
              

City, University of London Institutional Repository

Citation: Littlewood, B. & Wright, D. (2007). The use of multilegged arguments to increase 

confidence in safety claims for software-based systems: A study based on a BBN analysis 
of an idealized example. IEEE Transactions on Software Engineering, 33(5), pp. 347-365. 
doi: 10.1109/tse.2007.1002 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1619/

Link to published version: https://doi.org/10.1109/tse.2007.1002

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


The Use of Multi-legged Arguments to
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Software-based Systems: a Study Based on a

BBN Analysis of an Idealised Example
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Abstract

The work described here concerns the use of so-called multi-legged arguments to
support dependability claims about software-based systems. The informal justifica-
tion for the use of multi-legged arguments is similar to that used to support the
use of multi-version software in pursuit of high reliability or safety. Just as a di-
verse, 1-out-of-2 system might be expected to be more reliable than each of its two
component versions, so a two-legged argument might be expected to give greater
confidence in the correctness of a dependability claim (e.g. a safety claim) than
would either of the argument legs alone.

Our intention here is to treat these argument structures formally, in particular
by presenting a formal probabilistic treatment of ‘confidence’, which will be used
as a measure of efficacy. This will enable claims for the efficacy of the multi-legged
approach to be made quantitatively, answering questions such as ‘How much extra
confidence about a system’s safety will I have if I add a verification argument leg
to an argument leg based upon statistical testing?’

For this initial study, we concentrate on a simplified and idealized example of a
safety system in which interest centres upon a claim about the probability of failure
on demand. Our approach is to build a BBN (“Bayesian Belief Network”) model of
a two-legged argument, and manipulate this analytically via parameters that define
its node probability tables. The aim here is to obtain greater insight than is afforded
by the more usual BBN treatment, which involves merely numerical manipulation.

We show that the addition of a diverse second argument leg can, indeed, increase
confidence in a dependability claim: in a reasonably plausible example the doubt
in the claim is reduced to one third of the doubt present in the original single leg.
However, we also show that there can be some unexpected and counter-intuitive
subtleties here; for example an entirely supportive second leg can sometimes under-
mine an original argument, resulting overall in less confidence than came from this
original argument. Our results are neutral on the issue of whether such difficulties
will arise in real life - i.e. when real experts judge real systems.
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1 Introduction

Assessment of dependability of software-based systems has long been acknowl-
edged to be difficult. There are several reasons for this. Software is often novel,
so that claims can rarely be based upon previous experience. Much of the evi-
dence available concerns the software process – how it was built – and not the
built product itself. There is a great reliance upon expert judgement – e.g. in
how claims about the quality of the build process can be turned into claims
about the delivered product’s dependability. There may be doubt about the
truth of some of the assumptions that underpin the reasoning used to support
a claim, e.g. that a test oracle is correct.

Such uncertainty about dependability claims is particularly important when
the systems involved are safety critical. One approach that has been proposed
to try to limit and control this uncertainty is the use of multiple diverse
arguments to support dependability claims: the idea is analogous to the use of
fault tolerance to make systems reliable. Thus each of the diverse arguments
could, in principle, support the claim but might be undermined by doubt
about underlying assumptions, weakness of evidence, etc.

In recent years, some standards and codes of practice have suggested the use of
diverse arguments. In UK Def Stan 00-55 [1], for example, it was suggested that
one leg be based upon logical proof of correctness, the other upon statistical
testing. Argument legs are sometimes quite asymmetric: for example, in [2]
the first leg is potentially complex, whereas the second leg is deliberately
simple. Occasionally, the only difference between the legs lies in the people
involved, e.g. in independent verification and validation. This last case can be
plausible when there is a paucity of hard empirical evidence upon which to
base the arguments, and thus necessarily a large element of expert judgement is
used – different teams might provide some protection against identical human
mistakes.

The differences shown in these examples reflect, we believe, the need for better
understanding about the use of diversity in arguments. At an informal level,
diversity seems plausibly to be ‘a good thing’, just as it is for achieving system
dependability, but there is no theoretical underpinning to such an assertion.
For example, we do not know what are the ‘best’ ways to use diversity (nor
even exactly what ‘best’ means here); we do not know how much we can claim
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for the use of diversity in a particular case.

Our aim in this paper is to provide the beginnings of a formalism to answer
some of these questions, and provide support for the ‘diversity approach’. We
shall look at the combination of multiple argument legs in a part of a safety
case for a critical system. The difficult questions here concern how to combine
the disparate evidence and assumptions that form the different legs. There
are several such questions that might be of interest. For example, we might
want to know whether multi-legged arguments are efficient in the sense of
being cost-effective: e.g., for a given outlay, would it be better to divide this
between a proof and a testing leg, or to spend it all on a larger test?

At an informal level, one can take an argument leg to comprise: some assump-
tions , some evidence, and some reasoning that allow a dependability claim to
be made at a certain level of confidence. Typically, such an argument leg will
support an infinite number of different (claim, confidence) pairs – the more
stringent the claim, the lower the confidence that will come from a partic-
ular argument leg. We shall interpret ‘confidence’ to be a probability (that
the claim is true). This probability, in turn, will be interpreted as the usual
Bayesian subjective strength of belief in the claim, held by an individual whom
we shall refer to as ‘the expert’. This person might be a regulator, or some
other person who has to take a decision on the acceptability of the system.

It is thus confidence that allows us to discuss the ‘strength’ of arguments: for
example, an argument that allows someone to place 99% confidence in a claim
that a system’s probability of failure on demand is less than 10−3 is clearly
‘stronger’ than an argument that only allows them to place 90% in this paper
we shall always consider the claim to be fixed – perhaps arising from some
wider safety case – and thus compare arguments solely via the confidence they
engender in this claim. Clearly this is not the only way one could proceed, but
it will suffice for our purposes here.

It is easy to see that confidence – and its complement, ‘doubt’ – will depend
upon: confidence/doubt in the truth of the assumptions underpinning the
argument; strength and/or extensiveness of the evidence; correctness of the
reasoning. Continuing in this informal vein, it seems plausible that for multi-
legged arguments the overall effectiveness will depend upon the same factors,
and in addition the dependence between the legs. Thus we might expect a
two-legged argument whose legs are ‘very diverse’ to be more effective – i.e.
give greater confidence – than one where the legs are very similar (all things
being equal).

Of course, as we have been at pains to state, all this is very informal. Our
intention in the work reported here is to put these ideas onto a formal basis.

We shall use as the basis of the paper a more formal treatment of an example
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first examined in [3, Example 1, p27]. In this example a two-legged argument
was proposed. Firstly, a leg based upon statistical evidence from operational
testing and the use of an oracle produces a claim for a particular probability of
failure upon demand (pfd). It is reasoned that this pfd represents a sufficiently
small risk during the expected operational life of the system. To this part of
the argument is added a second leg based instead on logical reasoning which is
assumed to produce a claim for complete perfection of operational behaviour
(at least with respect to a subclass of failures). Here, the second leg produces
a claim of complete freedom from (a class of) faults. If the overall argument is
intended to support a claim of (better than) 10−3 pfd, then only the statistical
testing leg addresses this directly. Nevertheless, it is easy to see how the logical
leg can provide additional support: if the statistical evidence alone gives 99%
10−3 then the additional verification leg might allow this level of confidence in
10−3 to be increased.

Note that for these individual legs important sources of doubt in the claim are
doubt about the correctness of the oracle (for the testing leg), and doubt about
the correctness of the specification (for the verification leg). Furthermore, such
doubts are likely to be dependent: in particular, doubt in the correctness of the
specification is likely to affect doubt in the correctness of the oracle. We might
expect that the greater the doubt in the specification, the greater the doubt in
the oracle. Clearly, these doubts will propagate and affect the confidence asso-
ciated with the use of both arguments in a two-legged configuration: we might
expect this confidence to be less than would be the case if the specification
and oracle doubts were independent.

Note also that dependence between legs in this example can arise in other ways.
It could arise from the evidence, for example: the observation of a failure in
the testing leg would completely refute the perfection claim of the second leg.

Issues of (lack of) dependence here are very similar to those that arise in
system diversity, where it is has been established from theoretical [4,5] and
empirical [6] studies that independence is extremely elusive. If this is also
true of arguments we would need to be sceptical of simplistic claims, e.g. that
99% based on two legs each of which alone only allow 90% understanding
of argument dependence is therefore an important goal of this research. It
turns out, in fact, that issues of dependence between legs can be subtle and
counter-intuitive.

We realise that much of what we say here applies to dependability assessment
of systems in general, but the issues discussed are often particularly acute
for software based systems, where there may be great complexity and nov-
elty in the system design, and there is typically a large reliance in the safety
assessment on expert judgement.
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In this paper we mainly concentrate on the problems associated with the
assessment of confidence. We only address issues of decision-making – e.g.
whether to accept and deploy a system – briefly, and then only to treat the
case of ‘dangerous’ argument failure, i.e. the acceptance of an untrue claim.
The other kind of failure - rejecting a claim when it is true - will also be
important (e.g. it may have important economic consequences), but will not
be considered here.

The paper is organised as follows. We begin by describing a 6-variable Bayesian
belief network (BBN) representing the structure of the two-legged argument
example. A BBN topology for this system assessment is first presented, with
an enumeration of the independency model 1 which it represents.

There follow proposals for the content of those parts of the node probability
tables that would be required in order to deal with the observation case which
is of greatest practical importance for the application. This is the ‘complete
success’ case, which we shall term the ideal observation case for this two-
legged argument. For this, we suppose that the execution testing discovers no
failures at all (testing leg success); and furthermore, the system is formally
verified correct against its specification (verification leg success). This case is
of practical importance in some safety-critical industries, where it is the only
case which would allow acceptance of a system for operational use. In the UK
nuclear industry, for example, failures in test would be unacceptable regardless
of what could be inferred statistically from the test result.

Our allocation of node probability tables used to analyse this ideal observa-
tions case is parameterized, i.e. it specifies the conditional probabilities of each
node, given its parents’ values, numerically except for unspecified values of a
set of independent model parameters. There are 12 independent model pa-
rameters significant for the analysis of the ideal observation case. A particular
expert’s beliefs will thus be represented by an assignment of numerical values
to these parameters.

A substantial part of the remainder of the paper examines the consequences
of different expert beliefs, concentrating on questions of when the two-legged
approach is effective, and what are the factors that determine its effectiveness.
We show that there are some unexpected subtleties here, and give examples
of some surprising and non-intuitive results.

