
Model Checking Markov Chains
with Actions and State Labels

Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Fellow, IEEE, Matthias Kuntz, and Markus Siegle

Abstract—In the past, logics of several kinds have been proposed for reasoning about discrete-time or continuous-time Markov

chains. Most of these logics rely on either state labels (atomic propositions) or on transition labels (actions). However, in several

applications it is useful to reason about both state properties and action sequences. For this purpose, we introduce the logic asCSL

which provides a powerful means to characterize execution paths of Markov chains with actions and state labels. asCSL can be

regarded as an extension of the purely state-based logic CSL (continuous stochastic logic). In asCSL, path properties are

characterized by regular expressions over actions and state formulas. Thus, the truth value of path formulas depends not only on

the available actions in a given time interval, but also on the validity of certain state formulas in intermediate states. We compare

the expressive power of CSL and asCSL and show that even the state-based fragment of asCSL is strictly more expressive than CSL

if time intervals starting at zero are employed. Using an automaton-based technique, an asCSL formula and a Markov chain with

actions and state labels are combined into a product Markov chain. For time intervals starting at zero, we establish a reduction of the

model checking problem for asCSL to CSL model checking on this product Markov chain. The usefulness of our approach is illustrated

with an elaborate model of a scalable cellular communication system, for which several properties are formalized by means of asCSL

formulas and checked using the new procedure.

Index Terms—Protocol verification, performance of systems, model checking, automata, Markov processes.

Ç

1 INTRODUCTION

BESIDES being functionally correct, an ever larger share of
computer and communication systems, especially in the

area of embedded systems, has to meet severe performance
and dependability constraints. Such constraints are typically
formalized in a stochastic framework. To reason about such
stochastic phenomena, a variety of high-level models such as
stochastic Petri nets, stochastic process algebras, queueing
networks, etc., have been established; see [1]. Typically, the
verification of quantitative properties relies on a transforma-
tion of these high-level models into a (finite-state) Markov
chain, on which the actual analysis is carried out.

For the model-based verification of functional properties,
temporal logics provide powerful means to specify complex
requirements that a system has to satisfy; see [2]. Over the
past 10 years, several researchers have adapted the
temporal-logic approach to reason about probabilistic
properties. One result of these efforts is the logic CSL
(continuous stochastic logic), introduced in [3] and ex-
tended in [4], which is a continuous-time variant of PCTL
(probabilistic computational tree logic) [5], that can be used
as specification formalism for performance and depend-
ability properties. For instance, the CSL formula

P�0:99ðlegal U�5goalÞ specifies the state-property asserting
that “there is at least a 99 percent probability to reach a goal
state within the next five time units while passing only legal
states before.” The goal states and legal states can be
formalized, e.g., by atomic propositions that are attached to
the states or by complex CSL-formulas. A so-called steady-
state operator allows reasoning about stationary probabil-
ities. Formula S�0:75ðgreenÞ states that, in equilibrium, the
accumulated probability mass for green states is at least
75 percent. An extension of CSL to reason about rewards
has been introduced in [6]. Notice that the specification of
these measures is completely state-oriented.

For action-oriented modeling formalisms, such as sto-
chastic process algebra, CSL is not an adequate specifica-
tion formalism, since it is not possible to characterize
sequences of actions. In [7] an action-based variant of CSL,
called aCSL, was proposed, and, in [8], it was shown how
to employ this logic for performability modeling.

Although the state-labeled and action-labeled ap-
proaches are similar in their expressivity and transforma-
tions between them can be provided as in the nonstochastic
case [9], reasoning with doubly labeled models is often
more intuitive, or even efficient. A similar observation was
made in [10] for nonprobabilistic systems. A first step
toward the combination of state-oriented and action-
oriented features in logics for Markov chains is the logic
aCSL+ [11], which employs regular expressions for char-
acterizing more general path-based properties.

In this paper, we introduce a new logic, called asCSL, (for
CSL with actions and state labels), which combines aspects of
all the above-mentioned logics. Preliminary work on logics
similar to asCSL has been published in [12] and [13]. asCSL

can be seen as being motivated either by the method of path-
based reward variables as described in [14], or by the
propositional dynamic logic [15] and extended linear

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007 209

. C. Baier is with the Institute for Theoretical Computer Science, Technische
Universität Dresden, D-01062 Dresden, Germany.
E-mail: baier@tcs.ino.tu-dresden.de.

. L. Cloth, B.R. Haverkort, and M. Kuntz are with the EWI/DACS,
University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
E-mail: {lucia, brh, kuntzwgm}@cs.utwente.nl.

