
HAL Id: lirmm-00102747
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102747

Submitted on 2 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Test Generation: A Use Case Driven
Approach

Clémentine Nebut, Franck Fleurey, Yves Le Traon, Jean-Marc Jézéquel

To cite this version:
Clémentine Nebut, Franck Fleurey, Yves Le Traon, Jean-Marc Jézéquel. Automatic Test Generation:
A Use Case Driven Approach. IEEE Transactions on Software Engineering, 2006, 32 (3), pp.140-155.
�10.1109/TSE.2006.22�. �lirmm-00102747�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00102747
https://hal.archives-ouvertes.fr

Automatic Test Generation:
A Use Case Driven Approach

Clémentine Nebut, Franck Fleurey, Yves Le Traon, Member, IEEE, and

Jean-Marc Jézéquel, Member, IEEE

Abstract—Use cases are believed to be a good basis for system testing. Yet, to automate the test generation process, there is a large

gap to bridge between high-level use cases and concrete test cases. We propose a new approach for automating the generation of

system test scenarios in the context of object-oriented embedded software, taking into account traceability problems between high-

level views and concrete test case execution. Starting from a formalization of the requirements based on use cases extended with

contracts, we automatically build a transition system from which we synthesize test cases. Our objective is to cover the system in terms

of statement coverage with those generated tests: An empirical evaluation of our approach is given based on this objective and several

case studies. We briefly discuss the experimental deployment of our approach in the field at Thalès Airborne Systems.

Index Terms—Use case, test generation, scenarios, contracts, UML.

�

1 INTRODUCTION

IT is well known that formal methods can be used both for
validating requirements [1], [2] as well as for reducing the

cost of testing through automatic test case generation [3],
[4], [5], [6]. However, the full formalization of a large object-
oriented software for embedded systems also has a cost that
many organizations are not ready to pay for. There can be
several reasons for that. For instance, at Thalès Airborne
Systems (TAS), which is responsible for the inboard
software of several combat aircrafts (Mirage 2000-9, Rafale),
beyond the problem of finding adequately skilled people, a
recurring concern is the lack of integration of formal
method with well-established development life cycles.
Due to the constant changes in the requirements, this may
lead to maintainability problems for the formal specification
as well as traceability nightmares. Specifically when dealing
with product families, it is economically unrealistic to
require a new formalization for each product in the family,
or even for successive releases of the same product.

So, instead of pushing formal methods to the industry

(one of the mottos in the formal methods community), we

propose to work the other way round, i.e., start from

established practices and gently lead them toward formally

exploitable models. We concentrate here on widely

accepted practices based on the use of the Unified Modeling

Language (UML) to support an object-oriented develop-

ment process. We propose a new approach for automating

the generation of system test scenarios from use cases in the

context of object-oriented embedded software and taking
into account traceability problems between high-level views
and concrete test case execution.

The method we develop is based on a use case model
unraveling the many ambiguities of the requirements
written in natural language. We build on UML use cases
enhanced with contracts (based on use cases pre and
postconditions) as they are defined in [7] or [8]. Lifting up
Meyer’s Design By Contract [9] idea to the requirement
level, we propose to make these contracts executable by
writing them in the form of requirement-level logical
expressions. Based on those more formalized—but still
high-level—requirements, we define a simulation model of
the use cases. In this way, once the requirements are written
in terms of use cases and contracts, they can be simulated in
order to check their consistency and correctness. The
simulation model is also used to explicitly build a model
of all the valid sequences of use cases, and from it to extract
relevant paths using coverage criteria. These paths are
called test objectives. The test objectives generation from the
use cases constitutes the first phase of our approach. The
second phase aims at generating test scenarios from these
test objectives. In standard development processes [10]
based on the UML, each use case is to be documented with
several sequence diagrams. Building on these existing
sequence diagrams, we automate the test scenarios genera-
tion by replacing each use case with a sequence diagram
that is compatible in terms of static contract matching. As a
result, we obtain test scenarios that are close to the
implementation.

The contribution of this paper is thus to generate tests
from a formalization of the requirements of a system, in the
context of object-oriented embedded software. The goal of
the approach is to off-load by automation the work in test
generation and to shift the effort to the specification activity.
Our objective is to generate test cases for efficiently
detecting faults in embedded software. As a starting point,
our tests are evaluated in terms of statement coverage.
Though the number of covered statements is a very crude
measure of test relevance, it is widely used in industrial

140 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

. C. Nebut is with LIRMM (CNRS & Université de Montpellier 2), 161 rue
Ada 34392, Montpellier cedex 5, France. E-mail: nebut@lirmm.fr.

. F. Fleurey and J.-M. Jézéquel are with IRISA (INRIA & Université de
Rennes 1), Campus universitaire de Beaulieu 35042, Rennes cedex France.
E-mail: {ffleurey, jezequel}@irisa.fr.

. Y. Le Traon is with France Télécom R&D/MAPS, Lannion, France.
E-mail: yves.letraon@francetelecom.com.

Manuscript received 28 June 2005; revised 28 Nov. 2005; accepted 28 Dec.
2005; published online 17 Mar. 2006.
Recommended for acceptance by G. Rothermel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0186-0605.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

circles because it is easy to measure even for real-time
embedded OO software, where a strict mapping is
mandatory from requirements to code.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the proposed approach.
Section 3 presents the process we use to generate test
objectives. It includes definitions for the contract lan-
guage, the simulation model used, and the criteria to
generate test objectives. Section 4 explains how the test
objectives are transformed into test scenarios using
sequence diagrams. Section 5 presents an empirical
validation of the approach by studying the effectiveness
of generated test cases on three case studies, in terms of
statement coverage. Section 6 discusses related works. We
conclude by briefly discussing the experimental deploy-
ment of this approach on the field at TAS.

2 OVERVIEW

This section provides an overview of the proposed method.
Each step is then detailed in the following sections. Fig. 1
summarizes our two-phase method to automatically gen-
erate functional test scenarios from requirement artifacts.

The first phase of the method (steps (a) to (c) in Fig. 1),
aims at generating test objectives from a use case view of
the system. The use cases diagram is a global view
describing the system’s main functions. Use cases can be
seen as high-level functions, as is suggested in the Catalysis
method [7]. Yet, these use cases do not correspond to the
way these main functions will be implemented in the
system. This is why test cases cannot be generated from the
knowledge of the use cases alone. However, the use cases
may be annotated with pre and postconditions, as proposed
in [7]. We thus propose a requirement-by-contract approach,
inspired by the design-by-contract approach of Meyer [9].
These contracts are not executed before and after the
execution of a use case as contracts of methods proposed by
Meyer, but are used to infer the correct partial ordering of
functionalities that the system should offer. Section 3.1
presents a language to express contracts. From the use cases
and their contracts, a prototype tool (UC-System) builds a
simulation model (step (b) of Fig. 1) and generates correct
sequences of use cases (step (c) of Fig. 1). In the following,
such a correct sequence of use cases is called a test objective.
As shown in Fig. 1, the use cases model can be simulated.
This simulation phase allows the requirement engineer to

check and possibly correct the requirements before tests are
generated from them.

The second phase (steps (c) to (e) of Fig. 1) aims at
generating test scenarios from the test objectives. A test
scenario may be directly used as an executable test case, or
may need some additions from the tester, if some messages
or parameters are still missing. To go from the test
objectives to the test scenarios, additional information is
needed, specifying the exchanges of messages involved
between the environment and the system. Such information
can be attached to a given use case in the form of several
artifacts: sequence diagrams, state machines, or activity
diagrams. All these artifacts describe the scenarios that
correspond to a use case. For the sake of simplicity, we only
deal with sequence diagrams, which are called use case
scenarios. The principle of the transformation from test
objectives to test scenarios is inspired by Briand and
Labiche [11] and consists of replacing each use case of the
test objective by one of its use case scenarios, using the
prototype tool UC-SCSystem.

The approach proposed in this paper is designed to be
integrated in a classical UML-based software engineering
process [10]. The functional requirements are expressed
using use cases with contracts for which a dedicated editor
has been developed, as explained in Section 3.1. When the
main interfaces are designed, the analyst can detail the
behavior of each use case using scenarios giving examples
of both nominal and exceptional behaviors. These scenarios
describe the exact messages that have to be exchanged
between the system and the actors. The artifacts required to
apply our approach are use cases enhanced with contracts
and scenarios attached to these use cases. From these
inputs, the generation of test scenarios is automatic. Other
approaches [11], [12] also propose to automatically generate
test scenarios from use cases and use case scenarios. They
are detailed in related work, Section 6. Of course, the
quality of the test scenarios strongly depends on the use
case contracts and on the scenarios, and the more those
artifacts are relevant, the more the generated test scenarios
can be relevant.

This two-phase method results in system test scenarios
with embeded oracle functions. Several hard points had to
be taken into account:

. Use case and contract validation: The use cases can be
validated through simulation and model-checking.
The underlying model has to be compact enough to
avoid combinatorial explosion of the internal states
of the simulation model, called UCTS (Use Case
Transition System). This point is overcome by the
two-step approach, which divides the complexity of
high-level and detailed requirements into two levels
(use cases and sequence diagrams), and by the
introduction of use case parameters to deal with
main systems concepts and actors.

. Definition of system test criteria: Based on the UCTS
model, test generation criteria have been proposed
that automate the production of test objectives. The
most efficient criteria have been identified through
experimental comparisons.

