weight
such that the weight of a particular path from the source
node to the sink node is equal to the span of the queue
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Fig. 1. A schedule which meets the deadlines of the threads in Example 1.

Fig. 2. The layered graph for Example 1. The dashed nodes violate (2)

when �f ¼ 10.



configuration corresponding to that path. For this, the
weight of edge Eiÿ1;j

i;k , denoted by Wiÿ1;j
i;k , is set to be equal to

the increase in the span of the queue due to the addition of
thread Ti. The weight of an edge leading to the sink node
has a value of zero (i.e., Wnÿ1;i

n;0 ¼ 0).

In order to simplify the derivation of the edge weights,

we compute for each node Ni;j in G a label lbi;j, which is

equal to the length of the last backup in the queue after the

placement of Ti. Hence, lbi;j depends on �cci, the time that

needs to be reserved for the recovery of Ti. Specifically, if Ti
is inserted after the last backup (node Ni;0), a new backup of

length �cci is created and, thus, lbi;j ¼ �cci. If, however, Ti is

inserted before the last backup (nodes Ni;1; Ni;2 . . . ), then

that last backup increases in length only if it is shorter than

�cci. That is,

lbi;j ¼
0 if i ¼ 0
�cci if i > 0 & j ¼ 0
maxðlbiÿ1;jÿ1; �cciÞ if i > 1 & j > 0:

8<: ð4Þ

The weight Wiÿ1;j
i;k of an edge Eiÿ1;j

i;k can, then, easily be
computed from

Wiÿ1;j
i;k ¼ ci þ �cci if k ¼ 0

ci þ lbi;jþ1 ÿ lbiÿ1;j if k ¼ jþ 1:

�
ð5Þ

In other words, if Ti is inserted after the last backup (k ¼ 0)
and a new backup is created, the span of the queue
increases by ci þ �cci. On the other hand, if a thread is
inserted before the last backup (k ¼ jþ 1), the span of the
queue increases by the sum of ci and the increase in the
length of the last backup, if any. The node labels and edge
weights are shown in Fig. 2.

The graph constructed so far disregards �f and takes

only (3) into consideration and, thus, some nodes in the

graph may correspond to queue configurations that violate

(2). For the threads in Example 1, if �f ¼ 6, only the

leftmost column of Fig. 2 (one backup for each thread) of the

graph will correspond to configurations that satisfy (2). If

�f > 12, all the nodes in the graph will satisfy (2). To make

sure that the span of the queue corresponding to each

segment Bk does not exceed �f , a parameter, lli;j, is

computed for each node Ni;j to reflect the length of the

queue (in units of time) between the last two backup slots

(not including either backup slot). For a node Ni;0 which

corresponds to the addition of Ti after the last backup, lli;0
equals the computation time of Ti. For a node Ni;j, j 6¼ 0,

which represents the addition of Ti before the last backup,

the time between the last two backups increases by the

computation time of Ti. That is, lli;j is computed as follows:

lli;j ¼
0 if i ¼ 0
ci if i > 0 & j ¼ 0
lliÿ1;jÿ1 þ ci if i > 1 & j > 0:

8<: ð6Þ

By deleting from the graph the nodes which do not satisfy
the condition lli;j þ lbi;j � �f , we make sure that (2) is
satisfied for all nodes. If this condition is violated at a
node Ni;j, thread Ti and a new backup are forced to be
placed at the end of the queue after the last existing backup.
The parent of the deleted node Ni;j (where lli;j þ lbi;j > �f )
has only a single outgoing edge, to node Ni;0. Thus, this
condition restricts the number of nodes at each layer to the
number of threads (along with their backup) that can fit
within a length of �f in the schedule. For example, in Fig. 2,
nodes N3;2 and N4;3 are removed from the graph if �f ¼ 10
(the dashed nodes and edges). In fact, by computing ll
during the generation of the graph, we can avoid the
creation of nodes that violate (2).

Our goal is to find the shortest path, ensuring 8i; 1 � i �
n; lei � di (see (1)).

2.2 Shortest Feasible Schedule (SFS)

In this section, we show that the layered graph allows us to
find the shortest FT-feasible schedule in Oðn2Þ time. We
describe an algorithm and its proof of correctness.

Definition 2. Let m1; . . . ;mq be all possible mappings from a
non-fault-tolerant queue to a FT-feasible schedule. An optimal
mapping is a mapping mj, 1 � j � q, which minimizes the
span of the queue configuration at the sink node.

In order to find the optimal mapping, all possible
placements of backups have to be considered such that
the conditions of Theorem 1 are satisfied. Since both
possible placements of threads (before or after the last
backup) are represented in the graph, exploring all paths in
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Fig. 3. Queue configurations corresponding to different paths in Fig. 2: (a) schedule span = 15, (b) schedule span = 13, and (c) schedule span = 17.



the graph will lead to an optimal mapping. To find the path

in the graph that leads to an optimal placement of backups,

a dynamic programming algorithm is used. The specific

sequence of threads and backups can be maintained at each

node or the shortest path can be traversed in reverse order

to find out the actual placement if needed.
To obtain the optimal mapping of backups in the queue,

we associate with each node a value lei;j, which corresponds

to the minimum span of the queue up to node Ni;j. Starting

with le0;0 ¼ 0, we may thus recursively compute the

following:

lei;j ¼
0 if i ¼ 0 & j ¼ 0

miniÿ1
k¼0 leiÿ1;k þWiÿ1;jÿ1

i;0

n o
if i > 0 & j ¼ 0

leiÿ1;jÿ1 þWiÿ1;jÿ1
i;j if i > 0 & j > 0:

