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Abstract—We describe a tool that supports verification of workflow models specified in UML activity diagrams. The tool translates an

activity diagram into an input format for a model checker according to a mathematical semantics. With the model checker, arbitrary

propositional requirements can be checked against the input model. If a requirement fails to hold, an error trace is returned by the

model checker, which our tool presents by highlighting a corresponding path in the activity diagram. We summarize our formal

semantics, discuss the techniques used to reduce an infinite state space to a finite one, and motivate the need for strong fairness

constraints to obtain realistic results. We define requirement-preserving rules for state space reduction. Finally, we illustrate the whole

approach with a few example verifications.
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1 INTRODUCTION

ACTIVITY diagrams are flowchart-like notations with
constructs to express sequence, choice and parallel

execution of activities [39]. Activity diagrams are part of
UML, the de facto industry standard for modeling software
designs. In this paper, we use activity diagrams for
workflow modeling, that is, for the description of the flow
of work orders through an organization. Workflow manage-
ment systems (WFMSs) are software systems that route
work orders through a collection of organizational actors
(people or software) according to a workflow description in
a given notation. Tools exist for the verification of
performance properties of workflow models, such as
throughput and workload [1], [29]. There is nowadays also
a need to verify functional properties of workflow models
because current WFMSs are being integrated with Enter-
prise Resource Planning, e-commerce applications, cross-
organizational workflow, and flexible case management [4],
[19]. Workflows in these applications may contain event-
driven behavior, real-time events, unrestricted loops,
parallelism, and distribution, and this makes it easy to
specify workflow models with undesirable functional
properties. These errors are very hard to spot using simple
visual inspection of a workflow model. We therefore
propose a tool for verifying functional properties of
complex workflow models specified in UML activity
diagrams.

Our tool is an extension of the graph editing tool TCM
[11] that turns it into a graphical front end for a model
checker. The analyst specifies a functional requirement and
an activity diagram. The diagram is translated to the input

of a model checker, a transition system (TS), according to
our formal semantics [13]. The requirement is fed into the
model checker. If the requirement is true of the activity
diagram, the model checker answers “True;” otherwise, it
gives a counterexample in the form of a trace through the
underlying mathematical semantics of the activity diagram.
TCM presents this trace in an understandable way as a path
through the activity diagram.

The most commonly used temporal logics to specify
functional requirements on transition systems are Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL)
[9]. As we will argue in Section 5, the transition systems we
are interested in must satisfy the property of strong fairness.
This property can be expressed in LTL but not in CTL, so
we must restrict ourselves to model checkers that support
LTL as a requirement language. Furthermore, the model
checker must use a special model checking algorithm for
strong fairness. We have picked the NuSMV model checker
[7], which we extended with an LTL model checking
algorithm defined by Kesten et al. [31] that is specifically
intended for strong fairness.

The structure of this paper is as follows: Section 2 starts
with an explanation of the syntax of activity diagrams.
Section 3 defines a formal semantics for safe activity
diagrams, adapted from a formal semantics for unsafe
activity diagrams that we published earlier [13]. (Readers
not interested in the formal definition can skip the formulas
and read the surrounding text.) Section 4 explains how we
transform an infinite TS to a finite one while preserving
relevant requirements. Section 5 explains why a TS needs to
be extended with strong fairness and how this can be done.
Section 6 then discusses the implementation of the genera-
tion of a TS with strong fairness constraints from an activity
diagram in TCM. Section 7 gives some example verifica-
tions of requirements on an example workflow model.
Section 8 defines reduction rules that reduce the size of the
generated TS while retaining requirements, making model
checking more efficient. Section 9 discusses related work
and Section 10 summarizes our contribution and discusses
some further work.
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2 SYNTAX OF UML ACTIVITY DIAGRAMS

Fig. 1 shows an example activity diagram specification of
a workflow model. Ovals represent activity states (action
states in UML terminology [39]) and rounded rectangles
represent wait states. A bar represents an AND-node,
which is either a fork or a join. A diamond represents an
XOR-node, which is either a split or a merge. The
workflow starts in the black dot and ends at a bull’s
eye. The example models the workflow of a small
production company (adapted from [43]). After reception
of an order, the finance department handles financial
checks, billing, and payment, shown in the lower half of
the diagram, and the production department handles
producing and filling the order, shown in the upper half
of the diagram. There are some interdependencies
between these two processes, such as that an order will
only be filled when the customer check is OK.

The intended informal meaning of the diagram is this.
The diagram describes the behavior of a workflow manage-
ment system (WFMS) and some actors (people or software)
that interact with it. These actors handle a case, which is a
work order that flows through an organization. A case has
attributes, holding data relevant to the case. These may be
documents or structured data. Case attributes are stored in
a database accessible but external to the WFMS. Activity
nodes represent activities performed by actors, such as
updating a case attribute or searching a database. During an
activity state, the WFMS is waiting for some actor to finish
its activity. In a wait state node, the WFMS and actors are
waiting for some event, such as the arrival of a message
from some third party or the arrival of a deadline. Activity
states and wait states take time.