1 Other synonymous terms and some references are given on p7.

5



2 Model Variable Definitions and BBN Topology

The construction of our model proceeds in the usual stages of: model vari-
able identification, definition and respective state-space construction; BBN
topology construction, to represent graphically assumed conditional indepen-
dencies (CIs) among the model variables; and finally local node conditional
probability table definition. In this ordered presentation of the process, the
discoveries and difficulties encountered during later stages may well feed back
into adjustments and refinements to earlier stages.

The first stage in building a BBN is the identification of model variables. Our
model variables are defined in the following list, which gives in square brackets
the state-space we have used, in this paper, for each variable. For the sake of
simplicity in this initial model formulation, the state-spaces are all Boolean,
apart from the first. In some cases, this is a deliberate simplification of the
real situation which we do not intend to retain in all our future work.

S - The system’s unknown, true probability of failure on demand (pfd) [0 ≤
S ≤ 1].

Z - system specification [Z ∈ {correct, incorrect}]. A system verification is
performed directly against this specification, to form one leg of the system
dependability argument.

V - conclusion from the verification of the system against its specification
[V ∈ {verified, not verified}]. For the purposes of the current investigation
we shall be interested only in the ideal observation outcome that the system
is verified correct.

O - oracle used in system testing (by execution of the system) [O ∈ {correct,
incorrect}]. In this current BBN, we have for simplicity made the unrealistic
assumption that the operational profile, used to simulate the test inputs, is
perfectly representative of the statistical pattern occurring during real use.

T - system test results [T ∈ {no failures, failures}]. We shall be interested
here only in the ideal observation case of no failures.

C - acceptance (or otherwise) of final claim as to whether or not the system
is fit for use [C ∈ {accepted, rejected}]. Of course, C’s two parents, T and
V , are both observable nodes. So in one usage scenario we have in mind
of this model, C itself will be a ‘deterministic’ node, in the sense that its
realised value will be a chosen deterministic function of its parents’ values.
For the purposes of illustration throughout this paper we will use the claim
that the operational system pfd S is better than 10−3.

The ultimate purpose of the following BBN model is to derive posterior dis-
tributions of random variables, S, C, of practical importance (goal variables),
following observation of other variables T, V whose values are directly measur-
able (or amenable to direct human assessment). The model, like most other
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BBN models, also includes essential model-structural ‘mediating variables’,
Z,O, in this case, which fall into neither of these two categories. Formally, the
BBN topology encodes a system of conditional independence assumptions,
collectively termed a Markov model , (in)dependency relation, (in)dependency
model , or Conditional Independence (CI) relation – see p91 of [7], §2.4 of [8],
and p5 of [9] – which enable the grand multivariate distribution of all model
variables to be composed of several node conditional probability distributions
of lower dimension. Consequently the required posterior distributions, of goal
variables given evidence, can likewise be expressed, in §3 below, in terms
of these node conditional distributions. The CI assumptions encoded in the
topology justify the derivations involved, and the pictorial representation of
this topology, properly understood, efficiently communicates these CI assump-
tions (some more evidently than others). Thus probabilistic CI assumptions
and the BBN topologies that encode them are devices for constructing, com-
municating, and reasoning with multi-variate probability models.

The theoretical study of how a probabilistic CI model may be precisely repre-
sented by a graph is based on an analogy of probabilistic CI relations with var-
ious notions of the separation of two sets of graph nodes by a third ‘separator’
set of nodes. The formal notions of ‘d-separation’, ‘graphoid’, ‘semi-graphoid’,
and ‘I-map’ are central to this theory. See [7–10] for further details.

Our BBN topology is shown in Figure 1.

C – claim accepted?

V –T –

S– p.f.d.

Z – spec. correct?

O–oracle
correct?

verif.
– failures in

testing?
outcome?

Fig. 1. BBN model topology

Expressed algebraically, the ‘CI statement’ (or just ‘CI’, for short), “A is
conditionally independent of B, given S”, can be thought of as a factorization
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property of the joint distribution function:

A⊥⊥B|S means P (A, B, S) = P (A|S)P (B|S)P (S), (1)

where A, B, S, here represent sets of model random variables 2 . Thus, each CI
assumption asserts that joint (or “joint conditional”) probability distributions
will factorize – in precisely stated ways – into products of other conditional
joint distributions, each involving fewer variables 3 . Our Markov model was
constructed in the BBN form of Figure 1 by explicitly making the CI assump-
tions that each graph node is conditionally independent, given its parents, of
its other non-descendants. Other CI statements are logical consequences of
these. (See e.g. [7,11] for precise definitions and theory of how to use the net
topology to determine all its logical CI consequences.) The term conditional
dependence denotes simply the absence of a specified CI factorization.

The graph topology of our BBN can be thought of as an embodiment of a
Markov model, i.e. a complete and consistent 4 set of CI beliefs of an expert
concerning the model random variables. There are many ways of specifying the
dependency model which this graph topology represents. E.g. one economical,
logically independent set of CI assumptions which together completely specify
the model is:

O⊥⊥SV |Z
T⊥⊥ZV |OS

C⊥⊥OSZ |V T

Expressed in terms of its 26 elementary CI statements 5 as in [8], the same
dependency model can be written

2 Other forms, such as P (A,B|S) = P (A|S)P (B|S), are for most practical purposes
equivalent; although there may be occasional exceptions relating to conditioning on
zero-probability S-events. Some authors use the very inclusive definition, avoiding
potential zero divisions, P (A,B, S)P (S) = P (A, S)P (B, S).
3 Conditional independence means distinct factors may contain common variables.
4 No set of CI assertions can in itself exhibit logical inconsistency. The associated
Markov model includes all the logical CI consequences of the explicitly asserted CI
statements. We need all of these to be consistent with any conditional dependence
beliefs expressed by the same expert.
5 [8] shows that every probabilistic dependency model is completely characterised
by listing its elementary CI statements.
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O⊥⊥S |Z O⊥⊥S |ZV

O⊥⊥V |Z O⊥⊥V |ZS O⊥⊥V |SZT O⊥⊥V |SZTC

Z⊥⊥T |OS Z⊥⊥T |OSV Z⊥⊥T |OSV C

V⊥⊥T |OS V⊥⊥T |OSZ V⊥⊥T |SZ

Z⊥⊥C |V T Z⊥⊥C |V TO Z⊥⊥C |V TS Z⊥⊥C |V TOS Z⊥⊥C |OSV

O⊥⊥C |V T O⊥⊥C |V TS O⊥⊥C |V TZ O⊥⊥C |V TSZ O⊥⊥C |SZT

S⊥⊥C |V T S⊥⊥C |V TO S⊥⊥C |V TZ S⊥⊥C |V TOZ

When an expert declares himself satisfied with a BBN topology such as that in
Figure 1, he is really saying that he believes the CI assertions that are entailed
by the topology. Thus, part of the topology elicitation exercise would be an
exposure to, and acceptance of, these.

The idea captured by the ternary relation A⊥⊥B|S can be expressed less for-
mally by the statement: ‘Observation of S renders A irrelevant to B’, [7]. A
probabilistic uncertainty model implies an A↔B-symmetry of this statement.
Care is required with its interpretation: The term “observation” denotes com-
plete observation, in the sense that the values of all variables in S should be
made exactly known before a person interested (solely) in the values of B will
lose interest in information about variables A. See [7,11–16], and §1.2.1 of [9].
For example, our model assumes V⊥⊥T |SZ. A factorization such as

P
(
V T

∣∣∣ S>10−3, Z = correct
)

= P
(
V

∣∣∣ S>10−3, Z = correct
)
P

(
T

∣∣∣ S>10−3, Z = correct
)

does not follow; whereas

P
(
V T

∣∣∣ S=10−3, Z = correct
)

= P
(
V

∣∣∣ S=10−3, Z = correct
)
P

(
T

∣∣∣ S=10−3, Z = correct
)

is logically entailed within our model.

This particular CI assumption also illustrates another important point about
the above informal interpretation of CI assumptions. In practice we may still
incorporate in our model such a CI assumption, even though we may not
expect to observe variable(s) S, or where S may be in principle impossible to
observe. Then it is hypothetical exact knowledge of S that is the conceptual
device used to interpret the above CI assumption. In practical model building,
many CI assumptions may be of this form, in which the precise values of
conditioning variables of some CI assumptions are never expected to be known,
as with the assumption V⊥⊥T |SZ in our model.

To state one last clarification about the interpretation of CI assumption A⊥⊥B|S,
note that the conditioning knowledge-state, assumed to produce the irrele-
vance of A to B, consists of knowing only the exact value of S. The irrelevance
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can later be destroyed by subsequently acquired knowledge, exact or approx-
imate, of other variables. So strictly, assumption A⊥⊥B|S says that when S

is exactly known, A is irrelevant to B for only just so long as the state of
all other model variables remains completely unknown, i.e. while we do not
discover anything else than the value of S.

Figures 2 and 3 show the BBNs representing an obvious pair of single-legged
arguments whose ‘combination’, in some sense, we have discussed up to now,
in the form of the BBN model shown in Figure 1:

Z – spec. correct?

S– p.f.d.O –– oracle
correct?

T – failures in testing?

C – claim accepted?

Fig. 2. Testing leg BBN topology

V – verif. outcome?

C – claim accepted?

S– – p.f.d. Z –
spec.

correct?

Fig. 3. Verification leg BBN topology

These topologies may be obtained from that of Figure 1 by removing one or
other of the two observable nodes V and T . It may be that an expert who
accepts the dependency model of Figure 1 as correct for the uncertainties in-
herent in the two-legged argument would feel the same about Figures 2 or 3
for an argument in which only one of these two source of evidence is available.
More rigorously, the relationship between these one-legged and two-legged
argument topologies is not trivial. We do not envisage that the appropriate
one-legged dependency model should necessarily be merely a ‘marginal’ of the
two legged model, obtained by summation over the observable V or T that
is to be removed. For example, in all the example uses of these topologies
which follow, we choose to assign the values of C, “claim acceptance”, deter-
ministically in terms of C’s (one or two) parents’ values. This means that our
single-legged models will attribute to variable C a different stochastic rela-
tionship with the remaining model variables. (Below, in our model based on
the topology of Figure 2, we make C a deterministic function of T alone: in
our two-legged model based on Figure 1 we do not.) In what follows when we
have assigned node conditional probabilities to our topologies, we will say a
little more about the relationship between the three multivariate probability
models that result.
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Represented algebraically, the two single-leg dependency models are

Testing Leg Verification Leg

O⊥⊥S |Z C⊥⊥SZ |V
T⊥⊥Z |OS

C⊥⊥OSZ |T

the first OS-symmetric; and the second SZ-symmetric 6 . In the form of ex-
haustive lists of elementary CIs, we have:

Testing Leg Verification Leg

O⊥⊥S |Z
Z⊥⊥T |OS Z⊥⊥T |OSC

Z⊥⊥C |T Z⊥⊥C |TO Z⊥⊥C |TS Z⊥⊥C |V Z⊥⊥C |V S

Z⊥⊥C |OS Z⊥⊥C |TOS

O⊥⊥C |T O⊥⊥C |TS O⊥⊥C |TZ O⊥⊥C |TSZ

S⊥⊥C |T S⊥⊥C |TO S⊥⊥C |TZ S⊥⊥C |TOZ S⊥⊥C |V S⊥⊥C |V Z

Readers may have noticed that, although we have informally treated a two-
legged argument as a combination of single legs, our more formal treatment
above has moved in the reverse direction. Comparison of these last CI lists
with the one on p9 clearly does not indicate any formal operation allowing
composition of these two single-legged dependency models to create the two-
legged model. The two-legged model of Figure 1 is a construction embodying
various subjective beliefs about the dependencies arising in practice among
the variables of our particular application. In particular, our two-legged de-
pendency model can be characterised neither as weaker nor as stronger than
the simple conjunction 7 of the two separate single-legged dependency models.

