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Abstract—We present in this paper a new set of metrics that measure the quality of modularization of a non-object-oriented software

system. We have proposed a set of design principles to capture the notion of modularity and defined metrics centered around these

principles. These metrics characterize the software from a variety of perspectives: structural, architectural, and notions such as the

similarity of purpose and commonality of goals. (By structural, we are referring to intermodule coupling-based notions, and by

architectural, we mean the horizontal layering of modules in large software systems.) We employ the notion of API (Application

Programming Interface) as the basis for our structural metrics. The rest of the metrics we present are in support of those that are based

on API. Some of the important support metrics include those that characterize each module on the basis of the similarity of purpose of

the services offered by the module. These metrics are based on information-theoretic principles. We tested our metrics on some

popular open-source systems and some large legacy-code business applications. To validate the metrics, we compared the results

obtained on human-modularized versions of the software (as created by the developers of the software) with those obtained on

randomized versions of the code. For randomized versions, the assignment of the individual functions to modules was randomized.

Index Terms—Metrics/measurement, modules and interfaces, information theory, distribution, maintenance and enhancement,

maintainability, coupling, layered architecture.
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1 INTRODUCTION

MUCH work has been done during the last several years

on automatic approaches for code reorganization.

Fundamental to any attempt at code reorganization is the
division of the software into modules, publication of the

API (Application Programming Interface) for the modules,

and then requiring that the modules access each other’s

resources only through the published interfaces.
Our ongoing effort, from which we draw the work

reported here, is focused on the case of reorganization of

legacy software, consisting of millions of line of non-object-

oriented code, that was never modularized or poorly

modularized to begin with. We can think of the problem

as reorganization of millions of lines of code residing in

thousands of files in hundreds of directories into modules,

where each module is formed by grouping a set of entities

such as files, functions, data structures and variables into a

logically cohesive unit. Furthermore, each module makes

itself available to the other modules (and to the rest of the

world) through a published API.The work we report here

addresses the fundamental issue of how to measure the

quality of a given modularization of the software.

Note that modularization quality is not synonymous
with modularization correctness. Obviously, after software
has been modularized and the API of each of the modules
published, the correctness can be established by checking
function call dependencies at compile time and at runtime.
If all intermodule function calls are routed through the
published API, the modularization is correct. As a
theoretical extreme, retaining all of the software in a single
monolithic module is a correct modularization though it is
not an acceptable solution. On the other hand, the quality of
modularization has more to do with partitioning software
into more maintainable (and more easily extendible)
modules on the basis of the cohesiveness of the service
provided by each module. Ideally, while containing all of
the major functions that directly contribute to a specific
service vis-a-vis the other modules, each module would
also contain all of the ancillary functions and the data
structures if they are only needed in that module. Capturing
these “cohesive services” and “ancillary support” criteria
into a set of metrics is an important goal of our research.
The work that we report here is a step in that direction.

More specifically, we present in this work a set of metrics
that measure in different ways the interactions between the
different modules of a software system. It is important to
realize that metrics that only analyze intermodule interac-
tions cannot exist in isolation from other metrics that
measure the quality of a given partitioning of the code. To
explain this point, it is not very useful to partition a
software system consisting of a couple of million lines of
code into two modules, each consisting of a million lines of
code, and justify the two large modules purely on the basis
of function call routing through the published APIs for the
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two modules. Each module would still be much too large
from the standpoint of code maintenance and code
extension. The module interaction metrics must therefore
come with a sibling set of metrics that record other desirable
properties of the code. The metrics we present in Section 4,
Section 5, Section 6, and Section 7, while focusing primarily
on module interactions, also include other necessary
measures of the quality of a given partitioning of code.

The paper is organized as follows: In the next section, we
provide a brief review of the literature relevant to our work. In
Section 3, we describe the notion of modularity of a system
and enunciate a set of design principles that should be
adhered to in a well-modularized system. Next, in Section 4,
we define a set of metrics based on the structural aspects of
intermodule relationships. Next, in Section 5, we propose
sized-based metrics in support of the other metrics. Section 6
focuses on metrics that apply to layered architectures. We
define a set of metrics to measure the cohesiveness of the
modules with respect to similarity of service in Section 7. The
experiments section (Section 9) presents empirical support
for the new metrics. Finally, in Section 10, we conclude the
paper by summarizing the described work and making a few
brief statements about our future research in this area.

2 PREVIOUS WORK ON SOFTWARE METRICS

RELEVANT TO OUR CONTRIBUTION

Some of the earliest contributions to software metrics deal
with the measurement of code complexity [1], [2] and
maintainability [3] based on the complexity measures
proposed in [1], [2]. From the standpoint of code modular-
ization, some of the earliest software metrics are based on
the notions of coupling and cohesion [4], [5]. Low inter-
module coupling, high intramodule cohesion, and low
complexity have always been deemed to be important
attributes of any modularized software.

The above-mentioned early developments in software
metrics naturally led several researchers to question their
theoretical validity. Theoretical validation implies confor-
mance to a set of agreed-upon principles and these
principles are usually stated in the form of a theoretical
framework. In 1988, Weyuker [6] proposed a set of
properties to be satisfied by software complexity metrics.
Many subsequent contributions discussed these properties
from the standpoint of sufficiency/necessity and whether
or not they could be supported by more formal under-
pinnings. See for example [7], [8], and [9], and the citations
contained therein. Other notable software metrics valida-
tion frameworks include those by Kitchenham et al. [10]
(see also Fenton and Pfleeger [11]), who have borrowed the
needed principles from the classical measurement theory.
However, this framework was found wanting by Morsaca
et al. [12] with regard to how the scale types used for
attribute measurements were constrained.

With regard to modularity, Briand et al. [8] have given us a
generic formalization of such fundamental notions as module
and system, and such metrical notions as coupling, cohesion,
and complexity. Their formalization is generic in the sense
that it is not limited to any specific style of programming. The
authors have also mapped several well-known metrics such

as Halstead length [1] and cyclomatic complexity [2], as
well as coupling and cohesion metrics, into this framework.
Frameworks such as those proposed by Briand et al. [8] are
important because they educate us about the fundamental
criteria that must be fulfilled by the various metrics. The
work reported in [8] was extended by the authors in [13]; in
this more recent work, they have proposed a framework for
a goal-driven definition of software measures.

The early work on software metrics was followed by
their reformulation for the object-oriented case. Researchers
came up with coupling, cohesion, and complexity metrics
that measured the various quality attributes of OO soft-
ware. These measures were primarily at the level of how the
individual classes were designed from the standpoint of
how many methods were packed into the classes, the depth
of the inheritance tree, the inheritance fan-out, couplings
between objects (CBO) created by one object invoking a
method on another object, etc. [7]. But, then, responding to
the observations (such as those made by Churcher and
Shepperd [14]) that any counting-based measurements
applied to software where objects inherited methods and
attributes from other objects were open to interpretation,
Briand et al. [15] proposed a framework that formalized
how one could exercise different options when applying
coupling, cohesion, and complexity metrics to object-
oriented software. Recently, Arisholm et al. [16] have used
the framework laid out in [15] to propose metrics to
measure coupling among classes based on runtime analysis
for object-oriented systems.

While the work mentioned above deals primarily with
how to measure the quality of a modularized software
system through coupling, cohesion, and complexity metrics,
many other researchers have proposed metrics, albeit
indirectly, in their quest to develop automated tools for
software clustering. Clustering obviously depends on the
measurement of properties of semiformed modules that,
when optimized with respect to those properties, lead
(hopefully) to a well-modularized system. For example, in
the work on automated software-partitioning by Schwanke
[17], modules are quantitatively characterized by the degree
to which the functions packaged within the same module
contain “shared information.” Functions may share infor-
mation on the basis of, say, the commonality of the names of
the data objects used. Schwanke also characterizes modules
on the basis of function-call dependencies. If a function A
calls function B, then, in the approach used by Schwanke,
both A and B presumably belong to the same module.

Along the same lines, meaning along the lines of
formulating metrics in the context of developing code
modularization algorithms, Mancoridis et al. [18], [19] have
used a quantitative measure called Modularization Quality
(MQ) that is a combination of coupling and cohesion.
Cohesion is measured as the ratio of the number of internal
function-call dependencies that actually exist to the max-
imum possible internal dependencies, and coupling is
measured as the ratio of the number of actual external
function-call dependencies between the two subsystems to
the maximum possible number of such external dependen-
cies. The system level MQ is calculated as the difference
between the average cohesion and the average coupling.
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Other contributions that have also used function-call
dependencies to characterize software for modularization/
clustering include [20], [21], [22]. Variations on the MQ
measure have been proposed by Mahdavi et al. [23],
Shokoufandeh et al. [24], and Harman et al. [25]. The work
reported in [23] uses a modified MQ that is the sum of
modularization factors (MF) for each cluster. MF for a
cluster is given by i

iþ1=2�j , where i is the sum of internal
function-call dependency weights and j is the sum of
external function-call dependency weights. The accuracy of
a clustering solution is measured with the modified MQ. On
the other hand, the MQ metric in [24] is the sum of the
cluster factors for all the clusters; the cluster factor for a
module is expressed as the ratio of a weighted sum of the
function-call dependencies internal to a module to a
weighted sum of the internal as well as the external
dependencies.

Coupling and cohesion sort of metrics have also been
used by Sartipi and Kontogiannis [26], [27] in the context of
software clustering. Their metrics are derived from a
relational graph representation of all the software artifacts
such as functions, data types, variables, etc., the relations
being function-call dependencies, type declaration of vari-
ables, macro defines, etc. Their metrics measure the degree
of association between the relations included in a candidate
module vis-a-vis the associations between a module and all
other modules. Another contribution that uses coupling-
cohesion sort of metrics in the context of software clustering
is by Seng et al. [28]; they have also based their metrics on
purely structural information, such as the shared name
substrings for functions and variables, function-call depen-
dencies, etc. The contribution by Wen and Tzerpos [29]
adds a new consideration to the calculation of cohesion-
coupling metrics for the purpose of software clustering.
These authors first try to isolate what they refer to as
“omnipresent objects,” these being heavily used objects and
functions in a software system, before the calculation of the
more traditional coupling-cohesion metrics. Their rationale
is that the omnipresent objects distort coupling-cohesion
analysis, which is indeed true when metrics are heavily
dependent on functional-call dependencies.