8><>: ð7Þ

This algorithm would be sufficient for a queue of non-

real-time threads. However, in real-time systems, we also

have to take the deadlines of the threads in the queue into

consideration. If the deadline of thread Ti is not met when

we add it to the queue, that is, if lei;j > di, the placement of

Ti and its backup corresponding to Ni;j cannot lead to a

FT-feasible schedule. In that case, we assign lei;j ¼ 1 and,

thus, that particular backup assignment is deemed infea-

sible. Consequently, all nodes Niþk;jþk; k > 0 will also be

infeasible since Ni;j is the only parent of these nodes. Thus,

the computation of lei;j should be supplemented by:

IF lei;j > di;THEN lei;j ¼ 1:

Finally, when we reach the nodes at layer n (after

considering all n threads in the queue), all nodes with

lei;j 6¼ 1 represent FT-feasible mappings of backups

which satisfy lei � di; i ¼ 1; . . . ; n, where lei is computed

from (1), (2), and (3). Thus, if a feasible mapping exists,

the algorithm finds the mapping.
As an example, in Fig. 4, we show lei;j values for nodes

corresponding to Fig. 2 when �f ¼ 10. Note that le4;0 for

node N4;0 is assigned a value of 1 since it would lead to

le4;0 ¼ 15, which means that T4 would miss its deadline.

Also note that, although the path given in Fig. 3b is shorter

than the one given in Fig. 4, the former has to go through

node N3;2, which is removed from the graph when �f ¼ 10.

2.2.1 Complexity and Optimality

Although in our presentation we separated the construction

of G and the computation of the shortest path, it is possible

to recursively compute the values of lbi;j, W
iÿ1;j
i;k , lli;j, and

lei;j for each node from (4), (5), (6), and (7) without explicitly

constructing G.
The complexity of this computation is Oðn2Þ in the worst

case. This is because, at every layer of the graph, the

algorithm examines each node once computing the values

of lbi;j, W
i;j
iþ1;k, lli;j, and lei;j. Since there are n layers, with at

most i nodes at layer i and at most two edges for each node,

we have to compute at most Oðn2Þ values. However, in the

average case, the complexity of the algorithm is lower since

the number of nodes at any layer is specified by the value of

�f . If lli;j þ lbi;j > �f , the only edge from node Ni;j leads to

node Niþ1;0. On average, the number of nodes in a layer is

thus equal to the number of threads that fit into a �f

interval. This is, in turn, equal to �f=cav, where cav is the

average computation time of the threads in the queue. Thus,

the average runtime is Oð�f

cav
nÞ.

The SFS algorithm is optimal because it considers all

possible combinations of backup placements in the queue,

as shown below.

Theorem 2. By finding the feasible shortest path in G which

satisfies lei;j � di at each node Ni;j, SFS is optimal in the

following sense: If a mapping exists for a given queue with

n threads that results in a FT-feasible schedule, the

SFS algorithm will find the mapping. Further, if multiple

mappings exist, the algorithm finds the mapping that

minimizes the span of the queue.

Proof. We first prove that if there is a feasible path in the

graph, SFS will find it. This is true if all possible

combinations of backup placements in the queue are

considered. We have shown in the previous section that

SFS does consider all backup placements and, thus, will

always find a FT-feasible schedule if one exists.
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Fig. 4. The shortest queue (span = 14) and the corresponding le values for �f ¼ 10.



To prove that the length of the queue found at the sink
node is minimum, we note that the shortest queue is
given by the shortest path. Since there is a single edge
leading into every node Ni;j; 1 � j � i on layer i and the
edge (Eiÿ1;k

i;0 ; 0 � k � iÿ 1) into node Ni;0 minimizes the
queue length to reach Ni;0, the value lei;0 of node Ni;0 is
minimal. tu

In a static environment, when all thread arrival times are
known beforehand, the Oðn2Þ complexity of the algorithm is
acceptable. However, in a dynamic environment, where the
thread arrival times are not known beforehand, a thread
should be scheduled as soon as it arrives. This involves
inserting the new thread into the existing queue of threads
and guaranteeing that the new thread as well as all
previously scheduled threads will meet their deadlines
even in the presence of faults. In dynamic environments, a
lower complexity algorithm should be used to find a
FT-feasible schedule without actually building the entire
graph. Below, we provide a linear time algorithm to insert
backups into a queue of threads.

3 LINEAR TIME HEURISTIC (LTH)

If QT contains threads T1; . . . ; Tn, the algorithm LTH in Fig. 5
can be used to check if the non-fault-tolerant queue can be
transformed into a FT-feasible schedule. LTH is equivalent
to a greedy way of constructing a single path in the graph of
Section 2.2. This path starts with the edge connecting node
N0;0 to node N1;0. From then on, the path follows
N2;1; . . . ; Niþ1;i until it reaches node Njþ1;j that has only a
single feasible outgoing edge to node Njþ2;0 (because

lljþ1;j þ lbjþ1;j > �f ). The path has to include this edge.
From node Njþ2;0, the procedure is similar to the one
starting at N1;0. Finally, the last layer of the graph is
reached, and the path ends at the sink node. In this
algorithm, the variable ll is used to keep track of the length
of the queue between the last two backups, lb is the length
of the last backup, and lei is the length of the queue when
i threads have been considered.

Theorem 3. LTH is correct in the sense that if it returns FT
GUARANTEED and at most one fault occurs in time
�f � maxifci þ �ccig, then the fault recovery will not cause
any thread to miss its deadline.