Precisely, using the elementary CI statement dependency model characteriza-
tion, the two-legged model deletes all CIs from one single-legged model, most
CIs from the other, and of course introduces several other CIs whose contexts 8

6 The latter symmetry is not inherited by Figure 3 itself, though there are derivable
canonical graph representations which always show the same symmetries as the
dependency model they represent, such as the “largest chain graph” [8,17] model
representation.
7 i.e. the pooled set of conditional independencies involving the 6 variables
8 the context of a CI statement is the set of all the model variables it involves:
context(A⊥⊥B |C) = A ∪B ∪ C.
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are not contained in the variable set for either single leg.

Deleted from Deleted from Appended
Testing Leg Verification Leg

O⊥⊥S |ZV

O⊥⊥V |Z O⊥⊥V |ZS

O⊥⊥V |SZT O⊥⊥V |SZTC

Z⊥⊥T |OSC Z⊥⊥T |OSV Z⊥⊥T |OSV C

V⊥⊥T |OS V⊥⊥T |OSZ

V⊥⊥T |SZ

Z⊥⊥C |T Z⊥⊥C |TO Z⊥⊥C |V Z⊥⊥C |OSV Z⊥⊥C |V T

Z⊥⊥C |TS Z⊥⊥C |TOS Z⊥⊥C |V S Z⊥⊥C |V TO Z⊥⊥C |V TS

Z⊥⊥C |OS Z⊥⊥C |V TOS

O⊥⊥C |T O⊥⊥C |TS O⊥⊥C |V T O⊥⊥C |V TS

O⊥⊥C |TZ O⊥⊥C |V TZ O⊥⊥C |V TSZ

S⊥⊥C |T S⊥⊥C |TO S⊥⊥C |V S⊥⊥C |V T S⊥⊥C |V TO

S⊥⊥C |TZ S⊥⊥C |TOZ S⊥⊥C |V Z S⊥⊥C |V TZ S⊥⊥C |V TOZ

Clearly many of these changes involve variable C and relate to its changed
role, mentioned above, in the dependence structure as we move between these
three dependency models.

3 Computations from these BBN Topologies

We are primarily interested in the updated joint probability distribution P (CS

| observations), particularly the value P
(
C=accepted, S>10−3

∣∣∣ observations
)

concerning an unsafe failure of the entire, two-legged assessment activity.
Starting from this BBN model, the observations available will typically consist
of values for the pair V, T of model variables. Under the conditional indepen-
dence assumptions comprising this dependency model, the joint distribution
of these four variables has a representation

P (CSV T ) = P (C|V T )

∑
Z

P (V |SZ)P (S|Z)
∑
O

P (T |OS)P (OZ)

 (2)

For any pair of observed values (V, T ), we obtain the desired, updated distri-
bution for (C, S) by normalising
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P (CS|V T ) =
P (C|V T )

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
∑
C

∫
S
P (C|V T )

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
dS

=
P (C|V T )

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
∫

S

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
dS

(3)

We have used integration over our single continuous model variable S here,
interpreting P (S|Z) as a density function. In fact, notice that, since we are
to accept that perfection (S=0) is possible, then we must allow mixed distri-
butions for S (these often involving other model variables too, being joint or
conditional distributions). In this notation, this means thinking of integrands
over S as potentially exhibiting ‘delta-function-like’ behaviour, at S=0 (One
could use Lebesgue-Stieltjes integrals [18] to notate this more rigorously.)

4 Node Probability Assumptions

4.1 Simplifying and Conservative Assumptions

We start with some assumptions that will simplify the mathematics. Some of
these assumptions are quite strong. Below in §4.2 we consider some specific
parametric refinements of some of these starting assumptions.

• Determinism of Claim Acceptance An assumption, for our ideal obser-
vations case of success on both argument legs, (V, T ) = (verified, no failures),
which simplifies the above considerably, is the conditional probability table
entry

P
(
C=accepted

∣∣∣ (V, T )=(verified, no failures)
)

= 1. (4)

That is to say, the value of the claim C is fully determined by these observed
values of (V, T ) alone, so that P

(
C=accepted, S

∣∣∣ (V, T )=(verified, no failures)
)

=

P
(
S

∣∣∣ (V, T )=(verified, no failures)
)
. For this observed (V, T ), (2) and (3)

then both become zero for C=rejected, while, for C=accepted, (2) loses the
term to the left of the braces, as does the numerator of (3). Thus, substituting
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into (3) leaves us with the expression

P
(

(C, S)=(accepted , s)
∣∣∣ ideal obs.

)
= P

(
S=s

∣∣∣ ideal obs.
)

=∑
Z P (V =verified |S=s, Z)P (S=s|Z)

∑
O P (T=no failures|O,S=s)P (OZ)∫

S

{∑
Z P (V =verified |SZ)P (S|Z)

∑
O P (T=no failures|OS)P (OZ)

}
dS

(5)

for the updated probability density of S, given the ideal observations (for
both argument legs). Here, the condition “| ideal obs.” is a shorthand for
“| (V, T )=(verified, no failures)”. Keep in mind that we can interpret the nu-
merator and denominator of the conditional probability (5) as, respectively,
an unconditional probability density, and an unconditional probability, in the
usual way. See e.g. (13) on p17 below.

It is the behaviour of this formula (5) for the distribution of the pfd S condi-
tionally given the ideal observations that forms the focus of the remainder of
the paper.

• Verification Fallibility Against Correct Specification Against a cor-
rect specification, an infallible verification procedure would pass the system
precisely if its true pfd is zero: Provided the specification is correct, any pos-
itive pfd, however small, will always have been caused by a fault, which will
certainly show up as a failure to verify the system. Conversely, one might
assume that all systems which fail the verification have non-zero true pfds.
Instead we introduce a pair of verification fallibility parameters α, ξ allowing
the breakdown of both of these ideal behaviours of the verification process:

P (V =verified |S=s, Z=correct) =

ξ if 0 < s ≤ 1, or

1− α if s = 0,
(6)

Thus, our model allows that, against a correct specification:

– a perfectly reliable system can fail 9 the verification, with probability α;
– a system having a positive pfd can pass the verification, with probability ξ.

For simplicity, we assume that the probability (that is, conditionally given
〈S=s, Z=correct〉) of the latter kind of verification failure is independent of
the actual (positive) value s of variable S. (Of course this constraint could be
relaxed in future models, perhaps by using a parametric function ξ(s).) Note

9 We have to be careful about terminology here: Surely there may be systems which
contain ‘faults’ while being perfectly reliable. (E.g. defective functionality may not
be exercised by a particular operational profile; or the system may contain internal
fault-tolerance which eliminates the possibility that a certain ‘fault’ could ever result
in a system failure.)
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that the special case (α, ξ) = (0, 0) restores the infallibility assumption for the
verification process (provided the specification is correct), as outlined above.

• Conservative Assumption for Incorrect Specification: Against an
incorrect specification, we make the conservative (i.e. pessimistic, taking the
perspective of the overriding undesirability of accepting a bad system) assump-
tion that any system will always pass a verification against this specification.

P (V =verified |S=s, Z=incorrect) = 1 . (7)

• Geometric Time-to-Failure Distribution during testing. We assume
that n test inputs cause failures independently with the operational pfd S,
which are detected with certainty (and with no false alarms) if the oracle is
correct. So the probability table of variable T has

P (T=no failures |S=s, O=correct) = (1− s)n . (8)

• Conservative Assumption for Incorrect Oracle: To address the case
of an incorrect oracle, we again adopt a conservative assumption, similar to
that used above for the case of verification against an incorrect specification:

P (T=no failures |S=s, O=incorrect) = 1. (9)

• Stochastic Ordering Constraint We propose for the conditional distri-
bution of S given Z a requirement for the following kind of stochastic ordering
as a function of Z

P
(
S>s

∣∣∣ Z=correct
)

< P
(
S>s

∣∣∣ Z=incorrect
)

, for all 0 ≤ s < 1 .

(10)
where it is allowed that either or both of these distributions can have mass
concentrated at s=0, subject to this inequality.

4.2 Distributional Assumptions

We begin by introducing some shorter notation for those probabilities which
will not now be substituted by a parametric distribution:

We will use the symbol π for the unconditional joint distribution of variables
ZO, taken in that order, with a first index to represent the Z value, and a
second index to represent O. That is, we name four unconditional probabilities,
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πcc+πci+πic+πii = 1, with c for correct, i incorrect. We also use a “wildcard
notation”, ∗, for the marginal distributions of Z and of O so, for example,
πc∗ = πcc+πci = P (Z=correct). Later, we will sometimes display these prior
probabilities of variables ZO using a 2×2 matrix layout

O

correct incorrect

correct πcc πci πc∗

Z

incorrect πic πii πi∗

π∗c π∗i 1

(11)

This matrix represents an important set of prior beliefs, since it is here that
is captured the dependence between our doubts about specification and ora-
cle correctness. There is likely to be positive “assumption dependence” here,
which will presumably cause dependence between the argument legs and un-
dermine, to some extent, the efficacy of the two-legged approach.