Another set of metrics has come out of information-
theoretic approaches to software clustering [30], [31]. Here,
the goal is to characterize modules on the basis of the
predictive power (as measured by, say, mutual information
in the information-theoretic sense) of the software artifacts
vis-a-vis the modules in which the artifacts reside. The
lower this predictive power, the more diffuse the attributes
of the software artifacts in a module. The predictive power,
when averaged over all the modules, then becomes a metric
of both cohesion and coupling. The method suggested in
[30] is different from this general information-theoretic
approach only in the sense that the authors have tried to
place the essentially counting-based metrical framework of
Briand et al. [8] in a probabilistic setting.

Finally, an earlier preliminary publication by us [32]
mentions the need for API-based metrics for measuring the
quality of software modularization and presents some
metrics for doing the same. Our present work is a major
overhaul, upgrade, and expansion of that earlier contribution.

3 THE NOTION OF MODULARITY—ENUNCIATION OF

THE UNDERLYING PRINCIPLES

Modern software engineering dictates that a large body of

software be organized into a set of modules. According to

Parnas [33], a module captures a set of design decisions

which are hidden from other modules and the interaction

among the modules should primarily be through module

interfaces. In software engineering parlance, a module

groups a set of functions or subprograms and data

structures and often implements one or more business

concepts. This grouping may take place on the basis of

similarity of purpose or on the basis of commonality of goal. The

difference between the two is subtle but important. An

example of a module that represents the first type of

grouping is the java.util package of the Java platform.

The different classes of this package provide different types

of containers for storing and manipulating objects.1 On the

other hand, a module such as the java.net package

groups software entities on the basis of commonality of

goal, the goal being to provide support for networking. The

asymmetry between modules based on these two different

notions of grouping is perhaps best exemplified by the fact

that you are likely to use a java.util class in a

java.net-based program, but much less likely to do so

the other way around.
In either case, modules promote encapsulation (i.e.,

information hiding) by separating the module’s interface

from its implementation. The module interface expresses

the elements that are provided by the module for use by

other modules. In a well-organized system, only the

interface elements are visible to other modules. On the

other hand, the implementation contains the working code

that corresponds to the elements declared in the interface.

In modern parlance, such a module interface is known as its

API (Application Programming Interface). It is now widely

accepted that the overall quality of a large body of software

is enhanced when module interactions are restricted to take

place through the published API’s for the modules.
The various dimensions along which the quality of the

software is improved by the encapsulation provided by
modularization include understandability, testability, change-

ability, analyzability, and maintainability. These specific traits
of software quality were recently articulated by Arevalo in
the context of object-oriented software design [34], but they
obviously apply to modularization in general.2

So, if modularization is the panacea for the ills of
disorganized software, on what design principles should
code modularization be based? In what follows, we will
enunciate such principles and state what makes them
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1. That all classes in the java.util package descend from just a couple of
interfaces is beside the point. The fact remains that the different classes are
meant to be used in different ways. For example, the manner in which the
class ArrayList is meant to be used is very different from the manner in
which the class HashMap is meant to be used.

2. In case the reader is wondering why our current work is limited to
non-OO software, the inheritance and containment relationships in OO
software can create intermodule dependencies that go beyond the purview
of the metrics we have formulated. Extending our metrics to OO systems is
one of our future goals.



intuitively plausible and what support each derives from
the research literature.3

P1. Principles Related to Similarity of Purpose. A module
groups a set of data structures and functions that
together offer a well-defined service. In other words,
the structures used for representing knowledge and
any associated functions in the same module should
cohere on the basis of similarity-of-service as
opposed to, say, on the basis of function call
dependencies. Obviously, every service is related
to a specific purpose. We present the following
principles as coming under the “Similarity of
Purpose” rubric:

. Maximization of Module Coherence on the Basis
of Similarity and Singularity of Purpose,

. Minimization of Purpose Dispersion,

. Maximization of Module Coherence on the Basis
of Commonality of Goals, and

. Minimization of Goal Dispersion.

P2. Principles Related to Module Encapsulation. As men-
tioned earlier, encapsulating the implementation
code of a module and requiring that the external
world interact with the module through its pub-
lished APIs are now a widely accepted design
practice. We now state the following modularization
principles that capture these notions:

. Maximization of API-Based Intermodule Call
Traffic and

. Minimization of non-API-Based Intermodule
Call Traffic.

P3. Principle Related to Module Compilability. A common
cause of intermodule compilation dependency is
that a file from one module requires, through import
or include declarations, one or more files from
another module. As a software system evolves and
as some of the modules begin to seem like utilities to
the developers, it is all too easy for such inter-
dependencies to become circular. For obvious
reasons, such compilation interdependencies make
it more difficult for modules to grow in parallel and
for the modules to be tested independently. There-
fore, to the largest extent possible, it must be
possible to compile each module independently of
all the other modules. When modules can be
compiled independently of one another, then, as
long as the module APIs do not change, the other
modules can be oblivious to the evolution of internal
details of any given module. This notion is captured
by the following principle:

. Maximization of the Stand-Alone Module
Compilability.

P4. Principle Related to Module Extendibility. One of the
most significant reasons for object-oriented software

development is that the classes can be easily
extended whenever one desires a more specialized
functionality. Extending object-oriented software
through the notion of subclassing allows for a more
organized approach to software development and
maintenance since it allows for easier demarcation of
code authorship and responsibility. While module-
level compartmentalization of code does not lend
itself to the types of software extension rules that are
easy to enforce in object-oriented approaches, one
nonetheless wishes for the modules to exhibit similar
properties when it comes to code extension and
enhancement. The following principle captures this
aspects of code modularization:

. Maximization of the Stand-Alone Module
Extendibility.

Module extendibility is a particularly important
issue for very large software systems in which the
modules are likely to be organized in horizontal
layers. This is an issue we will take up in Section 6.

P5. Principle Related to Module Testability. Testing is a
major part of software development. At the mini-
mum, testing must ensure that software conforms to
the prevailing standards and protocols. This is
commonly referred to as requirements-based testing.
But, even more importantly, testing must ensure that
the software behaves as expected for a full range of
inputs, both correct and incorrect, from all users and
processes, both at the level of the program logic in the
individual functions and at the level of module
interactions. Testing must take into account the full
range of competencies of all other agents that are
allowed to interact with the software. Testing proce-
dures can easily run into combinatorial problems
when modules cannot be tested independently;
meaning that if each module is to be tested for
N inputs, then two interdependent modules must be
tested for N2 inputs. A modularization procedure
must therefore strive to fulfill the following principle:

. Maximization of the Stand-Alone Testability of
Modules

P6. Principles Related to Acyclic Dependencies. For obvious
reasons (and also as pointed out by Martin [35] and
Seng et al. [28]), it is important to minimize the cyclic
dependencies between the modules of a body of
software. Cyclic dependencies directly negate many
of the benefits of modularization. It is obviously
more challenging to foresee the consequences of
changing a module if it both depends on and is
depended upon by other modules. Cyclic depen-
dencies become even more problematic when
modules are organized in the form of horizontal
layers in a large software system. (Layering serves
an important organizational concept for large sys-
tems; all the modules in a layer can only seek the
services of the layers below.) We therefore state the
following two principles:

. Principle of Minimization of Cyclic Dependen-
cies Amongst Modules, and
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3. We believe that it should be possible to state these principles in the
goal-driven framework proposed by [13]. We could, for example, treat the
principles under P2 as the goals, the quality focus as the interaction through
the API functions, and hypothesis refinement as consisting of the
maximization of the interaction through the API’s.



. Principle of Maximization of Unidirectionality
of Control Flow in Layered Architectures.

P7. Principles Related to Module Size. In light of the
findings reported by Emam et al. [36], in a new
software development effort started from scratch
today, one would not ordinarily insist that the
module sizes be roughly the same and equal to
some prespecified magic number. Nonetheless,
when modularizing legacy code that happens to be
in a chaotic state of organization, it would be highly
desirable to be able to bias a clustering algorithm
toward producing modules that are roughly of the
same size, whose value is dictated by considerations
related to software maintenance and such.4 As we
said earlier in the Introduction, placing all of the
code in a single module is technically a correct
modularization, albeit not very useful. We therefore
need metrics that can steer a modularization algo-
rithm away from producing unacceptably large
modules and, to the extent other important con-
siderations are not violated, toward producing
modules roughly equal in size. The following two
principles address this need:

. Principle of Observance of Module Size Bounds
and

. Principle of Maximization of Module Size
Uniformity.

The metrics we propose in the rest of this paper show

how good a given modularization is with respect to the

principles we have enunciated in this section.

3.1 Relationship of the Previous Metrics to the
Enunciated Principles

What follows is a summarization of the metrics mentioned

in our literature survey in Section 2. This summarization

states briefly the extent, if at all, to which the metrics

measure the quality of the software from the standpoint of

the modularization principles P1 through P7.

1. Halstead [1] and Cyclomatic [2] Measures. These
have focused on the control flow complexity at the
level of individual functions and subroutines and do
not directly relate to any of the modularity principles
stated earlier.

2. Maintainability Index [3]. This is a linear expression
based on the Halstead and cyclomatic measures as
well as module lines of code and module comments.
Clearly, this metric does not directly relate to any of
the listed principles either.

3. Coupling-cohesion-based metrics [4], [5], [7], [15].
These are measures of modularization quality based
on intermodule and intramodule relationships that
are derived from the structural dependencies of
modules obtained mainly through a static analysis of
software.

. These metrics can be broadly related to the
principles concerning module compilability,
extendibility, and testability (Principles P3, P4,
and P5). It is obviously the case that a cohesive
module that is just loosely coupled to other
modules exhibits less of a dependency on the
other modules. Consequently, its compilation,
extension and testing will have less of an impact
on the other modules.

. In this context, it may be observed that char-
acterizing modules primarily on the basis of
cohesion among entities (that constitute a mod-
ule) derived from structural dependencies (such
as function-call and data dependency) penalizes
modules in which the entities are grouped on the
basis of similarity of purpose. (A case in point
would be the java.util package of the Java
platform.) The work by [29] supports this
observation.

4. The modularity measure of [17]; modularization
quality (MQ) measure and its variations [20], [18],
[21], [22], [19], [23], [24], [26], [27]; coupling-
cohesion, size, cyclic dependency, software complex-
ity [28] measures for automated clustering.

. Several of the metrics proposed in [28] relate
to principles of acyclic dependency (P6) and
module size (P7), in addition to P3, P4, and
P5. The works by [19], [29] consider the notion
of omnipresent objects and clustering based on
omnipresent objects. These are loosely related
to the principles concerning the similarity of
service (P1).

5. The coupling-cohesion metric based on informa-
tion theoretic notions [30]. This metric measures
coupling-cohesion patterns among modules on the
basis of structural dependencies. This approach is
different from the other coupling-cohesion mea-
sures listed in items 3 and 4 above since those are
count-based, whereas this metric is pattern based.