This paper is illustrated with the ongoing example of a
virtual meeting server. The virtual meeting system offers
simplified web conference services. It is used in an

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 141

Fig. 1. Global methodology for requirement-based testing.

advanced software engineering course at the University of
Rennes. The virtual meeting server allows work meetings to
be organized on a distributed platform. When connected to
the server, a user can enter or exit a meeting, ask to speak,
eventually speak, or plan new meetings. Each meeting has a
manager. The manager is the person who has planned the
meeting and has set its main parameters (such as its name,
its agenda, etc). Each meeting may also have a moderator,
appointed by the meeting manager. The moderator gives
the floor to a participant who has asked to speak.

3 USING CONTRACTS ON USE CASES TO

GENERATE TEST OBJECTIVES

This section presents a technique to express the ordering
constraints existing between the use cases of an application,
remaining within the UML. This approach proposes to
associate contracts—i.e., pre and postconditions—to each
use case, in the form of logical expressions.

Such contracts allow the designer to specify both the
system properties, making a given use case applicable
(precondition), and the properties acquired by the system
after its application (postcondition). Use cases as defined by
Cockburn [8], for example, or by Catalysis [7], have the
notion of pre and postconditions. We propose to make these
contracts executable by writing them in the form of
requirement-level logical expressions. Because of this
executability, our requirement model may be used directly
for requirement validation and test case generation. To
allow seamless industrial acceptance, the contract language
must be simple, so that it can be easily used during the
requirements analysis. This declarative approach is very
close to the current Thalès Airborne Systems practice.

In the following sections, we introduce the contract
language and explain how contracts on the use cases are
used for simulation purposes.

3.1 Adding Contracts to the Use Cases

At requirement level, a use case mainly depends on the
specific actors to which it is connected, and to the business
level concepts it has to handle. Actors involved in a use case
can be considered as parameters of this use case. For
example, let us consider the use case open of the virtual
meeting example. It is parameterized by the participant
who is opening the meeting and by the meeting to be
opened. It is expressed as follows:

UC openðu : participant;m : meetingÞ;

where “participant” and “meeting” are enumerated types.
Parameters can be either actors (like the participant) or
main concepts of the application (like the meeting). These
main concepts, which are identified as business concepts in
the requirements analysis, will probably be reified in the
design process (i.e., transformed into classes or packages).

When the parameters have been specified for a use case,
contracts are expressed in the form of pre and postcondi-
tions involving these parameters. The use case contracts are
first-order logical expressions combining predicates with
logical operators. A predicate has a name, an arity and a set
of (potentially empty) typed formal parameters. The
predicates are used to describe facts in the system (on
actors state, on main concepts states, or on roles).

Since Boolean logic is used, a predicate is either true or
false, but never undefined. A system of use cases with pre

and postconditions thus needs an initial state that defines
which predicates are true at the initial state of the system.

Classical Boolean logic operators are used: conjunction
(and), disjunction (or), and negation (not). Quantifiers are
used to increase the expressiveness of the contracts: these
quantifiers are forall and exists. In addition, an implication
operator (implies) can be used in the postcondition of a use
case to guard an expression with a condition evaluated in
the context of its precondition (that must be postfixed with
the @pre operator, like in the OCL).

The precondition expression is the guard of the use case
execution. The postcondition specifies the new values of the
predicates after the execution of the use case. When a
postcondition does not explicitly modify a predicate value,
it is left unchanged. An example of such contracts is given
in Fig. 2. The use case open requires that the actor
performing the opening on a meeting is its moderator and
is connected, and that the meeting has been created, and
neither closed nor already opened. After performing the use
case open, the meeting is opened. The use case close requires
the meeting to be opened, and the actor performing it to be
its moderator. After closing a meeting, it is closed, not
opened, and all its participants have left (in particular,
nobody is waiting to speak nor speaking). After opening a
meeting, an actor can immediately close it, since the
precondition and the postondition of this action implies
the precondition of the action.

3.1.1 Limitations of the Contractualized Use Case Model

Difficulty of building a contractualized use case model. The
declarative definition of such contract expressions forces the
requirement analyst to be precise and rigorous in the
semantics given to each use case and, thus, may not be so
easy to build. The set of used predicates can be seen as the
vocabulary to describe the requirements, it is thus necessary
to keep the predicate names consistent. Moreover, there
may exist dependencies between the predicates, and our
approach does not manage those dependencies. Deriving
and maintaining a nonredundant, minimal set of contracts
and predicates can thus be a complex task, in particular,
when the requirements elicitation process involves numer-
ous people and a great number of predicates. To decrease
this complexity, we have developed an editor tool to
manage the predicates and guide the design of contracts. To
check that the requirements are correctly described, we
propose the use of a simulator of the requirements (see
Section 3.2). Other approaches propose to model the
dependencies using graphical notations such as activity
diagrams [11], or dependency charts [13], they are dis-
cussed in Section 6.

142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 2. Contracts of use cases open and close.

Numeric types. The requirements that can be expressed
with contracts on the use cases are high level ones, e.g., they
are not suitable to handle complex data types (including
arithmetic calculus for example). In our case studies, when
the requirements include numerics, we use a simple kind of
abstract interpretation [14], abstracting a number by a set of
intervals.

Restriction on postconditions. In our model, we have
restricted the usage of the postconditions: The
postconditions must be deterministic. Though this restric-
tion is a limitation of our model, conditional postconditions
can still be expressed, making the condition explicit. Let us
illustrate that with the example of a use case Aðx : XÞ which
results in the predicate p1 or the predicate p2, depending on
a given condition cðxÞ. The postcondition “p1 or p2” is not
acceptable from our point of view: It is not deterministic,
since the condition cðxÞ does not appear in the post-
condition. However, the postcondition can be expressed as
follows: “cðxÞ@pre implies p1 and not cðxÞ@pre implies p2.”
In this latter postcondition, the condition cðxÞ is made
explicit, and the postcondition is thus valid.

3.2 Simulating the Use Cases

Using the contracts, the use cases can be simulated: That
means that we are able to decide which use cases with
which parameters can be applied from a given simulation
state. In fact, the idea is to “instantiate” the use cases with a
set of values (the actual parameters, i.e., the actual actors
and business concepts) replacing their formal parameters.
In the virtual meeting example, we want to obtain the
ordering of the use cases with two meetings m1 and m2,
and two participants p1 and p2. The instantiated use cases
o f openðu : participant;m : meetingÞ a r e openðp2;m1Þ,
openðp1;m2Þ, and openðp2;m2Þ. In the following, we call
instantiated use cases (respectively, predicates) the set of use
cases, (respectively, predicates) obtained by replacing their
sets of formal parameters with all the possible combinations
of their possible actual values.

We define a simulation state as a set of instantiated
predicates: these which are valuated to true. For example,
the state fconnectedðp1Þ; connectedðp2Þ g corresponds to a
state of the simulation for which participants p1 and p2 are
connected.

Applying an instantiated use case. An instantiated use
case iuc can be applied from a simulation state s when s
logically implies the precondition of iuc. Then, if iuc is
applied, the current state is modified according to the
postcondition of iuc: s is modified such as the postcondition
of iuc: s is implied by the new current state. For example, if
we apply the instantiated use case closeðp1;m1Þ (cf. Fig. 2)
from the state

s ¼fconnectedðp1Þ;managerðp1;m1Þ;moderatorðp1;m1Þ;
createdðm1Þ; openedðm1Þ; enteredðp1Þg;

the new current state will be

s0 ¼fconnectedðp1Þ;managerðp1;m1Þ;moderatorðp1;m1Þ;
createdðm1Þ; closedðm1Þg:

To be able to compute the new current state, we use the
restriction on the postcondition explained in the previous
section: Since the postconditions must be deterministic,
applying a postcondition will deterministically lead to a
single new state.

3.2.1 Construction of the Simulation Model

To simulate a use case system, we need an initial state and
the enumeration of all the business entities present in the
system, in order to be able to compute the instantiated use
cases and predicates. As an example, to deal with two
participants and two meetings, we can declare

p1; p2 : Participant

m1;m2 : Meeting:

3.2.2 Benefits and Limitations of the Simulation

A simulation tool allows the requirement analyst to check
her requirements: The simulator is an interactive tool
proposing the user a list of all the instantiated use cases
that can be applied from the current simulation state
(starting from the initial state). It simulates the execution of
a selected instantiated use case, thus producing a new
current state. Using such a tool, the requirement analyst can
check whether the requirements she has specified conform
with the ones she had in mind, comparing the obtained
behavior with the expected behavior. Inconsistencies
between predicates and contracts can be identified, as well
as underspecification or errors in the requirements. Using
our simulation tool, properties can also be verified using
model-checking techniques. For example, invariants can be
checked: In the virtual meeting system, one can check that it
is not possible that several participants speak at the same
time in a meeting. It is expressed using the following
invariant:

not existsðu1; u2 : participant; m : MeetingÞ
f u1= ¼ u2 and speakerðu1;mÞ and speakerðu2;mÞ g:

Moreover, the tool can exhibit a path leading to a given
configuration.

Since there is no predicate calculus in this simulation
tool, its main limitation relates to predicate dependencies.
When a use case U has “a and b” as precondition, while the
predicate c is true in the current state, if it happens that
c ¼ ða and bÞ, then our simulator would not propose to
apply U. This is because we do not provide ways to define
relations between predicates (c ¼ ða and bÞ).