Edges represent state transitions of the WFMS itself. A
transition from a wait state is triggered by an external event
and a transition from an activity state is triggered by the
termination of the activity performed in the state. Each edge
can be labeled by e½g�=a, where e is an event expression, g an

optional guard expression, and a an optional action
expression. An edge leaving an activity state node must
not have an event label; such an edge is implicitly triggered
by an activity termination event. An event can be temporal.
A when event denotes an absolute time event, for example,
when(12:00hs), and an after event denotes a relative
time event, for example, after(5s), which means that
5 seconds after the corresponding edge became relevant, a
timeout occurs. A guard expression can refer to variables of
the activity diagram, which are Booleans, integers, and
strings. Guard expressions can be combined using ^, _, and
:. We only allow send action expressions on the label; other
action expressions would express changes of the case
attributes performed by the WFMS and as we just
explained, a WFMS does not change the case attributes
—actors do.

In order to give a formal semantics to an activity
diagram, we eliminate bars and diamonds by mapping
the activity diagram into a hypergraph called an activity
hypergraph. The details of this are straightforward and
provided elsewhere [12]. Fig. 2 shows the activity hyper-
graph of Fig. 1. We can view a UML activity diagram as
syntactic sugar for an activity hypergraph.

An activity hypergraph is a tuple ðNodes; Events; Guards;

HyperEdges; LV arÞ where:

. Nodes is the set of nodes. Set Nodes is partitioned
into set AN of activity nodes, set WN of wait nodes,
set FN of final nodes, and one initial node, initial.
Each activity node a 2 AN may observe (read) and
update some variables, denoted by sets ObsðaÞ �
LV ar and UpdðaÞ � LV ar.

. Events is the set of event expressions. There are
external and internal events. Internal events are
named. External events are named events (e.g.,
receive payment in Fig. 2), condition change
events, temporal events, and termination events
[42]. Function term : AN ! Events defines, for each
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activity node, its termination event. Each temporal
after event must belong to a unique hyperedge, to
ensure that each timeout event does not accidentally
trigger other hyperedges with the same label.

. Guards is the set of guard expressions,

. HyperEdges is the transition relation between the
nodes of the activity diagram. Hyperedges have
several parameters. For every hyperedge h,
sourceðhÞ denotes the nonempty set of source
nodes left and targetðhÞ the nonempty set of target
nodes entered if h is taken. The trigger event of h
is eventðhÞ 2 Events [ f?g, where ? denotes the
absence of a trigger event. The guard of h is
denoted guardðhÞ 2 Guards. The set of send events
generated by h is denoted sendactionsðhÞ. Each
send event must be a named event.

. LV ar is the set of variables local to the workflow.
Every variable in a guard expression is a local
variable.

3 SEMANTICS OF UML ACTIVITY DIAGRAMS

At the present time, there is no generally accepted formal
semantics of UML activity diagrams and the informal OMG
semantics of UML 1.5 is not entirely suitable for workflow
modeling [14], [12]. (UML 2.0, endorsed after this paper was
written, does not have a formal workflow semantics either.)
We therefore defined a formal semantics for activity
diagrams, intended for workflow modeling, that can be
used for model checking [13]. Since a workflow model
prescribes the behavior of a WFMS, the semantics is defined
in terms of WFMSs.

We view a WFMS as a reactive system [21], [42] which
reacts to events it receives from its environment (e.g.,
activity completion events), based upon its current state. It
can react by changing its state and by causing certain
desired effects in its environment, such as enabling new
activities or sending messages to its environment. For
example, if, in Fig. 2, node Check stock is active and the
WFMS receives the completion event of the activity
Check stock, then the WFMS reacts by leaving Check

stock, resetting the set of input events, and either entering

node Make production plan and enabling activity Make
production plan if insufficient stock is true or entering
node WAIT-1 otherwise.

3.1 Clocked Transition Systems

Our formal semantics of activity diagrams maps the activity
hypergraph of the diagram to a clocked transition system
(CTS) [30], which is an extension of transition systems with
real variables to model real-time. Given a set V ar of
variables, a state of a CTS is a function � that assigns to each
v 2 V ar a value �ðvÞ. The set of all states (i.e., functions) is
denoted �ðV arÞ.

Formally, a Clocked Transition System (CTS) is a tuple
ðV ar;!; �initÞ where:

. V ar ¼ Disc [ fMCg [ Timers is a finite set of vari-
ables. Set Disc contains discrete variables. Variable
MC represents the master clock that measures the
global time. The master clockMC can never be reset.
The other clocks are represented by set Timers.

. !� �ðV arÞ � �ðV arÞ is the transition relation.

. �init 2 �ðV arÞ is the initial valuation.

Instead of writing ð�; �0Þ 2 !, we write � ! �0.
The transition relation ! is partitioned in two sets, data

transitions, in which the clocks do not increase but can be
reset and in which discrete variables can change arbitrarily,
and time transitions, in which clocks increase but discrete
variables do not change. A path of a CTS is an infinite
sequence � of valuations, � ¼ �0�1 . . . satisfying:

. Initiation: �0 ¼ �init.

. Consecution: For every i ¼ 0; 1; . . . , the valuation
�iþ1 is a ! successor of �i, i.e., �i ! �iþ1.

