
Improving Fault Detection Capability
by Selectively Retaining Test Cases

during Test Suite Reduction
Dennis Jeffrey and Neelam Gupta

Abstract—Software testing is a critical part of software development. As new test cases are generated over time due to software

modifications, test suite sizes may grow significantly. Because of time and resource constraints for testing, test suite minimization

techniques are needed to remove those test cases from a suite that, due to code modifications over time, have become redundant with

respect to the coverage of testing requirements for which they were generated. Prior work has shown that test suite minimization with

respect to a given testing criterion can significantly diminish the fault detection effectiveness (FDE) of suites. We present a new

approach for test suite reduction that attempts to use additional coverage information of test cases to selectively keep some additional

test cases in the reduced suites that are redundant with respect to the testing criteria used for suite minimization, with the goal of

improving the FDE retention of the reduced suites. We implemented our approach by modifying an existing heuristic for test suite

minimization. Our experiments show that our approach can significantly improve the FDE of reduced test suites without severely

affecting the extent of suite size reduction.

Index Terms—Software testing, testing criteria, test suite minimization, test suite reduction, fault detection effectiveness.

Ç

1 INTRODUCTION

SOFTWARE testing and retesting occurs continuously

during the software development lifecycle. As software

grows and evolves, new test cases are generated and added
to a test suite to exercise the latest modifications to the

software. Over several versions of the development of the

software, some test cases in the test suite may become

redundant with respect to the testing requirements for

which they were generated since these requirements are

now also satisfied by other test cases in the suite that were

added to cover modifications in the later versions of

software. Due to time and resource constraints for retesting
the software every time it is modified, it is important to

develop techniques that keep test suite sizes manageable by

periodically removing redundant test cases. This process is

called test suite minimization. The test suite minimization

problem [11] can be formally stated as follows:
Given. A test suite T of test cases ft1; t2; t3; . . . ; tmg, a

set of testing requirements fr1; r2; � � � ; rng that must be
satisfied to provide the desired test coverage of the
program, and subsets fT1; T2; � � � ; Tng of T , one associated
with each of the ris such that any one of the tests tj
belonging to Ti satisfies ri.

Problem. Find a minimal cardinality subset of T that
exercises all ris exercised by the unminimized test suite T .

In general, the problem of selecting a minimal cardinality

subset of T that satisfies all the requirements covered by T

is NP-complete since the minimum set-cover problem [8] can

be reduced to the test suite minimization problem in

polynomial time. Therefore, heuristics for solving this

problem become important.
A classical greedy heuristic [6], [7] for the minimum set-

cover problem is as follows: Pick the test case that covers

the most requirements, remove all the requirements

covered by the selected test case, and repeat the process

until all the requirements are covered. The ties are broken

arbitrarily. Another heuristic to minimize test suites,

developed by Harrold et al. in [11], greedily selects the

next test case exercising the most additional requirements

that are satisfied by the fewest number of tests.
The purpose of testing criteria (such as branch coverage

or all-uses coverage) is to assess the adequacy of test suites

and to provide a check on suite quality. Given a testing

criterion C that is satisfied by a test suite T , a test case t in T

is redundant with respect to C if the smaller suite T � ftg also

satisfies C. Thus, the process of removing test cases from a

test suite that are redundant with respect to certain testing

criteria preserves the adequacy of the suite with respect to

those criteria. Some prior empirical studies [22], [23], [31]

have used the code coverage criteria for minimizing the test

suites. In experiments by Wong et al. [31], minimized test

suites achieved 9 percent to 68 percent size reduction while

only experiencing 0.19 percent to 6.55 percent fault

detection loss. On the other hand, in the empirical study

conducted by Rothermel et al. [22], the minimized suites

achieved about 80 percent suite size reduction on average

while losing about 48 percent fault detection effectiveness

(FDE) on average. These results are encouraging as much

higher percentage suite size reduction was achieved as compared

to the percentage loss in FDE of suites.

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

. The authors are with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721. E-mail: {jeffreyd, ngupta}@cs.arizona.edu.

Manuscript received 20 Nov. 2005; revised 24 Jan. 2006; accepted 9 Nov.
2006; published online 28 Dec. 2006.
Recommended for acceptance by E. Weyuker.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0310-1105.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

There are a variety of testing criteria that have been
discussed in literature, and some are finer (stronger) than
others [9]. We observed that different testing criteria are
useful for identifying test cases that exercise different
structural and functional elements in a program, and we
therefore believe the use of multiple testing criteria can be
effective at identifying test cases that are likely to expose
different faults in software. In this paper, we present a new
approach for test suite reduction that makes use of multiple
testing criteria (corresponding to multiple types of testing
requirements). The key step of our approach is that when a
test case t is selected into a reduced suite because it satisfies
an additional requirement with respect to some testing
criterion C, we then check the following: Among those
other test cases R that become redundant with respect to C
as a result of the selection of t, we select those test cases
from R into the reduced suite that satisfy additional
requirements with respect to some other testing criterion.
Thus, our approach selectively retains those test cases that
are redundant with respect to some testing criterion, if those
test cases are not redundant according to some other testing
criterion. We call our approach “Reduction with Selective
Redundancy (RSR).” We implemented our approach and
conducted experiments with several programs to evaluate
and compare the effectiveness of our approach with prior
experimental studies [22], [23] on test suite minimization.
Our experimental results show that our approach can
significantly improve the FDE retention of reduced suites
over minimized suites at the cost of only a relatively small
increase in the sizes of the reduced suites.

The main contributions of this paper are as follows: 1) A
novel yet simple approach to test suite reduction that
focuses on retaining test cases that may expose different
faults in software. 2) Our experimental results clearly show
the potential of our new reduction approach, as compared
to a minimization approach, in terms of retaining signifi-
cantly more FDE in reduced suites while still allowing for
significant suite size reduction.

The remaining paper is organized as follows: Section 2
motivates our approach with an example. Section 3 contains
the outline of our approach, and Section 4 discusses a
specific implementation of our approach. Section 5 presents

an experimental study that compares the results of our
approach with the results obtained when using a mini-
mization approach. Section 6 discusses related work.
Finally, the conclusions are mentioned in Section 7.

2 MOTIVATIONAL EXAMPLE

We now present a simple example program shown in Fig. 1
to motivate our approach. A branch coverage adequate test
suite T for the program is also shown. The branches
covered by each test case are marked with an X in the
respective columns in the table in Fig. 1.