3.3 Exhaustive Simulation and Transition System

Defining contracts for each use case allows ordering
dependencies among use cases to be inferred. In our model,
if there is no explicit dependency between two use cases,
then these use cases can be executed in parallel. A
representation of the valid sequences of the use cases is
built by exhaustively simulating the system. It results in a
transition system called Use Case Transition System
(UCTS). Formally, the UCTS is defined by a quadruple
(Q; q0; A; ,!), where

. Q is a finite and nonempty set of states, each state
being defined as a set of instantiated predicates,

. q0 is the initial state,

. A is the alphabet of actions, an action being an
instantiated use case, and

. ,!� Q�A�Q is the transition function.

The states of the UCTS represent an abstraction of the
states of the system: A state of the UCTS is a reachable
combination of values of predicates. Each transition, labeled
with an instantiated use case, represents the execution of an

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 143

instantiated use case. A path in the UCTS is, thus, a valid

sequence of use cases. A partial UCTS obtained for the

virtual meeting example is given in Fig. 3.
Such a UCTS is built from the simulation model using

Algorithm 1, which successively tries to apply each

instantiated use case from the current state (initially, from

the initial state). Applying a use case is possible when its

precondition is implied by the set of true predicates

contained in the label of the current state and leads to

creation of an edge from the current state to the state

representing the system after the postcondition is applied.

The algorithm stops when all the reachable states have been

explored.

Algorithm 1 (Algorithm Producing the UCTS)

algorithm buildUCTS
param initState : STATE

useCases : SET[INST_UC]

var

result: UCTS

to_visit : STACK[STATE]

currentState : STATE

newState : STATE

init
result.initialState initState

to_visit.push(initState)

body

while (to visit 6¼ ; do

currentState to_visit.pop

8 uc2 useCases j currentState) uc.pre do

newState apply(currentState, uc)

if newState =2 result then

result.Q result.Q [{newState}

to_vist.push(newState)fi

result.,! result.,![
{(currentState,uc,newState)}

done

done

end

return result

function apply(currentS: STATE, uc: USECASE):STATE

// returns the new current state obtained when the

// instantiated use case uc is applied from state currentS

3.3.1 Limitations of the UCTS Model

Size of the UCTS. The theoretical complexity of the UCTS,
both in building time and in memory, may be quite high. In
practice, however, if the engineers follow widely accepted
methodological guidelines (cf. [15]), for most systems the
number of high level use cases is smaller than 20, so the
UCTS size remains reasonable (see [16]). In fact, the
theoretical maximal size maxsizeUCTS of a UCTS depends
on the number nip of instantiated predicates: maxsizeUCTS ¼
2nip with nip ¼ p� ðmaxinstancesÞmaxparam , where p is the
number of predicates, maxinstances is the maximum number
of instances, and maxparam is the maximum number of
parameters per predicate. However, in practice, many of the
potential states are not reachable. For example, for the
virtual meeting system with two meetings and two
participants, maxsizeUCTS ¼ 2; 097; 152, but the actual size
of the UCTS is 1,616, and for the airborne systems we
studied, the size of the UCTS is also in the range of 103. The
real complexity of the UCTS also depends on the complex-
ity of the contracts: disjunctions in the preconditions
increase the number of transitions between the states, and
disjunctions in the postconditions increase the number of
reachable states.

For the systems we studied, even if a large number of
instances might be present in the real system, only a small
number of instances are necessary for achieving statement
coverage and, thus, the size of the UCTS remains
acceptable. This is due to the fact we focus on pure
functional testing and not, for example, load testing or
performance testing: for this kind of testing, many instances
are needed and our UCTS model is not adapted (this
problem is a classical one when dealing with enumerated
models and not symbolic models). Also, the number of
instances sufficient for a statement coverage purpose is not
always easy to determine, while the efficiency of the
generated tests depends on this number of instances.

Managing the concurrency. The UCTS does not allow
modeling of true concurrency (contrary to other models,
such as by Jard [17]): We use an interleaving semantics to
represent the potential parallelism between use cases. That
means that when two use cases A and B can be applied in
parallel, in the UCTS it is translated by two paths:
A followed by B, or B followed by A.

3.4 Test Objective Generation with Regard to a
Coverage Criterion

A UCTS is a representation of all the possible orderings of
the use cases. From a UCTS, the aim is to generate test
objectives with regard to a given UCTS coverage criterion.
Four functional structural criteria are defined in this section
to cover a UCTS, as well as one functional semantic
criterion, and one robustness semantic criterion.

Definition 1. A test objective is defined as a finite sequence of
instantiated use cases. In most cases, a test objective is not a
test case in the sense that it cannot be directly executed on an
implementation: A test case generator (for example, a test
synthesis tool [18], [19]) has to be used to go from test
objectives to test cases.

An example of test objective for the virtual meeting
example is:

½openðp1;m1Þ; enterðp2;m1Þ; leaveðp2;m1Þ; closeðp1;m1Þ�:

Definition 2. A set of test objectives is said to be consistent with
a UCTS iff each test objective exercises a path of the UCTS. A

144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 3. Extract of the UCTS for the virtual meeting.

path in the UCTS is here defined as the classical notion of path
in a graph, the first vertex corresponding to the initial state.

All Edges criterion (AE). A set of test objectives TOs
satisfies the all edges coverage criterion for a use case
transition system ucts iff each edge involved in ucts is
exercised by at least one test objective from TOs, more
formally iff

8t 2 ,!; 9toi 2 TOs; t:action 2 toi;
where t:action corresponds to the label of transition t, i.e.,
an instantiated use case.

All Vertices criterion (AV). A set of test objectives TOs
satisfies the all vertices coverage criterion for a use case
transition system ucts iff each vertex v involved in ucts is
exercised by at least one test objective from TOs (i.e., when a
transition leading to or incoming from v is exercised), more
formally iff

8q 2 Q; 9toi 2 TOs; 9iuc 2 toi; 9t 2 ,!;
t:action ¼ iuc ^ ðt:origin ¼ q _ t:dest ¼ qÞ;

where t:origin (respectively t:dest) corresponds to the state
from which t is outgoing (respectively to which t is
incoming), and iuc is an instantiated use case.

All Instantiated Use Cases criterion (AIUC). A set of
test objectives TOs satisfies the all instantiated use cases
coverage criterion for a use case transition system ucts iff
each instantiated use case of the system is exercised by at
least one test objective from TOs, more formally iff

8iuc 2 IUC; 9toi 2 TOs; 9iucto 2 toi; 9t 2 ,!;
iuc ¼ iucto ^ iucto ¼ t:action;

IUC being the set of all the instantiated use cases of the
system.

The AE criterion guarantees that all the possible
actions from all the possible states of the requirements
are exercised at least once. The AV criterion guarantees
that all the states are reached during the execution of the
test objectives. Since it does not even guarantee that all
the use cases are exercised once, we combined it with the
AIUC criterion, which ensures that all the possible use
cases are exercised. The AV-AIUC criterion is, thus, a
combination of AV and AIUC.

All Vertices and All Instantiated Use Cases criterion
(AV-AIUC). A set of test objectives TOs satisfies the all
instantiated use cases coverage criterion for a use case
transition system ucts iff each instantiated use case of the
system and each vertex involved in ucts are exercised by at
least one test objective from TOs, more formally iff TOs
satisfies AIUC and AV.

All Precondition Terms criterion (APT). A set of test
objectives TOs satisfies the All Precondition terms criterion
for a contracts system iff each use case is exercised in as
many different ways as there are predicates combinations to
make its precondition true. More formally, for each uc 2
setuc where setuc is the set of use cases of the system, let E
be the set of valuations making uc:pre true independently
from the actual parameters of the predicates. Let setiuc be
the set of instantiated use cases of the system. Then, TOs
satisfies the All Precondition terms criterion iff

8uc 2 setuc8ðe 2 E j 9q 2 Q; q:label) eÞ;
9t 2 ,!; t:action 2 uc:setiuc ^ t:origin:label) e;

where q:label is the label attached to the state q, i.e., a set of
predicates, and e is a set of true instantiated predicates.

The idea of the All Precondition Terms criterion is to
guarantee that all the possible ways to apply a use case are
exercised. A use case can be applied iff its precondition is
true; this precondition being a logical expression on
predicates, there are several valuations for the predicates
which make it true (as an example, if a precondition is a or b,
three valuations for the couple ða; bÞ must be exhibited
(ðtrue; trueÞ, ðtrue; falseÞ, ðfalse; trueÞ). The criterion All
Precondition Terms will find sequences of use cases such that
each use case is applied with all the reachable valuations of
the expression ðprecondition ¼ trueÞ. Our algorithm to
satisfy the APT criterion first computes the set E of
valuations for this expression, independently from the
parameters. Then, states are found in the UCTS for which
such valuations hold. Finally, a path leading to such states
and applying the studied use case is extracted.

The subsume relations among the five criteria are given
in Fig. 4. (A criterion C1 is said to subsume another criterion
C2 iff, for each use case system and for each set S of test
objectives satisfying C1, S also satisfies C2.)

The two criteria AE and AV are classical graph coverage
criteria, and AIUC aims at covering all the labels of the
labelled transition system. However, the AE criterion leads
to generating far too many test objectives,1 and criteria AV
and AIUC are too weak (see Section 5). We have, thus,
created the AV-AIUC criterion. The APT was chosen
because it is a different way (more semantic than structural)
of defining coverage, and it requires a small number of test
objectives (see Section 5).