For the conditional distribution P (S|Z), we have the complication that it may
be a mixed distribution. In our parametric examples we assume this to be con-
tinuous on S ∈ [0, 1] except for a possible concentrated mass at S=0. Denote
the two concentrated masses p0|c and p0|i, where the c or i indicates the con-
ditioning value of Z. (We will require p0|c>p0|i in compliance with assumption
(10).) For the sake of statistical conjugacy [19, Ch. 9] with the discrete time
model (8), we will use a beta distribution for the continuous component. So
for 0<s≤1, use

pdf(s|Z) =


(1−p0|i)

β(a,b)
sa−1(1− s)b−1, if Z=incorrect, or

(1−p0|c)

β(a′,b′)
sa′−1(1− s)b′−1, if Z=correct,

(12)

for some a, b, a′, b′ > 0. Note that if ξ=0, the latter of these two distributions
is ‘masked out’, by the zero value in assumption (6), from the distributions
(3,5,13), so that parameters a′, b′ disappear with ξ from the ‘ideal observations’
model in that case. See columns 5 and 6 (of 8) in Table 1 on p43. In other
cases, in which ξ>0, note that our assumption (10) translates into a messy but
computable constraint on a, b, a′, b′, p0|i, p0|c. (One may simply use analytic dif-
ferentiation w.r.t. s, and then numerical zero-finding of monotonic functions,
to determine the local minima of RHS−LHS in inequality (10), which, with
the limiting values at the two end-points, s → 0, 1 can be used to formulate
the constraint that the inequality shall hold over the whole interval 0≤s<1.)
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4.3 Effect of Node Probability Table Assumptions on Equation (5)

The above assumptions about the node probability tables can now be sub-
stituted in the numerator of (5). This numerator is in fact simply the prior
probability density of “S and ideal observation on both argument legs”. We
will denote it P (S&ideal obs.), meaning, more precisely

P (s&ideal obs.) = P
(
(C, S, V, T )=(accepted,s,verified,no failures)

)
. (13)

Table 1 on p43 shows how the value of (13) is a sum of four terms corresponding
to the different configurations of ZO — dealing separately with the case S=0.
The four terms summed are each a product of three entries in the top part
of a vertical column of the table (in each single column, the three entries in
the three rows immediately under the double line that separates the headers)
weighted also by the prior probability of the value of the pair ZO which selects
the column. Without this P (ZO) weighting factor, the column-product

P (V TS |ZO) = P (T |OS)P (S |Z)P (V |SZ)

is the probability (density, for S>0) of seeing the ideal observations V T , and of
the pfd having a true (unknown) value S, conditioned (as if these were known)
on specified ZO values. Note that the case s>0 becomes much simplified under
the verification infallibility assumption (α, ξ) = (0, 0), with the two zero ξ
values in the third row of the body of the table causing some terms from
subsequent rows to disappear: if we assume it impossible to verify an imperfect
system against a correct specification, then a part of the total probability (13)
disappears. The second to last row of the table gives the value of (13), for S=0
on the left, and for 0<S≤1 on the right. In the latter case, this probability is
actually a density in its S-argument. We can think of the value “ideal obs.”
as the vector of observed values of CV T , or effectively of just V T , since we
have assumed C to be determined by V T in this ideal case (4).

For these ideal observations V T = (verified, no failures), the S=0–cases of the
three equations (7-9) produce the six 10 1’s that occur in the left half of Table 1.
These assumptions therefore mean that P (ideal obs.|S=0, Z=incorrect, O) =
1, and P (ideal obs.|S=0, Z=correct, O) = 1−α. I.e., under our conservative
assumptions, and irrespective of assumed correctness or otherwise of the ora-
cle, the conditional probability of seeing the ideal observations from a system
known to be perfect becomes certainty, if the specification is assumed incorrect,
and 1−α if the specification is assumed correct.

10 Note how just three equations produce six 1 s here essentially because the topology
says that T⊥⊥Z |OS and V⊥⊥O |ZS. So, reading across the first row, the conditional
probabilities of T alternate, in each half of the table; and reading across the third
row, the conditional probabilities of V occur in adjacent pairs.
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The last row of Table 1 gives the denominator of (5). This normaliser is just

P (ideal obs.) = P
(
(V, T )=(verified,no failures)

)
. Substituting the entries of

Table 1 into (5), gives the conditional probability P
(
S=0

∣∣∣ ideal obs.
)

and

also, for S>0, the conditional probability density pdf
(
S

∣∣∣ ideal obs.
)
, in each

case as the ratio of expressions in the last two rows of the table. Care is
necessary in use of notation for discontinuities and points of concentrated
mass: Note the comment under the table.

5 Expressions for Confidence and Doubt

Substituting these further assumptions and abbreviated notations into the
penultimate row of Table 1 on p43 (which originated from the numerator of
(5)) gives the concentrated mass

P (S=0 & ideal obs.) = (1−α)p0|cπc∗ + p0|iπi∗ (14)

and, for strictly positive values of S, the pdf

pdf(s & ideal obs.) =

ξ
(1− p0|c)

β(a′, b′)
sa′−1(1− s)b′−1

[
πcc(1− s)n + πci

]
+

(1− p0|i)

β(a, b)
sa−1(1− s)b−1

[
πic(1− s)n + πii

]
,

0 < s ≤ 1.

(15)

To obtain the conditional distribution of S given the ideal observations, we
require a normaliser from the above joint probability density (and point mass)
corresponding to the last row of Table 1

P (ideal obs.) = P (S=0 & ideal obs.) +
∫
0<s≤1

pdf(s & ideal obs.) ds (16)

where the left-hand term is the point mass contribution, which is understood
to be excluded from the domain of the right-hand, integral term. Substituting
from (14) and (15) yields

P (ideal obs.) = (1−α)p0|cπc∗+p0|iπi∗+ξ(1−p0|c)
[
πccµ

′ + πci

]
+(1−p0|i) [πicµ + πii]

(17)

using notation µ for the nth non-central moment of the beta distribution 11 ,

µ =
β(a, b + n)

β(a, b)
, µ′ =

β(a′, b′ + n)

β(a′, b′)

11 —to be precise, of the beta distribution with its usual parameters a and b inter-
changed, because {1−X is distributed Beta(b, a)} ⇔ {X is distributed Beta(a, b)}.
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in order to shorten some expressions in what follows. Note the dependence of
µ and µ′ on n, as well as on the beta distribution parameters. For any fixed
a, b, a′, b′ > 0, we always have µ, µ′ strictly decreasing in n, both being 1 at
n=0, and having µ, µ′ → 0 as n → ∞ (though the convergence can be slow
for small a, a′).

From (15) and (17), we can express the doubt , or probability of ‘unsafe failure’
of the entire two-legged assessment procedure represented by these modelling
assumptions, with the formula

P (S>s | ideal obs.) =

ξ(1−p0|c)
[
πccµ

′I1−s(b
′+n, a′) + πciI1−s(b

′, a′)
]
+ (1−p0|i)

[
πicµI1−s(b+n, a) + πiiI1−s(b, a)

]
(1−α)p0|cπc∗ + p0|iπi∗ + ξ(1−p0|c) [πccµ′ + πci] + (1−p0|i) [πicµ + πii]

(18)

where I1−s denotes the (regularised) incomplete beta function using the nota-
tion

Ix(a, b) =
1

β(a, b)

∫ x

0
ua−1(1− u)b−1 du, a, b > 0, 0≤x≤1, (19)

which is a strictly increasing function of x ∈ [0, 1] for all a, b > 0. [See [20, p944]
for its other properties, which include I0(a, b) = 0, I1(a, b) = 1, and I1−x(a, b)+
Ix(b, a) = 1.] Equation (18), with the strict inequality in the probability on
the left hand side, actually holds for all (non-negative) s, including s=0.

We shall refer to the conditional probability (18) in what follows as the ‘doubt
function’. This function of 13 independent arguments (the threshold s value;
and the 12 independent parameters of our node conditional probabilities) is
an important consequence of our model as it stands, capturing the proba-
bility of the most important kind of ‘argument failure’ we first identified on
p5. There are several related measures that could be substituted here. To be
exact, this one is the conditional probability that such an unsafe argument
failure has occurred, given that a system is deemed accepted by the two-legged
argument. Of course this is distinct from the unconditional probability that a
randomly selected system will be truly unsafe (S>s) and will be (incorrectly)
accepted by the two-legged argument as sufficiently safe (the numerator of
(18)). It is also different from the probability that a randomly selected un-
safe system will be deemed sufficiently safe by the two-legged argument. The
conversions between these are straightforward, depending on quantities such
as the ‘base rate’ of truly unsafe systems among systems which are submit-
ted for evaluation by this procedure, and the rates at which rejections of
randomly submitted systems will occur. Note that in our model as presently
formulated, these marginal background rates are not outside the scope of the
model. They are implied by our chosen values for model parameters: in the
first case (the marginal probability P (S>10−3)) by π’s, and p0|i, a, b, p0|c, a

′, b′;
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and in the latter case (the marginal probability P (C=rejected)) by the entire
set of 12 independent model parameters.

We note again the significant degree of simplification occurring in the case
ξ=0. In that case, not only do parameters a′, b′ become irrelevant to the pos-
terior probability distribution (18) of S given the ideal observations, but also
(18) depends on only 2 of the 3 independent degrees of freedom of the prior
ZO distribution π. The conditional probability (18), in this special ξ=0–case
of the ideal observations scenario, depends on the marginal probability P (Z)
and on the conditional probability P (O|Z=incorrect). Its lack of dependence
on P (O|Z=correct) is explained by the fact that the infallibility assumption
ξ=0 for the verification process in the case (S>0, Z=correct), given by the

top line of (6) creates two zeros in the 5th and 6th columns of Table 1 which,
by multiplication, effectively ‘mask out’ from the final rows of Table 1 (i.e.,
from (2) and the numerator and denominator of equations (3) & (5)) the only
case of dependence of any term in these equations on the state of variable O
when Z = correct (the pair of unequal entries in Table 1 located two rows
above this pair of zeros). Conditionally given the ideal observation Z=correct ,
this masked-out (S>0, Z=correct) scenario is the only means by which our
posterior distribution of S could have otherwise (without the masking effect
of putting ξ=0 in assumption (6)) depended on the state of O. This is be-
cause the conservative assumption (9) removes any dependence on O from
the LHS of Table 1, where S=0. As soon as we relax either the verification
infallibility, ξ=0, or the conservative assumption (9) which interact in this
simplifying way here, we obtain the greater complexity of a conditional prob-
ability P (S>s | ideal obs.) which involves all 12 independent parameters of our
parametric node probabilities.