. Like the other coupling-cohesion-based metrics
mentioned in items 3 and 4, this metric is related
to principles P3, P4, and P5.

6. Metric based on nonstructural information [31]. This
metric measures cohesiveness and coupling of
entities on the basis of mutual information in the
information-theoretic sense. The authors have used
the metric to guide a software clustering algorithm
to arrive at a set of cohesive modules.

. This metric is closely related to the Similarity of
Purpose principles (P1).

The metrics listed in items 1 though 5 above conform
only partly to the principles outlined earlier in this section.
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4. Previously it was believed [37], [38] that an ideal software system
would consist of a collection of modules whose sizes would all be roughly
the same (and that this size value would equal a prespecified number,
usually referred to as the magic number). It was shown that the number of
defects rose both as the modules became too small or too large. But now
some researchers believe that this conclusion, especially in the assertion that
the defect rate goes up even when the modules sizes are reduced, is perhaps
statistically flawed. It is believed that the source of the flaw is the
observation made by Rosenberg [39] that even when two random variables
X and Y are uncorrelated, the variables X and Y =X will exhibit a negative
correlation. What that implies is that, even if the number of defects and the
modules sizes were to be uncorrelated, the number of defects per unit size
would exhibit a correlation with size.



As a case in point, the coupling-cohesion-based metrics
certainly do not measure the similarity of purpose or the
commonality of goals (principles P1). Perhaps the metric
that comes closest to fulfilling the spirit of P1 is the one
presented in [31]. These prior contributions certainly do not
measure how effectively the principle that says that all
intermodule function calls should be routed through the
API’s of the modules (principles P2) is honored. These
metrics also do not measure the extent to which a module
encapsulates its internal (meaning non-API) functions and
keeps them from getting exposed to the external world. All
of the metrics listed above also do not provide a good
measure of the consequences of cyclic dependencies
between the modules, especially when the modules reside
in layered architectures.

3.2 Notation

In the rest of this paper, we will denote a software system
by the symbol S.

. S will be considered to consist of a set of modules
M¼ fm1;m2; . . . ;mMg. M will stand for the number
of modules. Thus, jMj ¼M.

. All of the functions in S will be denoted by the set
F ¼ ff1; . . . fFg. These are obviously assumed to be
distributed over the setM of modules. Furthermore,
jF j ¼ F .

. An API function for a given module will be denoted
by fa and a non-API function of a module as fna.

. We will use the notation L to denote the set of layers
fL1 � � �Lpg into which the modules are organized if a
horizontally layered architecture is used for the
software.

. KðfÞ will denote the total number of calls made to a
function f belonging to a module m. Of these,
KextðfÞ will denote the number of calls coming in
from the other modules, and KintðfÞ the number of
calls from within the same module. Obviously,
KðfÞ ¼ KextðfÞ þKintðfÞ.

. KextðmÞ will denote the total number of external
function calls made to the module m. If m has f1 � � � fn
functions then KextðmÞ ¼

P
f2ff1���fngKextðfÞ.

. bKðfÞ will denote the total number of calls made by a
function f .

. For a module m, Kj
extðfÞ ðK

j
extðfÞ � KextðfÞ) will

denote the number of external calls made to f (in
module m) from another module mj.

4 COUPLING-BASED STRUCTURAL METRICS

Starting with this section, we will now present a new set of
metrics that cater to the principles enunciated in Section 3.
We will begin with coupling-based structural metrics that
provide various measures of the function-call traffic
through the API’s of the modules in relation to the overall
function-call traffic.

4.1 Module Interaction Index

This metric calculates how effectively a module’s API
functions are used by the other modules in the system.
Assume that a modulem has n functions ff1 � � � fng, of which
the n1 API functions are given by the subset ffa1 � � � fan1g. Also

assume that the system S has m1 � � �mM modules. We now
express Module Interaction Index (MII) for a given modulem
and for the entire software system S by

MIIðmÞ ¼
P

fa2ffa
1
���fa

n1
gKextðfaÞ

KextðmÞ
¼ 0; when no external calls made to m;

MIIðSÞ ¼ 1

M

XM

i¼1
MIIðmiÞ:

ð1Þ

MII measures the extent to which a software system adheres
to the module encapsulation principles P2 presented in
Section 3. Recall that these principles demand a well-
designed module should expose a set of API functions
through which other modules would interact. These API
functions represent the services that the module has to offer.
Since these API functions are meant to be used by the other
modules, the internal functions of a module typically would
not call the API functions of the module. Therefore, a non-
API function of a module should not receive external calls
to the maximum extent possible. In other words, ideally, all
the external calls made to a module should be routed
through the API functions only and the API functions
should receive only external calls.

Note that
P

fa2ffa
1
���fa

n1
gKextðfaÞ for a module m increases

as more and more intermodule calls are routed through the
API functions of m. We obviously have MIIðmÞ ! 1 in the
ideal case when all the intermodule calls are routed through
the API functions only. By the same argument, MIIðSÞ
should also be close to 1 in the ideal case. Therefore, MII
quantitatively measures the extent to which encapsulation
related principles have been followed.

Complex software systems sometimes employ what are
known as driver modules to orchestrate the other modules.
For a driver module, MIIðmÞ ¼ 0 will likely be the case.
The fact that a modularization effort must allow for such
modules does not detract from the fact that the overall goal
of a modularization effort should be to achieve as large a
value as possible for MII while allowing for the possibility
that some modules may not be able to contribute a fair share
to the overall index.

4.2 Non-API Function Closedness Index

We now analyze the function calls from the point of view of
non-API functions. Recall that the module encapsulation
principles P2 also require minimization of non-API-based
intermodule call traffic. Ideally, the non-API functions of a
module should not expose themselves to the external world.
In reality, however, a module may exist in a semimodular-
ized state where there remain some residual intermodule
function calls outside the API’s. (This is especially true of
large legacy systems that have been partially modularized.)
In this intermediate state, there may exist functions that
participate in both intermodule and intramodule call traffic.
We measure the extent of this traffic using a metric that we
call “Non-API Function Closedness Index,” or NC.

Extending the notation presented in Section 3.2, let Fm,
F a
m, and F na

m represent the set of all functions, the API
functions, and the non-API functions, respectively, in
module m. Ideally, Fm ¼ F a

m þ Fna
m . But since, in reality,

we may not be able to conclusively categorize a function as
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an API function or as a non-API function, this constraint
would not be obeyed. The deviation from this constraint is
measured by the metric

NCðmÞ ¼ jFna
m j

jFmj � jF a
mj

¼ 0 if there are no non�API functions;

NCðSÞ ¼ 1

M

XM

i¼1
NCðmiÞ:

ð2Þ

Since a well-designed module does not expose the non-
API functions to the external world and all functions are
either API functions or non-API functions, jFmj � jFa

mj
would be equal to jFna

m j. Therefore, NCðmÞ ¼ 1 for a well-
designed module. Otherwise, the value for this metric
will be between 0 and 1.

4.3 API Function Usage Index

This index determines what fraction of the API functions
exposed by a module is being used by the other modules.
When a big, monolithic module presents a large and
versatile collection of API functions offering many different
services, any one of the other modules may not need all of
its services. That is, any single other module may end up
using only a small part of the API. The intent of this index is
to discourage the formation of such large, monolithic
modules offering services of disparate nature and encou-
rage modules that offer specific functionalities. Suppose
that m has n API functions and let us say that nj number of
API functions are called by another module mj. Also
assume that there are k modules m1 � � �mk that call one or
more of the API functions of module m. We may now
formulate an API function usage index in the following
manner:

APIUðmÞ ¼
Pk

j¼1 nj

n � k
¼ 0 if n ¼ 0;

APIUðSÞ ¼ 1

Mapiu

XMapiu

i¼1
APIUðmiÞ;

ð3Þ

where we assume that there are Mapiu number of modules
that have nonzero number of API functions.

This metric characterizes, albeit indirectly and only
partially, the software in accordance with the principles
that come under the Similarity of Purpose (P1) rubric. For
example, maximizing module coherence on the basis of
commonality of goals does require that the modules not be
monolithic pieces of software and ought not to provide
disparate services. So making the modules more focused
with regard to nature of services provided by the API
functions would push the value of this metric close to its
maximum, which is 1. However, it must be mentioned that
since the metric does not actually analyze the specificity of
the API functions, one could indeed conjure up a set of
modules that are far from being goal-focused and that
nonetheless yield a high value for this metric. So, this metric
all by itself will not force a set of modules to become less
monolithic. Nonetheless, when considered in conjunction
with the other metrics, this metric can be expected to play a
desirable role in the characterization of a set of modules.

4.4 Implicit Dependency Index

An insidious form of dependency between modules comes
into existence when a function in one module writes to a
global variable that is read by a function in another module.
The same thing can happen if a function in one module
writes to a file whose contents are important to the
execution of another function in a different module. And
the same thing happens when modules interact with one
another through database files. We refer to such inter-
module dependencies as implicit dependencies.

Detecting implicit dependencies often requires a dy-
namic runtime analysis of the software. Such analysis is
time consuming and difficult to carry out for complex
business applications, especially applications that run into
millions of lines of code and that involve business scenarios
that can run into thousands, each potentially creating a
different implicit dependency between the modules. Here,
we propose a simple static-analysis-based metric to capture
such dependencies. This metric, which we call the Implicit
Dependency Index (IDI), is constructed by recording for
each module the number of functions that write to global
entities (such as variables, files, databases), with the proviso
that such global entities are accessed by functions in other
modules. We believe that the larger this count is in relation
to the size of the intermodule traffic consisting of explicit
function calls, the greater the insidiousness of implicit
dependencies.

For each module mi, we use the notation Dgðmi;mjÞ,
i 6¼ j, to denote the number of dependencies created when a
function in mi writes to a global entity that is subsequently
accessed by some function in mj. Let Dfðmi;mjÞ, i 6¼ j
denote the number of explicit calls made by all the functions
in mi to any of the functions in mj. We claim that the larger
Dg is in relation to Df , the worse the state of the software
system. We therefore define the metric as follows:

IDIðmÞ ¼
P

mj2CðmÞDfðm;mjÞP
mj2CðmÞðDgðm;mjÞ þDfðm;mjÞÞ

¼ 1 when CðmÞ ¼ ;;

IDIðSÞ ¼ 1

M

XM

i¼1
IDIðmiÞ;

ð4Þ

where CðmÞ is the set of all modules that depend on the
module m through implicit dependencies of the sort we
have described in this section.