A run is a path satisfying

. Time divergence: The sequence �0ðMCÞ�1ðMCÞ . . .
grows beyond any bound, i.e., the value of MC
increases beyond any bound. Thus, a run cannot
have Zeno behavior.

3.2 Informal Semantics

We have defined two reactive semantics of activity
diagrams, called the requirements-level semantics and the
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implementation-level semantics [13], [14], [12]. In the
requirements-level semantics, the perfect synchrony hypoth-
esis [3] is adopted: The system reacts immediately and
infinitely fast to the reception of events. Since the system is
infinitely fast, no other event can occur while a system is
reacting to an event. Also, in this semantics, a transition
does not take time. In the implementation-level semantics, on
the other hand, the perfect synchrony hypothesis does not
hold. In this semantics, a queue is needed to store events
that occur while the system is busy reacting to an event.
Also, taking a hyperedge in this semantics does take time.
The requirements-level semantics is based on the STATE-
MATE semantics of statecharts [20], [22], whereas the
implementation-level semantics is based on the OMG
semantics of UML statecharts [39].

We use the requirements-level semantics of an activity
diagram if we want to specify in an implementation-
independent way what any WFMS must do. We use the
implementation-level semantics of an activity diagram if we
want to describe how a general WFMS implementation
behaves. The requirements-level semantics is easy to model
check and simple to understand, and the implementation-
level semantics is difficult to model check and difficult to
understand. We have identified a set of constraints that
characterize a large set of requirements that remain
invariant when we move from a requirements-level to an
implementation-level semantics [12]. If we check these
requirements in the requirements-level semantics of an
activity diagram, they are guaranteed to hold in the
implementation-level semantics of that diagram, too.

In our tool, we have implemented the requirements-level
semantics. In the requirements-level semantics, we have
adopted the STATEMATE semantics [20], [22] of a system
reaction. Informally, the semantics is as follows: When
events occur, the system state becomes unstable, and the
system reacts by taking a set of hyperedges, called a step.
(Steps are defined below.) If the state reached by a step is
unstable as well, then again a step is taken. A reached state
is either unstable because some events have been generated
in the previous step or because another step can be taken. If
the reached state is stable, the system stops taking steps.
Thus, the WFMS reaction to an event is a sequence of steps,
a superstep [20].

Below, we present a formal semantics for safe activity
hypergraphs, i.e., activity hypergraphs in which nodes are
active at most once at the same time. Space restrictions
prevent us from presenting a formal semantics for unsafe
activity hypergraphs, which is considerably more complex
and intricate [13], [12]. Our formalization has been
inspired by an existing formalization of STATEMATE
statecharts [10].

3.3 Step Semantics

To define a step, we need some auxiliary notions first. A
hyperedge is enabled iff its sources are active, it is triggered
by an event in the input E, and its guard evaluates to true.
A guard is evaluated in a valuation � by substituting, for
every variable v, its value �ðvÞ. If g is true in valuation �, we
write � � g. Let C denote the set of active nodes, the
configuration, and let E the set of input events. Set
enabled�ðC;EÞ of hyperedges enabled in C on input E is
defined as follows:

enabled�ðC;EÞ ¼df fh 2 HyperEdgesjsourceðhÞ � C

^ ðeventðhÞ 2 E _ eventðhÞ ¼ ?Þ
^ � � guardðhÞg;

where, as before, ? denotes the absence of a trigger event
(see Section 2).

A set of hyperedgesH is defined to be consistent, written
consistentðHÞ, iff all hyperedges can be taken at the same
time, i.e., they do not have overlapping sources.

consistentðHÞ ,
df

8h; h0 2 H � h 6¼ h0 ) sourceðhÞ \ sourceðh0Þ ¼ ;:

Two activity nodes,A,B, interfere if one of them observes
or reads a variable the other one updates. Configuration C is
interfering iff two activity nodes in C interfere.

interferingðCÞ ,
df

8a; b 2 C � a 6¼ b )
ððObsðAÞ [ UpdðAÞÞ \ UpdðBÞ 6¼ ;Þ
_ ððObsðBÞ [ UpdðBÞÞ \ UpdðAÞ 6¼ ;Þ:

A set of hyperedges H is defined to be maximal iff, for
every enabled hyperedge h, set H [ fhg is inconsistent or
the configuration reached next is interfering. The function
nextconfigðC;HÞ returns the configuration reached from C
by taking H.

maximal�ðC;E;HÞ,
df

8h 2 enabled�ðC;EÞ �
h 62 H ) ð:consistentðH [ fhgÞ
_ interferingðnextconfigðC;H[fhgÞÞÞ

nextconfigðC;HÞ ¼df C n
[
h2H

sourceðhÞ
 !

[
[
h2H

targetðhÞ:

Finally, predicate isStep defines a set of hyperedges S to
be a step iff every hyperedge in S is enabled, S is maximal
and consistent, and the next configuration is noninterfering.

isStep�ðC;E; SÞ ,
df

S � enabled�ðC;EÞ ^ consistentðCÞ
^ :interferingðnextconfigðC; SÞÞ ^maximal�ðC;E; SÞ:

Steps can be computed, given some set H of enabled
hyperedges, by splitting H into maximal, consistent sets
of hyperedges that do not lead to interfering next
configurations.