We first show the result of minimizing the test suite in
Fig. 1 using the minimization algorithm developed by
Harrold et al. [11] (henceforth called the “HGS algorithm”).
Given a test suite T and a set of testing requirements
r1; r2; � � � ; rn that must be exercised to provide the desired
testing coverage of the program, the HGS algorithm
considers the subsets T1; T2; � � � ; Tn of T such that any one
of the test cases tj belonging to Ti can be used to test ri.
First, all the test cases that occur in Tis of cardinality one are
selected in the representative set and the corresponding Tis
are marked. Then, Tis of cardinality two are considered.
Repeatedly, the test case that occurs in the maximum
number of Tis of cardinality two is chosen and added to the
representative set. All unmarked Tis containing these test
cases are marked. This process is repeated for Tis of
cardinality 3; 4; � � � ;max, where max is the maximum
cardinality of the Tis. In case there is a tie among the test
cases while considering Tis of cardinality m, the test case
that occurs in the maximum number of unmarked Tis of
cardinality mþ 1 is chosen. If a decision cannot be made,
the Tis with greater cardinality are examined and finally a
random choice is made. Consider applying the HGS
algorithm to generate a minimized test suite for the example
program in Fig. 1. Initially, since branches BT

1 and BF
4 are

satisfied only by test cases t1 and t2, respectively, both of
the tests t1 and t2 are selected into the minimized suite.
Next, all of the branches satisfied by t1 and t2 are marked
covered. As a result, test case t3 becomes redundant with
respect to branch coverage since all of its branches are
already marked as covered. Now, either t4 or t5 can be

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 109

Fig. 1. An example program with a branch coverage adequate test suite T .

selected to cover the remaining branch BT
4 . Let t4 be selected

into the minimized suite. Branch BT
4 is then marked covered

(which causes test t5 to become redundant according to
branch coverage), and the algorithm terminates since all
testing requirements are now covered by the test cases in
the minimized suite ft1; t2; t4g. Note that the test case t3 that
exposes a divide-by-zero error at line 13 is not selected into
the minimized suite. Thus, the fault detection effectiveness
of the suite has been reduced due to test suite minimization.

We next use the above example to illustrate our
approach that attempts to retain some of the test cases that
become redundant according to branch coverage. The
definition-use pair coverage1 information for all the test
cases in test suite T for the example program is shown in
Table 1. We modify the HGS algorithm by inserting the
following check after each test case ti is selected: If any test
case tj becomes redundant according to branch coverage
due to the selection of ti, we also select tj into the reduced
suite only if tj is not redundant according to definition-use
pair coverage.

In our example, after t1 and t2 are selected into the
reduced suite by the HGS algorithm, t3 is identified as
redundant with respect to branch coverage. However, t3
covers the definition-use pair xð4; 6Þ that is satisfied by
neither t1 nor t2. Therefore, t3 is selected. Next, either one of
t4 or t5 can be selected by the HGS algorithm to cover
branch BT

4 . Let t4 be selected. At this point, test case t5
becomes redundant with respect to branch coverage as well
as definition-use pair coverage, so it is not selected, and the
algorithm terminates since all branches (and all definition-
use pairs) are marked as covered at this point. The
computed reduced suite is ft1; t2; t3; t4g, which exposes the
divide-by-zero error at line 13.

If we applied the original HGS algorithm to Table 1 to
compute a minimized suite with respect to only definition-
use pair coverage, the algorithm would compute the

minimized test suite ft1; t4g. Note that this suite is not
branch coverage adequate since it does not cover branches
BF

2 or BF
4 , nor does it expose the divide-by-zero error at

line 13. Further, if we took the union of the set of branches
and the set of definition-use pairs and applied the original
HGS algorithm with respect to this single set of (combined)
testing requirements, then the minimized suite ft1; t2; t4g
would be computed, which again would not expose the
divide-by-zero error at line 13.

Note that the above definition-use pair coverage criterion
differs from Rapps and Weyuker’s [21] all-uses2 criterion in
how all-p-uses are defined. In the all-p-uses coverage
criterion, a predicate use is associated with an outcome of
the predicate. The c-uses are defined in the same way as in
the above definition-use pair criterion. The all-uses ex-
ercised by each test case for the example program are
shown in Table 2. Note that each predicate use in the table
now corresponds to two testing requirements: one each for
the true and false branch outcomes. For our example, the
HGS algorithm computes the minimized suite ft1; t2; t4g
when minimizing T with respect to the all-uses require-
ments in Table 2.

Overall, our example suggests that our approach to test
suite reduction with retaining selective redundancy while
minimizing suites may be preferable to the approaches that
minimize a suite with respect to a testing criterion. In all of
the above examples of minimization using the HGS
algorithm, t3 becomes redundant and is therefore never
selected, due to the other test cases that are selected into the
minimized suite early on. However, our approach allows t3
to be selected into the reduced suite and expose a fault not
exposed by other test cases since it executes a different
combination of branch outcomes and definition-use pairs
than other test cases, while at the same time allowing some
degree of suite size reduction to occur.

3 REDUCTION WITH SELECTIVE REDUNDANCY

The key idea of our approach is that after each test case is
selected into the reduced suite according to some testing

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

1. We define a definition-use pair to be the triple “var(def,use),” where
“var” is the variable name, “def” is the line number of the variable’s
definition, and “use” is the line number of the variable’s use of the
associated defined value. Note that this definition-use pair coverage
criterion does not subsume the branch coverage criterion, since there may
exist branches that do not define or use any variables, such as an “if”
statement that does not contain an “else.”

TABLE 1
Definition-Use Pair Coverage Information for Test Cases in T

TABLE 2
All-Uses Coverage Information for Test Cases in T

2. A test suite T satisfies the all-uses criterion if for every definition of a
variable x, all of its p-uses and c-uses are covered.

criterion C, we use other testing criteria to select additional
test cases that are redundant with respect to C but that are
not redundant with respect to the other criteria. The main
steps of our approach are shown in Fig. 2. The input is a
set T of test cases along with the set of testing requirements
satisfied by each test case for at least two different testing
criteria. The output is a reduced test suite RS that satisfies
all testing requirements satisfied by the original suite.
Initially, the set RS is empty, and every testing requirement
for each criterion being considered is labeled as unmarked.

Step 1. In this step, the next test case is selected into the
reduced suite according to the testing criterion C1. The
implementation of this step will vary depending upon the
suite minimization algorithm used to implement our
approach. The testing requirements satisfied by the selected
test case are marked and the set of other test cases that
become redundant with respect to the first criterion as a
result of selecting the above test case are recorded.

Step 2. In this step, the SelectRedundantTests function is
used to select test cases from those that become redundant
with respect to criterion Ci�1, i ¼ 2; . . . ; k. It uses the
coverage information of test cases with respect to the next
testing criterion Ci to select the test case contributing the
most additional coverage with respect to Ci. After the
function completes, control returns to Step 1 above and this
repeats until all requirements are marked.