If s is small, it may be numerically more accurate (depending e.g. on the pre-
cision properties of the incomplete beta algorithm at its extreme arguments)
to compute instead the confidence using

P (S≤s | ideal obs.) =

P (S=0 | ideal obs.) + P (0<S≤s | ideal obs.) =

(1−α)p0|cπc∗ + p0|iπi∗

(1−α)p0|cπc∗ + p0|iπi∗ + ξ(1−p0|c) [πccµ′ + πci] + (1−p0|i) [πicµ + πii]
+

ξ(1−p0|c)
[
πccµ

′Is(a
′, b′+n) + πciIs(a

′, b′)
]
+ (1−p0|i)

[
πicµIs(a, b+n) + πiiIs(a, b)

]
(1−α)p0|cπc∗ + p0|iπi∗ + ξ(1−p0|c) [πccµ′ + πci] + (1−p0|i) [πicµ + πii]

(20)

To look briefly at some actual numbers, we will consider first an infallible
verification assumption of the form (α, ξ) = (0, 0), which reduces the num-
ber of active model parameters significantly, from 12 to 7 for the reasons just
explained. Under this simplifying assumption, all entries in the third row of
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Table 1 on p43 are zeros and ones. These eight entries in fact – given the CI as-
sumptions of the model topology – may be taken in pairs, reading across, and
actually represent only four CI tables entries (because of the lack of depen-
dence on variable O, the oracle correctness). The 3rd, 4th, 7th, and 8th, entries
in this row of the table are justified as a single conservative assumption to
cover the case of an incorrect system specification. Here we have assumed pes-
simistically, with equation (7), that the verification against such an incorrect
yardstick will always produce a positive conclusion about any built system,
irrespective of its actual failure probability S. We will retain this conservative
assumption below. In contrast, for the other case—that the specification Z
is correct—the remaining four entries of the same row are affected by two
kinds of ‘infallibility’ assumption, α=0 and ξ=0, for the verification activity.
We cannot justify these from an argument for conservatism. The assumption
ξ=0 affecting the 5th and 6th columns can even be viewed as over optimistic,
depending on how we define correctness of a specification, and how the veri-
fication is carried out in practice.

If, under this (α, ξ) = (0, 0) assumption, we set 12

(p0|i, a, b, p0|c, n, πc∗) = (0.2, 1, 999, 0.5, 4602, 0.8). (21)

in (18), we obtain doubt

P (S>s | ideal obs.) =
πiiI1−s(999, 1) + 0.178πicI1−s(999+4602, 1)

0.55 + πii + 0.178πic

where the incomplete beta term I1−s(999, 1) may be thought of as the cor-
responding probability P (X>s) for a random variable X which is beta dis-
tributed with parameters (a, b)=(1, 999),

P (X>s) =

∫ 1
s ua−1(1− u)b−1 du

β(a, b)
= 1− Is(a, b) = I1−s(b, a) .

The same applies to the other incomplete beta term, but instead with pa-
rameters (a, b)=(1, 5601). The latter is a smaller beta probability – consid-
erably smaller for many s-values: The respective means of these two beta
distributions being 0.001 and 0.00018. Under our assumption ξ=0, it makes
no difference to (18) how the probability of specification correctness, πc∗=0.8
is divided between the probabilities of (Z,O)=(correct,correct) and (Z,O)=

12 An interesting figure to use for the number of test-cases in (8) is n = 4, 602. This
is the number of tests required to give a Bayesian 99% than 10−3 when no failures
are observed, under the simpler model assumptions used in [21] . In terms of our
model here, those assumptions say essentially that there is no verification leg, that
the oracle is known to behave perfectly, and that the prior distribution of Z and the
conditional distribution P (S|Z) are such that S is initially uniformly distributed on
the unit interval.
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(correct,incorrect). However, the distribution of the other 20% πi∗ = 0.2,
does make a difference, and in fact can be used to change the doubt con-
siderably as it is differently allocated between (Z,O) =(incorrect,correct) and
(Z,O) =(incorrect,incorrect). It is easy to see that the two extreme cases
(πic, πii) = (0.2, 0) and (πic, πii) = (0, 0.2) result in values for doubt

P (S>s | ideal obs.) =
0.178× 0.2I1−s(5601, 1)

0.55 + 0.178× 0.2
, and

0.2I1−s(999, 1)

0.55 + 0.2
,

respectively, while values of (πic, πii) between these two extremes lead to values
intermediate between these two, producing a curve which is hyperbolic in form
and monotonic increasing 13 as the 0.2 probability mass is steadily shifted
from πic to πii. For instance, if we put s=10−3, these two end points of this
increasing hyperbolic segment are P (S>s | ideal obs.) = 0.00022 at πic=0.2,
and P (S>s | ideal obs.) = 0.098 at πii=0.2

These numbers illustrate how the joint prior beliefs concerning the two un-
observable variables ZO – incorporating both the prior doubt about Z and
O individually, as well as beliefs about the association between their likely
values – can influence the doubt about the claim produced by the two-legged
argument. Although the model we are using is very simplified at this stage,
we expect that such prior beliefs represented at ‘the top part’ of our BBN
topology may well continue, under more sophisticated and realistic models, to
be a driver for the amount of extra confidence gained when safety arguments
are combined in this kind of formal way.

6 How Effective is this Multi-Legged Argument Approach in Gain-
ing Confidence in Dependability Claims?

We have mentioned earlier that the use of multiple argument legs arises infor-
mally from reasoning similar to that used to justify the use of diverse channel
redundancy to obtain system reliability. Questions that are of interest for sys-
tems have similar counterparts here. How much of a confidence gain do we
obtain, via the above two-legged argument model, over the verification-only
argument model, or the testing-only argument model? Equation (18) expresses
the monotonic ‘doubt function’ P (S>s | ideal obs.) of s as a function of the
twelve independent model variables: πic, πii, πcc, p0|c, p0|i, a, b, a′, b′, α, ξ, n: how
can we best gain an understanding of the ‘shape’ of this functional depen-
dence? What are the important drivers of the benefit coming from the use of
multiple legs? E.g. does correlation between doubts in the assumptions play
an important role, as intuition would suggest? How does the two-legged ar-
gument doubt (18) compare with its ‘naive independence’ version in which,

13 assuming s 6= 0, 1
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for a fixed claim, the doubts emanating from the two single argument legs are
simply multiplied to produce the supposed two-leg-argument doubt?

6.1 Benefit of the Two-legged Argument and its Dependence on Stochastic
Association Between Doubts in Assumptions for each Leg

We show next that it is possible to assign the parameters of our two-legged
model such that we leave only one value possible, either of V , or of T , re-
spectively, or of each of V and T . This single value is, in each case, the “ideal
observation” value V = verified or T= no failures . Thus, we can choose pa-
rameters which make, in (2) and the equations following, P (V =verified|SZ),
or P (T=no failures|OS), respectively, become a constant, 1, (so no longer
depending on the values of SZO). Note that this procedure of altering the
model’s local conditional probability tables until only one value of a variable
(of V , or of T , here) has positive probability is mathematically distinct from
summation over that variable (with tables such that two or more of its values
have positive probability). It is easy to verify in the case of our model that
the first procedure does in fact produce a factorization of the joint distribu-
tion which – at least in the cases of “ideal observations” – is identical to that
which would arise from one or other of our proposed single argument topolo-
gies Figures 2 and 3 on p10. More precisely stated: although it is possible to
derive, for each of the two single-legged arguments of Figs. 2 & 3, a para-
metric representation of the ‘doubt’ (18), just as we have done above for the
two-legged argument, it is actually simpler, and in fact equivalent (in the case
where we condition on ideal observations), to deduce directly the analogous
consequences of the single-leg arguments of Figures 2 & 3 as special cases
of the results for the combined argument obtained by the following special
parametric assignments.

Our removal of testing evidence from the argument is equivalent to substitut-
ing n=0 in (18) to produce a doubt

P (S>s |V =verified) =
ξ(1−p0|c)πc∗I1−s(b

′, a′) + (1−p0|i)πi∗I1−s(b, a)[
(1−α)p0|c + ξ(1− p0|c)

]
πc∗ + πi∗

(22)

for the verification-only argument. (Unsurprisingly, the initial beliefs about
the likely oracle-correctness are not present in this expression.)

Similarly, for the testing-only argument, we can substitute (α, ξ)=(0, 1) in (18)
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to produce

P (S>s |T=no failures) =

(1−p0|c)
[
πccµ

′I1−s(b
′+n, a′) + πciI1−s(b

′, a′)
]
+ (1−p0|i)

[
πicµI1−s(b+n, a) + πiiI1−s(b, a)

]
p0|cπc∗ + p0|iπi∗ + (1−p0|c)[πccµ′ + πci] + (1−p0|i)[πicµ + πii]

(23)

for our ideal observations case of the single, testing-argument leg. To see
this 14 , consider the third row (of 5 rows) in the body of Table 1 on p43.
The above substitutions make all entries in this row equal. That is to say,
the substitutions make P (V =verified|ZS) independent of the values of both
Z and S, in just the manner we described at the beginning of this subsection.
(Consider the effect on equations (3,5).) It is not difficult to confirm from our
algebraic conclusions that the effect of this is equivalent to the removal of node
V from the model, i.e. the conversion of Figure 1 to Figure 2, as required.

We now compare some plots of the three doubt functions (18, 22, & 23),
for fixed s=10−3, as we vary certain other model parameters. The plots of
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Fig. 4. Doubt functions (18) vs. cv – with params. as in (24) and following text.

Figure 4 show the value of log10 of the doubt function (18) and were produced
by setting the threshold s value to 10−3 and the model parameters

(p0|i, a, b, p0|c, a
′, b′) = (0.2, 1, 999, 0.5, 1, 999). (24)

14 This (α, ξ) = (0, 1) substitution procedure would not produce the single testing
leg model if we relaxed the conservative assumption of equation (7).
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The nine plots shown may be thought of as three groups of three. These groups
were produced by setting (n, α, ξ) in turn to the values (4602, 0.1, 0.1), then
(4602, 0, 1), then (0, 0.1, 0.1). The first of these three vectors represents a two-
legged argument , which may be compared against the second two which are the
special cases (23) and (22) of (18), corresponding respectively to testing-only ,
and verification-only, single-legged arguments , with the other parameters (24)
common to all three groups.

Within each group of three, the individual plots are distinguished, and the
variation of each along the horizontal axis is determined, by manipulating the
π-matrix as follows. π was reparameterised in terms of the triple (πc∗, π∗c, cv).
The first two of these three parameters are the prior marginal probabilities of
correctness for the specification Z and the oracle O. Variation of these is what
separates the three different plots within each group. The third parameter cv,
used as the horizontal axis, is an analog of the covariance between Z and O
(not strictly a covariance in the usual sense since the state-spaces of these two
variables are not numeric, but equal to the covariance if they were converted
to a pair of Bernoulli random variables).