. M. Siegle is with the Universität der Bundeswehr München, Institute für
Technische Informatik, Fakultät für Informatik, 85577 Neubiberg,
Germany. E-mail: markus.siegle@unibw.de.

Manuscript received 3 Mar. 2006; revised 18 July 2006; accepted 4 Aug. 2006;
published online 1 Mar. 2007.
Recommended for acceptance by S. Donatelli.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0052-0306.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

temporal logic [16]. With asCSL, paths are characterized by
regular expressions, also called programs, but, in addition, it
is possible to express that a program is executable only if the
current state satisfies a given state property. This provides an
elegant way to reason about state-oriented and action-
oriented behaviors. Unlike extended linear temporal logic
[16], we do not allow for !-regular expressions (representing
infinite behavior). Instead, in asCSL, the regular expressions
are used in combination with lower and upper time bounds.
Thus, the switch from CSL to asCSL is orthogonal to the
extension of PCTL, PCTL* [17], which is concerned with
specifying complex properties of infinite computations,
whereas asCSL focuses on complex properties of finite
computations with real-time constraints (e.g., hard or soft
deadlines).

We finally note that we published a short conference
paper on asCSL [18] that resulted from a joint effort to
combine the two earlier extended abstracts on pathCSL [12]
and SPDL [13]. The current paper extends that 10-page
paper in that definitions of syntax and semantics are given
in more detail, with more examples. Also, the sections that
compare the expressive power with other logics as well as
bisimulation results have been extended. Furthermore, the
model checking procedure is described in more detail and
an elaborated example is presented. Finally, to ease the
reading of the paper, a running example illustrating the
complete model checking procedure has been added.

This paper is further organized as follows: In Section 2,
we define Markov chains with actions and state labels.
Section 3 presents syntax and semantics of the new logic
asCSL. In Section 4, we relate asCSL to other logics, and, in
Section 5, we present an important bisimulation equiva-
lence property for asCSL. Section 6 is dedicated to the
model checking procedure for asCSL. Throughout these
sections, we use a “running example” to illustrate the new
concepts. In Section 7, we then apply the new technique to a
nontrivial example, in order to derive properties of the
handover procedure in a cellular radio network. The paper
ends with a short summary and conclusions.

2 MARKOV CHAINS WITH ACTIONS AND STATE

LABELS

In this section, we explain the notation for Markov chains
with actions and state labels. The reader is supposed to be
familiar with Markov chains; see [19]. Action names are
used to label the transitions. The state labels are drawn from
a set AP of atomic propositions, which, e.g., can assert that
the system (or one of its subprocesses) is at a certain control
point or that a program variable has a certain value. A
function L assigns to any state the set of atomic propositions
that are assumed to hold in the given state.

Definition 1 (Markov chain with actions and state labels).

A continuous-time Markov chain with actions and state labels
(ASMC) is a tuple M¼ ðS;Act;AP; L;RÞ, where S is a

finite set of states, Act is a finite set of action labels, AP is a

finite set of atomic propositions, L : S ! 2AP a state labeling
function, and R : S �Act� S ! RRRR�0 is a rate matrix.

Notice that we do not explicitly define an initial state or

an initial state distribution as these are not relevant for our

purposes.

Example 2. Fig. 1 represents an ASMC that serves as a

running example throughout this paper. It models a data

transmission system that receives four data packets in a

row and then processes them jointly. The set of states is

given by S ¼ fs1; . . . ; s10g, the set of actions is

Act ¼ farrive; correct; no correct; retransmit; processg:

The rate matrix R becomes clear from Fig. 1.
In more detail, an arrival is modeled by action arrive.

The transmission of data packets can be error-free (rate �)
or erroneous (rate �). An erroneous packet might be
corrected ðcorrect; �Þ or the system might be unable to
correct it ðno correct; �Þ. In case it cannot be corrected,
the buffer is emptied and all data packets have to be
retransmitted ðretransmit; �Þ. If all four data packets are
error-free or corrected, the received data can be pro-
cessed ðprocess; !Þ and the system awaits new data. The
set of atomic propositions is AP ¼ fempty; full; errorg,
with

. Lðs1Þ ¼ femptyg,

. Lðs2Þ ¼ Lðs3Þ ¼ Lðs4Þ ¼ ;,

. Lðs5Þ ¼ ffullg, and

. Lðs6Þ ¼ Lðs7Þ ¼ Lðs8Þ ¼ Lðs9Þ ¼ Lðs10Þ ¼ ferrorg.
Intuitively, if Rðs; a; s0Þ ¼ � > 0, then there is an a-labeled

transition from state s to state s0 whose delay is specified by

an exponential distribution with rate �. For S0 � S, we write

Rðs; a; S0Þ ¼
P

s02S0 Rðs; a; s0Þ to denote the total rate to

move from state s via action a to state-set S0.
The underlying CTMC1 of an ASMC is given as a tuple