Notice that our approach is independent of the type of
testing criteria being considered. Even requirements gener-
ated from black-box testing could be used in conjunction

with white-box testing criteria such as branch coverage or
definition-use pair coverage. Also, our approach can be
implemented on top of any minimization algorithm (e.g.,
HGS algorithm [11] or the classical greedy approach [6])
that maintains a working list of test cases and incrementally
selects test cases one-after-the-other into a reduced suite.

4 IMPLEMENTATION OF OUR APPROACH

An implementation of our RSR approach (based on the HGS
minimization algorithm [11]) is shown in Fig. 3. The input is
a test suite T and k sets of test case sets, that map each testing
requirement for each of k criteria to the set of test cases
satisfying that requirement. The output is a reduced set RS
of test cases. The steps of our algorithm are as follows.

Step 1: Initialization. All requirements are labeled as
unmarked. Also, for each test case the algorithm maintains
the number of unmarked testing requirements satisfied by
that test case (for each testing criterion being considered).
After initialization, the main loop in the algorithm begins
which incrementally selects test cases into the reduced suite
one-after-the-other; the loop considers the unmarked re-
quirements corresponding to the first criterion ðC1Þ in
increasing order of cardinality of associated test case sets.

Step 2: Select next test using the first criterion. All test
cases present in the unmarked test case sets of the current
cardinality are identified. The function SelectTest in Fig. 4
selects a test case that satisfies the most unmarked require-
ments whose test case sets are of the current cardinality and

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 111

Fig. 2. Pseudocode for our general approach to reduction with selective redundancy.

adds it to the reduced set. In the event of a tie, the test case
that satisfies the most unmarked requirements whose test
case sets are of successively higher cardinalities is selected.
If the cardinality reaches the maximum cardinality, the tie is
broken arbitrarily. For each testing criterion, the unmarked
requirements satisfied by the selected test case are labeled
as marked. Also, the test cases that now become redundant
with respect to the first testing criterion are added to a set of
redundant test cases.

Step 3: Select from redundant test cases. From among
the test cases redundant with respect to C1, SelectRedundant-
Tests in Fig. 4 is used to select test cases in decreasing order
of their additional coverage with respect to the second
criterion and add them to the reduced set. The newly
satisfied requirements are marked and the algorithm
recursively tries to select additional redundant test cases
using the remaining testing criteria. After selecting redun-
dant test cases, Steps 2 and 3 are repeated until all testing
requirements are marked.

Worst-Case Runtime Analysis. Let k be the number of
different testing criteria being considered by our algorithm,
and let n denote the maximum number of testing require-
ments associated with any of the k testing criteria. Let MC
denote the maximum cardinality among the test case sets
considered across all k testing criteria. The runtime of the
original HGS algorithm (for only one testing criterion) is

bounded by Oðn�ðnþ ntÞ�MCÞ [11]. Our algorithm has this
complexity plus the additional complexity required to
account for the other k� 1 testing criteria during test suite
reduction.

Accounting for the other testing criteria involves three
steps: 1) determining the occurrences of test cases in the test
case sets, 2) updating coverage information as test cases are
selected into the reduced suite, and 3) selecting test cases
that are redundant according to one testing criterion but not
redundant according to some other criterion. Steps 1 and 2
are done in the same way as is done by the HGS algorithm
for a single testing criterion. For Step 3, each test case is
considered for redundant selection at most once for each
testing criterion being considered. Accounting for each of
the other k� 1 criteria, therefore, is of no more complexity
than accounting for the first criterion. As a result, the worst-
case runtime of our implemented algorithm is bounded by
the worst-case runtime of the HGS algorithm times a factor
of k because there are k criteria being considered instead of
just one: Oðk�n�ðnþ ntÞ�MCÞ.

5 EXPERIMENTAL STUDY

We conducted experiments to compare the results of
reducing suites using our reduction with selective redun-
dancy approach with those of minimizing test suites with

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 3. Our implementation for reduction with selective redundancy.

respect to a testing criterion using the HGS algorithm. The
first set of experiments uses the Siemens suite [2], [17] and
the Space program [30] in C language. In these experi-
ments, testing requirements for the white-box testing criteria
such as branch coverage, all-uses coverage, and subpaths of

length 3 were considered for reducing the test suites. Given
a trace of exercised branches generated from the execution
of a test case, we define a subpath of length 3 to be the
sequence of statements on the path defined by any three
consecutive branch outcomes on the path. We consider this
criterion since it is a stronger than branch coverage
criterion. Note that the choice of using three consecutive
outcomes was somewhat arbitrary and one can use further
stronger criteria such as subpaths of length k > 3.

The second set of experiments uses Java programs, each
containing a method that operates on a data structure. For
these experiments, the testing requirements generated from
the specification of each of these programs and the require-
ments generated from the code coverage criteria such as
branch coverage and all-uses coverage were used to reduce
the suites. Thus, in this set of experiments, we tried to use
criteria that are very different in the sense that one is used
for black-box testing and the other is used for white-box
testing of programs.

5.1 Experiments with the Siemens Suite and the
Space Program

5.1.1 Experiment Setup

This set of experiments follows a setup similar to that used
by Rothermel et al. [22], using the Siemens suite and the
Space program (Table 3) along with the test pools and the
faulty versions available from [15]. We created branch-
coverage adequate test suites for six different suite size
ranges referred to as Br;Brþ 0:1; � � � ;Brþ 0:5 to allow
varying levels of redundancy. For creating each suite, we
first randomly selected a number X � LOC of test cases
from a given test case pool to add to the suite, where LOC is
the number of lines of code in the given program and, for
each of the above ranges Brþ 0:k ðk ¼ 0; 1; . . . 5Þ, X is a
random variable in the range ð0 � X � 0:kÞ. Also, we added
randomly-selected test cases to each suite as necessary, so
long as each increased the cumulative branch coverage of
the suite, until the test suite became branch coverage
adequate. For each of the six suite size ranges, we generated
1,000 test suites and conducted the following three
experiments.

Experiment MINbr versus RSR. We used the HGS
algorithm [11] to minimize each of the above-mentioned
1,000 suites with respect to branch coverage. We refer to this

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 113

Fig. 4. Function SelectTest to select the next test case according to the first testing criterion and function SelectRedundantTests to recursively select

tests that are redundant with regard to some criterion.

technique as the MINbr technique. For suite reduction using
our (RSR) approach, we used two testing criteria: branch
coverage as the first criterion and all-uses coverage as the
second criterion. We conducted this experiment to compare
the suite size reduction versus fault detection retention of
the RSR and MINbr techniques. We measured all-uses
coverage using the ATAC tool [13]. We refer to the reduced
suites produced by the RSR technique as RSR-reduced
suites and the minimized suites produced by the MINbr
technique as MINbr-minimized suites.