With regard to where this metric belongs in the
landscape of the principles we presented in Section 3,
as we have said before, ideally all the interaction between
modules must be through published API functions,
implying that the number of implicit dependencies must
be few and far between. Therefore, an ideal API-based
system will make IDI equal to 1. Clearly, this is in
conformance with the principles of module encapsulation
(P2) that requires minimization of such implicit, non-API-
based communications.

5 SIZE-BASED METRICS

5.1 Module Size Uniformity Index

As we mentioned earlier in Section 3, for a freshly started
software development effort involving expert program-
mers, there would ordinarily be no reason to subject
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module sizes to any particular constraints in terms of any
magic numbers. But for automatic or semiautomatic
modularization of chaotic legacy code, we need metrics
that would steer the modularization algorithm toward
producing modules whose sizes are within acceptable
bounds. As stated earlier, placing all of the code in a single
module is technically a correct modularization, but
obviously not acceptable. A modularization algorithm
obviously needs a bias toward producing modules whose
sizes do not violate acceptable bounds and whose size
variations are minimal, subject, of course, to the fulfillment
of other modularization constraints.

The constraint with regard to size uniformity can be
expressed in terms of the average value � and the standard
deviation � associated with the module sizes. We can define
a Module Size Uniformity Index (MSUI) as the ratio

MSUIðSÞ ¼ �

�þ � : ð5Þ

Obviously, the closer this index is to 1, the greater the
uniformity of the module sizes. The formula for this metric
assumes that the standard deviation is not comparable to
the average size value.

5.2 Module Size Boundedness Index

While the previous metric will “push” a modularization
algorithm to make the modules as nearly uniform in size as
possible, it could still result in modules that are too large.
We now formulate a metric that measures the extent to
which the module sizes differ from some desirable value.
We will assume that this “magic number” for the size is �.

We start by defining a deviation in module size from the
magic size by �i ¼ jSzi � �j, where Szi is the number of
lines in module mi. Further, let �max ¼ maxif�ig. Ideally,
8i¼1...M , �i ¼ 0 and a histogram of �i values will have a single
bar of height M at �i ¼ 0. In practice, a histogram of �is
could be spread over the range ½0; �max� of values. We need
an approximate way to measure as to what extent the
deviations depart from the ideal.

Here we will use a rationale based on the Kullback-
Leibler (KL) divergence for measuring the “distance”
between two probability distributions. If we could assume
that every measured size deviation between 0 and �max has
a nonzero probability of occurrence, we can show that the
KL “distance” between the ideal and the actual distribu-
tions for the deviations would be � logðprobf� ¼ 0gÞ, where
probf� ¼ 0g is obviously proportional to the actual number
of modules whose size deviations from the magic size are
zero. We would, of course, want to weight this measure by
�max=� because as �max becomes a negligible fraction of �,
we stop caring how the deviations are distributed in the
range ½0; �max�—they will all become unimportant. This
should explain the following formula to measure the extent
to which the distribution of the actual size deviations differs
from the ideal distribution:

d ¼ � �max
�
� log

jf�i : �i < �gj
M

� �
¼ 0 when �max ¼ 0;

ð6Þ

where the numerator in the argument to the logarithm is the
cardinality of the set of �is whose values are less than the
user-specified parameter � . Except for the special case of
d ¼ 0 shown above, the “distance” d is lower-bounded by a
value close to 0, which corresponds to the case when the
sizes of all modules except one (the one for which the
deviation corresponds to �max) are at the magic number. The
value of d would be upper-bounded by some large number
depending on the least number of modules whose size
deviations can be expected to be within � . To convert d into
a properly normalized metric, we now state5

MSBIðSÞ ¼ e�d: ð7Þ

It is evident from (5) that MSUI increases as the standard
deviation of the module sizes from the average module size
decreases. This obviously addresses the principles related to
module size (P7). More specifically, this metric characterizes
the software according to the principle Maximization of
Module Size Uniformity.

Similarly, (7) measures the extent to which the module
size bound as specified by � is honored by the individual
modules. Evidently, this metric also addresses the princi-
ples related to module size (P7). More specifically, it
characterizes the software according to the principle
Observance of Module Size Bounds.

We should also mention that there exist several metrics
in the literature related to the size of modules. For instance,
Halstead length [1], DIT (depth of inheritance), NOC
(number of methods), WMC (weighted method count) [7],
counts of lines (LOC), modules and procedures [8]. Unlike
MSUI and MSBI, these metrics provide numerical counts of
various size-related aspects of a system.

6 ARCHITECTURAL METRICS

In the context of this paper, by architecture we mean an
organization of the modules into higher-level structures,
especially the horizontally layered structures. When a
system consisting of millions of lines of code is modular-
ized, it is unlikely that the modules will all exist at the same
level of utility. The least organization that will be imposed
on the modules will be some sort of horizontal layering in
which modules in any one layer are only allowed to call the
modules in layers below them. Such layered organization of
the modules is considered to be an important architectural
principle by the software design community [40], [41].

Imposing such layering on the modules is made
complicated by the presence of cyclic dependencies among
modules. In the rest of this section, we will present three
metrics that relate to layered organization of modules in the
presence of possible cyclic dependencies. We will start by
first addressing what it means for the modules to be
cyclically dependent on one another and we will define a
metric that is focused on just this aspect of intermodule
relationships. Next, we will address the issue of modules
organized in horizontal layers. Here, we will introduce the
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concept of a Layer Organization Index (LOI) and present a
related metric that takes into account any cyclic dependen-
cies between the modules that reside in different layers.
Finally, our third metric in this section will address the
issue of stability/volatility of the modules that reside in
different layers of a layered system. In large, layered
systems, you want the modules in the lower layers to be
relatively more stable with respect to any future changes.
Recognizing the difficulty of devising a metric to measure
the stability/volatility of a layered system, we will none-
theless follow Martin [35] and present a metric that tries to
construct such a measure on the basis of fan-in and fan-out
dependencies among the modules.

6.1 Cyclic Dependency Index

We now present a metric that measures the extent of cyclic
dependencies between the modules of a system. Following
Seng et al. [28], the metric is based on the notion of strongly
connected components ðSCCÞ in a directed module depen-
dency graph MDG ¼ <M; E > , where M represents the
nodes corresponding to the modules and the arcs E the
pairwise dependencies between the modules. An arc
connecting two nodes means that the two modules
corresponding to the nodes are either explicitly or implicitly
dependent on each other. In keeping with our earlier
discussion, explicit dependencies come into play when a
function in one module calls a function in another module.
And implicit dependencies come into a play through shared
global variables, a function in one module writing into a file
that is read by a function in another module, etc.

An SCC in the graph MDG is a maximal set of vertices
(i.e., modules) in which there exists a path from every
vertex (in the SCC set) to every other vertex in the same set.
(With this definition, an SCC has the desirable property of
being able to capture multiple cycles). Furthermore, an SCC
has the property that if the module dependency graph does
not contain any cycles at all, then the number of strongly
connected components is exactly equal to the number of
nodes (modules) in the graph. In such a case, for every
SCC, we have jSCCj ¼ 1.

A cyclic dependency metric can now be formed by
comparing the sum of the cardinalities of all the SCCs with
the cardinality of the module dependency graph itself. We
can write

CyclicðMÞ ¼ number of SCC inM
jMj :

This metric evidently caters to the “Principle of Mini-
mization of Cyclic Dependencies Among Modules.” The
value of CyclicðMÞ equals 1 for a system having no cycles.
The number of SCCs for an acyclic system is equal to the
number of modules.

6.2 Layer Organization Index

A layer provides a set of services that can be used by layers
above it. A layer is only aware (function calls are only made
to the lower layers) of the layer below it and is not aware of
the layer above it [40]. A layer can be thought of as
horizontal partitioning of the system. There are two types of
layering: 1) Closed, where a function in layer Li can only
make calls to the functions in the immediately lower layer

Liþ1, and 2) Open, where a function in Li can make calls to

functions in any lower layer.
Suppose L denotes a mapping from a set of modulesM

to an ordered set of layers fL1 � � �Lpg into which the

modules have been organized, with L1 denoting the topmost

layer, L2 the layer below L1, and so on. Thus, LðmÞ is the

layer where the module m resides. Suppose that KLi
extðmÞ

denotes the number of external calls made to a module m

(residing in layer Li) from the modules residing in layers

other than Li. We have used the notation Li to consider the

calls from all possible layers except Li.

Next, let KLi�1
ext ðmÞ be the number of external calls made

to a module m (residing in layer Li) from the modules in the

immediate upper layer Li�1.
The Layer Organization Index (LOI) for the layer Li is

defined as

LOIðLiÞ ¼
P
8m2Li K

Li�1
ext ðmÞP

8m2Li K
Li
extðmÞ

:

LOIðL1Þ ¼ 0, i.e., the LOI of the topmost layer is considered

to be 0.
Now, we will extend the above metric to the entire

system. While formulating the system-level metric, we

consider the existence of cycles among modules across

layers and within layers. Those of us who are in the thick of

dealing with large software systems based on layered

architectures often come across situations where peer

modules collaborate heavily among themselves to perform

a complex business workflow. Such a collaboration can

result in cycles. Cycles among peer modules are generally

acceptable when they are in the same layer. However, it is

highly undesirable if the modules engaged in cyclic

dependencies cross the layer boundaries, thereby violating

the layering principle. In the LOI metric we present next,

the metric will be forgiving of cyclic dependencies within

the layers, but will penalize any cyclic dependencies across

the layers.
Let us assume that the system consists of q number of

SCC components. Obviously, the number of modules in an

SCC is � 1, i.e., jSCCj � 1. When the module dependency

graph is acyclic, q ¼M.
Next, let LðSCCiÞ be the set of layers involved in the

ith SCC. That is, LðSCCiÞ ¼ fLðmÞjm 2 SCCig. Obviously

jLðSCCiÞj ¼ 1 for a strongly connected component when all

of its modules are in the same layer. On the other hand,

jLðSCCiÞj > 1 for the case when a strongly connected

component contains modules that populate multiple layers.

The condition jLðSCCiÞj ¼ 1 is acceptable, but the condition

jLðSCCiÞj > 1 is not. The following formula exhibits this

desirability property:

1�
Pq

i¼1ðjSCCij � 1ÞjLðSCCiÞj

ðM � 1Þp ;

where M > 1 is the total number of modules in the system

organized in p layers. This formula has the following

characteristics:
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. When the module dependency graph is acyclic,
jSCCij ¼ 1; i ¼ 1 � � � q. In that case, the above formula
yields the best result, which is 1.