ðS;AP; L;R0Þ that arises fromM by removing the action-set

and accumulating the rates of “parallel” transitions, that is,

R0ðs; s0Þ ¼
P

a2Act Rðs; a; s0Þ.
Definition 3 (Paths inM). A finite path inM is a finite word

�¼ðs0;a0;t0Þ;ðs1;a1;t1Þ;...;ðsn�1;an�1;tn�1Þ;sn2ðS�Act�RRRR>0Þ��S;

210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

Fig. 1. ASMC for the simple data transmission system of Example 2.

1. Here and following, we use the abbreviation CTMC for a continuous-
time Markov chain with just state labels.

where Rðsi; ai; siþ1Þ > 0 for i ¼ 0; . . . ; n� 1. An infinite
path in M is an infinite word

& ¼ ðs0; a0; t0Þ; ðs1; a1; t1Þ; . . . 2 ðS �Act �RRRR>0Þ!

with Rðsi; ai; siþ1Þ > 0 for all i � 0 and such that the infinite
series

P
i ti is divergent (i.e., t0 þ t1 þ t2 þ . . . ¼ 1), with ti

the time spent in si. A special case arises if M contains
absorbing states, i.e., states without outgoing transitions. We
then define a second type of infinite paths. Such an absorbing
path is a word

& ¼ ðs0; a0; t0Þ; ðs1; a1; t1Þ; . . . ðsn�1; an�1; tn�1Þ; ðsn; tnÞ
2 ðS �Act �RRRR>0Þ� � ðA� f1gÞ;

where A is the set of absorbing states of M and
Rðsi; ai; siþ1Þ > 0 for all 0 � i � n� 1. The sojourn time of
an absorbing state is always 1.

We write paths as sequences of transitions, e.g., for the
finite path � above, we use the notation

� ¼ s0 �!
a0;t0

s1 �!
a1;t1

s2 �!
a2;t2 � � � �!an�2;tn�2

sn�1 �!an�1;tn�1
sn:

Let � be a finite or absorbing path as before, then
����� ¼ n

denotes the length of �, i.e., the number of transitions in �,
and let �½i	 ¼ si the ðiþ 1Þst state �. We refer to �ð�Þ ¼Pn�1

j¼0 tj as the execution time of �.

For t � �ð�Þ, �@t denotes the state that is occupied at
time t on path �, that is, �@t ¼ �½k	, where k is the smallest
index for which t <

Pk
j¼0 tj. We write �ði; jÞ to denote the

fragment of path � starting at the ðiþ 1Þst state si and
ending at the ðjþ 1Þst state sj (i � j). In particular, �ði; iÞ ¼
si is a path of length 0.

If �1 and �2 are finite paths such that the first state of �2

agrees with the last state of �1 then the concatenation �1�2 is

a path of length j�1j þ j�2j, which is defined in the obvious

way. Similar notation is used if �2 is an infinite path. PathMfin
denotes the set of all finite paths in M, whereas PathM!
stands for the set of infinite paths in M. By PathMfinðsÞ,
respectively, PathM! ðsÞ, we denote the set of all finite,

respectively, infinite, paths in M with initial state s.

Example 4. The following is a path in the ASMC of Example 2.
It describes the successful transmission, correction, and
processing of three related data packets:

� ¼ s2 �!
arrive;1:1

s3 �!
arrive;1:2

s4 �!arrive;0:8

s9 �!correct;0:5
s5 �!

process;2:0
s1 �!

arrive;2:1
s2:

The second state of the path is �½1	 ¼ s3, and the state
occupied at time 3 is �@3 ¼ s4.

If we concatenate an infinite number of copies of �, we
obtain an infinite path where the data packets never need
to be retransmitted.

In the following, we deal with the standard probability
measure PrMs on PathM! ðsÞ (where the underlying �-field
can be defined with the help of basic cylinders as in [4]). For
measurable X � PathM! ðsÞ, we often omit the parameterM

and/or s and simply write PrðXÞ or PrMðXÞ. The transient
state probabilities 	Mðs; s0; tÞ are given by

	Mðs; s0; tÞ ¼ PrM & 2 PathM! ðsÞ j &@t ¼ s0
� �

;

and the steady state probability of being in state s0 in the
long run, provided that the system started in state s, is

	Mðs; s0Þ ¼ limt!1 	Mðs; s0; tÞ:

For S0 � S, we define 	Mðs; S0Þ ¼
P

s02S0 	
Mðs; s0Þ.