3.4 Formal Semantics

In the requirements-level semantics, a step is taken
immediately when an event occurs and, during the step,
clocks dot not advance. To define this, we use the variables
C, I, and LV ar as discrete variables for the Clocked
Transition System, so Disc ¼df fC; Ig [ LV ar, where C is the
configuration, I is the current set of input events, and LV ar
is the set of local variables of the activity diagram.

The transition relation ! for the CTS consists of seven
subtransition relations. In a requirements-level run, these
transitions must occur in the order specified in Fig. 3. In the
figure, a node represents a valuation. The initial valuation
of an activity diagram is unstable by definition: A step is
taken in order to leave this initial state and enter a stable
state. Note that the cycle of transitions !step and !unstable

in Fig. 3 models the superstep.
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Relation !time defines the passage of time. The master
clock and the running timers are increased by some real
number �. The master clock and all timers cannot be
advanced beyond their next deadline unless they already
are beyond their deadline. If the master clock or some
timer reaches its next deadline, a corresponding timeout
event is generated. A timer is running iff the sources of
its corresponding hyperedge are active. Given a config-
uration C, set RT ðCÞ of running timers is defined as

RT ðCÞ ¼df ft 2 Timers j sourceðhedgeðtÞÞ � Cg;

where hedgeðtÞ denotes the unique hyperedge belonging to
timer t. The deadline of timer t is denoted deadlineðtÞ. Let
WhenEvents denote the set of all when events. Each when

event w occurs modulo a certain period. Thus, there is a set,
say deadlinesðwÞ, of points in time at which w occurs. The set
of all when events specifies a set deadlinesðWhenEventsÞ.

� !time �
0,
df
9� 2 IR �

� > 0 ^ �0 ¼ �½&t2RT ð�ðCÞÞt=�ðtÞþ�;MC=�ðMCÞþ��
^8l2deadlinesðWhenEventsÞ� �ðMCÞ<l)�ðMCÞþ�� l

^8t2RT ð�ðCÞÞ��ðtÞ<deadlineðtÞ)�ðtÞþ� � deadlineðtÞ:

Valuation �½x=val� assigns to variable x value val and to every
other variable y, y 6¼ x, the value �ðyÞ. Symbol & denotes a
bulk update: �½&x2Xx=valx� ¼

df
�½x1=val1; . . . ; xn=valn�, where

n ¼ #X [38].
Relation !event defines that events occur. The only

component that changes is I, the set of input events. The
nonoccurrence of events is excluded: No change is not a
change. The occurrence of events must satisfy some
additional constraints. Line by line, the definition says that
a set E of event occurrences is allowed if and only if

1. the set is not empty,
2. activity nodes that terminate are in the current

configuration,
3. when the master clock reaches a deadline, the

corresponding when events are generated, and
4. an after event is generated when the correspond-

ing timer has reached its deadline.

�!event�
0 ,

df
9E � Events �

�0 ¼ �½I=E� ^ E 6¼ ;
^ 8a 2 AN � termðaÞ 2 �0ðIÞ ) a 2 �ðCÞ
^ 8we 2 WhenEvents � �ðMCÞ 2 deadlinesðweÞ , we 2 E

^ 8t 2 RT ð�ðCÞÞ � �ðtÞ ¼ deadlineðtÞ ) eventðtÞ 2 E:

Before the step can be computed, the valuation of the

local variables in the database must be known. The

valuation of these variables may have changed because

some activities have terminated (recorded in I) or because

the environment has updated some variables. Relation

!retrieve lvar specifies that the new values of the local

variables are retrieved. The valuation of variables that are

observed or updated in some running activity does not

change.

� !retrieve lvar�
0 ,
df

�ðCÞ ¼ �0ðCÞ ^ �ðIÞ ¼ �0ðIÞ
^ �ðMCÞ ¼ �0ðMCÞ
^ 8t 2 RT ð�ðCÞÞ � �ðtÞ ¼ �0ðtÞ
^ 8a 2 AN � a 2 �ðCÞ ^ termðaÞ 62 �ðIÞ )
8v2LV ar�v2ObsðaÞ[UpdðaÞ)�ðvÞ¼�0ðvÞ:

Transitions!unstable and!stable test whether a valuation

is unstable or stable. Transition !end tests whether an

activity diagram has ended. Valuation � is stable iff there

are no enabled hyperedges and the set of input events is

empty: stable ¼df enabledðC; IÞ¼; ^ I¼;. Both transitions

have lower priority than transition !end .

� !unstable �
0,
df
� ¼ �0 ^ � 6� stable ^ � 6!end �

0

� !stable �
0,
df
� ¼ �0 ^ � � stable ^ � 6!end �

0

� !end �
0,
df
� ¼ �0 ^ �ðIÞ ¼ ; ^ 8n 2 Nodes �

n 2 �ðCÞ ) n 2 FN:

We next define the step transition relation !step . Line by

line, the !step definition below says that a step is done

between � and �0 iff

1. there is a step S (using the predicate isStep defined
above),

2. the variables that are contained in the guards of the
hyperedges in S are not being updated in some
nonterminated activity (otherwise, an inconsistent
value could be read),

3. there is a set T of timers that can be turned on,
4. � is then updated into �0 by computing the next

configuration if step S is taken (using the function
nextconfig), putting the generated events in I, and
initializing the new timers.