The test objectives generated with the criteria presented
above are correct sequences of use cases. They are expected
to ensure that the requirements expressed by the use cases
are not violated by the system under test but do not ensure
that the system is able to detect that one of its requirements
is violated. In other words, these criteria do not provide
robustness test objectives. However, as soon as the require-
ments are precise enough, the generated UCTS can be used
as an oracle for robustness tests. The principle is to generate
valid paths that lead to an invalid application of a use case.
The idea is to correctly exercise the system up to a given
point, and then to apply a nonspecified action. The
execution of such a robustness test must be detected (and
rejected) by the system. If not, a robustness weakness has
been detected. The goal is thus to test the robustness/
defensive code of the system as much as possible at this
stage. The difficulty is to define an adequate criterion. The
criterion we use to generate robustness paths with the
UCTS is close to the All Precondition Terms one: For each use
case, it selects all the shortest paths leading to each of the
possible valuations that violate its precondition.

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 145

Fig. 4. Subsume relations among the five functional criteria.

1. As an example, for the virtual meeting system (presented in Section 5),
which is made of 2,500 LOC, the AE criterion leads to 13,841 test objectives.

Robustness criterion: A set of test objectives TOs
satisfies the robustness criterion for a contracts system iff
each use case is exercised in as many different ways as there
are predicate combinations to make its precondition false.
More formally, for each uc 2 setuc where setuc is the set of
use cases of the system, let E be the set of valuations
making uc:pre false. Let setiuc be the set of instantiated use
cases of the system. Then,

8uc 2 setuc8ðe 2 Ej9q 2 Q; q:label) eÞ;
9t 2 ,!; t:action 2 uc:setiuc ^ t:origin:label) e;

where q:label is the label attached to the state q, i.e., a set of
predicates.

The robustness test objectives will test the defensive code
of the application, which is not tested with the functional
tests previously generated. Joining the two sets of tests, we
can test that the application does what it should (according
to the requirements) and also that it does not do what it
should not (which is very important in the case of airborne
weapons systems). The criteria are compared and discussed
on three case studies in Section 5.

Algorithms (implemented in our prototype tool) exist for
each of the proposed criteria that produce a set of consistent
test objectives satisfying the criterion. As an example, the
algorithm to produce a set of test objectives consistent with
the all precondition terms criterion is given in Algorithm 2.
All these algorithms are based on a breadth-first search in
the UCTS, from its initial state. Such a technique ensures
that the obtained sets of test objectives are consistent with
the considered UCTS. The result of our algorithms depends
on the order in which the nodes are visited; they thus
contain some indeterminism, even if our implementation is
totally deterministic. The choice of a breadth-first search is
made in order to obtain small test objectives: Small tests are
more meaningful and understandable by humans than
large ones. This is especially important at requirement
stage, which should remain a high-level view. Using a
breadth-first search algorithm ensures that the size of the
computed paths is minimal, but does not ensure that the
number of paths found is minimal.

Algorithm 2 (Algorithm producing the set of test objectives

satisfying the all precondition terms criterion)

algorithm buildTestObjectives_with_APT_criterion

param

ucts : UCTS, set_uc : LIST[INST_UC]

body

8 uc 2 set_uc do

var set_b : LIST[BoolExpr]

set_b getAllTrueValuations(uc.pre)

8 e 2 set_b do

if (getPath(e,ucts).dumpIUC()) 6¼ ; then

result.add(getPath(e,ucts).dumpIUC) fi

done

done

return result

end

function getAllTrueValuations

param b:BoolExpr

return LIST[BoolExpr]
// returns all the valuations making b true, in the form of

// Boolean expressions

function getPath

param b:BoolExpr, ucts:UCTS

return list[EDGES][;
// returns the first ucts path found leading to a state where

// b is true, or an empty list if such a path cannot be found

function

function Path::dumpiuc:LIST[INST_UC]

// returns the list of instantiated use cases present

// in the path.

4 GENERATING TEST CASES FROM TEST

OBJECTIVES AND SEQUENCE DIAGRAMS

The test objectives are generated using the use cases. They
have then to be transformed into valid sequences of calls
and expected outputs on the system under test. In this
section we detail the second part of the method, which aims
at generating test scenarios from test objectives and use case
scenarios.

As already explained, we define a test scenario as a
sequence diagram representing a test. Test scenarios may
differ from the test cases in the fact that the test cases can be
applied directly with a test driver, whereas the test
scenarios may still be incomplete. The test scenarios contain
the main messages exchanged between the tester and the
system under test.

We propose to derive test scenarios from test objectives
using the use case scenarios. Each use case is documented
by its contracts and scenarios illustrating how the system
has to be stimulated by the actors in order to perform the
use case and how the system should react to the stimula-
tion. We assume that these scenarios are expressed with
UML sequence diagrams.

4.1 Motivation of Using Sequence Diagrams

Our first motivation to use scenarios is to improve the
oracle. The test objectives built with the contracts method
do not embed a precise oracle. The oracle embedded is just
the expectation of a noninterrupted execution for the
functional test objectives, either of an error or of a warning
for the robustness test objectives.

Such verdicts are limited since they check neither the
system output’s consistency nor any property of the
system state. This kind of information cannot be found in
the use case contracts, since they are high level and
independent of the rest of the modeling—in the sense
that they do not refer to any other modeling element. But
this information can typically be found in the sequence
diagrams illustrating each use case. Each of these
sequence diagrams illustrates how an actor stimulates
the system, and how the system responds, thus sequence
diagrams can be used to refine the oracles. As an
example, for the virtual meeting system, it is difficult to
express at the use case level the fact that it is not possible
to plan a meeting for a certain date when one of its

146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

expected participants is not available at this date (i.e., if
their calendar already has an entry at this date). Indeed,
the contracts do not capture complex objects such as the
calendars and the dates. Nevertheless, it is easy and
natural to express it with a use case scenario relying on
the rest of the model.

Our second motivation is to obtain test scenarios from
which a code generator can generate the test cases. The
test objectives generated are very far from the messages
exchanged during the test, since they just consist of
sequences of parameterized use cases. The communica-
tion protocols are unknown at this stage. Using the
sequence diagrams attached to the use cases allows us to
bridge part of the gap between the test objectives and the
test cases, since the use case scenarios describe the
expected exchanges of messages between the actor and
the system. In particular, they contain information on the
types of the involved objects. While the test objectives
generated using to the use cases involve types that
represent actors, or business concepts, the sequence
diagrams contain references to types existing in the
UML analysis model of the system (the analysis class
diagram).

Our third motivation comes from the fact that scenarios
and, in particular, sequence diagrams are increasingly being
used in industry in the early phases of requirements. The
conclusion of the survey of industrial software projects [20]
insists on the industrial need to base system tests on use
cases and scenarios, and explains that most projects lack a
systematic approach to define test cases based on scenarios.
Our approach is a proposal to make an easier use of
scenarios in the validation phases.

4.2 From Test Objectives to Test Scenarios: Method

We propose to replace the instantiated use cases with
instantiated use case scenarios in the test objectives.
Sequences of scenarios are thus obtained and are trans-
formed into test scenarios using strong sequential composition
(the strong sequential composition implies that every event
of a use case scenario is executed before an event of the next
scenario can be executed [21]). In the following, we present
the sequence diagrams we deal with, the test structure
generated, and the way it is generated.

4.2.1 Sequence Diagrams

Each of the sequence diagrams we deal with is attached to a
use case and represents one of its nominal or exceptional
scenarios. The sequence diagrams are system-level in the
sense that they only involve the system itself and the actors.

These sequence diagrams may involve parameters: Since
they are attached to parameterized use cases, it is quite
natural to find in the sequence diagrams at least the same
parameters as in its owner use case. In the following, we
assume that a use case scenario uses exactly the same
parameters as its use case. The sequence diagrams contain
more information than the use case, since they rely on other
model elements, and they are more precise than the use
case they describe. The use case scenarios can thus contain
more detailed pre and postconditions than the ones of the
owner use case. Those contracts are of two types: Those
which rely on the rest of the model (they are written in OCL
[22], [23]), and those which rely on the predicates
introduced in the use case analysis (they are written in
the form of a logical expression with the use case contracts
language and are especially useful for the exceptional use

case scenarios: they define the state in which an exceptional
behavior may occur).

Nominal use case scenarios represent the basic ways to
successfully exercise a use case. Exceptional use case
scenarios represent ways to exercise a use case leading to
a failure, the raise of an exception, or an error message:
exceptional use case scenarios make the use case fail. In our
context, the nominal use case scenarios, owning the tagged
value {nominal}, will be used for functional testing and the
exceptional ones, owning the tagged value {exceptional}, for
robustness testing.

To sum up, the sequence diagrams we deal with are
system-level; they may involve parameters and own
additional pre and postconditions of two types: relying on
the rest of the model (written in OCL) and relying on the
use case predicates.

Fig. 5 provides a nominal and an exceptional use case
scenario for the use case plan of the Virtual Meeting system.
In the two scenarios, d and list_p are parameters of the use
case plan, which, respectively, designate the date and the list

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 147

Fig. 5. Examples of scenarios the use case plan. (a) Nominal.
(b) Exceptional.

of the invited participants of the meeting being planned.
The nominal precondition is an OCL precondition that
asserts whether the invited participants are available at the
meeting date. The nominal postcondition checks that the
meeting has been planned with the correct parameters. The
exceptional use case scenario checks that the participants
are not available at the meeting date in its precondition, and
that the meeting is not planned in its postcondition.