Proof. Note that LTH is a special case of SFS, where only
some paths are considered in a greedy fashion. This
follows from Theorem 1 and the observation that lei
computed by LTH satisfies (4) in lines 3 and 8, (6) in lines
3 and 9, and (7) in lines 4 and 7. tu

Since only part of the graph is actually created while
running LTH, its complexity is lower than SFS. The worst-
case analysis shows that LTH is linear in the number of
threads in QT (line 1, FOR loop). LTH is greedy because it
tries to provide a single backup for as many threads as
possible. This may create a schedule which is longer than
necessary, and thus may lead to an infeasible schedule. For
example, if the EDF scheduling policy is applied to Example
1, with �f ¼ 10 and LTH is used to place the backups, then
the queue shown in Fig. 6 is created (corresponding to the
path of Fig. 3b). We find that, when T4 is added to the queue,
le4 > d4 and, thus, LTH returns FT NOT GUARANTEED. This
behavior is correct because if a fault occurs in this schedule,
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Fig. 5. Algorithm LTH (Linear Time Heuristic).

Fig. 6. The non-FT-feasible schedule found by LTH for Example 1.



say at time 10.7, T3 has to recover and T4 misses its deadline.

In this case, LTH fails to find a backup placement when SFS

is successful by placing the backup after T1 (see Fig. 1).

4 SFS AND LTH: EVALUATION AND ANALYSIS

In this section, we present the results of the simulations that

were conducted to evaluate SFS and LTH. First, we present

a comparison of the two algorithms. SFS is an optimal

algorithm, but its complexity is higher than LTH, which is a

suboptimal linear time algorithm. Since simulation results

show that LTH is very close in terms of schedulability to the

optimal SFS, we do not include comparisons with other

algorithms. Then, we analyze in depth LTH’s performance.

We study three scheduling policies in combination with

LTH and then select the one with the best results for further

evaluation. In all the simulations presented here, we

assume that 8i; �cci ¼ ci.

4.1 Comparison of SFS and LTH

Given a queue of threads, we want to determine the loss in

performance of LTH in comparison to SFS. We determine

the number of times that SFS is able to find a FT-feasible

schedule for a queue of threads when LTH fails to do so. To

compare the two algorithms, in our simulations, we

considered queues containing sets with different number

of threads. We generated 1,000 sets of threads for each

combination of parameters (such as the load, number of

threads in the queue, window ratio w, etc). We found that in

the worst case, LTH rejects up to 0.7 percent more threads

than SFS (Table 1).
We also found that the small difference in performance

depends on the load. If the system is lightly or heavily

loaded, then the two algorithms perform almost identically.

However, for medium loads (around 0.5 or 0.6), the

difference increases slightly. We present in Table 1 the

difference in the percentages of thread sets found feasible

by SFS and LTH, for 20 and 50 threads in the queue, and for

varying average window ratios (recall that wi ¼ diÿri
ci
Þ. The

behavior for other values are very similar to those shown in

Table 1. We conclude that LTH approximates SFS very well

in finding FT-feasible schedules.

4.2 Evaluation of LTH

In dynamic systems, if recovery cannot be guaranteed for a
thread when it arrives, it is rejected; the user can then abort

the thread, continue without fault tolerance, or take some
alternative recovery action (see Section 5). A thread which is
accepted but misses its deadline is called a lost thread. In our
approach, threads are only lost because the faults occurred
more frequently than expected (violating the assumption
that no two faults can occur within an interval of length �f ).

Since the two metrics, loss and rejection, are intertwined,
in some graphs we combine them so that they can be

studied together instead of independently. Specifically, it is
clear that the trade off between schedulability and thread
loss depends on the importance of each thread (i.e., the cost
of missing a deadline). We use a user-defined parameter 


to represent the ratio of the cost of losing a thread after
accepting it and the cost of rejecting it (i.e., not accepting it
when submitted). Thus, we plot some graphs (see Figs. 9

and 10) for the following cost function:

totalcost ¼ cost of rejected tasks
þ 
 � cost of lost tasks:

ð8Þ

Note that a low value of 
 means that missing a deadline is
not very critical; for critical-mission systems, system
designers should choose a very high value of 
.

As expected, the simulation results show that the error
recovery (i.e., backups) decreases the number of lost threads
at the cost of increasing the number of rejected threads. The
first goal of our simulation is to estimate this trade off. In

addition to the number of rejected threads, we also look at
the success of the algorithm from the perspective of lost
threads in comparison to the No-FT method, in which no
backups are added to the schedule.

Another goal of the simulation is to determine the load at
which the number of threads rejected and lost are below
specified percentages. The system designer can analyze the

characteristics of the threads (perhaps with dynamic
arrivals) to determine the average window ratio and
computation times of those threads. Once the scheduling
policy is determined, then the maximum allowed load for a
specified schedulability and a specified rate of lost threads
can be determined for a given Mean Time To Fault (even
though the term MTTF typically refers to failures, we use it

to refer to the interval between detected transient errors).

4.3 Simulation Parameters

We developed a discrete-event simulator where the events
driving the simulation are the arrival, start, and completion
of a thread as well as occurrence of faults. To evaluate LTH,
for each parameter combination, we generated 100 thread

sets of 10,000 threads each and ran each policy on the thread
sets, averaging the results. The simulation parameters that
can be controlled are (value ranges used in the simulation
are between brackets):

. scheduling discipline: Many scheduling disciplines
can be used; we include the nonpreemptive Earliest
Deadline First (EDF), Least Laxity First (LLF), and
FIFO.
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. average computation time, cav: The thread computa-
tion time is assumed to be uniformly distributed
with mean cav. ½¼ 5�.

. load 
: The thread arrival is Poisson distributed with
rate �T . The load is then 
 ¼ �Tcav. ½¼ 0:5; 0:6; . . . ; 1:1�.

. maximum window ratio wmax: The window ratio
is uniformly distributed between 2 and wmax.
½¼ 5; 10; 15; 20�.