π =


πcc πci

πic πii

 =


πc∗π∗c + cv πc∗π∗i − cv

πi∗π∗c − cv πi∗π∗i + cv

 .

Thus each individual plot considered alone represents the effect on the value
of the doubt function of an increasing positive, prior covariance cv between
the correctness of specification and of oracle, while keeping the prior, marginal
correctness probabilities of both Z and O fixed. Comparison between the 9
plots illustrates both the effect of changing marginal correctness probabilities
πc∗ and π∗c, as well as the comparison of the two single-legged arguments,
against each other, and against the two-legged argument. It perhaps helps to
disentangle the plots in Figure 4 to state the following descriptive observations
about the shapes of the 9 curves. We will refer to individual curves here by
numbering them . . ., counting vertically upwards at the right-hand end of
the graph, with the lowest plot numbered . (Because of some curves crossing,
this means that the plots at the left-hand end of the graph, are numbered in
the order , , , , , , , , , moving upwards):

• The three flat, horizontal plots (, , ) are the doubt functions for the
verification-only argument. They are flat because the verification-only ar-
gument does not depend on the correlation cv of prior correctness of speci-
fication Z and oracle O. It depends only on the prior marginal distribution
πc∗ of Z (22).

• The prior marginals (πc∗, π∗c) have the values (0.8, 0.8) in plots (, , ),
(0.6, 0.6) in plots (, , ), and (0.4, 0.4) in plots (, , ). For each fixed
value of the prior marginals, towards the left-hand end (small cv) of the
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graph 15 , there is a clear ordering in ‘performance’ (for these particular
chosen model parameter values) between the three arguments: two-legged
argument (, , ) is better than testing-only argument (, , ) which is
better than verification-only argument (, , ). However the ordering of
the two-legged, as compared to the testing-only is reversed towards the
right-hand end of the graph. (See further discussion below.)

• There are six plotted doubt functions which are not flat. Of these, three
(, , ) are from the two-legged argument, and three (, , ) are from
the testing-only argument. For each πc∗, and π∗c, the two-legged argument
doubt function has a steeper gradient – as a function of the correlation cv
– than the corresponding testing-only argument. ( is steeper than , etc.)
The latter does increase as a function of cv, but, in each case, rather more
gently than it would with the addition of verification evidence.

• For arguments of each of the three kinds, doubt always increases (confidence
diminishes) as the prior marginal probabilities of correctness of Z and O
decrease (from (πc∗, π∗c) = (0.8, 0.8) in curves (, , ), down to (0.6, 0.6)
in (, , ), down to (0.4, 0.4) in (, , )).

For a numerical example of the ordering observed in the second bullet point
above, if we fix cv = 0.06, we obtain prior joint ZO distributions

π =


0.7 0.1

0.1 0.1

 , or


0.42 0.18

0.18 0.22

 , or


0.22 0.18

0.18 0.42


for the correctness of the oracle and specification, accordingly as the marginal
correctness probabilities πc∗, π∗c are assigned values 0.8, or 0.6, or 0.4. These
three π-matrices result, respectively, in values of our doubt function, ordered
as (verification-leg,testing-leg,two-legged), of (0.12, 0.074, 0.062), or (0.18, 0.14,
0.12), or (0.23, 0.20, 0.19). Notice that the 2-legged argument gives the greatest
confidence in each case.

In comparing the two-legged argument with the testing-only, single-legged
argument, one notable observation is that, as the correlation cv between spec-
ification and oracle correctness becomes very (perhaps implausibly?) high to-
wards the right-hand sides of the plots, we seem to arrive at a situation in
which the fact of being informed that the system has been successfully veri-
fied against its specification slightly undermines the high confidence that had
been obtained from the failure-free testing alone. This is the first of several,
at first sight, counter-intuitive model behaviours that we shall meet. We see
below that our current model topology, with its uncertainties concerning a po-
tentially defective oracle or specification and use of conservative assumptions,

15 but continuing, as before, to refer to the plots by number, according to their order
at the right-hand end
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allows some complex kinds of model behaviour which may either be realistic
features of rational uncertainty, or only spurious model artifacts. In the latter
case their exclusion may require parameter constraints on the node probability
distributions with which, it will perhaps eventually be possible to argue, all
competent expert beliefs will necessarily conform.

The examples above all involve a symmetric π-matrix, so that Z and O have
equal marginal probabilities of being correct. Of course we have no reason
to suppose this is representative of real beliefs for this kind of system. We
experimented with various other parameter values and obtained a varied set of
conclusions as to the comparative efficacy of the two-legged and single-legged
arguments, based on this model. To examine one more numerical example,
which has a slightly higher prior “covariance” cv = 0.075 between Z and
O correctness, but coupled with some rather more optimistic values of other
parameters, and a greater prior confidence in specification correctness than in
oracle correctness, put

π =


0.25 0.40

0.25 0.10

 .

We shall express a rather high prior confidence in the reliability of the ver-
ification process against a correct specification α=0.01, ξ=0.04, and slightly
more optimistic prior beliefs than above about the likely values of S when Z
is incorrect,

(p0|i, a, b, p0|c, a
′, b′) = (0.4, 1, 999, 0.5, 1, 999) , (25)

and retain the same values as above for the amount of testing n=4, 602 and the
claim S≤s=10−3. Using these values produces approximately equal confidence
in the claim from each single leg, and almost a two thirds reduction in doubt
when we use our model to combine the evidence from these two separate legs.
The doubt function values P (S>10−3|ideal obs.), in the order (verification-
leg,testing-leg,two-legged), are (0.12, 0.12, 0.045). So, as might be expected, a
two-legged argument can bring considerable increase in confidence about a
claim, in comparison with each of its constituent legs. Whether this occurs
in practice will, of course, depend upon the details of the expert beliefs as
represented by the model parameters.

6.2 Doubt as a function of the number n of test cases

Under ‘ideal observations’ (no detected failure), one might expect, as with
earlier models [21], that S should stochastically decrease – in terms of its
posterior distribution (18), or (23) in the testing-only case – monotonically
as the quantity n of positive testing evidence accumulates. Increasing confi-
dence from continued failure-free testing ought surely to make this posterior
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probability decrease monotonically in n, for every fixed s.

We will not attempt to solve for the general parametric assumptions required
such that our two-legged argument, with testing evidence incorporated, should
provide higher confidence than the single, verification-only leg (the n=0 case
(22) of (18)). We only note that for ‘very large’ n this is so whenever (22)
exceeds (18) with 0 substituted for µ and µ′. This is because of the limiting
property of the beta moments noted on p18 (recalling that the incomplete
beta terms in (18) are bounded by 1 as n→∞). This is the case in all of the
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Fig. 5. Doubt functions (18) vs. n – with params. as in (26)

example plots of Figure 5. These show the value of log10 of the doubt function
(18) plotted against the number n of test cases, using a claim s=10−3, and
model parameters

(p0|i, a, b, p0|c, a
′, b′, α, ξ) = (0.2, 1, 999, 0.5, 1, 999, 0.1, 0.1) . (26)

The plots differ from each other only in the values of the π matrix, which
were produced by fixing the marginal probabilities of specification/oracle-
correctness at πc∗=π∗c=0.8. The correlation coefficient between Z- and O-
correctness varies as we read down the key on the RHS, with an unbelievable
exact equality in the top plot (specification is correct precisely and only when
oracle is correct; otherwise, both are incorrect), working down to an almost
equally unbelievable negative correlation at the bottom. The second to bottom
plot represents independence (cv=0) between the correctness of the oracle and
of the specification. Clearly the general pattern here is again that low (or even
negative) correlation of the prior beliefs in specification and oracle correctness
yields an advantage in terms of confidence levels derivable from the two-legged
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argument, confirming our observation of the same tendency in Figure 4 above.
Notice that there appears to be a very slight deterioration in confidence at
large n values, i.e. there is a turning point at some n-value (which varies from
one plot to another) occurring before the limiting n →∞ value is approached.
We give some explanation of this quirk in the next section, and of other model
characteristics which might appear counter-intuitive on first inspection.

7 Some Counterintuitive Results

7.1 Supportive and Non-Supportive Single Argument Legs

As we have seen in the previous section, the acquisition of evidence that is
‘obviously good news’ – what we have called ideal evidence – can sometimes
result in a reduction in confidence. In this section we shall examine in some
detail examples of such apparently non-intuitive results. Our approach is to
use some numerical search and optimization tools to investigate the question
of whether or not, under the present model, the arrival of ideal ‘supportive’
evidence results in increased confidence in the pfd.

We begin with a single argument. At first sight it might appear self-evident
what ‘supportive evidence’ should look like: For a verification leg, the evidence
is supportive precisely if the system is verified correct . For a testing leg (though
there may also be a grey area), it seems at first sight clear that no failures , or
very few failures, amongst a large number of test cases is supportive evidence.
In contrast, a system’s failure to be verified correct, or to succeed sufficiently
often during test, should reduce our confidence.

In fact we can show that this is not always the case. Consider, for example,
a testing argument leg in which no failures have been observed among the
test cases, and the parameter values of the model are: s=0.001, n=17, 921, a=
2.58276, b=4.77020, a′=16.68483, b′=41,133.7, p0|i=2.00200×10−3, p0|c=
4.21724×10−3, and

π =

 0.994192 1.63910×10−3

7.81537×10−5 4.09042×10−3

.

The beliefs about the unobservable variables ZO are changed by this evidence
from the above prior π to

P (ZO |T ) =

 0.53406 0.13329

1.2724×10−5 0.33263

 .