Experiment ADDRAND. To further analyze the effec-
tiveness of our RSR approach, we reduced suites by the
MINbr experiment but then randomly added additional test
cases as necessary to obtain suites that were the same sizes
as the RSR-reduced suites. We refer to these suites as
ADDRAND-reduced suites. We compared the fault detec-
tion retention of the ADDRAND-reduced suites with the
RSR-reduced suites.

Experiment RSR3. In this experiment (called RSR3) we
studied the effectiveness of the RSR approach for reducing
suites using three criteria: branches as the first, all-uses as
the second, and subpaths of length 3 as the third criterion.
Note that the subpaths of length 3 criterion is control-flow-
based whereas the all-uses criterion is data-flow-based. We
refer to these reduced suites as RSR3-reduced suites.

We measured the following from our experiments.

. The percentage suite size reduction ¼ ðjT j�jTredjÞjT j � 100,

where jT j is the number of test cases in the original

suite and jTredj is the number of test cases in the

minimized/reduced suite.
. The percentage fault detection effectiveness (FDE) loss

¼ ðjF j�jFredjÞjF j � 100, where jF j is the number of distinct

faults exposed by the original suite, and jFredj is the

number of distinct faults exposed by the minimized/

reduced suite.
. For the suites in suite size range Brþ 0:5 such that

the RSR approach computes a larger reduced suite
than the corresponding MINbr-minimized suite, the
additional-faults-to-additional-tests ratio

¼ ðjFredjRSR � jFredjMINbrÞ
ðjTredjRSR � jTredjMINbrÞ

:

This ratio is a measure of, for each additional test
case selected into an RSR-reduced suite above the
number in the corresponding MINbr-minimized
suite, the number of additional faults detected by
the RSR-reduced suite.

5.1.2 Experiment MINbr versus RSR

The results for this experiment are shown in the columns
labeled MINbr and RSR in Table 4. The values in each row
of the table are average values for 1,000 suites in each range.
The boxplot3 in Fig. 5 shows the distribution of the
percentage size reduction and percentage fault detection
loss of suites in the largest suite size range ðBrþ 0:5Þ for
each program.

Suite size reduction. For all programs, less percentage
suite size reduction on average was observed for RSR-reduced
suites than the respective MINbr-minimized suites. This is
expected since RSR includes selective branch-coverage
redundancy in the reduced suites while MINbr attempts
to remove as much branch-coverage redundancy as
possible. However, notice also that both approaches still
achieve relatively high suite size reduction.

Fault detection loss. For all programs, less percentage fault
detection loss on average was observed for RSR-reduced suites
than the respective MINbr-minimized suites. The results with
the RSR technique were usually better for the larger suite
size ranges. This is because unreduced suites in these
ranges contain significant redundancy with regard to
branch coverage and thus present more opportunities to
the RSR technique to select test cases that execute different
combinations of branch outcomes and all-uses. As seen in
Fig. 5, the difference in average percentage fault detection
loss between the MINbr and RSR approaches is always
about the same or greater than the difference in average
percentage suite size reduction. Also, we see that for all
programs except sched and ptok2, the median fault
detection loss is significantly less for RSR than MINbr.
The average percentage fault detection loss for the Space
program was considerably less than the Siemens suite. This
is likely because the test cases for the Space program were
generated randomly to achieve branch coverage adequacy.
The test pools for the Siemens suite were created to exercise
a variety of black-box and white-box testing requirements.
Thus, removing a test case from a test suite for a program in
the Siemens suite has a greater chance that fault detection
effectiveness will be reduced.

We also used the HGS algorithm to minimize suites with
respect to the union of branch coverage requirements and
all-uses coverage requirements. These results are presented
under the columns labeled BþU in Table 4. The RSR

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

3. In a boxplot, the height of each box represents the range of y-values for
the middle 50 percent of the suites. The horizontal line within each box
represents the median value. The bottom of each box represents the top of
the lower quartile and the top of each box represents the bottom of the
upper quartile. The vertical line stretching below each box ends at the
minimum value, and represents the range of the lowest 25 percent of the
values. The vertical line stretching above each box ends at the maximum
value and represents the range of the highest 25 percent of the values. The
average value is depicted by a small x.

TABLE 3
Siemens Suite of Programs and the Space Subject Program

technique computes slightly larger reduced suites that are
more effective at exposing faults than BþU. This is because
RSR attempts to select branch-coverage-redundant test
cases as soon as they become redundant with respect to branch
coverage during suite reduction; this allows for more test
cases to be selected due to their all-uses coverage than when
suites are simply minimized by removing as much branch
and all-uses coverage redundancy as possible. Moreover,
we expect the additional test cases selected by RSR to have a
chance of exposing additional faults beyond those exposed
by other test cases in the reduced suite. This is because they
exercise a different combination of branch outcomes and
all-uses (and thus exercise a different program behavior).

To determine whether the improvement in fault
detection capability observed for RSR-reduced suites over
the MINbr-minimized suites is statistically significant, we
conducted a t test for paired observations4 [26]. For each of

the 1,000 test suites for suite size range Brþ 0:5, we
created the pair ðX;Y Þ, where X is the number of distinct
faults exposed by the MINbr-minimized suite and Y is the
number of distinct faults exposed by the corresponding
RSR-reduced suite. We considered the null hypothesis that
there is no difference in the mean number of faults exposed by the

RSR-reduced suites and the MINbr-minimized suites. Table 5
shows the resulting t values computed for our t test, along
with the percentage confidence with which we may reject
the null hypothesis. We used as reference a table of critical
values presented in [26]. Note that the larger the computed
t value, the greater confidence we have in rejecting the null
hypothesis. For our 999 degrees of freedom, it turns out that
for t values greater than about 3.3, we can reject the null
hypothesis with over 99.9 percent confidence. Thus, the
differences in the mean number of faults exposed by the
RSR-reduced suites and the MINbr-minimized suites are
statistically significant.

Additional-faults-to-additional-tests ratio. Fig. 6 shows
the additional-faults-to-additional-tests ratio in boxplot
format when comparing the RSR-reduced suites over the
corresponding MINbr-minimized suites, for suite size range
Brþ 0:5. For all programs, the average ratio value is above 0.

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 115

TABLE 4
Experimental Results for Experiments MINbr and RSR

The average original suite size ðjT jÞ, the average number of faults exposed by the original suite ðjF jÞ. The average minimized/reduced suite size
ðjTredjÞ. The average number of faults exposed by the minimized/reduced suite ðjFredjÞ. The average percentage suite size reduction (% Size
Reduction), and the average percentage fault detection loss (% Fault Loss).