4.2.2 Structure of the Generated Test Material

Our prototype tool UC-SCSystem generates test cases in the
form of Java classes, using the JUnit framework [24] as a test
harness: it runs all the tests, and it provides the test
launcher and facilities to write assertions on the system. A
class diagram of the generated test structure is given in
Fig. 6.

4.2.3 Building a Pool of Use Case Scenarios

The class ScenarioPool contains all the use case scenarios: For
each of the use case scenarios, a static method is created in
ScenarioPool. The formal parameters of this method are the
parameters of the scenario, i.e., the parameters of the
corresponding use case. Each such methods is documented
by the test scenario itself. The test scenario is transformed
into Java code: The OCL contracts are transformed into
JUnit assertions, and the exchanges of messages into Java
calls (note that we did not concentrate on this part of the
problem, we just rely on existing approaches [25], [26]). As
an example, the code for the nominal plan scenario is given
in Fig. 7.

4.2.4 Building the Test Scenarios

The attributes of the main test class are the instances the
tester wants to deal with. The main test class also owns a set
of methods with names beginning with “test”: each
corresponds to a test case. It is documented with a test
scenario, i.e., a sequence diagram, which is built as follows:

Building a test scenario from a test objective consists of
replacing the use cases with their corresponding scenarios,
and in composing the scenarios using strong sequential
composition.

In concrete terms, the code of the methods representing a
test case is composed of successive calls to the methods

corresponding to the sequence diagrams in the scenariosPool
class, with the correct actual parameters.

Definition 3. An instantiated scenario is a scenario whose
formal parameters are replaced by actual parameters.

When an instantiated use case is replaced by a use case
scenario, this scenario is instantiated using the actual
parameters of the instantiated use case.

Let scni;j
� �

;j21;::n
be the set of n nominal scenarios

attached to the use case uci and let scei;j
� �

;j21;::m
be the set

of m exceptional scenarios attached to the use case uci. We
denote � the sequential composition of scenarios. We denote
� the Cartesian product; the Cartesian product of two sets
A and B is defined as: ða; bÞ j a 2 A ^ b 2 Bf g.

A test scenario is defined from a tuple of use case
scenarios ðsc1; :::; scnÞ as sc1 � ::: � scn (the strong sequential
composition of the elements of the tuple). The set of tuples
defining a set of test scenarios TS ¼ ts1; :::; tsuf g obtained
from a test objective to is denoted TStuple. They are obtained
using Cartesian products on sets of instantiated scenarios,
as explained below. The use case scenarios are instantiated
using the inst method, taking as parameter an instantiated
use case.
Functional test scenarios. A test objective to ¼ ½uci1::ucit� is
transformed into the set of tuples TStuple defined as:

TStuple ¼
Yt

i¼1

scni;j:instðuciiÞ
� �

j21;:::;n

¼ scn1;j:instðuci1Þ
� �

j21;:::;n
�:::

� scnt;j:instðucitÞ
� �

j21;:::;n
:

Building the functional test scenarios can be seen as
replacing each of the instantiated use cases of to by each of
its nominal scenarios. Once all the instantiated use cases
have been replaced, a tuple of scenarios is obtained, and
strong sequential composition is achieved to obtain a test
scenario.
Robustness test scenarios. A test objective to ¼ ½uci1::ucit�
is transformed into the set of tuples TStuple defined as

TStuple ¼
Yt�1

i¼1

scni;j:instðuciiÞ
� �

j21;:::;n
� scet;j
� �

j21;:::;m

¼ scn1;j:instðuci1Þ
� �

j21;:::;n
�

:::� scnt�1;j:instðucit�1Þ
� �

j21;:::;n

� scet;j:instðucitÞ
� �

j21;:::;m
:

Building the robustness test scenarios can be seen as
replacing the instantiated use cases of to by its scenarios.

148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 6. Structure of the generated test material.

Fig. 7. Java code for the nominal scenario of the use case plan.

The process to replace the t� 1 first instantiated use cases
is the same as for functional test scenarios, and the last
instantiated use case is replaced by its exceptional
scenarios.

In Fig. 8, an example of a functional test scenario is given:
A participant connects to the server, plans a meeting, and
opens it. Then, another participant enters the meeting.

For both exceptional and functional treatments, when a
use case is replaced by one of its scenarios, the precondi-
tions based on predicates of this scenario are used to check
whether the use case is really replaceable by this scenario. A
use case scenario can replace a use case at a certain stage of
execution iff the state reached at this stage logically implies
the precondition of the use case scenario. If a use case
scenario cannot replace its use case, it is discarded for this
test objective. It may even happen that no use case scenario
can replace a use case in a test objective; in this case, the test
objective is discarded, and the test generation tool reports it.

4.3 Verdict Analysis

We generate test scenarios using the use case scenarios.
Since these scenarios are requirements on the behavior of
the system under test, it is natural to expect that all the use
case scenarios are exercised by at least once by the tests. We
thus propose the following intuitive test strategy.

All scenarios strategy. Let TCs be a set of test cases, the
all_scenarios test strategy consists of ensuring that each use
case scenario expressed in the requirements is executed
correctly at least once by test cases in TCs. A use case
scenario is said to be executed correctly by a test case when
the part of the test case corresponding to the scenario is
executed without detecting an error.

Successfully applying this strategy means that all the
behaviors specified in the requirements have been exhibited
in the system by at least one execution of a test case.
Determining if the all scenarios strategy has been successfully
applied can only be done after the execution of all the test
cases and depends on the verdicts they have produced.

4.3.1 The Verdicts

The test cases contain an oracle that allows them to emit
three types of verdicts: pass, fail, or inconclusive. They are

determined by executable assertions derived from the OCL
contracts.

Fail verdict. The fail verdict is emitted when a post-
condition is violated during execution. The postconditions
check that the system reacted correctly ensuring simple
properties from the interface of the system. If the system did
not react correctly, the test case fails: An error has been
detected, and the test report makes it clear where the test
case failed.

Pass verdict. The pass verdict is emitted when the test
case is correctly and totally executed; it indicates
successful test cases.

Inconclusive verdict. The inconclusive verdict is emitted
when a test case is aborted due to a precondition evaluated
to false. It thus detects nonexecuted test scenarios. The
preconditions add requirements on the execution of the
sequence diagram and, thus, are guards on its continuation.
During execution, if such a guard is evaluated to false, the
test case must stop, but it does not necessarily mean that an
error has been detected. It might mean that the instantiated
sequence chosen to implement an instantiated use case is
incorrect: This latter case may come from either under-
specification (or from errors in the specification), or from
the test data used in the instantiated use case scenario. In
order not to reject a correct implementation, we then
introduce an inconclusive verdict and notify the tester that a
particular test scenario was not executed. It corresponds to
a failure of the test strategy, since one scenario could not be
executed successfully. When it is possible, the tester should
create new instantiated use case scenarios with values
allowing the test objective to be executed. It may be guided
by specific tools as test synthesis tools [18], [19] and
constraint solver [27].

4.3.2 Reaching the All Scenarios Strategy

As illustrated in Fig. 9, after the execution of the test cases,
one has to determine whether the all scenarios strategy is
successfully applied. If all the use case scenarios describing
the system have been exercised without emitting incon-
clusive verdicts, then the all scenarios test strategy is
successful. It means that the system is consistent with its
specification in the sense that all the use case scenarios
describing the system have been exercised. In the other
case, that means that the set of test cases has to be
improved. Two solutions can be used to reduce the number
of inconclusive verdicts. First, a pragmatic solution consists
of manually creating new test cases exercising the
remaining nonexercised use case scenarios. Second, the
new test cases can be generated using another initial state,
i.e., modifying the test data. The new initialization has to be
written studying the preconditions that failed, in order to

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 149

Fig. 8. An example of a generated test case.

Fig. 9. Verdict analysis.

deduce which test data would have satisfied them. This
phase is manual and left to the tester. It could be automated
using a constraints solver [27] that can find the test data
satisfying the preconditions.

5 RESULTS AND DISCUSSION

This section presents an empirical evaluation of the
approach, based on the results obtained with three small
case studies. We first present the systems under test, and
then we briefly describe the experimental protocol and give
statistics on the generated test cases. Finally, we compare
the criteria and study the efficiency of the generated test
cases in terms of statement coverage. While the number of
covered statements is a very crude measure of test
efficiency, it is widely used in industrial circles because it
is easy to measure even for real-time embedded OO
software, where a strict mapping is mandatory from
requirements to code. On the other hand, there is, for
instance, no simple mapping between requirements and
data flows, especially in an OO system.

5.1 The Case Studies

To perform an analysis of the category of code one can
expect to cover, we extensively analyzed three programs
(between 800 LOC and 2,000 LOC). Our objective here is to
determine whether our approach is efficient to cover the
main functional code. To do that, we classify the code into
the following categories:

. Dead code: Some of our case studies have dead code,
which for instance consists of relevant but yet
unused accessors. Functional testing cannot deal
with this code: it has to be tested during the unit
testing. For the following studies, we removed this
dead code to focus on the efficiency of our tests on
reachable code.

. Robustness code with regard to the specification
which asserts that incorrect or invalid demands are
detected and rejected (for example, code impeding a
nonauthorized user’s performing a given action).