� !step �
0,
df
9S � HyperEdges � isStep�ð�ðCÞ; �ðIÞ; SÞ
^ 8a 2 AN � a 2 �ðCÞ ^ termðaÞ 62 �ðIÞ

UpdðaÞ \ ð
[
h2S

varðguardðhÞÞÞ ¼ ;

^ �0 ¼ �½C=nextconfigð�ðCÞ; SÞ;
I= [h2H sendactionsðhÞ;
&t2RT ð�ðCÞÞnRT ð�ðCÞÞt=0�;

where varðgÞ denotes the variables guard g tests.
In the initial valuation �0, the configuration only contains

one copy of initial, C¼finitialg, and the input is empty,

I¼;. The other variables, including master clock MC, must

be initialized with an appropriate value.
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4 FROM INFINITE TO FINITE STATE SPACE

To be able to model check an activity diagram, its transition
system (TS) must be finite. In this section, we show how we
transform an infinite state CTS into a finite state TS using
solutions taken from literature.

4.1 Unbounded Nodes

In Fig. 4, arbitrarily many instances of B can be active at the
same time. This diagram therefore has an infinite state
space. In Fig. 4b, C is executed twice; two instances of C can
be active at the same time. This diagram has a finite state
space: There are no unbounded nodes. A node is unbounded
if there is no bound on the maximum number of its active
instances [35].

Model checking is decidable for bounded models [9],
but, for unbounded models, it can easily become undecid-
able [17]. We therefore restrict ourselves to bounded
models. In our implementation, the computation of the
transition system is stopped if one of the nodes becomes
unbounded. A node n is unbounded iff there is a state s that
has n in its configuration Cs and s has a predecessor state s0

such that its configuration Cs0 is strictly contained in Cs [28].
For example, in Fig. 4, node B is unbounded since a state
with configuration [A,B] is reachable from a state with
configuration [A].

4.2 Abstracting from Data

Since an activity hypergraph can have integer and string
variables, the state space of the transition system can be
infinite. To reduce this to a finite one, observe that the only
data that influences the execution of the activity hypergraph
are the event and guard labels. The only relevant data,
therefore, is the Boolean valuation of the event and guard
expressions. A naive model checking strategy would
therefore be to drop all data and to replace every guard
expression by a Boolean representative. However, guard
expressions can be dependent upon each other. For
example, if ½s ¼ }red}� is true, then ½s 6¼ }red}� must be
false, but, in the naive model checking strategy, ½s ¼ }red}�
and ½s 6¼ }red}� might both be assigned the value true. Such
valuations should not occur in the model.

We therefore consider basic guard expressions: those parts
of the guard expressions not containing ^, _, and :. This

partly solves the problem sketched above (for example, ½p ^
q� and ½q� are dependent now), but not fully since basic

guard expressions, too, can be dependent upon each other.

For example, basic guard expressions s ¼ }red} and s ¼
}blue} are not independent since s cannot be both red and

blue. We have solved this problem in our implementation

by enforcing that if two basic guard expressions refer to the

same variable, then at most one of them can be true at the

same time. Furthermore, to avoid that, say, x < 10 and x >

12 are true at the same time, the only Boolean expressions

referring to integers that we allow are equality tests, for

example, ½x ¼ 10�.
The approach above is inspired by existing approaches

from modal logic theory, e.g., filtration [18]. Most ap-

proaches in model checking to data abstraction use an

overapproximation based upon the theory of Abstract

Interpretation (see, e.g., [9]).

4.3 Real Time

In our tool, we have only implemented after events, when

events can be dealt with similarly. The problem in

interpreting after events, is that our semantics uses a

dense time model: Between two points in time, there always

exists another point in time. In a dense time model, clocks

can have infinitely many values in a finite interval of time.

Clearly, we cannot compute all these different values.
One obvious solution is to use discrete clocks. The

problem then is to find the right discretization such that at

least the qualitative behavior of the dense-time model is

preserved. For example, discretizing the example in Fig. 4

with clock ticks of 2 makes configuration [WAIT-1,WAIT-

4,WAIT-5] unreachable, whereas this configuration is

reachable in the dense time model. The dense time model

we use can be safely discretized with clock ticks of 1 time

unit [2], [24]. The discretization preserves the untimed

reachability properties of the original dense time model, but

it may introduce some different timing behavior [2], [24].

So, it is not possible to use a real-time logic as requirement

language. Since there is no real-time model checker

supporting strong fairness constraints, this is not much of

a restriction anyway. This discretization transforms a CTS

into a TS.
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5 STRONG FAIRNESS

Workflow specifications can contain loops. For example in
Fig. 1, there is a loop Send bill,WAIT-3,Handle

payment,Notify customer,Send Bill,.... So far,
our semantics contains a run in which this loop is never
exited. Along this run, the payment is never ok. This is not
what is intended. The activity diagram is intended to
describe the situation in which, eventually, the payment is
ok. If we were to account for the possibility of nonpaying
customers, we should describe another workflow that
includes the work of the bailiff. In general, loops in a
workflow are eventually exited because every workflow
eventually terminates.