4. Also called a paired t-test, this is a statistical method for determining
whether there may be any statistically significant difference between the
means of two populations, given samples where observations from one
sample can be naturally paired with observations from the other sample.
The procedure is to formulate a null hypothesis that assumes the population
means are identical, then compute a t value from the paired data samples,
which is referenced in a corresponding table of critical values to determine
the confidence with which we may reject the null hypothesis.

This means that on average, each additional test case

selected by RSR improved the fault detection capability of

the reduced suite. For tcas, totinfo, ptok2, replace, and

Space, the median ratio value is above 0, while for sched,

sched2, and ptok, the median value is 0 with the top of the

lower quartile also at 0. Note that sched, sched2, and ptok

are the three subject programs with the fewest number of

faulty versions available (10 or fewer faulty versions each),

so for these programs, we can expect many RSR suites to

not detect many additional faults simply because there are

not many faulty versions available.
For tcas, the bottom of the upper quartile is greater than

1, and for totinfo, the bottom of the upper quartile is greater
than 2. For replace, the top of the lower quartile is greater
than 0. This suggests for these particular programs RSR was
very likely to select the test cases that exposed additional
faults. Interestingly, these three particular programs have a

relatively higher number of faulty versions available (over
20 each). Even though the Space program has 38 faulty
versions available, the median and average ratio value is
relatively low at 0.06, and the bottom of the upper quartile
occurs at ratio value 0.1. RSR still shows noticeable
improvement in fault detection retention on average for
the Space program. The results in Fig. 6 suggest that, in
general, the additional test cases selected by the RSR
approach are likely to improve the fault detection capabil-
ities of reduced suites.

5.1.3 Experiment ADDRAND

As shown in Table 6, the average percentage fault detection loss
of the ADDRAND-reduced suites was always more than the
RSR-reduced suites. Thus, the RSR approach performed well
on average in terms of selecting just those additional tests
that are likely to expose additional faults in the software.
For programs tcas and sched, the RSR suites were only
slightly better on average than the ADDRAND-reduced
suites in terms of retaining fault detection. However, for the
other five subject programs, the RSR suites achieved
between about 3 percent and 11 percent less fault detection
loss than the ADDRAND-reduced suites.

Table 7 shows the results of conducting a t test for paired
observations comparing the number of distinct faults
exposed for both the ADDRAND-reduced suites and the
RSR-reduced suites. We can see that, for programs tcas and
sched, we do not have strong evidence to reject the null
hypothesis. For the other programs, the differences in the
average number of faults detected by the RSR-reduced
suites and the corresponding ADDRAND-reduced suites
were statistically significant.

5.1.4 Experiment RSR3

The results of this experiment are shown in Table 8. In all
cases except for some of the smallest suite size ranges, the

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 5. The percentage suite size reduction (white boxes) and percentage fault detection loss (gray boxes) for RSR (left) and MINbr (right), for suite

size range Brþ 0:5.

TABLE 5
Computed t Values and the Corresponding Confidence

with which the Null Hypothesis Can Be Rejected
when Comparing the Number of Faults Exposed

by Both the MINbr and RSR Reduced Suites

For Suite Size Range Brþ 0:5

RSR3 approach resulted in less average percentage fault
detection loss among suites than the RSR approach. Further,
the suite size reduction obtained by RSR3 approach was
significant (over 66 percent average reduction in suite size
for range Brþ 0:5). For program sched, suite size range
Brþ 0:5, RSR3 resulted in about 10 percent less suite size
reduction and over 20 percent less fault detection loss in
suites than RSR.

Table 9 shows the results of a t test for paired
observations comparing the number of distinct faults
exposed for both the RSR-reduced suites and the RSR3-
reduced suites. From this table, we see that the null
hypothesis can be rejected with high confidence (greater
than 95 percent) for all programs except tcas and ptok2.
Thus, for most programs, the improvement in the average
number of faults exposed by the RSR3-reduced suites when
compared with the respective RSR-reduced suites is
statistically significant. Note that these results are important

considering that some programs such as sched and sched2
have relatively few total faulty versions available, which
would limit the amount of improvement by using RSR3 in
our experiments. Also, this provides evidence that the
benefits of our two-criteria RSR experiment over MINbr are
not due merely to the fact that data flow was used as our
secondary criterion. Instead, this suggests that results may
be likely to improve when using a second or third criterion
regardless of whether the additional criteria are data-flow-
based or not.

5.2 Experiments with Using RSR to Reduce Test
Suites Generated from Specifications of Java
Data Structure Programs

5.2.1 Experiment Setup

In these experiments we used four programs from [16]

mentioned in Table 10, where each program involves a single

Java method operating on a data structure. Each Java method

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 117

Fig. 6. The additional-faults-to-additional-tests ratio computed from the RSR-reduced suites over the MINbr-minimized suites.

TABLE 6
Experimental Results for Additional Tests Selected Randomly,
Compared Against the Corresponding Results for Experiment
RSR, Showing the Average Number of Faults Detected by the

Reduced Suites ðjFredjÞ and the Average Percentage Fault
Detection Loss Due to Reduction (Percent Fault Loss)

For suite size range Brþ 0:5.

TABLE 7
Computed t Values and the Corresponding Confidence

with which the Null Hypothesis Can Be Rejected
when Comparing the Number of Faults Exposed

by Both the ADDRAND and RSR Reduced Suites

For Suite Size Range Brþ 0:5.

is associated with a precondition stating that the input data

structure must be valid. This precondition is checked by a

“repOk” function [4] written in Java that returns true or false

depending upon whether the state of the input data structure

is valid. For each Java method, the Korat tool [4] was used to

generate all nonisomorphic valid input data structures up to a

bounded small size. Since the “specification” of valid input

data structure for each Java method is provided by its

“repOk” function, we considered the coverage of branches

and the definition-use pairs of the “repOk” function as the

black-box testing requirements for the respective Java

method. These testing requirements were considered as the

primary set of requirements with respect to which the test

suites were minimized in this experiment. From the pool of

test cases generated for each Java method using the Korat tool,

we selected test cases to create test suites that were adequate

with respect to the above black-box testing requirements.

Overall, we generated 1,000 suites for each of six different

suite size ranges for each program in the same manner as was

done for the Siemens programs and Space. In order to apply

our RSR technique, we needed coverage information for each

test case for an additional (secondary) testing criterion. For

this, we simply recorded the branches and the definition-use

pairs covered in each “Java method” (not the “repOk”

function, which specified valid input for the Java method)

exercised by each test case. Note that in this experiment, we

used the RSR technique with two different types of testing

requirements resulting from very different testing criteria

(specification coverage and code coverage of each Java

method).