. Robustness code with regard to the environment,
which asserts that the inputs coming from the
environment are correct (for example, code handling
input/output or network exceptions).

. Functional code.

The case studies are the following:

1. An Automated Teller Machine (ATM). We adapted
the application taken from Bjork [28] by decoupling
the core from the graphical interface. It provides the
following main functions: consultation, withdrawal,
deposit of checks and cash, and transfer from
account to account. The implementation we use is

composed of 850 lines of code (and 186 executable
statements.)2

2. An FTP server taken from [29]. We studied a large
part of this server (the most interesting commands),
the implementation is composed of 500 lines of code
(and 207 executable statements).

3. The server of virtual meetings (VM), used as an
ongoing example in this paper. Let us recall that it
allows virtual meetings to be organized, with a
manager and a moderator. The participants can
enter the meetings and speak into them, under
certain conditions depending on the meeting type.
The system contains 2500 lines of code (and 780
executable statements). This system is used for a
software engineering course in the University of
Rennes 1.

For each case study, the repartition of code into the four
categories is given in Table 1.

While the ATM has neither code for dealing with
implementation dependent misuses (robustness with re-
gard to environment) nor dead code, the FTP and VM case
studies have between 9 percent and 17 percent of this kind
of code: It cannot be covered by test cases generated with
our approach. More generally, it means that a model-based
testing approach must be completed by a unit testing stage
for this environment-dependent code. Concerning the
proportion of code dedicated to “robustness” with regard
to specification, it varies from 9 percent (for the ATM) to
18 percent. The remaining code concerns the code im-
plementing the functions described by the use cases.

For each case study, the experimental protocol we
applied consists of

. a requirement stage: Being given the set of use cases,
we define and attach scenarios to each use case (at
least one exceptional and one nominal scenario per
use case). Then, contracts are expressed for each use
case and we use a simulation process to check if the
set of use case contracts is consistent and contains
enough information.

. a test generation stage: Based on each of the
proposed coverage criteria, test objectives are gen-
erated. By the same way test cases are produced by
replacing use cases by scenarios in the test objec-
tives. Table 2 presents the number of use cases, use
case scenarios and the corresponding numbers of
test objectives and test cases.

. a test execution stage: A test driver has been
developed to launch the test cases (into the JUnit

150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

2. The count of executable statements does not include declarations (such
as class declarations, attribute declarations, operation declarations, or input
statements).

TABLE 1
Code Repartition for Our Case Studies

TABLE 2
Statistics of the Generated Test Cases

framework) and to provide statement coverage
statistics (see Table 4).

5.2 Criteria Comparison

This section aims at providing a comparison of the five
functional criteria proposed in Section 3.4.

For criteria comparison, we generated the corresponding
test cases and measured the percentage of covered code
(using the tool JTracor [30]). Statistics on the test cases
generated for the three case studies are given in Table 3. For
all the criteria, the average size of each test case (length of a
use case sequence) varies from five to 11 instantiated use
cases, and so the test cases are easy to interpret.

The results of the statement coverage measures are given
in Fig. 10, in the form of the code percentage (including
dead code) covered by functional test cases. Except for the
all vertices criterion, a 70 percent statement coverage is
reached by all the criteria, and combined with robustness
criterion, 80 percent of the code is covered. The statement
coverage of the all vertices criterion is weak since optimally
covering all vertices of the graph does not ensure that all the
use cases are used even once: the use cases that do not
modify the system state are not covered (since they appear
as loops on a single vertex of the UCTS).

If all edges, AV-AIUC, all instantiated UC, and all
precondition term criteria are equivalent for statement cover-
age, this is not the case for their respective efficiency
estimated in terms of a ratio between the covered state-
ments and the test cases (see Fig. 11). Intuitively, it
corresponds to the relative contribution a test case makes
to statement coverage. In other words, it estimates the
relative test case efficiency for covering the software. It
clearly appears that test cases generated with the criteria all
edges, all vertices, and AV-AIUC have, on average, a low
efficiency. This is due to the fact that the sets of test cases
generated with those criteria are not more efficient but only
larger than the sets of test cases generated with the all
instantiated UC and all precondition terms. Indeed, the all
edges criterion generates, for example, 13,841 test cases (see
Table 3) for virtual meeting.

As a conclusion to this study, the all instantiated UC and
all precondition terms criteria appear as the most efficient for
the statement coverage criterion. It is clear that this
conclusion is quite sensitive to the chosen statement
coverage adequacy criterion, which is somehow rough.
This might explain why all criteria achieve high coverage
and why more costly and complex criteria show “low
efficiency.” Coverage in terms of control or data flow, or
even mutants, might show different results but fall beyond
the scope of this study. Yet, this study shows that our
approach allows to satisfy classical industrial coverage
criteria with a small number of automatically generated
tests while maintaining traceability links from the require-
ments down to the tests cases.

5.3 Efficiency in Terms of Statement Coverage

The results of Table 4 show that the all precondition terms
criterion is efficient to cover most of the functional code.
The ratio between the number of functional test cases and
the percentage of covered code is high; for instance, with
only 15 test cases for the most complex study, we cover
100 percent of the functional code. This is a comforting
result, and may compensate for the fact that the proportion
of functional code is lower for larger systems. In compar-
ison, the robustness criterion is quite disappointing. Indeed,
less than half of the robustness code can be covered with
the robustness criterion, while the number of robustness

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 151

TABLE 3
Statistics on Test Objectives (TOs) Generated for the

Three Case Studies with Our Five Criteria

TABLE 4
Statement Coverage Reached by the Generated Test Cases

Fig. 10. A comparison of criteria with regard to statement coverage for

the VM example.

Fig. 11. A comparison of criteria with regard to test cases efficiency for

the VM example.

test cases is higher than for functional testing. For example,
the 65 robustness test cases only cover half of the
robustness code for the virtual meeting server. Globally, if
we consider that the test cases are generated directly from
the requirements, in an automated way, the overall
proportion of code that is covered is high (between 70
percent and 95 percent). Though promising, this proportion
of covered statements is not fully satisfactory. The state-
ment coverage, while intensively used in industry, is
known to be a weak measure of the test’s relevance. Being
given this crude measure, the results are good concerning
nominal functional code, but weak for robustness code.
Testing robustness code is, in general, more difficult and
requires more tricky tests than testing nominal code; thus,
our robustness criterion appears as weak. The proposed
approach only produces test cases able to violate the
precondition terms of the use case’s contracts. The robust-
ness test cases generation would be improved by more
accurately taking into account the test data, e.g., using
constraint solving techniques [27]. A stronger criterion
would be to generate test cases that violate precondition of
the use case scenarios attached to use cases, and not only
the use cases preconditions.

In conclusion, this study reveals that our approach is a
useful step toward automatically achieving statement
coverage based on requirements. However, this study also
suggests that more efficient criteria, both for test generation
and for the test efficiency measures, should be studied.

5.4 TAS Case Studies and Lessons Learned

We also applied our approach to real life case studies at
Thalès. The challenge was to take the original specifications
of the system written informally in natural language and
see how they could be rewritten in the formalism of use case
and contracts. The case studies concern two systems
components of last generation combat aircrafts (Mirage
2000-9 and Rafale), of midcomplexity (several thousand
C++ KLOC). The following conclusions were drawn. First,
use of the simulator showed that the original definition of
the system was underspecified; this was noticed since an
expected transition (i.e., a possible activation of a service)
was not available. This means that the corresponding
requirement had not been written. The missing requirement
had to be added. In that sense, the simulator allows to check
if the requirements contain enough information, or are not
underspecified. Second, some requirements could not be
expressed in terms of use cases and contracts due to the
used use case formalism (arithmetic and real-time aspects
are not supported yet). Of the existing requirements,
79 percent have been successfully transformed into a set
of executable use cases. The nontranslated requirements
relate to detailed design features and, thus, are not taken
into account when describing services requirements. Future
work would consist in dealing with real-time and QoS
aspects that can be expressed as high level requirements.

6 RELATED WORK

While the need to derive functional system tests from use
cases is widely recognized in the literature [31], [32], few
approaches propose concrete methods to achieve this
derivation. One of the cause of this lack may be that the
level of detail of the use cases is coarse (and must remain

coarse, as underlined in [15]), and a second one may be the
fact that use cases are not as formalized as other UML
views. Thus automating methods to derive tests from fuzzy
descriptions of the use cases is not an easy task. The
requirement-based testing techniques already existing (e.g.,
[33], [34], [4], [5]) are usually based on formal methods: The
requirements are supposed to be written in a formal
language. Conformance tests are synthesized out of these
formal specifications, in general by building a behavioral
automaton and covering it with some criteria. Many papers
tackle the issue of test generation from formal specifications
such as Z [3], B [4] or SDL [5]. Nevertheless, as identified in
[35], the main drawbacks of these methods are that they are
difficult to build (for the developer but even more for the
clients) and to maintain over a long period. Formal methods
are, thus, mainly used for very critical systems since they
are far too expensive for a practical use elsewhere. In [35], it
is thus suggested to focus on methods guiding the testers
into a systematic test approach.

Among the numerous approaches proposed to gener-
ate tests from UML artifacts (e.g. [36], [37]), only a few
them [11], [38], [39], [40], [12] are system-level and based
on use cases.