The prior confidence in the claim here is 0.99583, but the posterior confidence,
in spite of the extensive ‘good news’ from testing, is decreased to 0.66803. At
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first glance such a result is quite surprising and counter-intuitive. On closer
inspection, however, we believe there is an intuitive explanation in terms of
two ‘rival explanations’ for a long period of failure-free testing. Reasoning
informally, guided by the property of adjacency in the topology of Figure 2
on p10, we see that on the one hand extensive failure-free testing, applied as
evidence to node T , may be taken to indicate a low system pfd S. Realistic
node conditional probabilities for T will surely capture this effect. But, sym-
metrically on the left-hand side of Figure 2, a parallel negative inference of a
potentially low oracle quality O also suggests itself, as a rival explanation of
the apparently positive testing evidence: perhaps a defective oracle is miss-
ing failures. These two inferences from T may both follow when n becomes
very large without failure. One can imagine a tension arising at node S be-
tween these two competing tendencies of the testing evidence. This raises the
question of how the two inferences interact, and whether one ‘dominates’ in
its effect upon posterior beliefs about S. The answer will depend partly on
the conditional probability distribution P (T |OS). (Note that – while in no
sense essential to this explanation – the ‘conservative’ assumption (9) would
appear to increase the viability of the second potential explanation for appar-
ently successful testing.) But our model in Figure 2 also contains a prior belief
structure ‘higher up’, usually with stochastic association of some kind between
the variables ZOS. The combined effect of the two available inferences from
observing large n without failure will depend also on this ‘upper part’ of the
topology. In particular, does this structure of prior belief contain a positive
prior probabilistic association between correctness of the oracle O and quality
of the system (small value for S) – perhaps via a shared association with the
correctness of Z? If the answer to this question is “yes” then it seems plausible
that, for certain model parameter values, evidence of a defective oracle could
have the effect of reducing confidence in a low system pfd. E.g., in the last
numerical example the increased doubt in the correctness of the oracle (sum
of terms in last column of matrices above) is associated with an increased
doubt about the correctness of the specification (sum of terms of last row of
the matrices). Thus when we see very many failure-free test cases we may
increase our mistrust in the oracle, increase our mistrust in the specification
and thus increase our mistrust in the pfd – see constraint (10). We stress that
this informal conception of competing effects at S of successful testing is not
intrinsic to the topology of Figure 2, but relies heavily on node conditional
probability assumptions. The model topology is sufficiently flexible to allow
such possibilities, but whether or not they are found will depend also on the
2×2 prior matrix π for ZO, the parameter values used for our two point-
mass-augmented beta distributions (12) for P (S|Z), and on the conditional
probabilities (8) & (9) comprising P (T |OS).

Examples of non-supportive verification arguments may also be obtained.
These might be explained by a similar inference concerning the likely cor-
rectness of Z, whenever the model parameter values are such as to create
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the needed associations. For example, a successful system verification with
s=0.001, a=1.2742, b=0.2106, a′=3.2095, b′=27, 095, α=0.3950, ξ=1.2006×10−4,
p0|i=1.5547×10−4, p0|c=1.3812×10−3, πc∗=0.9997156, πi∗=2.844×10−4 gives a
decrease from a high prior confidence 0.99972 to the much lower 0.77064 after
the positive verification. We suggest that while this, perhaps counter-intuitive,
behaviour may well have been accentuated by our conservative assumption (7)
(for the verification outcome in the case that the specification Z=incorrect),
it would still be possible after a degree of relaxation of this conservative as-
sumption, given the ‘right’ conditional probabilities applied to our topology.
In more detail, our tentative explanation for this effect is as follows: While
ignorant of the true value of S, the observation of a successful verification
at V provides, under our conservative assumption, stronger support for the
incorrectness, than for the correctness, of the specification Z. Specifically, be-
liefs about the unobservable variable Z become changed (by the news of the
successful system verification) from the prior probability 0.9997156 of Z’s cor-
rectness to P (Z=correct |V ) = 0.77060. This opens a chain of subsequent
inference of the following kind. The prior stochastic association between cor-
rect Z and small S required by (10) gives this increased Z-doubt a tendency
to increase the probability of large S.

In the case of the numbers used above, we can perhaps best illustrate this by
dividing the range of S up into two bins [0, 10−3] and (10−3,∞). Using the
same 2×2 matrix layout that we have used above for joint beliefs about ZO,
we can compute the prior beliefs

P (ZS) =

 0.99971563 1.09403×10−9

5.18016×10−8 2.84319×10−4

 .

which quantify (an aspect of) the association between Z and S mentioned
above. Compare the posterior counterpart of these beliefs, having observed
the ideal verification evidence

P (ZS |V ) =

 0.77060 1.05960×10−10

4.17888×10−5 0.22936

 .

which illustrates how the doubt cast on Z by the successful verification has
caused belief to ‘shift along the main diagonal’ from (Z= correct , S≤10−3) to
(Z= incorrect , S>10−3).

We do not assert that the chains of inference shown in these examples will be
realistic in every model application. Much will depend on the parameter values
assigned to the node conditional probabilities, and how, for example, these
stochastically associate variables Z, O, and S. We might well later choose to
replace the assumptions we have called ‘conservative’ by alternatives that we
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might elicit as real experts’ beliefs, about the likely effects of defective oracles
and specifications. However, our examples of quite subtle interactions between
evidence, assumptions, and assumption doubt do illustrate the richness of the
kinds of competing inferences modelled within even a highly simplified BBN
structure, and alert us to the fact that symbolic analysis may identify model
consequences that initially will seem surprising and counter-intuitive.

7.2 Adding a Supportive Leg May Not Improve Confidence

Having made these observations that the effects of ‘ideal’ evidence are not
always of the kind one might naively expect, we now focus on improvement
in confidence as our stricter definition of a ‘supportive argument’ (as op-
posed to mere ‘ideal evidence’: V = verified and/or T= no failures). Thus, we
will call an argument supportive if it improves upon the prior confidence. So
the testing leg with outcome T is called ‘supportive’ whenever P (S≤s |T ) >
P (S≤s). Similarly a verification leg with outcome V is called ‘supportive’
whenever P (S≤s |V ) > P (S≤s). The dual-legged argument is ‘supportive’
when P (S≤s |V T ) > P (S≤s).

For each set of model parameters, there are actually four different cases for
which one can ask whether a confidence improvement occurs on receipt of ideal
evidence from an argument leg. A system assessor may obtain either testing-
leg evidence T= no failures , or formal verification-leg evidence V = verified , in
each case with or without evidence of the other kind being already present.
We explained in §6.1 that, as our model stands, all these four questions may
be framed mathematically as the questions as to whether a single expression,
which can be either of (18) or (20), increases or decreases when ideal evi-
dence is received. In terms of this expression, ideal testing evidence is added
by changing from n=0 to a general non-zero n value (and making the associ-
ated change to µ and µ′, from 1 to the corresponding values). Similarly ideal
verification evidence is added by changing from (α, ξ)=(0, 1) to the general
pair.

Thinking of the values of our doubt expression (18) as laid out as a square
with each side corresponding to the receipt of “ideal evidence” V or T , we
can depict the conditions described in the questions above diagrammatically.
In our diagrams, a downward arrow corresponds to the receipt of ideal testing
leg evidence and a rightward arrow corresponds to the receipt of ideal veri-
fication leg evidence. So the top, left vertex corresponds to prior confidence
and the bottom right to the final confidence after evidence from both legs is
in. Following an arrow represents ‘progress’, in the sense that further ideal
evidence is received. The ‘>’ (beside a right-pointing arrow) and ‘∨’ (beside
a downward-pointing arrow) symbols are used to indicate a decrease in confi-
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dence as we move along the arrow. Thus the counter-intuitive situations which
we have called non-supportive single legs look like

00
>−→ 0V

y y
T0 −→ TV

(27)

for verification leg evidence, and like

00 −→ 0V

y∨ y
T0 −→ TV

(28)

for testing evidence. In these diagrams a zero represents the absence of evi-
dence for one or other leg.

We are now in a position to ask whether counter-intuitive results are possi-
ble within our model for two-legged arguments. It is worth recalling here the
systems metaphor that underpins the intuition behind the use of such argu-
ments. It is well-known that the reliability of a 1-out-of-2 system will always
be greater than or equal to the reliability of the best of the two components.
Is this true of our two-legged arguments: in particular, is it always the case
that confidence will increase if we add a second supportive argument leg to an
initial supportive leg? That is, can either of the following two cases occur:

00
<−→ 0V

y∧ y
T0

>−→ TV

(29)

or

00
<−→ 0V

y∧ y∨
T0 −→ TV

(30)

We have examined this question numerically and tentatively conclude that, for
our current model, the answers are: no, the scenario depicted in (30) is ruled
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out; but yes it is possible for the case of (29) to occur, in which a supportive
verification leg can depress confidence when it is added to pre-existing ideal
testing evidence, which itself is supportive when considered alone.

For a numerical example of this case (29), consider the two-legged argument
with evidence s=0.001, n=10, 006, a=0.0807, b=0.0192, a′=8.2408×10−3, b′=
0.044813, α=0.12419, ξ=4.9315×10−6, p0|i=6.91181×10−3, p0|c=9.69767×10−3,

πi=

 0.99965 5.50587×10−6

1.19185×10−5 3.28401×10−4

.

With these parameters, the prior confidence 0.8001 is considerably improved,
to 0.9659, by a positive system verification outcome. Without any such ver-
ification leg, but with instead ideal testing evidence from the 10,006 trials,
confidence improves to as much as 0.999627. However, when the positive ver-
ification evidence is added, as one of two legs, to this ideal testing outcome,
then much of this large confidence gain from the testing leg alone is lost , with
a confidence now of only 0.9671, which – while still an improvement over the
prior confidence – is not as great an improvement as was obtained from the
testing leg alone. I.e., the act of adding a supportive verification leg to a test-
ing leg has actually lowered our confidence in the claim. When comparing the
confidence resulting from a two-legged argument against the prior confidence
and against that from each single leg individually, we can lay out these four
confidence values in a 2×2 matrix format

P (S≤10−3 | obs.) =

 P (S≤10−3) P (S≤10−3 |V )

P (S≤10−3 |T ) P (S≤10−3 |V T )

 =

 0.8001 0.9659

0.999627 0.9671


(31)

matching the layout of our square diagrams above. We have used curved brack-
ets around the matrix to distinguish it visually from our other frequently used
2×2-matrix notation for joint distributions of variables ZO (for which we will
reserve square-bracketed matrix notation). Using the same layout as that in
(27) to (30) – with the prior beliefs as the top left hand square-bracketed
matrix, and the beliefs emanating from a two-legged argument at the bottom
right, etc – the four possible sets of beliefs about the ZO pair for this example,
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under the four possible conditions of evidence discussed, appear as

P (ZO | obs.) =

 P (ZO) P (ZO |V )

P (ZO |T ) P (ZO |V T )



=



 0.999654 5.5059×10−6

1.1919×10−5 3.2840×10−4


 0.96148 5.2956×10−6

1.3489×10−3 0.037168


 0.999572 7.0415×10−6

1.4354×10−6 4.2000×10−4


 0.96264 5.3027×10−6

1.2720×10−4 0.037218




(32)

Some further insight into the apparently counter-intuitive result – that adding
a supportive verification leg to the testing leg can reduce confidence in the
dependability claim – comes from examining these intermediate numerical
results. Consider first the prior belief represented by the top-left matrix in
(32): in particular note that the leading diagonal of this matrix suggests that
the a priori beliefs about Z and O are positively associated. That is, belief that
the specification is incorrect results in a stronger belief the oracle is incorrect,
and vice-versa.