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

TABLE 8
Results for Experiment RSR3

The data in this table is organized similarly to Table 4.

We used the Java Coverage Analyzer tool obtained from

[14] to record (for each test case for each Java subject) both

the branch coverage of the Java subject program as well as

the branch coverage of the corresponding “repOk” function.

To measure definition-use pair coverage, we hand-instru-

mented each program to record this information. For each

experimental subject, we created faulty versions by seeding

errors that were similar in type to those introduced into the

Siemens programs (operator change, operand change,

constant value change, missing code, added code, logic

change). Each faulty version contained a single seeded
error, and we attempted to introduce errors that, as in the
Siemens faulty versions, would only sometimes lead to an
exposed error when traversed by a test case.

Experiment minB versus rsrB/W. In the minB experi-
ment, we used the HGS algorithm to minimize the test
suites with respect to only the black-box (B) testing
requirements generated from coverage of the “repOk”
function. For suite reduction using the RSR approach, the
set of black-box testing requirements used in minB as
described above was considered as the primary criterion,
and the set of white-box testing requirements (branches and
def-use pairs in the Java method code) covered by each test
case were considered as the secondary requirements. We
refer to this experiment as rsrB/W.

5.2.2 Experimental Results, Analysis, and Discussion

Suite size reduction and fault detection loss. Table 11
shows the average size reduction and fault detection loss for
the reduced suites for experiments minB and rsrB/W. Also,
Fig. 7 shows the distribution of percentage size reduction
and percentage fault detection loss among suites in the
largest suite size ranges for rsrB/W versus minB. For all
programs, the rsrB/W experiment resulted in less size
reduction but also less percentage fault detection loss on
average than the minB experiment. This is because minB
does not take into consideration the white-box requirement
coverage, while the rsrB/W approach takes into account

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 119

TABLE 10
Java Data Structure Experimental Subjects

TABLE 11
Experimental Results for Experiments minB and rsrB/W

The format of the data table is similar to that used for describing the results of the Siemens programs and Space.

TABLE 9
Computed t Values and the Corresponding Confidence

with which the Null Hypothesis Can Be Rejected
when Comparing the Number of Faults Exposed

by Both the RSR and RSR3 Reduced Suites

For suite size range Brþ 0:5.

both the black-box and white-box testing requirements. In
fact, on further analysis, we found that many suites
minimized with respect to only black-box testing require-
ments covered fewer branches in the actual code than their
unminimized counterparts, and this led to decreased fault
detection capability of minB-reduced suites.

Additional-faults-to-additional-tests ratio. Fig. 8 shows
the additional-faults-to-additional-tests ratio for the largest

suite size range for each program, for those test suites in
which rsrB/W computed a larger reduced suite than that
computed by minB. From this figure, we notice that in
terms of quartiles, for bst, the bottom of the upper quartile
is at ratio value 3.00. Also, for all four subject programs,
the top of the lower quartile occurs at least at ratio value
0.5. Also note that, for all four subject programs, the average
ratio value is at least 1.32 and the median ratio value is at

120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

Fig. 7. The percentage suite size reduction (white boxes) and percentage fault detection loss (gray boxes) for rsrB/W (left) and minB (right).

Fig. 8. The additional-faults-to-additional-tests ratio when comparing rsrB/W versus minB.

least 1.00. Therefore, each additional test case that was
selected by rsrB/W in the reduced suite (when compared
with the size of the respective minB-minimized suite)
exposed more than one additional fault on average. These
experiments give us an insight that the test cases that
exercise different combinations of testing requirements corre-
sponding to multiple types of testing criteria are likely to expose
different faults.

5.3 Experimental Conclusions and Threats to
Validity

Our experimental results show that using multiple testing

criteria during suite reduction is indeed useful in identify-

ing test cases that are likely to expose different faults, as

evidenced by the improved fault detection retention of

suites using RSR versus MINbr, RSR3 versus RSR, and

rsrB/W versus minB. However, we would like to mention

some factors that may influence the validity of our results.

In our experiments, we do not control for the structure of

the subject programs or for the locations where errors are

seeded in the faulty versions. Further, the errors in the

faulty versions may or may not be representative of errors

that typically occur in practice. Also, the set of programs

used in our experiments may or may not be representative

of other programs that are used in practice. To account for

these, we conducted experiments on a variety of programs

(written in both C and Java) with a variety of associated

faulty versions, and we also included results for the

relatively large Space program.

5.4 Additional Points of Discussion

The fault detection loss for the Siemens suite programs was

found to be still relatively large across all reduction

techniques. The test cases for the Siemens programs were

generated with respect to various kinds of black-box and

white-box approaches. Therefore, many of these tests are

intentionally meant to cover entities in the programs that we

do not know, nor that we have accounted for during

reduction. Thus, throwing them away could result in fault

detection loss. However, as our experiments show, using

multiple criteria in test suite reduction can significantly

increase the fault detection effectiveness of the reduced suite.
Another issue is the cost of mapping the primary and

secondary requirements to test cases. Computing this

mapping can usually be automated. Further, the testing

process involves more than just executing test cases;

outputs of test cases need to be checked for correctness,

which can often be only partially automated or must be

done manually. We believe that the potential savings of

time and resources in the testing of software, resulting from

the use of test suite reduction techniques, will offset the cost

of mapping the requirements to test cases. In addition, if the

developer is not interested in throwing away test cases, the

test cases in the reduced suites could be scheduled to be

executed ahead (refer to the topic of test case prioritization in

the Related Work section) of the other test cases in the suite

in order to expose a large number of faults early on in the

testing.

6 RELATED WORK

Related work can be classified into that which proposes
new minimization techniques and that which focuses on
conducting empirical studies using existing minimization
techniques.

Minimization Techniques. The classical greedy heuristic
for solving the set-cover problem was presented by Chvatal
[6]. The approach greedily selects the next set (test case) that
maximizes the ratio of additional requirement coverage to
cost, until no sets provide any additional requirement
coverage. Another heuristic presented by Harrold et al. [11]
(the HGS algorithm) greedily selects the next test case
exercising the most additional requirements that are
satisfied by the fewest number of tests. Chen and Lau [5]
described two strategies for dividing a test suite into
k smaller subproblems (subsuites) such that if optimal
solutions can be found for each of the k subproblems, then
these solutions can be combined to form an optimally
reduced suite. However, these two dividing strategies
cannot be applied to every suite. Agrawal [1] developed a
technique using global dominator graphs to derive implica-
tions among testing requirements such that satisfying one
requirement implies satisfying one or more of the other
requirements. These implications can be used to achieve
higher coverage with smaller suites by targeting those
requirements implying the most coverage of the other
requirements. Tallam and Gupta [28] developed another
heuristic called Delayed-greedy that exploits both the im-
plications among test cases and the implications among the
requirements to remove the implied rows and columns in
the table mapping test cases to the requirements covered by
them. It delays the application of the greedy heuristic until
after the table cannot be reduced any further and after the
essential tests are selected. Selecting a test case using the
greedy heuristic and removing the corresponding row and
the columns from the table exposes new implications
among test cases and the implications among the require-
ments, which enables further reduction of the table. All the
above heuristics to generate a minimal suite have poly-
nomial time worst-case runtime complexity.