. At the other extreme, all M modules distributed in
p layers exist in one SCC. In such a case,

ðjSCCij � 1ÞjLðSCCiÞj ¼ ðM � 1Þp:

This causes the above formula to yield the worst

value of 0.
. The formula

Pq

i¼1
ðjSCCij�1ÞjLðSCCiÞj

ðM�1Þp is always bounded
between 0 and 1 because of the property that

xn1 þ � � � þ xnp � ðx1 þ � � � þ xpÞn

for nonnegative xis.

With these observations, we can describe the system

level LOI as follows:

LOIðSÞ ¼ 1

p� 1

Xp

i¼2
LOIðLiÞ

� �
�

1�
Pq

i¼1ðjSCCi � 1jÞjLðSCCiÞj

ðM � 1Þp

 !
¼ 0 if p � 2:

ð8Þ

Observe that the system level LOI is impacted by both the

interlayer calls and the skipping of layers in the interlayer

calls. Also, larger the cycles, lower is the value of LOI.
Clearly, the LOI metric characterizes software according

to the principle of Maximization of the Unidirectionality of

Control Flow in Layered Architectures (P6) and strongly

discourages the existence of cycle across multiple layers.

6.3 Module Interaction Stability Index

As mentioned in the introduction to this section, horizontal

layering is the least organization one would want to impose

on the modules of large and complex software. A desirable

property of such an architecture is that the modules in the

lower layer be more stable in relation to the modules in the

upper layers and that any changes made to the overall

software be more confined to the upper layers and, to the

extent possible, not impact the lower layers.
Measuring such characteristics in a quantitative way is

challenging, since it is difficult to anticipate a priori

whether a given module is likely to change, as changes

often depend on some unpredictable external situations

such as market pressures and customer requests. (In

recent years, there have been efforts to predict and

visualize module changes based on the revision histories

[42], [43], but these do not provide a mechanism to

measure the effect of module changes quantitatively.)

Martin [35] has proposed a simplified approach to

measure the stability based on the fan-in and fan-out of

modules in a module dependency graph. Though this

metric in [35] was originally proposed in the context of

object-oriented systems, we have adopted its underlying

concepts (such as afferent and efferent couplings, and

instability) to develop a similar metric for non-object-

oriented systems. We call this metric the Module Interac-

tion Stability Index (MISI).

Following the notation in the previous subsection, let L :
M! fL1 � � �Lpg be the assignment of the modules to the
different layers and LðmÞ be the layer where m resides.
Furthermore, in the stack of layers, let L1 and Lp be the
highest and the lowest layers, respectively. We now rank-
order the layers with the � operator defined as

L1 � Lp and Li � Lj iff 1 � i; j � p & i � j:

For a given module m, let faninðmÞ be the set of modules
that depend on m and let fanoutðmÞ be the set of modules
that m depends on. Following Martin [35], the instability
IðmÞ of m is defined as

IðmÞ ¼ jfanoutðmÞj
jfaninðmÞj þ jfanoutðmÞj :

Let SDðmÞ 	 fanoutðmÞ be the set of stable modules with
respect to m, defined as

SDðmÞ ¼ fmi 2 fanoutðmÞ j IðmÞ
> IðmiÞ & LðmÞ � LðmiÞg:

The above equation states that SDðmÞ are only those
modules 1) that m depends on 2) that are more stable than
m and 3) that reside in layers lower than (or the same as) the
layer of the module m.

Now, MISI can be defined as

MISIðmÞ ¼ jSDðmÞj
jfanoutðmÞj

¼ 1 when fanoutðmÞ ¼ ;;

MISIðSÞ ¼ 1

M

XM

i¼1
MISIðmiÞ:

ð9Þ

This is the same M as in (8). For a well-modularized system,
all or most of the modules would depend on modules
which are more stable and reside in lower layers. Hence, for
a well-modularized system, jSDðmÞj ’ jfanoutðmÞj and
MISIðmÞ ! 1. Clearly, if a system has a high MISI index,
any changes or extensions made to the system will affect
only a small number of modules in the upper layers of the
system. The metric conforms to the principle of Maximiza-
tion of Stand-Alone Module Extendibility (P4).

6.4 Testability Index

It goes without saying that a module that has few
dependencies on other modules would be easier to test.6

So, it is useful to measure the extent to which modules
depend on one another with regard to testability. Note that
just because a module m1 calls an API function of module
m2 does not imply that m1 depends on m2 from the
standpoint of testability. A testability-dependence is created
if the assessment of the correctness of the input-output
relationships during the testing of a module depends on the
correctness of the input-output relationship of another
module. That is, if the testing of module m1 requires
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another module m2 to produce intermediate results that
then get used in module m1, we have a testability-
dependence between the two modules. We measure the
extent of such testability-dependencies with the help of the
Normalized Testability-Dependency Metric ðNTDMÞ that
is defined as described below.7

Let depðmiÞ be the number of other modules that a given
module mi has a testability-dependence on. We now define
a Testability-Dependency Count (TDC) as

TDC ¼
XM
i¼1

depðmiÞ;

where M is the total number of modules in the system. We
now define our NTDM metric to be

NTDM ¼ 1� TDC

M � ðM � 1Þ : ð10Þ

Note that TDC varies from 0 to M � ðM � 1Þ depending on
the extent of testability-dependencies between the modules.
The upper limit is reached when a module depends on
every other module (i.e., M � 1) with regard to its
testability, and the lower limit is reached when every
module depends only upon itself and is independent of all
other modules from the standpoint of testability. The value
of NTDM will be 1 when the modules are independently
testable (i.e., when depðmÞ ¼ 0), and it will be 0 when every
module depends on every other module for its testability.

This metric obviously characterizes the software accord-
ing to the principle of Maximization of the Stand-Alone
Testability of Modules (P5).

7 METRICS BASED ON SIMILARITY OF PURPOSE

In software intended for business applications, it is
frequently the case that either the name of a function or
the names of some of the variables used in the function, or
the comments associated with a function hold some clue to
the purpose of the function inside the module and to the
purpose of the module itself. For example, this could be the
case for a module devoted to interest calculations in
banking software; the word “interest,” either fully or in
some abbreviated form, is likely to show up in various
artifacts of the module. The developers of complex software
often leave behind such clues because it makes for easier
reading of the software and for its debugging.8 We can refer
to these clues as concepts.9 With regard to software
characterization, we may then use the concepts to assess
whether or not the software adheres to the principles that
are based on the semantics of the module contents.

Metrics proposed in this section are based on the
assumption that the domain experts have provided a set of
concepts that may appear as keywords and/or their
synonyms in the body of the code. Let C ¼ fc1; . . . ; cNgdenote

a set ofN concepts for a given system S. Also assume that the

system consists of set of functions F ¼ ff1; . . . fFg functions

distributed over M modules fm1;m2; . . . ;mMg. In the rest

of this section, we will also use the symbol fi as denoting

the set of all functions that are in module mi. For each

function, we first search the number of occurrences of each

concept (and its synonyms) in the function signature and

function body. Let us denote the concept frequency asHfðcÞ
to be the frequency of occurrence of the concept c 2 C for a

given function f 2 F .
As an illustration of the concept content of a body of

software, consider the Apache httpd 2.0.53 sources that

contain concepts such as authentication, caching,

protocol, logging and so on. Table 1 shows the

frequencies of some of the main concepts and their

synonyms in the software. In this example,

HallowcmdðauthenticationÞ ¼ 3:

Next, we normalize the frequency distribution of these

concepts. It may so happen that a particular concept occurs

more frequently than other concepts across all functions,

thereby causing apparent skewing of the distribution. In

order to avoid that, we first find the global maximum of

concept frequency. Let

HmaxðciÞ ¼ maxfHfðciÞ; 8f 2 Fg:

We then normalize each frequency as bHfðciÞ ¼ Hf ðciÞ
HmaxðciÞ .

7.1 Concept Domination Metric (CDM)

If a module is highly purpose focussed, a probability

distribution of the concepts in the module will be peaked at

the concept corresponding to the purpose of the module. So

we can say that the more nonuniform the probability

distribution of the concepts in a module, the more likely

that the module conforms to the singularity of purpose. The

Concept Domination Metric (CDM) gives us a measure of

this non-uniformity of the probability distribution of the

concepts. In the worst case, all the concepts will be

uniformly distributed and the value of the metric would

be expected to go to zero. A convenient measure from

probability theory that has such properties is the Kullback-

Leibler divergence. We will now show this divergence can

be adapted for a metric suited to our purpose.
We start by creating a normalized concept frequency at

the module level. For a given module m, the frequency of

occurrence of a given concept ci can be obtained from the
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7. Our NTDM metric is an adaptation of the Cumulative Component
Dependency ðCCDÞ metric of Lakos [44].

8. This is likely to be even more so in the future because of the modern
emphasis on software that is self-documenting.

9. We are not using the notion of a concept in the same formal sense as in
[45], [46] where a concept is defined over binary relations between objects
and attributes. In our work, any artifact that holds a clue as to the purpose
of a module is a concept.

TABLE 1
Concept Frequency Table



normalized concept frequency of all the functions that
constitute the module as

bHmðciÞ ¼
X
8f in m

bHfðciÞ:

We next find the concept cmmax that maximizes bHmðciÞ for
each module m, i.e. bHmðcmmaxÞ ¼ maxci bHmðciÞ Next, we
convert the normalized frequency into a discrete probability
measure as

gmðciÞ ¼
bHmðciÞPN

j¼1
bHmðcjÞ

; ð11Þ

where N is the total number of concepts as mentioned
earlier.

We next measure the Kullback-Leibler divergence of a
uniform probability distribution from the probability
distribution gm:

KLðgmÞ ¼ logN þ
XN
i¼1

gmðciÞ � logðgmðciÞÞ; ð12Þ

where the logarithms are to base 2.
We now define the dispersion of the concepts in any

given module m relative to all concepts whose normal-
ized frequencies of occurrence are within a predefined
threshold � of gmðcmmaxÞ. This permits the purpose of a
module to be stated in terms of not just one dominating
concept but by a set of concepts that are more or less
equally important. The following rule partitions the set C
of concept for a module m into two subsets C1

m and C2
m:

C1
m ¼

fcijgmðciÞ > � � gmðcmmaxÞg; if KLðgmÞ > �

;; otherwise;

�
C2
m ¼ C � C1

m:

ð13Þ

Note that the existence of C1
m is predicated on the KL-

divergence exceeding a certain threshold. If the KL-
divergence does not exceed this threshold, the concept
distribution is much too uniform to allow for the partition-
ing of C into a subset C1

m of dominating concepts.
We will now state the following observation to establish

some desirable properties for the KL-divergence and the
concept subsets C1

m and C2
m:

Observation. When the total number of concepts satisfies
N ¼ 2k, the KLðgmÞ divergence of (12) is bounded by ½0; k�.
When a module contains only one concept, the KLðgmÞ
distance becomes maximum and equal to k.