Seeing 10,006 test cases executed without failure, in the first argument leg, re-
sults in increased doubt about the correctness of the oracle: from 5.5059×10−6

+3.2840×10−4 = 3.3391×10−4 a priori to 7.0415×10−6+4.2000×10−4 = 4.2704×10−4

after the test data is seen. Because of the association between beliefs about
Z and O, this supportive evidence from testing undermines confidence in the
specification correctness: doubt increases from 1.1919×10−5+3.2840×10−4 =
3.4032×10−4 a priori , to 1.4354×10−6+4.2000×10−4 = 4.2144×10−4 after see-
ing the testing evidence.

The verification leg is supportive when we have no testing evidence (i.e. it
increases confidence from its a priori value). But the above reasoning shows
that the presence of (successful) testing can undermine the contribution that
the verification leg makes to overall confidence in the dependability claim when
both argument legs are present. In fact this undermining can be so severe that
adding the verification leg makes things worse, compared with having only the
testing leg.

Examination of the parameter values used to construct this example might
cause one to conclude that some of them seem unlikely to be realistic beliefs of
experts about real systems. E.g. consider the virtual prior certainty, according
to these parameters, that the specification is correct; or the asymptotes (b, b′ <
1) of the two beta distributions at the 1 end of the unit interval [0, 1]. It remains
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to determine whether actual realistic beliefs could also exhibit property (29).

Numerically we have been unable to obtain a similar example with T and V
interchanged, i.e. satisfying (30). We conjecture that such an example may
prove to be analytically impossible for our current model, while we impose
our stochastic ordering constraint (10). Although we have not obtained exper-
imentally the reversal of ordering occurring on the right hand side of (30), one
finding that is almost as surprising is that we can find examples in which
– in our terminology explained earlier – a significantly supportive testing
leg, when added to a significantly supportive verification leg creates only a
negligibly small improvement in confidence of the two-legged argument over
the confidence obtained from the verification leg alone. A numerical example
of this is provided by the values s=0.001, n=19, 921, a=0.092728, b=2.4768,
a′=0.13423, b′=3.8705, α=9.8691×10−3, ξ=2.8029×10−7, p0|i=1.39760×10−3,
p0|c=0.18737

π=

 0.47491 0.09055

1.80783×10−4 0.43436

.

With these values, the ideal evidence produces three confidence levels, laid
out next to the prior confidence as in the last example

P (S≤10−3 | obs.) =

 0.59125 0.67018

0.70759 0.67025

 . (33)

Here, the supportive testing evidence produces an improvement of the two-
legged over the verification-only argument which is less than one in the fourth-
significant decimal digit.

8 Special Case of Claims for Perfection, S=0

If, instead of a claimed upper bound S≤s on pfd, we make a claim for per-
fection, i.e. S=0, then we obtain a special case of the above expressions for
confidence and doubt for which certain of the counter-intuitive results demon-
strated above become no longer possible. This substitution corresponds to the
special case where our confidence refers to a claim that the system is perfectly
reliable, rather than merely that its pfd does not exceed some positive threshold
value S≤s>0.

Firstly, we can show that for such a perfection claim, operation that is com-
pletely failure-free throughout testing always constitutes a supportive argu-
ment leg in the sense we identified in §7.1, for the simple reason that our
model assumptions clearly make S=0 and S=0 & T identical events. Thus, we
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must have a confidence, from the testing leg only given by

P (S=0 |T ) =
P (S=0 & T )

P (T )
=

P (S=0)

P (T )
≥ P (S=0) , (34)

that is no less than the prior confidence. Further, for this perfection claim
we can prove easily the special case of the result that, for the more general
claim, we have been so far able to verify only numerically without an ana-
lytic proof: ideal testing evidence added to a positive verification outcome to
produce a two-legged argument always 16 improves upon the confidence ema-
nating from the verification leg alone. Essentially the same short proof as that
given above works again here. Our model assumptions make S=0 & V and
S=0 & V T identical events. So we have a final confidence P (S=0 |V T ) in this
perfection claim from the two-legged argument which exceeds the confidence
P (S=0 |V ) emanating from the single-leg verification argument, because

P (S=0 |V T ) =
P (S=0 & V T )

P (V T )
=

P (S=0 & V )

P (V T )
≥ P (S=0 & V )

P (V )
= P (S=0 |V ) .

(35)

9 Summary and Conclusions

As we have said earlier in this paper, the BBN we have studied here has been an
over-simplified one. The first simplification is in only taking account of statis-
tical testing and proof evidence: we have ignored other kinds of evidence that
would clearly be relevant in practice – for example evidence concerning the
quality and competence of the personnel involved at all stages. Furthermore,
each of the argument legs considered here is itself unrealistically simplified:
e.g. the testing leg ignores important issues concerning the accuracy of the
operational profile. We have also artificially reduced some of the state spaces
to Boolean. Finally, to make the mathematics tractable, we have had to intro-
duce some simplifying assumptions that (rather tentatively) we claim to be
‘conservative’.

Our main reason for these simplifications lay in our desire to carry out the
analysis completely analytically. We wanted to obtain complete analytic ex-
pressions for posterior distributions in terms of parametric families of input
node probability distributions. This contrasts with the more common approach
to BBN analysis in which numerical expressions – e.g. involving elicited expert
beliefs – are manipulated using tools like Hugin [22]. Simply populating the
node probability tables in this way results only in a single numerical posterior
distribution for the goal variable S.

16 even without a restriction that the verification leg must be supportive

37



Our intention here was to obtain greater insight into the factors that determine
the efficacy of arguments, and in particular of multi-legged arguments. We
started from the position that efficacy would be judged by the confidence
that the arguments engendered in dependability claims. We wanted a better
understanding of how confidence is determined by factors such as the doubt
in the truth of assumptions underpinning the arguments. In particular, we
sought to understand the importance of association – e.g. between the doubts
associated with assumptions for different argument legs – in determining the
effectiveness of the multi-legged argument approach.

In spite of the great simplification we have applied, the model turns out to
be quite complex and difficult to understand. We were somewhat surprised by
this, and we regard it as a strong warning against a naive trust in the results of
a conventional numerical analysis of a BBN like this. In particular, we believe
that the analytic approach has exposed some non-intuitive and surprising
results that would not be noticed in a conventional numerical analysis. It
would be possible to be lulled into a false sense of certainty and security, and
believe numerical consequences that one would not believe with the benefit of
greater insight (e.g. offered by the kind of analysis we have conducted).

These remarks confirm our long-held view that BBNs need to be treated with
great respect and humility [23,24]. The Bayesian approach is clearly the right
one for the representation of uncertainty, and the BBN formalism has immea-
surably aided understanding and construction of complex probability models.
But the very seductiveness of the approach – particularly in its automated
numerical form – can bring unwarranted confidence in the results.

When we set out on this work, we had in mind an analogy with the use of
diversity in systems – multiple diverse channels – to increase reliability and
safety. It seemed plausible that multi-legged arguments could be used similarly
to increase confidence in claims about dependability (e.g. safety). It turns out
that this analogy breaks down in surprising ways.

One way in which the systems metaphor breaks down concerns composability
of arguments. Our example illustrates that it can be straightforward to de-
compose a model for a two-legged argument, producing two derived, single-leg
models as special cases corresponding to a degenerate observation for one or
other argument leg. However there is no standard reverse operation of com-
position starting from a given pair of single-leg models. The representation of
dependence via variables which link the two argument legs is an additional and
difficult modelling task, whose solution is integral to any meaningful model of
a two-legged argument.

Another surprising way in which the systems/arguments analogy breaks down
concerns efficacy: whereas it is easy to show that, for systems, a diverse 1-out-
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of-2 system is always more reliable than each of its component channels, the
same is not true of arguments. We cannot be sure that the confidence in a
dependability claim arising from a diverse 2-legged (‘1-out-of-2’) argument is
greater than that arising from either of the single argument legs. Indeed, we
have examples where a single leg is to be preferred to the same leg aided by a
further supportive argument leg: i.e. additional ‘good news’ is not necessarily
beneficial and can even be detrimental.

Such results are, at first glance, counter-intuitive: indeed, if they had been
obtained from a purely numerical analysis they would be hard to explain.
The more detailed analysis here has the advantage of showing how this kind
of thing can happen, by revealing the subtle interplay between assumptions
and evidence, both within and between legs. It thus provides warnings against
drawing simplistic – albeit intuitively plausible – conclusions. It cannot be
too strongly emphasised that it is only through the completely analytical
treatment – difficult though it is – that we get these insights.

On the other hand, it is clear that in many cases – as might be expected –
multi-legged arguments do bring benefits in terms of increased confidence in
dependability claims compared with single arguments, as we have shown in
Section 6. From a practical point of view, we would like to know exactly when
such benefits can be expected, and how extensive they might be. Ideally, we
would like to be able to design multi-legged arguments – before the expensive
process of evidence-collection begins – so that confidence in a dependability
claim will be gained most cost-effectively .

We do not claim that our work here enables this to be done. But we do believe
that it is a useful beginning in understanding some of the key issues. Thus, for
example, in Section 6 we show how it is possible with our analytical treatment
of the BBN to perform ‘what if’ calculations on the effect of dependence, in
assumption doubts for the two legs, upon the confidence that the two-legged
argument provides in the claim. It is easy to see how this kind of study could be
used to compare different possible multi-legged arguments before committing
to the expense of deploying them in a particular dependability case.

Concerning the general efficacy of diverse arguments in real-life applications,
it is clear that more work is needed. It would be interesting to know, for ex-
ample, whether the kinds of parameters that are realistic (e.g. for experts’
beliefs) in our simplified model result in 2-legged arguments that are almost
always effective (in the sense of being better than the constituent legs). Are
the exceptions that we have identified in some sense ‘not believable’ when
real experts assess real systems? To what extent are some of these results the
consequence of our need to make ‘conservative’ assumptions for mathemati-
cal tractability? The results presented here are largely neutral on such issues:
they concern what might happen, rather than what will happen when real
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experts assess real systems. It is worth stating, however, that when we con-
structed the simplified example used in the paper, we did not anticipate those
consequences that we have called ‘counter-intuitive’: it seems possible, even
after considerable reflection, to be surprised by what is implied by a complex
model. This is likely to be true a fortiori for more realistic, and thus more
complex, models.
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