Note that even a workflow specification that has no loops

in the activity diagram may have loops in its underlying

transition system. This is due to event occurrences that can

occur in a certain state but that are irrelevant and therefore

ignored. For example, in Fig. 1, event receive payment

can occur while node Receive order is active. Nothing in

our semantics so far prevents receive payment from

happening over and over again while Receive order is

active. Thus, there is a run in which node Receive order

is never left. But we would like to exclude such a run

because, in it, activity Receive order never terminates while

receive payment occurs infinitely often. (This behavior

resembles Zeno behavior in timed systems.)
A useful way to avoid these loops is to use strong

fairness constraints. A strong fairness constraint ðp; qÞ,
where p and q are properties, states that, if p is true
infinitely often in a run, then q must be true infinitely often
in the run as well [34]. Intuitively, a requirement p can only
be true infinitely often if there is a loop in the transition
system in which p is made true. Associating p with a loop
and q with its exit, ðp; qÞ effectively blocks a path that would
loop infinitely often without exiting infinitely often. Using a
strong fairness constraint, therefore, we can specify that
some loop must be exited eventually.

We specify a strong fairness constraint for every
hyperedge h that is triggered by an external event. The
constraint states that if h is relevant infinitely often, it must
be taken infinitely often. The strong fairness condition for
the complete activity hypergraph is the conjunction of all
individual strong fairness constraints:

sf ¼df
^

h2HyperEdgesj:internalðhÞ

½ðstable ^ sourceðhÞvC; stable ^ targetðhÞvCÞ:�

Predicate internal is true if and only if the hyperedge is
triggered by an internal event. Predicate stable is true if and
only if the current state is stable (cf. Section 2). See [12] for
formal definitions of these predicates. This strong fairness
constraint states that the environment must behave in a fair
way: If a hyperedge is infinitely often relevant in a stable
state, the environment must generate the trigger event of this
hyperedge some time and must make the guard true some
time.We assume that the guard is satisfiable. For the example
activity hypergraph in Fig. 2, strong fairness constraint
ð ½Receive order� v C; ½Check stock; Check customer� v C Þ
states that activity node Receive order must terminate

some time.A run inwhich nodeReceiveorder is never left
is not strongly fair because nodeReceiveorder is infinitely
often contained in the configuration, but nodes Check

stock and Check customer are not.
Each strong fairness constraint ðp; qÞ is equivalent to

LTL constraint G F p ) G F q, where G ’ means that ’ is

globally true in every state of the run and F ’ means that ’

is true in some future state of the run. Encoding of strong

fairness constraints as antecedent of the LTL requirement

that has to be verified leads to a state explosion, so we

decided to use an existing special algorithm [31] for model

checking LTL formulas with strong fairness constraints.

The algorithm restricts the evaluation of an LTL formula to

strongly fair runs only. It has been implemented in a tool

called Temporal Logic Verifier (TLV) [37], but, since TLV

does not support batch processing, it could not be

integrated with TCM. We therefore implemented the

algorithm in the open source model checker NuSMV,

which does support batch processing. The resulting strong

fairness model checker is called NuSMVfair and is now

part of NuSMV 2.1 (http://nusmv.irst.itc.it).

6 IMPLEMENTATION

6.1 Assumptions about Variables

For our tool implementation, we have made four assump-
tions that we motivate below.

1. If an activity reads a variable, we assume that it
updates that variable, too.

2. We assume that a variable is updated by an activity
A if a guard of a hyperedge leaving A tests the
variable. So, in Fig. 1, we assume that Check stock

updates Boolean variable insufficient stock.
3. The effect of an activity is a possible change in

valuation of the variables that the activity updates.
Since the only relevant changes are changes in the
truth value of a guard, the effect of an activity is
expressed in terms of the basic guards that are made
true or false by that activity.

4. The data that is updated in an activity (by an actor)
is not updated by the environment.

Using assumptions 1 and 2, TCM can automatically
derive which activity updates which variable. Thus, the
user does not have to specify which variables are read or
updated by an activity. Assumption 3 states that an activity
only changes the truth value of basic guard expressions that
contain a variable that is updated by that activity. We do
not allow basic guard expressions that contain more than
one variable (see Section 4). The final assumption ensures,
for example, that, in Fig. 1, the two choices based upon
insufficient stock have the same outcome. A bene-
ficial side-effect of this assumption is that it reduces the
state explosion.

6.2 Two Implementations

We have made two different implementations. The first
implementation is an extension of TCM, written in C++,
with an execution algorithm that maps an activity hyper-
graph into a TS with strong fairness constraints. The TS is
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straightforwardly encoded as input for a model checker by

enumerating every state. The second implementation is

based on existing approaches (e.g., [5]) to verify statecharts

with symbolic model checkers like NuSMV. In this

implementation, the syntax of an activity hypergraph is

encoded directly as input for a symbolic model checker in

such a way that the semantics that the symbolic model

checker attaches to the input coincides with the require-

ments-level semantics. The second implementation can only

deal with safe activity diagrams. But, to check safeness, we

still need to use the first implementation. Moreover, if some

hyperedges share sources and targets, the second imple-

mentation does not work any more because then some

constraints in the input will conflict with each other.