. fault interval MTTF : The fault interarrivals
are Poisson distributed with mean MTTF.
½¼ 250; 500; . . . ; 2000�.

. length of segment L: The maximum length of
backup separation used in algorithm LTH.
½¼ 2cmax; . . . ; 1:5MTTF�.

We ran the experiments for different wmax values, but
chose to show only wmax ¼ 15 since the behavior of other
values of wmax were similar. Note that, if LTH is used to
accept threads into the system, a thread can only be lost due
to deadline miss if more than one fault occurs within an
interval of length L. Note also that L can be larger or
smaller than the MTTF; we experiment with this range of
values to assess how large the backup separation interval
should be.

In the simulations, whether fault tolerance is taken into
consideration when a thread is accepted into the system
(LTH) or not (No-FT), the thread in which an error is
detected is reexecuted. Another possible recovery scheme
for No-FT is to simply drop the faulty thread. The
advantage of such a “recovery” scheme is that of preventing
a domino effect of missed deadlines during transient
overloads [10]. We do not consider dropping faulty threads
for two reasons:

. Our admission control maintains the system below
overloads, even for high offered loads.

. The increase in the number of lost threads would be
prohibitive (see discussion below).

4.4 Analysis of Results

We start by analyzing the behavior of LTH in relation to the
load with and without error recovery capabilities. Fig. 7
shows the percentage of threads rejected and lost for three
scheduling policies, EDF, LLF, and FIFO. The FIFO policy
causes more threads to be rejected as compared to the other

two and also causes more threads to be lost for lower loads.
However, for higher loads, the EDF and LLF policies cause
more threads to be lost. This is because the FIFO scheme
rejects more threads and hence the system has a lighter load
and, thus, a lower number of threads are lost when faults
occur.

Even though the percentage of threads rejected by LTH

is higher than No-FT for each of the three scheduling

policies, the percentage of threads lost is significantly lower.

Also, note that the value of L is chosen to be equal to MTTF

in Fig. 7. If the number of lost threads is required to be

lower, then the value of L has to be smaller. The number of

lost threads will approach 0 as L approaches the average

length of a thread (which would mean a backup for every

thread).

Further, to show why dropping threads is not consid-

ered, note that, if we drop a faulty thread, we would lose

one thread every MTTF, on average. This translates into a

loss increase of cav
MTTF 
. In the graph on the right of Fig. 7,

the lost thread percentage would increase by at least double

the amount compared to the other recovery schemes (e.g., it

would increase by 1 percent for load of 1).

From Fig. 8 on, we will study only the EDF scheduling

policy. This is because EDF is more appropriate than FIFO

for real-time systems, and the results we obtained for EDF

and LLF are almost identical. Fig. 8 shows the percentage of

threads rejected and lost for varying values of L as a factor

of MTTF. We express L as a fraction of MTTF to be able to

compare several different values of L and MTTF in the same

graph.
The percentage of threads rejected decreases as the value

of L increases since a larger value of L causes fewer
backups to be placed in the queue and, thus, more threads
can be accepted. On the other hand, the number of threads
lost increases with L.

It is interesting to note the difference in rejection rate for

the various loads and that the percentage of rejected threads

has little variation for varying values of MTTF, for each

combination of parameters (e.g., for load = 1.0 or 0.5). This

is because threads are mostly rejected due to their timing

constraints and not due to the frequency of faults. The two

cases in Fig. 8 show that the variation for load = 1.0 is higher
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than for load = 0.5. For high loads (such as 1.0), when the

MTTF is smaller, more backups are reserved and there is

less time to schedule threads (increasing slightly the

rejection rate). For lower loads, although there are still

many backups for small MTTF, the unused processor

capacity is still able to accommodate the incoming threads.

As for the number of lost threads, it decreases with

increased values of MTTF. Also, a higher value of load

causes more threads to be lost for the same ratio of L
MTTF .

Hence, the number of lost threads is a function of L, MTTF,

and the load, and there does not seem to be a specific

recommended ratio of L
MTTF which is independent of load.

In Figs. 9 and 10, we plot the totalcost as defined in (8)
for varying values of L and 
 (recall that 
 is the cost ratio
of lost and rejected threads). When 
 ¼ 0, the graphs
simply show the percentage of rejected threads. However, if

 > 0, then there is a cost for missing the deadline of an
accepted thread and the cost increases with 
. If the lost
threads can cause a catastrophe, the value of 
 is very large,
which means that it is better to reject a thread than to accept
it and subsequently lose it. Whenever the value of 
 is
small, it is preferable not to provide error recovery

capabilities at all since the lost threads are not costly, and

the number of rejected threads is smaller. However, for

larger values of 
, it is essential to provide error recovery

capabilities.
In Fig. 9, we show the total cost as a function of L for

different values of 
. For each value of 
, No-FT is

represented by the straight dotted lines due to its

independence of L. When 
 ¼ 0, the total cost (= rejection)

decreases as L increases, and No-FT performs better than

LTH. As L increases, the total cost of LTH approaches the

cost of No-FT. When the value of 
 increases to a certain

threshold (slightly less than 
 ¼ 150 in the figure), the total

cost becomes almost independent of L; this can be seen by

the approximately flat curve of 
 ¼ 150. When 
 increases

beyond this threshold, the total cost increases monotoni-

cally with L (except for the initial drop, which is caused by

an overallocation of backups) and LTH performs better than

No-FT. We can also see that when the load is low (
 ¼ 0:5,

left graph), the increase in total cost with L is slower than

for a higher load (
 ¼ 1:0, right graph). Again, since fewer

threads are scheduled, fewer threads are lost.
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Fig. 9. Total cost for varying values of L and 
.