Reference [38] describes an approach to generate system-
level test cases from an accurate description of the use cases,
including preconditions and postconditions, inspired by [8].
Each use case is transformed into a state machine, and test
objectives must be defined by the tester into the underlying
formalism. Criteria are also given to cover the state
machines and an original application of the STRIPS AI
planning formalism allows the derivation of test suites for a
given statechart. The main limitation identified by the
authors concerns the partial automation of the approach,
e.g., the transformation from a use case description to a
state machine is done manually, and the natural language is
used for pre and postconditions. No experimental study is
provided to estimate the efficiency of the generated test
cases on the final code. The main advantage of the method
presented in [38] is its speed: Due to the use of an efficient
planning tool, the test cases are quickly synthesized.

In [40], a method is proposed to generate test cases in a
statistical way. The base of the method relies on [38]: The
use cases and their description are transformed into a state
machine that is then derived into a usage graph and then a
usage model, manually adding the probability distribution
of the expected use of the software. Then, statistical testing
is performed: Each test case is a random traversal of the
usage model.

The authors of [11], [39] propose test approaches based
on the dependencies between the use cases and modeling
those dependencies using graphical notations.

In [39], a scenario-based approach is detailed in order to
systematically derive test cases for system testing. Scenarios
are formalized using state charts and a graphical notation
called dependency charts, which is used to model the
dependencies between scenarios. A step by step method is
given to create and refine the scenarios and extract test
cases using coverage criteria both on the state charts and on
the dependency charts; this method is manual and its
efficiency is not demonstrated. The test generation from
dependency charts is more detailed in [13]. The objective of
the dependency charts is larger than ours since they allow
to model several kinds of dependencies such as sequential

152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

dependencies but also abstraction dependencies, time
dependencies and data resource dependencies. On the
other hand, test generation from such diagrams is not
automated, but based on a manual application of heuristics.

Another important contribution for system testing from
use cases can be found in [11], where the authors describe a
complete testing method. The authors propose to express
the sequential constraints of the use cases with an extended
activity diagram, with new stereotypes for expressing
iteration. One activity diagram is provided per actor, and
the use cases are grouped into swimlanes depending on the
responsibilities they have with regard to the main objects of
the system. The activity diagram is then transformed into a
weighted graph, from which regular expressions are
exhaustively extracted. The regular expressions correspond
to use case sequences. Then, all use cases are supposed to be
documented with sequence diagrams, which are also
transformed into regular expressions. Finally, in each
sequence of use cases, the use cases are replaced with their
scenario regular expressions. In this way, test cases are
obtained. Our approach goes along the same lines, but
differs in several important points. First, the test criterion
proposed in [11] is based on the coverage of the regular
expressions obtained by the projection from the activity
diagram. This criterion leads to a very high number of test
cases. When one is interested in a specific test adequacy
criterion (such as statement coverage in our case), the
problem is slightly different since the goal is to obtain the
smallest number of efficient tests with regard to the chosen
criterion. Second, we differ in the way the dependencies
between use cases are expressed.

Like the dependency charts of [13], activity diagrams
have the obvious advantage of being visual, making the
dependencies between the use cases appear at a glance,
while they have to be computed by a simulator with our
approach. In certain cases, graphical notations may be
more adequate. In other cases, contracts may be easier to
handle. Thus, an interesting approach would be either to
have graphical notations as a front-end to our approach,
or (better) to let the requirement analyst choose the parts
of the requirements she wants to model with an activity
diagram, contracts, or dependency charts. We have made
a first step in this direction, developing an algorithm to
translate the activity diagrams proposed in [11] into
contracts for the use cases [41].

In [12], the authors focus more on test data than on
test control, and apply an adaptation of the category-
partition method. Their approach combines a tool for test
planning (cowtest) and a tool for test derivation
(UID_SD). Cowtest helps to group the use cases, the
sequence diagrams, and the actors in a directed depen-
dency graph, and to associate weights to the nodes. Then
IUT_SD is used to derive test scenarios according to the
chosen test constraints and test strategy. Our approach
has similar objectives to [12], since we also propose a
global approach, integrated in the whole software life
cycle, and aiming at being applied in industrial contexts.

Generating tests using declarative sequential constraints
was already proposed in [42]. In this work, constraints on
events are defined using temporal logic, and then test cases
are generated in order to detect synchronisation faults in
concurrent programs. This approach is adapted in [43] to
the intraclass testing; the constraints are defined based on

the pre and postconditions of the methods of a given class,
and are then used for test generation using several criteria
to cover the constraints. In particular, both correct and
incorrect sequences of methods calls are generated (simi-
larly, we have functional and robustness criteria). Experi-
ments show that this approach is effective (the efficiency is
measured using a mutation technique), and that the invalid
sequences of method calls do not significantly improve the
efficiency of a test suite. Several other approaches exist to
generate tests from contracts at the operation or method
level. Among them, [44] proposes to use JML (Java
Modeling Language) postconditions and invariants as an
oracle for unitary test cases.

In [45] the authors propose to generate tests from OCL-
based specifications. The technique consists of inferring
valid sequences of method calls using OCL constraints. The
approach we propose uses a dedicated constraint language.
Nevertheless, the proposed technique can be adapted to use
OCL pre and postconditions. For that, since OCL con-
straints rely on a static model, a static model of the
requirements needs to be extracted from the requirements.
However, we believe that the OCL is not well suited for the
early requirement phases because of its too complex syntax.

7 CONCLUSIONS AND FUTURE WORK

Instead of pushing formal methods to the world of
embedded OO software, we proposed to work the other
way round, i.e., start from established practices and gently
lead them toward formally exploitable models. The idea is
to off-load by automation the work in test generation and to
shift the effort to the specification activity. Our use case
model is less sophisticated than many formal models, but it
has the advantage of taking into account industrial practices
and needs, such as changing requirements and time-to-
market constraints and use of well-established standards
(such as the UML). In this paper, we presented a complete
and automated chain for test cases derivation from
formalized requirements in the context of object-oriented
embedded software. The underlying approach consists of
improving the use cases by declarative information under
the form of contracts as an anchor for further testability
purposes. The test cases are generated in two steps: Use
case orderings are deduced from use case contracts, and
then use case scenarios are substituted for each use case to
produce test cases. While in the first step the use cases
model handles high level concerns, in the second step, the
data complexity (numerical data, object models,
OCL constraints, etc.) is taken into account with the use of
use case scenarios. The proposed approach assumes the
availability of a formalization of the requirements, which
has to be carried out manually. The definition of this model
can be quite difficult and error prone while the effectiveness
of the generated tests highly depends on the quality of this
model. Our experience is that in writing contracts, choosing
the right set of predicates and their appropriate initial
values implies going back and forth from specification to
simulation and vice versa. This was not a problem in our
application field since engineers in the avionics area already
do spend an important effort on specification-related
activities. In practice, if the specification can be provided,
then the approach can be beneficial and even more so in the
context of product lines, where large savings can be

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 153

obtained with our automated test generation process.
However, in the context of an “ordinary” engineering
project, the question of whether the formalization of the
requirements is worth the savings in the testing stage
should be addressed before we can conclude that the
overall methodology should be used in such a project.

The approach has been evaluated in three case studies by
estimating the quality of the test cases generated by our
prototype tools. Experiments show that most of the
functional statements of the code are covered by the
proposed testing technique. In fact, for the three case
studies, our prototype tools generate small sets of test cases
that are sufficient to cover almost all the nominal code and
about half of the robustness code. Based on this admittively
crude statement coverage criterion, a comparison study of
the test adequacy criteria we proposed reveals that the all
precondition terms criterion combined with the robustness
criterion is a satisfactory trade-off between the efficiency of
the obtained test set and its size.

An experimental field deployment is currently carried
out in the context of collaboration (CARROLL [46]) with
Thalès Airborne System (TAS). Our approach is being
deployed in TAS, and tested on two avionics weapon
systems. TAS experiment our prototype tool to simulate the
requirements, and to generate test objectives. For confiden-
tiality reasons, these studies cannot be detailed here, but the
first results tend to confirm the scalability of the approach
on real-world systems. The combinatorial explosion of the
UCTS would be met if many instances of actors or business
concepts are handled, and when the use cases are
independent (complex interleaving are then generated). In
the two real systems we studied with TAS, the use cases are
tightly dependent, and the number of handled instances is
low; the UCTS complexity is thus reasonable. Moreover, our
prototype tool allows either the tester to define abstractions
on her system so that the UCTS can be completely built or to
limit the depth of the generated UCTS (indeed the test
objective generator seeks to produce the shortest paths
reaching a chosen system state—represented by a node in
the UCTS). Additionally, an on-the-fly generation of test
objectives can be performed for two of the proposed criteria.
On-the-fly generation would allow us to build only part of
the UCTS to generate the test objectives, and would thus
make the approach suitable for systems handling more
instances and independent use cases.

Our approach is being integrated with the Agatha [19]
symbolic test synthesis tool because of these positive
results. Since the TAS requirements are written using
domain specific natural language, we are also currently
developing mechanisms to fit their development processes.
We defined a controlled natural language for expressing
requirement. A tool is then used to parse these textual
requirements and translate them into a set of use cases with
contracts.