However, if the second implementation can be applied, it

is more efficient than the first implementation.

7 EXAMPLE VERIFICATIONS

Requirement R1 states that, for each possible strongly fair

run, either both Make production plan and Produce

occur sometime in the future or both of them do not occur:

ðR1Þ F in ðMake production planÞ , F in ðProduceÞ;

where inðxÞ is true in a valuation � iff node x is contained in

the configuration of �. (TCM translates in into an

equivalent predicate on nodes.) This requirement fails to

hold: The path that TCM highlights is shown in Fig. 5. We

see that, if the customer check fails, the workflow stops,

while Make production plan may already have been

executed. We decide to improve the requirement by making

it conditional on the customer check:

ðR10Þ ð F customer okÞ ) ðF in ðMake production planÞ
, F in ðProduceÞ Þ:

NuSMVfair reports that this requirement is true. It is true

because of our Assumption 4 in Section 6 which implies, for

this workflow specification, that only Check stock can

change variable insufficient stock.
Finally, we verify that, in each strongly fair run, a bill is

sent if and only if either something is produced or taken

from stock:

ðR2Þ FðinðProduceÞ _ inðFill orderÞÞ , FinðSend billÞ:

NuSMVfair reports that this requirement is true.
A general requirement for workflow models is that the

model does not deadlock, i.e., for every strongly fair run,

from the initial state a final state should be reachable:

ðR3Þ F G final;

where final is true in a state iff the configuration only

contains final nodes (bull’s eyes). TCM translates final

into an equivalent predicate on nodes. NuSMVfair reports

that the requirement is true. Without using strong

fairness, the requirement would have been false because

of the loop Send bill, WAIT-3, Handle payment,

Notify customer, Send Bill,....
Another general requirement is that activity diagrams do

not diverge; that is, there is always a future in which an

activity diagram is stable:

ðR4Þ G F stable:

NuSMVfair reports that this requirement is true.

8 FIGHTING STATE EXPLOSION

The main problem with model checking is the state space

explosion [9]. We defined and implemented four rules to

reduce the state space of an activity hypergraph given a

requirement ’ where ’ 2 CTL��X, i.e, ’ does not contain

the next operator. It is easy to show that, for every reduction

rule r, ’ holds for the transition system of the original

activity hypergraph AH iff it holds for the transition system

of rðAHÞ [12]. In particular, for rules 1 and 2, the original

activity diagram and the reduced one have the same

reachable configurations.
Rule 1: No irrelevant external event occurrences. Only

allow an external event e to occur if it triggers a relevant

hyperedge. The rule rules out hidden loops in an activity

diagram (cf. Section 5).
This reduction rule is allowed iff ’ does not refer to

external events.
Rule 2: Interleaved named external event occurrences.

Only allow interleaved named external event occurrences;

that is, no two named external events can occur at the same

time. Note that this rule does not apply to temporal events

and condition change events.
This reduction rule is allowed iff ’ does not refer to

named external events. Moreover, the activity hypergraph

must satisfy some constraints; otherwise, the reduced

activity diagram might behave differently from the original

activity diagram; see [12] for details.
Rule 3: Remove local variables. Remove local variable v

from the activity hypergraph and remove every basic guard

condition that refers to v.
This reduction rule is allowed if:

. v is not updated by two concurrent activities,

. The requirement ’ does not refer to v.

. The only hyperedges referring to v are the ones
leaving the activity node A in which v is updated.
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. In a decision, the disjunction of basic guard expres-
sions referring to v is true. This can be easily ensured
by including an else branch in every decision.

The first constraint is needed because, otherwise, two
interfering activity nodes can become active at the same time
in the reduced activity hypergraph, which is impossible in
the original activity hypergraph due to our step semantics.
The second constraint ensures that the requirement ’ can
still be evaluated on the reduced activity hypergraph. The
third constraint ensures that the reduced activity hyper-
graph does not have more configurations than the original
one. For example, in Fig. 1, variables insufficient stock

and customer ok cannot be removed because they are
contained in the guards of the hyperedges leaving nodes
WAIT-1 and WAIT-2. The fourth constraint ensures that, if
the original activity hypergraph contains a deadlock, the
reduced one contains a deadlock as well.

Applying this reduction rule to the activity diagram in
Fig. 1, if the requirement to be verified is F G final, then
variable payment ok can be removed and the correspond-
ing guard conditions can be removed as well.

Rule 4: Remove nodes. If there is an activity or wait
node n with only one outgoing external hyperedge h such
that sourceðhÞ ¼ fng so h does not conflict with any other
hyperedge, then both n and h can be removed from the
activity diagram by replacing every occurrence of n in the
target of some hyperedge with the targets of h. If h was the
last hyperedge referring to some trigger event and/or local
variable, these can be removed from the set of events and
local variables, respectively.

This reduction rule is allowed if:

. The requirement ’ neither refers to n, nor to the label
of h, nor to the target nodes of h.

. Neither n nor the target nodes of h are referred to by
some in predicate in the activity diagram.

. The trigger event of h is a named external event or a
termination event.