In Fig. 9, there is an optimal value of L that minimizes
the total cost of the system, for a given 
. In Fig. 10, we plot
this minimum total cost versus load for varying values of 
.
For a given load and 
, the total cost varies with L. We find
the value of L for which the cost is minimum and plot that
value of cost in the graph. The corresponding value of L is
specified beside each point in the graph.2 For small values
of 
, the minimum cost is reached when L ¼ 1. This is
equivalent to the cost when fault tolerance is not provided
because a very large L would result in no backups being
placed in the queue. So, the curve for 
 ¼ 0 is also the curve
representing No-FT. As 
 increases, the value of L at which
the cost is minimized decreases. In the figure, we see that,
for 
 ¼ 150 and load � 0:8, the cost is minimum for values
of L around MTTF/2. As the load increases, the value of L
at which the cost is minimized decreases to MTTF/16. For
higher values of 
 (e.g., 300 in the figure), the cost is always
minimized at a small value of L (e.g., MTTF/16 in the
figure). However, this cost is not minimized at the smallest
possible value of L, which is 2cmax. This is because, when L
is very small, the number of lost threads is almost 0, but the
number of rejected threads increases sharply.

This graph can be used by a system designer to
determine the load that can be supported by the system
given the value of 
, and the percentage of rejection and lost
threads that the system can tolerate. The value of 
 is
determined by the system designer as the number of threads
that can be rejected in order to prevent the loss of one thread
(by providing guaranteed fault tolerance to that thread thus
preventing it from being lost after being accepted). For
example, consider a system in which the system designer
determines that the rejection can be up to 5 percent, the
system can lose up to 0.02 percent of the threads guaranteed
with fault tolerance, and the value of 
 for this system is 300.
In this case, the total cost is equal to 11 (¼ 5þ 300� 0:02)
and, using Fig. 10, we see that a load of less than or equal to
0.8 can meet these specifications if L ¼ 62.

In summary, the following observations can be made
from the experiments.

. Given a ratio 
, system designers can decide what
the load in a processor should be, for a given total

cost. That is, a system designer can determine the set

of threads to be allocated to a particular processor,

so that the cost threshold is not exceeded. This is also

useful for resource allocation in distributed systems.
. As expected, nonpreemptive EDF with recovery

performs better than FIFO, for all 
 values.
. The optimal backup separation depends mainly on

the 
 ratio, but it also varies depending on the load;
this is due to the existing slack when the processor is
underloaded. Further, for high loads, the minimum
L is not the best value for backup separation.

. The simple recovery scheme of reexecuting the
entire thread when an error is detected is practical

enough to warrant its use in embedded and other

real-time systems.

5 SCHEDULING EXTENSIONS

There are some simple extensions to our algorithm that
allow

1. handling existing idle intervals,
2. dynamic thread arrivals,
3. negotiation of fault tolerance degree, and
4. periodic threads.

Accounting for Gaps in LTH. When threads are not
scheduled back-to-back, there will be idle times in the non-
fault-tolerant schedule, which we call gaps. These gaps in
the schedule can be due to resource, precedence, or timing
constraints [40], [41]. The algorithm of Section 3 can be
easily extended by taking advantage of the existing gaps in
the schedule to be able to reduce the amount of inserted
slack (backups) to create the fault-tolerant schedule. The
main idea is to keep track of how much idle time the gaps
provide for fault tolerance.
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2. Each L in the graph is a multiple of MTTF
16 .

Fig. 10. Total cost with optimal L versus load.



Dynamic Thread Arrivals. When considering a newly
arriving thread, the scheduling policy will traverse the
queue and find the position, pos, in the queue to insert the
new thread. Algorithm LTH (with or without gaps) can be
modified so that they start from the correct thread (i.e., pos).
The loop (line 1) would simply become For i ¼ pos to n.

This modification does not affect the algorithm correct-
ness since all other threads (those prior to pos) will not be
modified in the schedule. If, because of the new task, some
task may miss its deadline, the newly arrived task is
rejected and the schedule reverts back to the original one.
Note that the average runtime for scheduling dynamic tasks
is shorter than the original algorithm, since, on average,
each thread will be typically inserted toward the end of the
queue.

Negotiating Fault Tolerance. The probability of tolerat-
ing a fault is inversely proportional to the backup
separation and gives an idea about whether or not the
guarantees provided to the user will be valid during thread
execution. Clearly, if the separation between backups is
large, the probability of tolerating faults is low. In this case,
two faults in quick succession may lead to a thread missing
its deadline. On the other hand, if the backup separation is
small, then frequent faults can be tolerated. In general, for
critical threads, the backup separation is required to be low,
while for less critical threads, it can be high.

It is possible that the backup separation required by the
user leads to an infeasible schedule because there are too
many backups in the queue. In such a situation, instead of
rejecting the thread set outright, the user can be allowed to
negotiate the value of backup separation. To make the
choice easier for the user, SFS can provide the smallest
value of backup separation which will generate a
FT-feasible schedule for all threads in the system. This can
be done by doing a depth first search on the graph created
in Section 2.1.

Periodic Nonpreemptive Threads. Many current real-
time systems are control systems for embedded or plant
control applications. These systems typically have a heart-
beat (control loop time) and perform several tasks at every
heartbeat. The scheduling of each one of these cycles is
relatively easy to perform if all threads have harmonic
periods. However, when this is not the case, a better
approach is needed; below, we present a possible extension
to encompass periodic nonpreemptive threads.