Proof. Being nonnegative, the divergence KLðgmÞ is
bounded on the low side by 0. KLðgmÞ becomes zero
when the discrete probability distribution gm is uniform.
At the other extreme, when a modulem contains only one
concept c 2 C; gmðcÞ ¼ 1 and for all other c0 2 C; gmðc0Þ ¼ 0.
In that case, KLðgmÞ ¼ logN þ log 1 which is equal to k.tu
We define the dispersion for a module m with respect to

the concept cmmax and other almost equally frequently
occurring concepts in C1

m by

Dm ¼
P

ci2C1
m
gmðciÞP

ci2C1
m
gmðciÞ þ

P
ci2C2

m
gmðciÞ

: ð14Þ

We need to show that the value ofDm will always be close to
1 when C1

m is of low cardinality and has the maximum
concept frequency. Note that when C1

m is not ;, its cardinality
is always low. Further, when C1

m has maximum concept
frequencies,

P
ci2C1

m
gmðciÞ 


P
ci2C2

m
gmðciÞ. This in turn will

result in Dm ! 1.
Finally, we define the Concept Domination Metric (CDM)

for the system as

D ¼ 1

M

X
m2M

Dm; ð15Þ

where M is the total number of modules.
This metric measures the extent to which the modules in

a software system are cohesive with respect to the concepts
that contain the largest number of clues regarding the main
purpose of a module. This metric characterizes a modular-
ization according to the principle Maximization of Module
Coherence on the Basis of Similarity and Singularity of
Purpose (P1). Since this metric also takes into account the
dispersion of concepts, the metric also characterized the
modularization according to the principle Minimization of
Purpose Dispersion (also P1).

7.2 Concept Coherency Metric

Using the concept probability function gmðcÞ for a module m
as given by (11), we will now formulate another metric that
is along the lines of the criterion used in [31] for software
clustering. We call this metric Concept Coherency Metric.
This metric is based on the information-theoretic notion that
if a concept is central to the services offered by a module,
then the mutual information between the module and the
concept should be high. Mutual information between a
concept and a module becomes high when each is able to
predict the likelihood of the occurrence of the other with a
high probability. Obviously, if a concept is orthogonal to the
services offered by a module, neither can tell us much about
the likelihood of the occurrence of the other. In this case, the
mutual information between the two will be close to zero.

To formulate this metric, let C be a random variable
whose value can be any element of the set C of all
concepts. Similarly, let M be a random variable that can
take on any value from the set M of all modules. The
mutual information between the concepts and the mod-
ules is given by

IðC; MÞ ¼ HðCÞ �HðCjMÞ;

where HðCÞ denotes the entropy associated with all the
concepts in the system, and HðCjMÞ denotes the condi-
tional entropy of the concepts vis-a-vis the modules. The
entropy HðCÞ can be expressed as

HðCÞ ¼ �
X
c2C

�ðcÞ log �ðcÞ;

where �ðcÞ is the discrete probability function over the
concepts, the probability function expressing the relative
frequencies of all the concepts in the system. The condi-
tional entropy is given by

HðCjMÞ ¼ �
X
m2M

�ðmÞ
X
c2C

gmðcÞ log gmðcÞ;
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where �ðmÞ denotes the probability with which a particular

module m is selected from the set M of modules. If we

assume this probability to be uniform, the expression for

conditional entropy reduces to

HðCjMÞ ¼ 1

M

�
�
X

c 2 C gm1
ðcÞ log gm1

ðcÞ � � � �

�
X

c2C gmM
ðcÞ log gmM

ðcÞ
�
:

We now define the Concept Coherency Metric (CCM) as

CCM ¼ IðC; MÞ
logðjCjÞ : ð16Þ

Following the information theoretic notion, we can interpret

CCM as the normalized measure of the extent to which one

can predict the occurrence of a concept when a module is

given. Observe that the denominator, used for normal-

ization, represents the best possible scenario where the

conditional entropy HðCjMÞ ¼ 0 (i.e., the uncertainty with

which one can predict the occurrence of a concept for a

given module is 0).
It may further be observed that, in the worst case, one

may have all of the software in a single module (a

monolithic system having jMj ¼ 1). In the worst case

scenario, the IðC; MÞ becomes 0 as explained below:

IðC; MÞjjMj¼1 ¼ HðCÞ �HðCjMÞ
¼ HðMÞ �HðMjCÞ
¼ �

X
m2M �ðmÞ log �ðmÞþX
c2C �ðcÞ

X
m2M �ðmjcÞ logð�ðmjcÞÞ

¼ 0 since �ðmÞ ¼ 1 and �ðmjcÞ ¼ 1Þ:

Vis-a-vis the CDM metric, the CCM metric adopts an

information-theoretic approach to measure the extent to

which the modules in the system are cohesive with respect

to the main concepts embodied in the modules. Like CDM,

this principle also characterizes a modularization according

to the principle Maximization of Module Coherence on the

Basis of Similarity and Singularity of Purpose (P1).

8 MODULARITY PRINCIPLES—MODULARITY

METRICS CONFORMANCE

Table 2 summarizes the connection between the principles

enunciated in Section 3 and the metrics presented in

Section 4 through 7.

9 EXPERIMENTS

Our experimental validation of the metrics is made

challenging by the fact that it is difficult to find examples

of non-object-oriented software that are modularized and

that have published APIs for each of the modules. Many of the

publicly available software systems with published APIs for

the modules, such as Qt, GNOME/GTK+, wxWindows,

JDK and many others, are object-oriented. Our metrics are

not meant for such software.

We have therefore resorted to applying our metrics to
software systems that are well-organized into directory
structures (mostly on the basis of the services offered by the
different directories). As we will explain later, it is relatively
straightforward to label the functions in the different
directories of these software systems as API or non-API
functions on the basis of the relative frequencies of the call
traffic from within a directory and from the other
directories.10 The software systems we chose included a
mix of open source systems and several proprietary
business applications. These software systems are medium
to large sized, ranging from 160,000 to several million lines
of C and C++ programs. The largest proprietary business
application we tested the metrics on ran into 10 million lines
of C code. But, for obvious reasons, we will limit our
discussion in the rest of this section to the freely available
software.

The open source software systems chosen for reporting
our experimental results in this section—MySQL, Apache,
Mozilla, GCC, the Linux kernel, and Postgresql—are highly
regarded in academia and industry for their robustness and
for the quality of code. For these software systems, we took
the directory structure as examples of human-delineated
modularization. Given the high quality of code organiza-
tion, it should not come as a surprise that the major
directories of these systems correspond to the different
specialized services offered by the software systems. In all
these systems, the different directories and subdirectories
carry mnemonic names that hold clues to the services
offered by those directories.

Before calculating the metrics, the code was first
analyzed by the open-source tool Sourcenav [47] that
yielded a database containing the associations between
the function definitions and the corresponding file names
and also the function-call dependency information. Subse-
quently, we ran a set of tools written in Perl and Java to
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10. Note that declaring every externally called function to be an API
function would defeat the whole point of a modularization exercise. Ideally,
our goal in modularization must be to create seed groupings of functions
based on the similarity of purpose and/or commonality of goals, declare
these seeds to be the initial API’s for the respective directories/modules,
and then try to assign the other externally called functions in a source
module to other modules or to modify the purpose/goal definition of the
source module in such way that it can stay in the current module.

TABLE 2
The Metrics-Principles Connection



extract the metrics presented in this paper. These steps are
depicted in Fig. 1a. The output produced by Sourcenav is
summarized in Table 3.

To verify the usefulness of our metrics, we not only need
to show that the numbers look good for well-written code,
we also need to demonstrate that the numbers yielded by
the metrics become progressively worse as the code
becomes increasingly disorganized. In order to make such
a demonstration, starting from the original code, we created
different modularized versions of the software. These
versions correspond to the following scenarios:

1. Scenario 1 (Human). We considered the leaf nodes of
the directory hierarchy of the original source code to
be the most fine-grained functional modules. All the
files (and functions within) inside a leaf level
directory were considered to belong to a single
module—the module corresponding to the directory
itself. In this manner, all leaf level directories formed
the module set for the software. We call this module
set the Developer Generated Module Set.

2. Scenario 2 (Random). Functions were assigned ran-
domly to modules in such a manner that we ended

up with the same number of modules as in the
developer generated module set. We call this the
Randomly Generated Module Set.

9.1 API Identification Heuristics for Open-Source
Software Examples

In each of these scenarios, a key challenge was how to
identify the API functions vis-a-vis the non-API functions
in a given module. For the purpose of this particular
experiment, we identify API functions with the heuristic
that an ideal API function is mostly called by functions
belonging to other modules. Similarly, an ideal non-API
function is never exposed, i.e., it is never called by functions
from other modules. According to this heuristic, in a given
modularized version, a module function was declared to be
an API function or a non-API function depending on the
relative frequencies of the function being called from other
modules vis-a-vis the function being called from within its
home module. We defined two threshold parameters �, 	,
both between 0 and 1, for this purpose. For a function f in a
module m having KðfÞ number of calls made to it, if
KextðfÞ > � �KðfÞ, we consider f to be an API function for
m. Similarly, a function f 0 in the module m is treated as a
NON-API function if Kintðf 0Þ > 	 �KðfÞ.

9.2 Concept Extraction

In order to evaluate the CDM and CCM metrics, we must
extract various domain concepts from the source code and
create a frequency distribution of the concepts for each
module. The concept extraction process is shown in Fig. 1b.
The extraction process takes an input file containing a set of
business concept names and the associated terms or key-
words that can uniquely identify a business concept. This file
in Fig. 1b is currently created manually. The Keyword
Extractor component takes these keywords as regular
expressions and computes a concept frequency distribution
for each function by counting the occurrences of these
keywords from function signature, return types, and data
structures used by the function. However, function calls are
not considered in the counting process since they can skew
the concept distribution frequencies. For example, suppose
that a customer-update function fcustomer calls an account-
handling function faccount several times. If we look for the
concept account in the function call faccount (called by the
function fcustomer), several occurrences of the concept
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Fig. 1. Modularity Assessment Tool Architecture. (a) Schematic

diagram. (b) Concept extraction scheme.

TABLE 3
Software Systems Used for Metrics Validation



account will be found. If the number of occurrences is
relatively high, account might appear (incorrectly) as the
dominating concept in fcustomer.

9.3 Experimental Results

The first set of experimental results show how the metric
values change when the modularization scenario is changed
from the human-supplied to random. Fig. 2 shows the
results obtained for the four open-source applications.