Sampath et al. [25] used the concept lattice to identify a
reduced set of Web user sessions that provide the same
URL coverage as the original set of collected user sessions.
The proposed technique has exponential runtime in the
worse-case due to concept lattice construction. Von Ronne
[29] generalized the HGS algorithm such that every
requirement must be satisfied multiple times before it is
considered fully exercised, in order to minimize suites with
respect to a new probabilistic statement sensitivity coverage
(PSSC) criterion. Jones and Harrold [18] described two
techniques for test suite minimization that are tailored to be
used specifically with the modified condition/decision coverage
(MC/DC) criterion. Harder et al. [10] developed a mini-
mization approach that uses an operational abstraction,
which is a formal specification for software derived from
actual behavior. The idea is to keep the tests that change the
operational abstraction and remove those tests that do not
change the operational abstraction. Offutt et al. [20]
presented an approach for reducing test suites by selecting
test cases based on the additional requirement coverage by

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 121

considering tests in an order different from the order in
which they were selected originally (such as in reverse
order). Heimdahl and George [12] presented a heuristic for
test suite minimization in the context of tests generated for
specification-based criteria that are used for testing formal
models of software. Black et al. [3] proposed a “bi-criteria”
approach for test suite minimization that considers not only
the coverage information for the tests, but also whether or
not each test exposes a particular fault. This approach aims
to compute optimally reduced suites containing the most
fault-revealing tests.

A related topic is that of test case prioritization. In contrast
to minimization techniques that attempt to remove test
cases from a suite, prioritization techniques [24], [27] only
reorder the execution of test cases within a suite with the
goal of early detection of faults.

Empirical Studies. Rothermel et al. [22], [23] conducted a
set of test suite minimization experiments with the Siemens
suite [17]. Branch-coverage adequate suites were selected
from the test pools and minimized using the HGS
Algorithm [11]. On average, the test suites were reduced
by 80 percent with 46 percent fault detection loss across all
subject programs. Wong et al. [31] conducted experiments
using test cases generated randomly, with suites created for
various levels of nonadequate block coverage and optimally
minimized using the ATACMIN tool [13] with respect to
all-uses coverage. Suites were reduced in size up to
68 percent, and fault detection loss never exceeded
7 percent. Thus, compared to the results of Rothermel
et al. [22], [23], Wong et al. showed that fault detection loss
of minimized suites could be significantly less while at the
same time achieving high suite size reduction.

Leon and Podgurski [19] conducted experiments to
compare the results of test suite reduction and prioritization
using the classical greedy heuristic with the distribution-
based techniques that analyze the distribution of the
execution profiles of tests. The results suggest that both
approaches are complementary because they are each good
at selecting tests exposing different types of faults.

Comparison of Prior Work with Our Approach. We
have proposed a new approach that explicitly seeks to
include selective redundancy in reduced suites with respect to
a testing criterion. Our approach is general and can be
integrated with a variety of existing working list-based test
suite minimization techniques. For example, minimizing
using an operational abstraction [10] can be extended using
our approach as follows: A test case that does not change
the operational abstraction may actually be retained if it is
still considered important according to some other criteria
(e.g., it covers a unique definition-use pair in the code).
Also, the bi-criteria approach [3] could be extended as
follows: A test that would normally be removed, because it
does not expose the particular fault being considered, may
still be retained if it exposes some other fault.

Our approach is also open to a variety of choices for
additional criteria. For instance, we may combine our
approach with the ideas presented by Heimdahl and
George [12] to obtain testing requirements derived from
formal specifications of software. We may also combine our
approach with the ideas presented by von Ronne [29] to

derive requirements that each need to be satisfied by
multiple tests before they are considered sufficiently ex-
ercised. As another example, when analyzing the distribu-
tion of execution profiles [19], two tests whose execution
profiles are in the same cluster, although only one test in a
cluster might otherwise be retained, may still both be
retained if, for example, those two tests have the greatest
difference between each other among all tests in that
cluster. Thus, the idea of our approach is relatively simple,
yet also very versatile.

7 CONCLUSIONS

We have presented a new approach for test suite reduction
that attempts to select those additional test cases that are
redundant with respect to a particular coverage criterion, if
the test cases are not redundant according to one or more
other coverage criteria. This approach is based on the
intuition that considering multiple testing criteria during
test suite reduction is more effective than considering only
one criterion, in terms of generating reduced suites with
higher fault detection effectiveness. In our experimental
study, our approach consistently performed better on
average than other test suite minimization approaches by
generating reduced test suites with less fault detection loss
at the expense of only a relatively small increase in the sizes
of the reduced suites. Our results suggest that the
additional tests selected using our approach are those that
are likely to expose additional faults in software.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Chandrasekhar Boyapati and
Paul Darga, Department of Electrical Engineering and
Computer Science, University of Michigan, for generating
test cases for Java methods using the Korat tool for use in
our experiments. The authors also thank Dr. Gregg
Rothermel, Department of Computer Science, University
of Nebraska, for providing the Siemens suite and the Space

program, their instrumented versions, and the associated
test case pools and faulty versions. Finally, they thank the
anonymous referees for their thoughtful reviews that
helped in significantly improving the initial version of the
paper.

REFERENCES

[1] H. Agrawal, “Efficient Coverage Testing Using Global Dominator
Graphs,” Proc. Workshop Program Analysis for Software Tools and
Eng., pp. 11-20, Sept. 1999.

[2] M. Balcer, W. Hasling, and T. Ostrand, “Automatic Generation of
Test Scripts from Formal Test Specifications,” Proc. Third Symp.
Software Testing, Analysis, and Verification, pp. 210-218, Dec. 1989.

[3] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-Criteria Models for
All-Uses Test Suite Reduction,” Proc. Int’l Conf. Software Eng.,
pp. 106-115, May 2004.

[4] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated
Testing Based on Java Predicates,” Proc. Int’l Symp. Software
Testing and Analysis, pp. 123-133, July 2002.