It is possible to accommodate periodic threads by
generating a schedule for the length of the LCM (least
common multiple) of the periods of all threads; this
becomes computationally complex, depending on the

periods of the threads. Another approach is to find a
smaller time interval that enables the scheduling of the
minimum computational requirements of each thread (in a
scheme similar to [4]); we refer to a template when talking
about this interval of time with threads. A third approach is
to allow the user to specify the template size according to the
application. Note that the first or second approaches can be
used offline to provide the template size for use in the third
approach; thus, we assume a fixed template size.

In the following description, we call the scheduling
queue a timeline; the timeline is an ordered queue of threads
with start and end times and can include gaps. Assuming a
template size S, a periodic thread with period Pi should be
scheduled dS=Pie times on the template within the intervals
0; Pi; 2Pi; . . . . Although the timeline should consist of
repeated copies of the template, only one copy of the
template is kept on the timeline, thus limiting its span to S.
When the execution reaches the end of the timeline, a new
instance of the template is copied onto the timeline.
Assuming that a new periodic thread is submitted to the
system when �SS < S time units are yet to be executed on the
timeline (see Fig. 11), then b �SS=Pic instances of the thread
should be scheduled on the timeline, and dS=Pie instances
of the thread should be scheduled on the template. With
this approach, if �SS is not a multiple of Pi, then the first
instance of the thread may be slightly delayed, to make the
last instance on the timeline meet the end of time interval �SS.
The algorithm described earlier for scheduling aperiodic
threads can be used to schedule the instances of the periodic
thread, and the thread is accepted only if all b �SS=Pic + dS=Pie
instances are successfully scheduled.

Timeline management is uniform even when both
periodic and aperiodic threads are to be accommodated in
the system concurrently. However, when both types of
tasks are present, the timeline should be expanded to
accommodate the last scheduled thread. The naive way of
achieving this will always maintain a timeline span that is a
multiple of S, extending the schedule span so that the time
from task submission to task occurrence may be larger than
S. When the span of the timeline is to be extended to accept
a new aperiodic thread, it is extended by an integer multiple
of S and the template is repeatedly copied onto the
extension of the timeline before the aperiodic thread is
scheduled.

A more sophisticated scheme that saves space by not
keeping many instances of periodic threads in the timeline
can be used for timeline management. The system keeps a
list of aperiodic threads accepted by the system and a set of
templates that accommodate each aperiodic thread (i.e., a
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template of size S that encompasses the execution window
of each aperiodic thread). When a new thread is submitted
to the system, if no existing template encompasses the
window of the new aperiodic thread, our scheduler creates
a template and adds all instances of aperiodic threads to the
template. Clearly, the scheduler will first check whether the
new aperiodic thread can be scheduled without missing
its deadline and without causing other threads to miss
their deadlines. Analogously, when a periodic thread is
submitted, all existing templates must be checked before
accepting the new periodic thread. If the new task causes
any deadline to be missed, the task is rejected. This is the
scheme adopted in our implementation.

6 RECOVERY FROM SEUS IN FT-RT-MACH:
A NONPREEMPTIVE IMPLEMENTATION

The original RT Mach contains two separate modules for
preemptive thread management, namely, a scheduling policy
and a dispatcher, which is based on dispatching the highest
priority thread ready to run (there are 32 priority levels
[38], [27]). Software timers are used to transition threads
between states.

When a thread is created, the user area, stack, and data
structures are initialized, and a start timer for that thread is
created and armed. The thread is enabled and added to the
ready queue. Subsequent invocations of this thread (in later
periods) are done similarly: At the beginning of every
thread period, the start timer for the thread goes off and the
new instance of the thread is placed in the ready queue.

When an executing thread terminates, it is removed from
the ready queue. For periodic threads, start timers are set to
the beginning of the next period. Further, an end timer exists
for each thread: If a thread does not terminate by its
deadline, the end timer goes off and invokes a deadline
handler thread. The code for the deadline handler is
supplied by the user, who has a choice of resuming or
killing the thread.

6.1 Adding the Timeline to RT Mach

In order to implement a time-driven nonpreemptive
scheduler, several modifications to the kernel data struc-
tures, procedures, and API were needed. We call our
nonpreemptive policy the fault-tolerant (FT) timeline (TL)
policy. To guarantee that a TL thread will not be preempted
under any circumstance, we execute TL threads at the
highest priority level in the system. Priorities of all other
threads are shifted so that only TL threads can execute at
priority 0. To implement the above algorithm, we create a
separate data structure in the kernel, which represents the
current state of the timeline. Submitted threads are inserted
in this timeline (according to an EDF policy) only if they are
accepted to the system (see Section 5). In other words,
accepted threads are ordered by their deadlines.

To start a TL thread, a timer is created and armed for the
start time of the thread (minus the time it takes to handle
the timer).3 When this start timer goes off, the thread is

placed in the run queue of priority 0. To simplify and
shorten the time of handling the timeline, we reduce the
number of timers armed by enforcing that only the thread at
the head of the queue has armed timers. In contrast with the
original RT-Mach mechanism, the start timer of the thread
may change after the thread is admitted. For this reason, we
chose to only arm timers of the thread at the head of the
timeline. Clearly, this solution has the shortcoming of
needing to disarm timers of the current head of the queue,
in case a new thread is inserted earlier than the head of the
timeline.

When an executing aperiodic TL thread terminates, it is

removed from the run queue and from the timeline data

structure. Then, timers of the next thread are armed and

when its start timer goes off, the thread is moved to the

ready queue. Using this approach, we guarantee that the

top priority ready queue contains a maximum of one

process, namely, the process at the head of the timeline.

This bypasses the preemptive nature of the kernel. Periodic

thread termination is handled in a way similar to the

original RT-Mach.