The second set of experimental results are a comparative
presentation of the metric values for different versions of
the software systems. Fig. 3 shows the metric values for two
different versions of Apache and Mozilla software.

The CDM and CCM metrics depend on the relative
frequencies of the concepts in the different modules. It is
obviously not feasible to show these relative frequencies
and how these frequencies change with changes in the
modularization for all the concepts. So, we arbitrarily chose
a couple of concepts, userauthentication for the
Apache software and parser for MySQL, to show the
distribution of their relative frequencies in the original
software and in the randomized version. These are plotted
in Fig. 4 and Fig. 5.

9.4 Analysis of Results

As shown in Fig. 2, the core metric values take a turn for the
worse when the original modular structure of the software
is destroyed. When the modular structure is destroyed by
randomly assigning functions and files to modules, the
internal coherence of the modules is broken. This, in turn,
causes the MII, NC, and APIU values to degrade.

The size-based metrics, on the other hand, often do not
degrade when we go from human-supplied modularization
to the random scenario. Since the random assignments tend
to create modules of roughly the same size, it stands to
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Fig. 2. Comparison of metric values for Human and random modular-

ization of some systems. (a) httpd-2.0.53 metric values. (b) Mysql metric

values. (c) Gcc metric values. (d) Linux metric values.

Fig. 3. Comparison of metric values for different versions of open source

software. (a) Comparison of metric values for Apache-1.3.33 and

Apache-2.0.53. (b) Comparison of metric values for Mozilla-19980408

and Mozilla-19981211.
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Fig. 4. Dispersion of concept frequencies for the named modules for

Human and Random Modularizations. (a) Concept distribution for

module os/beos for Apache with human modularization. (b) Concept
distribution for module-13 for Apache with random “modularization.”

(c) Concept distribution for module mysqld for mysql with human

modularization. (d) Concept distribution for module-137 for mysql with

random “modularization.”

Fig. 5. Concept frequencies for two sample concepts across all modules

with human and random modularizations. (a) Distribution of the concept

“userauthentication” for httpd with human modularization. (b) Distribution

of the concept “userauthentication” for httpd with random “modulariza-

tion.” (c) Distribution for the concept “parser” for mysql with human

modularization. (d) Distribution of the concept “parser” for mysql with

random “modularization.”



reason that MSUI for the random scenario could be higher
compared to its value for the original software. About
MSBI, it is interesting to note that software created by the
expert humans frequently contains modules whose sizes
vary considerably. This causes the MSBI values for the
original software to be low.

Regarding the IDI metric, recall that the IDI of a module
is the ratio of the number of nonimplicit dependency-
producing function calls to the total intermodule function
call traffic emanating from that module. The randomization
process randomly assigns functions to modules, but that
does not alter the implicit dependencies of the sort we
mentioned in Section 4.4. As a result, the intermodule
dependency (through global variables) counts remain
mostly unchanged. Furthermore the random assignment
of functions to modules in many cases does not have a
significant impact on the total count of external function
calls.

These observations regarding the various metrics as we
go from human modularization to random modularization
speak to the fact that any single metric all by itself does not
tell us much about the quality of modularization. For a
composite picture of the quality of modularization, one has
no choice but to examine all the metrics.

9.4.1 Comparison of Different Versions of Software

Systems

Regarding the results shown in Fig. 3 for two different
versions of the same software, Apache 2.0 seems to be a
better-modularized version. For Mozilla, we chose the two
versions of the software used by MacCormack et al. [48].
According to the empirical study reported in [48] and the
Mozilla development roadmap [49], Mozilla-19981211 is a
better-modularized version. The results in Fig. 3 show a
marginal improvement of most of the metric values for
Mozilla-19981211. As to whether the differences in the
modularization quality as recorded by our metrics are
proportional to the actual differences in the software, that is
obviously open to debate. Our following remarks are
pertinent to this comparison for the four different metrics
MII, NC, APIU, and MISI:

. MII: One of the goals of the redesign of the Mozilla
architecture according to the Mozilla development
roadmap [49] and the discussions in the Mozilla-
general mailing list is the specification of interfaces
for each of the components in Mozilla using XPIDL,
an interface definition language similar to the
CORBA IDL. The developers wanted to ensure that
all intercomponent interactions are through the API
functions published in these interfaces. Since this
follows the principle “Maximization of API-Based
Inter-Module Call Traffic,” we expect MII of Mozilla-
19981211 to be greater than that of Mozilla-19980408.
As shown in Fig. 3b, MII for the postmodularized
version of Mozilla is 0.72, whereas it is 0.69 for the
premodularized version. Admittedly, the difference
between the metric values is not large. The reason,
we suspect, is that since in the experiment we
considered the leaf-level directories as modules and
since there did not exist a direct one-to-one mapping

between the leaf level directories and the Mozilla
components, some intramodule dependencies were
wrongly considered as intermodule dependencies,
thus affecting the computation of MII.

. NC: For enhanced modularization, the new version
of Mozilla architecture was designed using XPCOM,
which is a component object model similar to COM.
The XPCOM framework insists that only the func-
tions declared in the interfaces be called by other
components. We should therefore expect NC to have
a larger value for the newer version of Mozilla. As
shown in Fig. 3b, NC for Mozilla-19980408 is 0.86,
whereas the value for Mozilla-19981211 is 0.90.

. APIU: The more recent Mozilla-19981211 has
40 “modules” with APIU values greater than 0.5,
whereas the older Mozilla-19980408 has 28 “mod-
ules” with APIU values equal to 1 (the other
“modules” have APIU values less than 0.5). This
indicates that the “modules” of the newer version of
Mozilla possibly exhibit a greater similarity of
purpose. However, we could not find any docu-
mentation at the Mozilla Web site to ascertain
whether maximizing similarity of purpose was one
of the goals of the modularization effort.

. MISI: The source code facts extracted from the two
versions reveal that 26 “modules” in Mozilla-
19980408 and 50 “modules” in Mozilla-19981211
have stable dependencies. The MISI value value for
the former is 0.74 and for the latter 0.79.

As mentioned already, we also tested the metrics on

several proprietary business applications and obtained

similar results. In particular, we evaluated a pre- and

postmodularized version of a large business application. A

partial modularization of the code was carried out

manually; its focus was the identification of the API

functions for each module, enforcement of the requirement

that the intermodule calls take place through the API

functions, and, to the maximum extent possible, reduction

of the number of global-variable-based interactions among

the modules. We noticed a significant improvement in the

values of the MII, NC, APIU, MISI, and IDI metrics for the

modularized version of the business application.

9.4.2 Analysis of Concept Dispersion

To analyze how the concepts might be dispersed/

concentrated across the various modules, we examined

the frequency distributions for the concepts. Obviously, if

a module has roughly equal occurrences of multiple

concepts, it becomes difficult to identify the dominating

concept for the module and difficult to attribute to the

module a singularity of purpose. As shown in Fig. 4a,

Apache’s os/beos module is dominated by the concept

platform; the other concepts are not present as strongly

as platform in this module. On the contrary, if we take

any sample module from a random modularization of

httpd-2.0 in Fig. 4b, we don’t see any strong dominance

by a single concept. Therefore, Dos=beos becomes 0.8695 but

Dmodule�13 is 0.3152. This observation is also true for the

MySQL software system.

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1, JANUARY 2007



As shown in Fig. 5, for httpd-2.0.53, the occurrence of the
concept userauthentication is high only for a small
number of modules for the case of human modularization
(Fig. 5a) but it appears in almost all the modules with
random modularization (Fig. 5b). This conclusively demon-
strates why the CDM and CCM values are significantly low
for the random case.

10 CONCLUSION

We have enunciated a set of design principles for code
modularization and proposed a set of metrics that
characterize software in relation to those principles.
Although many of the principles carry intuitive plausi-
bility, several of them are supported by the research
literature published to date. Our proposed metrics seek to
characterize a body of software according to the enun-
ciated principles. The structural metrics are driven by the
notion of API—a notion central to modern software
development. Other metrics based on notions such as
size-boundedness, size-uniformity, operational efficiency in
layered architectures, and similarity of purpose play
important supporting roles. These supporting metrics are
essential since otherwise it would be possible to declare a
malformed software system as being well-modularized. As
an extreme case in point, putting all of the code in a single
module would yield high values for some of the API-based
metrics, since the modularization achieved would be
functionally correct (but highly unacceptable).

We reported on two types of experiments to validate the
metrics. In one type, we applied the metrics to two different
versions of the same software system. Our experiments
confirmed that our metrics were able to detect the improvement
in modularization in keeping with the opinions expressed in the
literature as to which version is considered to be better. (See
Fig. 3.)

The other type of experimental validation consisted of
randomizing a well-modularized body of software and
seeing how the value of the metrics changed. This
randomization very roughly simulated what sometimes
can happen to a large industrial software system as new
features are added to it and as it evolves to meet the
changing hardware requirements. For these experiments,
we chose open-source software systems. For these systems,
we took for modularization the directory structures created
by the developers of the software. It was interesting to see
how the changes in the values of the metrics confirmed this
process of code disorganization.

With regard to our future work, in addition to the
empirical support presented in this paper, we would also
like to validate them theoretically. As we mentioned in
Section 2, theoretical validation implies conformance to a
set of agreed-upon principles that are usually stated in the
form of a theoretical framework. Again as mentioned in
Section 2, the more notable of the frameworks that have
been proposed over the years for software metrics valida-
tion include those by Kitchenham et al. [10] (see also Fenton
and Pfleeger [11]) and Briand et al. [8], [13]. If we also
include the set of desirable properties for metrics proposed
by Weyuker [6], that gives us four “frameworks” as possible
approaches for the theoretical validation of our metrics.

ACKNOWLEDGMENTS

The authors would like to thank N.S. Nagaraja for his

support of this project. Thanks are also owed to Kenneth

Heafield and Ziad Mohamad Naamani for valuable discus-

sions related to the theoretical aspects of the work reported

here and Shubha Ramachandran for her help with issues

related to the implementation of the metrics.

REFERENCES

[1] M.H. Halstead, Elements of Software Science, Operating and
Programming Systems Series, vol. 7, Elsevier, 1977.

[2] T.J. McCabe and A.H. Watson, “Software Complexity,” Crosstalk,
J. Defense Software Eng., vol. 7, no. 12, pp. 5-9, Dec. 1994.

[3] P. Oman and J. Hagemeister, “Constructing and Testing of
Polynomials Predicting Software Maintainability,” J. Systems and
Software, vol. 24, no. 3, pp. 251-266, Mar. 1994.

[4] W. Stevens, G. Myers, and L. Constantine, “Structured Design,”
IBM Systems J., vol. 13, pp. 115-139, 1974.