Future work will consist in extending the requirement
contracts towards extra-functional properties (in particular
real-time constraints), expressed into the QML QoS
modeling language, and weaving these aspects to gen-
erate test cases checking these properties. Also, in this
paper, we only consider the sequence diagrams to
represent scenarios. In certain cases, it might be more
interesting to use state machines or activity diagrams. An
extension of the proposed method would consist in

allowing the requirement analyst to specify her scenarios

with such kind of diagrams, and to cover them in order to

extract relevant linear scenarios, in order to use them to

replace the use cases. Last, as evoked in related work, a

good extension of the approach would be to make it

compatible with graphical approaches to model the use

case dependencies, such as activity diagrams.

REFERENCES

[1] P. Gibson, “Formal Requirements Models: Simulation, Validation,
and Verification,” technical report, Computer Science Dept., Nat’l
Univ. of Maynooth, Ireland, 2001.

[2] C. Heitmeyer, J. Kirby, and B. Labaw, “Tools for Formal
Specification, Verification and Validation of Requirements,” Proc.
12th Ann. Conf. Computer Assurance, 1997.

[3] S. Helke, T. Neustupny, and T. Santen, “Automating Test Case
Generation from Z Specifications with Isabelle,” ZUM ’97: The Z
Formal Specification Notation, LNCS 1212, pp. 52-71. J.P. Bowen,
M.G. Hinchey and D. Till, eds. Springer-Verlag, 1997.

[4] B. Legeard, F. Peureux, and M. Utting, “Automated Boundary
Testing from Z and B,” Proc. Conf. Formal Methods Europe, 2002.

[5] L. Tahat, B. Vaysburg, B. Koreland, and A. Bader, “Requirement-
Based Automated Black-Box Test Generation,” Proc. 25th Ann. Int’l
Computer Software and Applications Conf., 2001.

[6] A. Gargantini and C. Heitmeyer, “Using Model Checking to
Generate Tests from Requirements Specifications,” Proc. Seventh
European Eng. Conf. with Seventh ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., 1999.

[7] D. D’Souza and A. Wills, “Interaction Models: Uses, Case Actions,
and Collaborations,” Objects, Components, and Frameworks with
UML: The Catalysis Approach, Addison-Wesley, 1999.

[8] A. Cockburn, “Structuring Use Cases with Goals,” J. Object-
Oriented Programming, pp. 35-40, 56-62, Sept./Oct., Nov./Dec.
1997.

[9] B. Meyer, “Applying Design by Contract,” Computer, vol. 25,
no. 10, pp. 40-51, Oct. 1992.

[10] P. Kruchten, Rational Unified Process: An Introduction. Reading,
Mass.: Addison-Wesley, 1998.

[11] L. Briand and Y. Labiche, “A UML-Based Approach to System
Testing,” J. Software and Systems Modeling, pp. 10-42, 2002.

[12] F. Basanieri, A. Bertolino, and E. Marchetti, “The Cow_Suite
Approach to Planning and Deriving Test Suites in UML Projects,”
Proc. Fifth Int’l Conf. Unified Modeling Language: Model Eng.
Languages, Concepts, and Tools, pp. 383-397, 2002.

[13] J. Ryser and M. Glinz, “Using Dependency Charts to Improve
Scenario-Based Testing,” Proc. 17th Int’l Conf. Testing Computer
Software, June 2000.

[14] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints,’’ Proc. Conf. Fourth Ann. ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages,
pp. 283-252, 1977.

[15] M. Fowler, “Use and Abuse Cases,” Distributed Computing, Apr.
1998.

[16] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel, “A
Requirement-Based Approach to Test Product Families,” Proc.
Fifth Workshop Product Families Eng., 2003.

[17] C. Jard, “Synthesis of Distributed Testers from True-Concurrency
Models of Reactive Systems,” Information and Software Technology,
vol. 45, no. 12, pp. 805-814, 2003.

[18] C. Jard and T. Jéron, “TGV: Theory, Principles and Algorithms,”
Proc. Sixth World Conf. Integrated Design and Process Technology,
2002.

[19] D. Lugato, C. Bigot, and Y. Valot, “Validation and Automatic Test
Generation on UML Models: The AGATHA Approach,” Electro-
nics Notes in Theorical Computer Science, vol. 66, no. 2, 2002.

[20] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenario
Usage in System Development: A Report on Current Practice,”
IEEE Software, Mar. 1998.

[21] Recommendation ITU-TS Z.120, Message Sequence Chart (MSC),
Geneva: Int’l Telecommunication Union—Telecomm. Standardi-
zation Sector, 1999.

[22] “Unified Modeling Language: OCL,” Object Management Group,
http://www.omg.org/docs/ptc/03-08-08.pdf, 2005.

154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

[23] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

[24] E. Gamma and K. Beck, “JUnit,” http://junit.org, 2005.
[25] L. Briand, W. Dzidek, and Y. Labiche, “Using Aspect-Oriented

Programming to Instrument OCL Contracts in Java,” Technical
Report SCE-04-03, Carleton Univ., 2004.

[26] OCL Toolkit, http://dresden-ocl.sourceforge.net, 2005.
[27] K. Marriott and P.J. Stuckey, Programming with Constraints. MIT

Press, 2000.
[28] R. Bjork, “An ATM Simulation,” http://www.math-cs.gordon.

edu/local/courses/cs211/ATMExample, 2005.
[29] F. Cueto, http://cqs.dyndns.org:81/javaftp, 2005.
[30] F. Fleurey, “A Framework to Trace Execution of Java Programs,”

http://franck.fleurey.free.fr/jtracor, 2005.
[31] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-

Oriented Softaware Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[32] R. Binder, Testing Object-Oriented Systems. Addison-Wesley, 2000.
[33] G. Bernot, M.-C. Gaudeland, B. Marre, “Software Testing Based on

Formal Specifications: A Theory and a Tool,” Software Eng. J.,
vol. 6, no. 6, pp. 387-405, 1991.

[34] J. Dick and A. Faivre, “Automating the Generation and Sequen-
cing of Test Cases from Modelbased Specifications,” Proc. Int’l
Symp. Formal Methods Europe, pp. 268-284, 1993.

[35] J. Ryser, S. Berner, and M. Glinz, “On the State of the Art in
Requuirements-Based Validation and Test of Software,” technical
report, Inst. Für Informatik, Univ. of Zurich, 1998.

[36] J. Offutt and A. Abdurazik, “Generating Tests from UML
Specifications,” Proc. Second Int’l Conf. Unified Modeling Language:
Beyond the Standard, 1999.

[37] Y. Kim, H. Honh, S. Cho, D. Bae, and S. Cha, “Test Cases
Generation from UML State Diagrams,” IEE Proc. Software,
vol. 146, no. 4, pp. 187-192, Aug. 1999.

[38] P. Fröhlich and J. Link, “Automated Test Case Generation from
Dynamic Models,” Proc. 14th European Conf. Object-Oriented
Programming, 2000.

[39] J. Ryser and M. Glinz, “A Scenario-Based Approach to Validating
and Testing Software Systems Using Statecharts,” Proc. 12th Int’l
Conf. Software and Systems Eng. and Their Applications, Dec. 1999.

[40] M. Riebisch, I. Philippow, and M. Götze, “UML-Based Statistical
Test Case Generation,” Proc. Int’l Conf. Net.ObjectDays, vol. 2591,
pp. 394-411, 2002.

[41] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel, “Require-
ments by Contracts Allow Automated System Testing,” Proc. 14th
IEEE Int’l Symp. Software Reliability Eng., 2003.

[42] R.H. Carver and K.-C. Tai, “Use of Sequencing Constraints for
Specification-Based Testing of Concurrent Programs,” IEEE Trans.
Software Eng., vol. 24, no. 6, pp. 471-490, June 1998.

[43] F. Daniels and K. Tai, “Measuring the Effectiveness of Method
Test Sequences Derived from Sequencing Constraints,” Proc.
Technology of Object-Oriented Languages and Systems, pp. 74-83,
1999.

[44] Y. Cheon and G.T. Leavens, “A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way,” Technical Report 01-12,
2001, http://citeseer.nj.nec.com/cheon01simple.html.

[45] M. Benattou, J.-M. Brueland, N. Hameurlain, “Generating Test
Data from OCL Specification,” Proc. ECOOP Workshop Integration
and Transformation of UML Models, 2002.

[46] “Programme de Recherche CARROLL,” Thalès, INRIA, and CEA,
http://www.carroll-research.org, 2005.

Clémentine Nebut received the engineering
degree and the PhD in computer science from
the University of Rennes 1, France. She is an
associate professor at the University of Mon-
tpellier 2, France. Her research interests are
software testing and model-driven engineering.

Franck Fleurey is a PhD student on the Triskell
project team at the University of Rennes. His
research interests are model-driven engineering
and software validation.

Yves Le Traon received the engineering degree
and the PhD degree in computer science from
the Institut National Polytechnique de Grenoble,
France. He is a research engineer at France
Télécom Research and Development, and an
associate member of the IRISA research
laboratory. His research interests include OO
testing, design for testability, and software
measurement. He is a member of the IEEE.

Jean-Marc Jézéquel received the PhD degree
in computer science from the University of
Rennes, France, in 1989. He joined the Centre
National de la Recherche Scientifique in 1991.
Since October 2000, he has been a professor at
the University of Rennes, leading an INRIA
research team called Triskell. His interests
include model-driven software engineering
based on object-oriented technologies for tele-
communications and distributed systems. He is a

member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NEBUT ET AL.: AUTOMATIC TEST GENERATION: A USE CASE DRIVEN APPROACH 155

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