6.2 Adding Fault Tolerance

To provide fault tolerance through reexecution, we also

modified the criteria for accepting a thread. Our admission

criteria implements the algorithm in Section 5, taking into

consideration both gaps and the slack needed in the system

for any one thread to reexecute within the interval �f .

Further, we have also implemented a mechanism for

thread recovery (in our implementation, we use reexecution

as the recovery technique). Upon termination, the thread

exit procedure checks a fault flag. If the flag is not set, the

kernel kills the thread by disarming and destroying its

timers, marking its memory as free, and giving back

allocated space. If the flag is set, the kernel reexecutes the

thread by reseting the start and end timers and restoring the

context. In case of reexecution, the timers of the next thread

will not be armed until appropriate. This is because threads

may be shifted in time and, thus, their timers may need to

be adjusted.
In this work, we only provide fault tolerance to user-

level applications and not to operating system services.

6.2.1 Error Detection and Injection

Our recovery mechanism relies on an error detection

mechanism which sets the fault flag. Our error detection is

done at three different levels, namely, hardware level, system

level, and user level. Since our work does not focus on the

hardware, we simply take advantage of the inherent, built-

in hardware error detection mechanisms, such as bus

errors, divide-by-zero, and the like. These typically trap to

the operating system, which in turn sets the fault flag. We

have implemented a fault injection mechanism for testing

purposes that modifies some memory location in the

address space of the running thread. With this fault

injection mechanism, we have verified that the hardwar-

elevel error detection is indeed working correctly.

At the system level, we use the end of execution timers to

detect timing faults. The fault flag is set and a recovery
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policy is invoked. Under the current implementation

threads that overrun their worst case execution times more

than once are not reexecuted. By doing so, we avoid wasting

system resources and let other threads execute within their
timing constraints. However, a different policy can be used,

combined with the slack inserted in the schedule: after

detecting a temporal error, such threads can be reexecuted

or allowed to execute for a longer period of time, such as in

the imprecise computation paradigm [19], [18].
Lastly, to provide user-level error detection and the

possibility of fault injection, we implemented a new system
call to set the fault flag. This way, the program itself can
check the validity of results and trigger thread recovery.
The fault flag is reset after recovery and a mechanism that
precludes the continuous setting of the fault flag has been
implemented (to avoid user mistakes such as continuously
reexecuting the thread).

6.3 Periodic Threads

The periodic scheme suggested in Section 5 was also
included and tested in the FT-RT-Mach. However, instead
of simply implementing the straightforward periodic
templates, we provide users with several templates for
scenario or mode changes [24] natively in the real-time
operating system; clearly, we keep a single active template.
New templates and activations of existing templates can be
done at the user level, through system calls.

The active template is copied to the timeline when the
timeline becomes empty or when an aperiodic thread with a

deadline beyond the tail of the timeline is submitted for

scheduling. There may be one or more copies of the

previously active templates already scheduled on the

timeline. We implemented the fttl_thread_create

system call to create periodic threads. When a periodic

thread is created using fttl_thread_create, it is first

scheduled on the timeline starting at the first template
boundary. Then, it is scheduled on the currently active

template. If there is no copy of a template on the timeline or

if the execution point of the timeline has proceeded beyond

the first thread of the only template on the timeline, the new

periodic thread is not scheduled directly on the timeline.

Instead, it is scheduled on the active template. The next time

the template is copied to the timeline the new thread will be

scheduled for execution along with the rest of the template.
Aperiodic threads are always scheduled on a timeline

which has been primed with enough copies of the active
template to overlap the execution time of the aperiodic
thread. This guarantees that the aperiodic thread will not

conflict with a periodic thread. The shortcoming of this
approach is that the scheduling of a single aperiodic thread
for some distant future time will cause multiple copies of
the active template to be added to the timeline. Although
our current implementation does not optimize this, it is easy
to see that just adding templates to times around the
aperiodic thread would suffice.

6.4 Performance of FT-RT-Mach

We ran some experiments to measure the execution time of
the new kernel functions. The main functions we are
interested in are those associated with the creation,
activation, and maintenance4 of threads. These experiments
were conducted on a Pentium 200MHz. We used the on-
chip Pentium clock to obtain accurate measurements of the
execution time of the threads and of the new kernel
functions.

We compare the runtimes for three timeline nonpreemp-

tive implementations (aperiodic timeline threads, periodic

timeline threads, and aperiodic persistent5 threads) and the

RT Mach preemptive implementations (RMS and its fault

tolerant version, FT-RMS). FT-RMS is an RMS derivative

that allows for recovery from transient faults by creating

enough slack in the system for error recovery to happen

before the task’s deadline. The theory behind FT-RMS is

described in [9] and the implementation is described in [21];

our simulation results have shown that the FT-RMS scheme

allows for more tasks to be accepted in the system and less

tasks to be lost after acceptance. We include the results from

the FT-RMS scheme here so that we can use it as the

baseline for comparisons. Periodicity of the aperiodic

timeline threads was obtained by creating a persistent

thread once and activating it at the beginning of each period

through a timer. All experiments were run on the same

kernel by selecting the scheduling policy appropriately.
Ten threads were created with varying periods (between

30 and 120ms); the thread utilizations were changed to
obtain different system loads between 0:15 and 0:45 (the
system load is limited to 45 percent due to the required fault
tolerance). The execution time of kernel functions while
running this task set for 120 seconds is shown in Table 2.

From this table, it is clear that the aperiodic implementa-
tion of periodic threads is prohibitively costly since, at every
instance that is initiated, a thread creation takes place.
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TABLE 2
Kernel Execution Times Per Instance of Persistent FTTL and Periodic RMS Threads

4. This includes exit and context switch times for each thread. When a
thread exits, it has to return all resources to the kernel.