[5] E. Yourdon and L.L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. Prentice
Hall, 1979.

[6] E. Weyuker, “Evaluating Software Complexity Measures,” IEEE
Trans. Software Eng., vol. 14, no. 9, pp. 1357-1365, Sept. 1988.

[7] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[8] L.C. Briand, S. Morasca, and V.R. Basili, “Property-Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22,
no. 1, pp. 68-85, Jan. 1996.

[9] N. Sharma, P. Joshi, and R.K. Joshi, “Applicability of Weyuker’s
Property 9 to Object Oriented Metrics,” short note, IEEE Trans.
Software Eng., vol. 32, no. 3, pp. 209-211, Mar. 2006.

[10] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a Frame-
work for Software Validation Measures,” IEEE Trans. Software
Eng., vol. 21, no. 12, pp. 929-944, Dec. 1995.

[11] S. Pfleeger and N. Fenton, Software Metrics. A Rigorous and Practical
Approach. Int’l Thomson Computer Press, 1997.

[12] S. Morasca, L.C. Briand, V. Basili, E.J. Weyuker, and M. Zelkowitz,
“Comments on ‘Towards a Framework for Software Measurement
Validation,’” IEEE Trans. Software Eng., vol. 23, no. 3, pp. 187-188,
Mar. 1997.

[13] L.C. Briand, S. Morasca, and V. Basili, “An Operational Process for
Goal Driven Definition of Measures,” IEEE Trans. Software Eng.,
vol. 28, no. 12, pp. 1106-1125, Dec. 2002.

[14] N. Churcher and M. Shepperd, “Comments on a Metrics Suite for
Object-Oriented Design,” IEEE Trans. Software Eng., vol. 21, no. 3,
pp. 263-265, Mar. 1995.

[15] L.C. Briand, J.W. Daly, and J.K. Wust, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems,” IEEE Trans.
Software Eng., vol. 25, no. 1, pp. 91-121, 1999.

[16] E. Arisholm, L.C. Briand, and A. Foyen, “Dynamic Coupling
Measurement for Object-Oriented Software,” IEEE Trans. Software
Eng., vol. 30, no. 4, pp. 491-506, Aug. 2004.

[17] R.W. Schwanke, “An Intelligent Tool for Reengineering Software
Modularity,” Proc. 18th Int’l Conf. Software Eng., pp. 83-92, May
1991.

[18] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner,
“Using Automatic Clustering to Produce High-Level System
Organizations of Source Code,” Proc. Sixth Int’l Workshop Program
Comprehension (IWPC ’98), pp. 45-52, 1998.

[19] S. Mancoridis, B.S. Mitchell, Y.-F. Chen, and E.R. Gansner,
“Bunch: A Clustering Tool for the Recovery and Maintenance of
Software System Structures,” Proc. Int’l Conf. Software Main-
tenance (ICSM), pp. 50-59, http://citeseer.ist.psu.edu/article/
mancoridis99bunch.html, 1999.

[20] H. Fahmy and R. Holt, “Software Architecture Transformations,”
Proc. Int’l Conf. Software Maintenance, pp. 88-96, Oct. 2000.

[21] D. Doval, S. Mancoridis, and B.S. Mitchell, “Automatic Clustering
of Software Systems Using a Genetic Algorithm,” Proc. Int’l
Workshop Software Technology and Eng. Practice, 1999.

[22] B.S. Mitchell, S. Mancoridis, and M. Traverso, “Search Based
Reverse Engineering,” Proc. 14th Int’l Conf. Software Eng. and
Knowledge Engineering (SEKE ’02), pp. 431-438, 2002.

SARKAR ET AL.: API-BASED AND INFORMATION-THEORETIC METRICS FOR MEASURING THE QUALITY OF SOFTWARE MODULARIZATION 31



[23] K. Mahdavi, M. Harman, and R.M. Hierons, “A Multiple Hill
Climbing Approach to Software Module Clustering,” Proc. 19th
Int’l Conf. Software Maintenance (ICSM ’03), pp. 315-324, 2003.

[24] A. Shokoufandeh, S. Mancoridis, T. Denton, and M. Maycock,
“Spectral and Meta-Heuristic Algorithms for Software Cluster-
ing,” J. System and Software, vol. 77, no. 3, pp. 213-223, Sept. 2005.

[25] M. Harman, S. Swift, and K. Mahdavi, “An Empirical Study of the
Robustness of Two Module Clustering Fitness Functions,” Proc.
2005 Conf. Genetic and Evolutionary Computation, pp. 1029-1036,
2005.

[26] K. Sartipi and K. Kontogiannis, “Component Clustering Based on
Maximal Association,” Proc. Eighth Working Conf. Reverse Eng.
(WCRE ’01), pp. 103-114, 2001.

[27] K. Sartipi, “Software Architecture Recovery Based-On Pattern
Matching,” PhD dissertation, School of Computer Science, Univ.
Waterloo, 2003.

[28] O. Seng, M. Bauer, M. Biehl, and G. Pache, “Search-Based
Improvement of Subsystem Decompositions,” Proc. Conf. Genetic
and Evolutionary Computation, pp. 1045-1051, http://doi.acm.org/
10.1145/1068186, 2005.

[29] Z. Wen and V. Tzerpos, “Software Clustering Based on Omni-
present Object Detection,” Proc. 13th Int’l Workshop Program
Comprehension (IWPC ’05), pp. 269-278, 2005.

[30] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen, “Measuring
Coupling and Cohesion of Software Modules: An Information-
Theory Approach,” Proc. Seventh Int’l Software Metrics Symp.
(METRICS ’01), pp. 124-134, 2001.

[31] P. Andritsos and V. Tzerpos, “Information-Theoretic Software
Clustering,” IEEE Trans. Software Eng., vol. 31, no. 2, pp. 150-165,
Feb. 2005.

[32] S. Sarkar, A.C. Kak, and N.S. Nagaraja, “Metrics for Analyzing
Module Interactions in Large Software Systems,” Proc. 12th Asia-
Pacific Software Eng. Conf. (APSEC ’05), pp. 264-271, 2005.

[33] D.L. Parnas, “On the Criteria to Be Used in Decomposing Systems
into Modules,” Comm. ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

[34] G.B. Arevalo, “High-Level Views in Object-Oriented Systems
Using Formal Concept Analysis,” PhD dissertation, 2004.

[35] R. Martin, “Design Principles and Design Patterns,” http://www.
objectmentor.com, 2000,

[36] K.L. Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S.N.
Rai, “The Optimal Class Size for Object Oriented Software,” IEEE
Trans. Software Eng., vol. 28, no. 5, pp. 494-509, May 2002.

[37] L. Hatton, “Reexamining the Fault Density-Component Size
Connection,” IEEE Software, vol. 14, no. 2, pp. 89-97, 1997.

[38] D.H. Hutchens and V.R. Basili, “System Structure Analysis:
Clustering with Data Binding,” IEEE Trans. Software Eng.,
vol. 11, no. 8, pp. 749-757, Aug. 1985.

[39] J. Rosenberg, “Some Misconceptions About Lines of Code,” Proc.
Fourth Int’l Software Metrics Symp. (METRICS ’97), pp. 137-142,
1997.

[40] F. Bachmann, L. Bass, J. Carriere, P. Clements, D. Garlan, J. Ivers,
R. Nord, and R. Little, Software Architecture Documentation in
Practice: Documenting Architectural Layers, Special Report CMU/
SEI-2000-SR-004, Software Eng. Inst., Carnegie Mellon Univ.,
2000.

[41] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, and J. Stafford, Documenting Software Architecture, Views and
Beyond. Addison Wesley, Sept. 2002.

[42] F. Rysselberghe and S. Demeyer, “Studying Software Evolution
Information by Visualizing the Change History,” Proc. 20th IEEE
Int’l Conf. Software Maintenance, pp. 328-337, Sept. 2004.

[43] T. Girba, S. Ducasse, and M. Lanza, “Yesterday’s Weather:
Guiding Early Reverse Engineering Efforts by Summarizing the
Evolution of Changes,” Proc. Int’l Conf. Software Maintenance, 2004.

[44] J. Lakos, Large Scale C++ Software Design. Addison-Wesley, 1996.
[45] M. Siff and T. Reps, “Identifying Modules via Concept Analysis,”

IEEE Trans. Software Eng., vol. 25, pp. 749-768, 1999.
[46] P. Tonella, “Concept Analysis for Module Restructuring,” IEEE

Trans. Software Eng., vol. 27, pp. 351-363, 2001.
[47] Source Navigator 5.4.1,http://sourcenav.sourceforge.net, 2003.
[48] A. MacCormack, J. Rusnak, and C. Baldwin, Exploring the Structure

of Complex Software Designs: An Empirical Study of Open Source and
Proprietary Code, Technical Report 05-016, Harvard Business
School working paper, 2005.

[49] B. Eich, “Development Roadmap,” Mozilla home page, http://
www.mozilla.org/roadmap/roadmap-26-Oct-1998.html, Oct.
1998.

Santonu Sarkar received the PhD degree in
computer science from IIT Kharagpur in the
area of object-oriented modeling of VLSI cir-
cuits. He is a principal architect at SETLabs,
Infosys Technologies Ltd., India. He has nearly
14 years of industrial software development
experience in business applications and product
development. His current research interests
include architecture modeling and analysis,
enterprise architecture, program comprehen-

sion, and reengineering techniques.

Girish Maskeri Rama received the master’s
degree from the University of York, UK, and has
been carrying out applied research and tool
development in the area of software engineering
for nearly seven years. He is a research
associate at SETLabs, Infosys Technologies
Ltd., India. Apart from program comprehension
and software reengineering, his other research
interests include metamodeling and model
transformations. He was part of the QVTP

consortium and contributed to the specification of the OMG standard
MOFQVT.

Avinash C. Kak is a professor of electrical and
computer engineering at Purdue University and
a consultant to Infosys. His most recent book,
Programming with Objects (John Wiley and
Sons, 2003), is used by a number of leading
universities as a text on object-oriented pro-
gramming. His forthcoming book Scripting with
Objects focuses on object-oriented scripting.
These are two of the three books for an “Objects
Trilogy” he is creating. The last, expected to be

finished sometime in 2008, will be titled Designing with Objects. In
addition to computer languages and software engineering, Dr. Kak’s
research areas include sensor networks, computer vision, and robotic
intelligence. His coauthored book Principles of Computerized Tomo-
graphic Imaging was republished as a Classic in Applied Mathematics
by SIAM (Society of Industrial and Applied Mathematics).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1, JANUARY 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