. The trigger event e of h can only occur in this state,
either because 1) n is an activity node and e denotes
termination of n or because 2) n is a wait node and e
is a named external event that does not trigger any
other hyperedge and reduction rule 1 (no irrelevant
events) is used.

The first constraint ensures that the requirement can still
be evaluated on the reduced activity hypergraph. The
second constraint prevents an in predicate having an
undefined value. The third and fourth constraint ensure
that the trigger event of h only triggers h and, moreover, can
only occur in n. Thus, removal of both n and h will not
affect other parts of the activity hypergraph.

8.1 Practical Experience

To estimate the effect of the reduction rules on real-life
workflow models, we have used the reduction approach on
two existing workflow models that are used in organiza-
tions. Table 1 shows the performance results for model
checking our running example and these two additional
models with NuSMVfair, where all four reduction rules
have been applied. Since the last two original models were
too big for TCM to construct, we used our second, symbolic

implementation to estimate the number of reachable states
in the original model. The analysis was performed on a PC
with a Pentium III 450 MHz processor with 128Mb of RAM
under Red Hat Linux 6.0.

9 RELATED WORK

9.1 Semantics

Though the syntax of activity diagrams resembles the
syntax Petri nets, our formal semantics differs from a token-
game semantics: Our semantics is reactive, whereas the
token-game semantics is not. Our semantics can be easily
adapted to give a reactive semantics to Petri nets. For an
extensive comparison of our semantics with different Petri
net variants, see [16]. Other formalizations of activity
diagrams have been presented, but these are neither
intended for workflow modeling nor used for model
checking; see [12].

9.2 Verification Tools

Woflan [41] is a tool for verification of textual workflow
specifications without data and real time. Feedback is also
textual. The workflow specifications are based on low-level
Petri nets. Woflan allows verification of a fixed set of
requirements that cannot be specified by the user. Woflan
does not address strong fairness.

The tool developed in the Mentor project [36] uses a
CTL model checker for statecharts. The tool is not
integrated with the model checker. Strong fairness is not
used. No details are given on how the feedback is
presented to the user.

The Testbed Studio tool [26] supports model checking of
business process models with Spin [25]. The process
modeling language neither has external events nor tempor-
al events. Models can have loops, but the analysis results on
such models may be counterintuitive since it cannot be
specified that loops are exited. The tool does not support
strong fairness.

Karamanolis et al. [27] use the existing LTSA toolkit for
model checking workflow schemas. Workflow schemas are
translated manually into input for LTSA; the output of
verification is shown graphically in the LTSA input, not in
the original workflow schema. LTSA is based on process
algebra; data and real-time cannot be explicitly modeled.
LTSA can handle strong fairness constraints, but the
authors do not focus on loops in workflow schemas.

Our work is also closely related to the work done on
model checking STATEMATE and UML statecharts. Chan
et al. [5] have defined model checking for statecharts using
SMV [9]. Latella et al. [32] present a translation for a subset
of UML statecharts to Spin [25]. None of the implementa-
tions discussed in these papers provide a graphical
representation of the feedback of the model checker. Both
papers encode the syntax of the statechart explicitly in the
input language and let the model checking tool derive the
step semantics implicitly. Our tool encodes the semantic
structure directly in the input language. To compare our
approach with these approaches, we have also implemented
a syntactic encoding in our tool; see Section 6 for the results.

vUML [33] is a tool for model checking a communicating
set of objects whose behavior is modeled by UML
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statecharts. vUML uses the Spin [25] model checker. No
details are given on how the statechart is encoded. The
feedback of the tool is graphically represented by a UML
sequence diagram. vUML does not support strong fairness
nor real time.

9.3 Reduction Rules

Our reduction rules are similar to slicing rules in program
analysis [40]. Recently, slicing has been used in combination
with model checking [6], [8], [23]. Chan et al. [6] slice an
RSML statechart, given some requirement ’, by removing
parallel nodes in the statechart that are not (in)directly
referred to by ’. In particular, if a certain node is relevant,
all its predecessors are relevant as well; these are not
removed. We sometimes cut away predecessor nodes
(rule 4) and do not remove parallel nodes. Other
approaches [8], [23] apply slicing to low-level programs,
rather than graphical models.

10 CONCLUSION AND FUTURE WORK

This paper has three contributions. First, our tool is the first
verification tool for UML activity diagrams. Existing
verification tools for the related UML statecharts do not
address strong fairness constraints, nor present feedback in
terms of the original statechart. Second, to our knowledge,
our tool is the first to act as a usable front end to model
checkers, allowing the use of higher-level behavior nota-
tions to define the transition system and presenting the
trace in a readable format in this behavior notation. This
approach can be generalized to other notations, such as
statecharts, and to other model checkers. Third, our tool
offers flexible analysis support of workflow models that

have event driven behavior, data, loops, and real time. As
described in Section 9, previous approaches either focus on
fixed requirements for simple workflow models without
data or real time or do not support strong fairness
constraints.

Future work includes the generalization of TCM to a
front end for other model checkers and other behavior
notations. We also plan to define and implement a
requirement language that is defined in terms of high-level
behavior notations, thus further increasing the usability of
TCM as a model checker front end.
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