5. Persistent threads are aperiodic threads that remain resident in the
system even after completion.



However, the periodic and persistent threads have compar-
able runtime to the RMS and FT-RMS threads, for all system
loads tested (negligibly higher creation time, and compar-
able maintenance—around 10-15�s). Indeed, for higher
system loads, the runtime of FT-RMS is slightly higher
than the persistent or the periodic threads since RMS has
more context switches than FTTL (due to preemptive
scheduling). Lastly, we note that the runtime costs of the
FT-RMS scheme when compared to the non-fault-tolerant
RMS scheme is acceptable, in particular at lower loads.

7 RELATED WORK

In the general form of the primary-backup (PB) approach,
the two processes (a primary and a backup) can execute
sequentially [11], [31] or in parallel [2], [12], [26]. When
dealing with transient faults, the PB requires only one
resource instance and no hardware redundancy, if an error
detection mechanism exists. However, PB has a larger
latency than hardware redundancy and does not provide
instantaneous error recovery (that is, there has to be
detection and subsequent recovery). The PB scheme has
been included in the well-known recovery blocks method
[31], which was developed for general-purpose fault-
tolerant systems.

The PB scheme is also applicable to fault tolerance in
real-time systems, when there is enough time for detection
and recovery. For example, it is the basis of the approach in
[16], which assumes threads to be harmonic and two
instances of each thread (primary and backup) are
scheduled on a uniprocessor system. The goal of this
heuristic is to maximize the number of backups scheduled,
and then to accommodate the maximum number of
primaries possible in the schedule. It is assumed that
backups execute for less time than primaries and have less
accurate results.

In addition to the research projects mentioned above,

there have been some attempts for developing fault-tolerant

real-time systems, such as SIFT [39], FTMP [35], FTP [34],

and MARS [14], [12]. These systems use hardware replica-

tion and were built for specific applications, customizing

designs on an ad hoc per-application basis. The overhead

and lack of flexibility of these systems constitute an

impediment to utilizing them in a broader range of

applications. For example, SIFT, FTMP, and FTP are

designed for a specific application, namely, flight control.

Also, FTMP, FTP, and MARS require special hardware to

perform the fault-tolerance related tasks such as voting.

Lastly, to illustrate the overhead of these systems, the fault

tolerance tasks in SIFT and FTMP utilize 80 and 60 percent,

respectively, of the system processing power.
Further research on tolerance to transient faults have

adapted the PB scheme through static and dynamic
allocation strategies [32], [33]. Two algorithms are proposed
to reserve time for the recovery of periodic real-time threads
on a uniprocessor [33]. The RMS analysis of [20] has been
extended to include provisions for thread reexecutions. One
algorithm allows reserved time to be dedicated to the
recovery of some individual threads while the second
algorithm allows the reserved time to be shared by all

threads. Sharing reserved time for reexecuting has also been
explored in [7], in which better schedulability bounds are
presented, based on knowledge of the task set.

In [15], processor failures are handled by maintaining
contingency or backup schedules, which are invoked in the
event of a processor failure. To generate the backup
schedule, it is assumed that an optimal schedule exists
and the schedule is enhanced with the addition of “ghost”
tasks, which function primarily as backup tasks. Since not
all schedules will permit such additions, the scheme is
optimistic.

Balaji et al. [3] present a best effort approach to provide
fault-tolerance in hard real-time distributed computing
systems. A primary/backup scheme is used in which both
the primary and the backup start execution simultaneously
and if a fault affects the primary, the results of the backup
are used. Although termed PB, this requires hardware
redundancy. This technique of allowing primary and
backup tasks to overlap has also been used in [37] to
enhance [7].

8 CONCLUDING REMARKS

We presented schemes (optimal and greedy) for mapping
real-time schedules into guaranteed fault-tolerant real-time
schedules. The schemes are based on providing sufficient
slack for a backup to execute, if a fault occurs. By carefully
manipulating the idle slots, we can minimize the overhead
of providing fault tolerance, especially in fault-free situa-
tions. We noted that, although we derived an optimal
algorithm, the greedy and faster approach in this case
performed within 1 percent of the optimal algorithm. These
results were obtained through simulations; in the future, we
intend to analyze the performance of LTH in comparison
with SFS in a theoretical fashion (either deterministic or
probabilistic analysis).

Our study presented here can be used to guide real-time
system designers on establishing the time interval between
consecutive backups (based on the MTTF) and, thus, aid in
the analysis of real-time systems in environments subject to
SEUs and intermittent faults. Similarly, designers can also
determine the load that the system can support given the
specific upper bound on rejected and lost threads and given
the ratio between the cost of missing a deadline after a
thread is accepted for execution and the cost of rejecting
that thread.

We also extended and implemented the algorithm to
include gaps, periodic threads, static and dynamic systems,
and negotiated error coverage. The implementation of
FT-RT-Mach required a thorough understanding of the
structure of the system, so that the idea of a fault-tolerant
nonpreemptive scheduler can be fitted into the preemptive
environment of RT Mach. Many of the mechanisms existing
in RT Mach were not directly applicable for implementation
of timeline-based scheduler, but some were very useful,
after relatively few modifications. This implementation,
which was included in the RK97a release of RT-Mach6 led
us to identify the locations in the operating system where
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fault tolerance capabilities need to be inserted, in order to

provide for tolerance to SEUs and intermittent faults.
Our future work will focus on enhancing the error

detection capabilities, adding support for precedence

constraints, and extending the scheme to a distributed

implementation.
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[23] D. Mossé, “Design, Development, and Deployment of Fault-
Tolerant Applications for Distributed Real-Time Systems, PhD
thesis, Univ of Maryland, College Park, 1993.
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