[5] T.Y. Chen and M.F. Lau, “Dividing Strategies for the Optimization
of a Test Suite,” Information Processing Letters, vol. 60, no. 3,
pp. 135-141, Mar. 1996.

[6] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem,”
Math. Operations Research, vol. 4, no. 3, pp. 233-235, Aug. 1979.

122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed. MIT Press, Sept. 2001.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman and Company, 1979.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, second ed. Prentice Hall, 2003.

[10] M. Harder, J. Mellen, and M.D. Ernst, “Improving Test Suites via
Operational Abstraction,” Proc. Int’l Conf. Software Eng., pp. 60-71,
May 2003.

[11] M.J. Harrold, R. Gupta, and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Trans. Software Eng. and
Methodology, vol. 2, no. 3, pp. 270-285, July 1993.

[12] M.P.E. Heimdahl and D. George, “Test-Suite Reduction for
Model-Based Tests: Effects on Test Quality and Implications for
Testing,” Proc. 19th IEEE Int’l Conf. Automated Software Eng.,
pp. 176-185, Sept. 2004.

[13] J.R. Horgan and S.A. London, “ATAC: A Data Flow Coverage
Testing Tool for C,” Proc. Symp. Assessment of Quality Software
Development Tools, pp. 2-10, May 1992.

[14] http://www.cse.iitk.ac.in/users/jalote/download/javacover
age/index.html, 2005.

[15] http://www.cse.unl.edu/~galileo/sir, 2005.
[16] http://www.cs.fiu.edu/~weiss/dsaa_java/Code/DataStructures,

2005.
[17] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments

on the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. 16th Int’l Conf. Software Eng., pp. 191-
200, May 1994.

[18] J.A. Jones and M.J. Harrold, “Test-Suite Reduction and Prioritiza-
tion for Modified Condition/Decision Coverage,” IEEE Trans.
Software Eng., vol. 29, no. 3, pp. 195-209, Mar. 2003.

[19] D. Leon and A. Podgurski, “A Comparison of Coverage-Based
and Distribution-Based Techniques for Filtering and Prioritizing
Test Cases,” Proc. Int’l Symp. Software Reliability Eng., pp. 442-456,
Nov. 2003.

[20] A.J. Offutt, J. Pan, and J.M. Voas, “Procedures for Reducing the
Size of Coverage-Based Test Sets,” Proc. Int’l Conf. Testing
Computer Software, pp. 111-123, June 1995.

[21] S. Rapps and E.J. Weyuker, “Selecting Software Test Data Using
Data Flow Information,” IEEE Trans. Software Eng., vol. 11, no. 4,
pp. 367-375, Apr. 1985.

[22] G. Rothermel, M.J. Harrold, J. Ostrin, and C. Hong, “An Empirical
Study of the Effects of Minimization on the Fault Detection
Capabilities of Test Suites,” Proc. Int’l Conf. Software Maintenance,
pp. 34-43, Nov. 1998.

[23] G. Rothermel, M.J. Harrold, J. von Ronne, and C. Hong,
“Empirical Studies of Test-Suite Reduction,” Software Testing,
Verification, and Reliability, vol. 12, no. 4, pp. 219-249, Oct. 2002.

[24] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Prioritizing
Test Cases for Regression Testing,” IEEE Trans. Software Eng.,
vol. 27, no. 10, pp. 929-948, Oct. 2001.

[25] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock, “A Scalable
Approach to User-Session Based Testing of Web Applications
through Concept Analysis,” Proc. 19th IEEE Int’l Conf. Automated
Software Eng., pp. 132-141, Sept. 2004.

[26] G.W. Snedecor and W.G. Cochran, Statistical Methods, sixth ed.
Iowa State Univ. Press, 1967.

[27] A. Srivastava and J. Thiagrajan, “Effectively Prioritizing Tests in
Development Environment,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 97-106, July 2002.

[28] S. Tallam and N. Gupta, “A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization,” Proc. Workshop Program
Analysis for Software Tools and Eng., Sept. 2005.

[29] J. von Ronne, “Test Suite Minimization: An Empirical Investiga-
tion,” university honors college thesis, Oregon State Univ., June
1999.

[30] F.I. Vokolos and P.G. Frankl, “Empirical Evaluation of the Textual
Differencing Regression Testing Technique,” Proc. Int’l Conf.
Software Maintenance, pp. 44-53, Nov. 1998.

[31] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur, “Effect of
Test Set Minimization on Fault Detection Effectiveness,” Soft-
ware—Practice and Experience, vol. 28, no. 4, pp. 347-369, Apr. 1998.

Dennis Jeffrey received the BS and MS
degrees in computer science from the University
of Arizona in May 2003 and August 2005,
respectively. He is a PhD student in the
Department of Computer Science at the Uni-
versity of Arizona and expects to complete his
PhD degree in computer science by August
2009. His research interests include software
debugging, software testing, static and dynamic
program analysis, and program slicing. He has

published papers in the ICSM 2005 and COMPSAC 2006 conferences.
His paper at COMPSAC 2006 received the Best Paper Award out of
183 submitted papers. He has been the recipient of several honors and
awards, including the Outstanding Graduate Teaching Assistant Award
from the Computer Science Department in May 2006 and the Galileo
Circle Scholarship in 2003 and 2005, and he was on the Dean’s List with
Distinction every semester as an undergraduate student.

Neelam Gupta is an assistant professor of
computer science at the University of Arizona.
Her research areas include software testing,
dynamic program analysis, and automated
debugging. Her research has been funded by
the US National Science Foundation, Microsoft,
IBM, and the Arizona Center for Information
Science and Technology (ACIST). She is a
member of ACM and the IEEE. She has
published papers in many prestigious confer-

ences including ASE, PLDI, ICSE, FSE, FASE, ICSM, and COMPSAC.
Her paper in COMPSAC 2006 won the Best Paper Award. Her paper in
ASE 2001 was one of the five papers nominated for the Best Paper
Award. She has served as a cochair of the program committee of the
Fourth International Workshop on Dynamic Analysis (WODA 2006) and
the program committee of the Third International Workshop on Software
Quality Assurance (SOQUA 2006). She has also served or is serving on
the program committees of the IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007, ASE 2006, ASE 2003),
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2007), the International
Computer Software and Applications Conference (COMPSAC 2007,
COMPSAC 2006), the International Workshop on Dynamic Analysis
(WODA 2004, WODA 2005), and the International Workshop on
Security, Privacy, and Trust for Pervasive Applications (SPTPA 2006).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JEFFREY AND GUPTA: IMPROVING FAULT DETECTION CAPABILITY BY SELECTIVELY RETAINING TEST CASES DURING TEST SUITE... 123

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