3 SYNTAX AND SEMANTICS OF asCSL

The logic CSL (continuous stochastic logic) [3], [4] specifies
state-based properties for CTMCs, built out of propositional
logic (with atoms q 2 AP), a steady-state operator that
refers to the stationary probabilities, and a probabilistic
operator for reasoning about transient state probabilities,
but can also express other probabilistic properties with or
without real-time constraints. We present here an extension
of CSL, called asCSL, that allows one to specify probability
bounds for action-sequences and state-sequences. Later, we
will discuss the expressivity of asCSL in relation to that of
other logics (Section 4), as well as the relation between the
equivalence induced by asCSL and action-labeled and
state-labeled bisimulation equivalence (Section 5).

3.1 Syntax of asCSL

The syntax of asCSL is defined according to Definition 5
(state formulas) and Definition 6 (programs or path for-
mulas). Here, we assume that the sets Act of actions and AP of
atomic propositions are fixed.

Definition 5 (State formulas of asCSL). State formulas of
asCSL are given by the following grammar:

 ::¼ q
��� :
 ���
 _
 ��� Sfflpð
Þ

��� Pfflpð�IÞ;
where q 2 AP is an atomic proposition, p 2 ½0; 1	 denotes a
probability value, ffl 2 f<;�; >;�g a comparison operator,
I ¼ ½t; t0	 � RRRR�0 a time interval, and � a program as defined
in Definition 6. We refer to �I as a path formula and use � to
denote the set of state formulas of asCSL.

The logical connectives : and _ have their usual
meaning. Using negation : and disjunction _, the constants
true, false, and all other Boolean connectives such as
conjunction ^, implication ! , etc., can be derived. The
so-called steady-state operator Sfflpð
Þ asserts that the
probability of being in a
-state in the long run obeys the
bound ffl p. The operator Pfflpð�IÞ asserts that the prob-
ability measure of all infinite paths which have a prefix that
satisfies �I , where � is a program and I is a real interval
specifying the time bound, obeys the bound ffl p. We omit
the time interval I if I ¼ ½0;1	, which does not impose any
proper real-time constraints. If I ¼ ½0; t	, we write � t
instead.

The program � specifies a property for finite paths via a
regular set of finite words whose atomic symbols are pairs
ð
; bÞ (when no confusion can arise, we sometimes simply
write
b) consisting of an asCSL-state formula
 (which is
viewed as a test for the current state of a path) and an action

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 211

b 2 Act or b ¼ p (where
p 62 Act). The symbol

p
can be

viewed as a pseudoaction which is always immediately
executable and does not change the current state in the
ASMC. Formally, the programs are regular expressions over
the alphabet

� ¼ �� ðAct [fpgÞ ¼ ð
; bÞ
��
 2 � ^ b 2 ðAct [fpgÞ

� �
:

Definition 6 (Programs). asCSL programs are defined by the
following grammar:

� ::¼ "
��� ð
; bÞ ��� �;�

��� � [� ��� ��;
where ð
; bÞ 2 �. The language Lð�Þ � �� is defined in the
standard way.

The reader should notice the difference between the
pseudoaction symbol

p
and the empty word " (viewed as

an element of ��) as the use of
p

is only allowed in
combination with a state formula.

In the context of asCSL, the meaning of a program (which
will be formally defined in the next section) is a set of finite
paths in the underlying ASMC. The intuitive meaning of
b is
that the current state s fulfills
 (that is, the state formula
 can
be viewed as a test for the current state s) and, if b 2 Act, state s
has an outgoing b-transition. If b ¼ p, no statement about
outgoing transitions is made. The operator ; denotes
sequential composition (concatenation), [denotes alterna-
tive choice (union), and � denotes the n-fold sequential
composition for arbitrary n � 0 (Kleene star).

Example 7. Let p, q, r, and s be atomic propositions and let
a, b, and c be actions.

The language of the program ðp; aÞ ððq;pÞ [ðr; bÞÞ
consists of words of length 2 that

. start with ðp; aÞ and

. end with either ðq;pÞ or ðr; bÞ.
Thus,

L ðp; aÞ ; ððq;pÞ [ðr; bÞÞð Þ ¼ fðp; aÞðq;pÞ; ðp; aÞðr; bÞg

has exactly two members.
The language of the program

ððp; aÞ; ðq; bÞ; ðr;pÞÞ� ; ðs; cÞ

involving the Kleene star is infinite. It contains

. ðs; cÞ (a word in �� of length 1),

. ðp; aÞðq; bÞðr;pÞðs; cÞ (a word in �� of length 4),

. ðp; aÞðq; bÞðr;pÞðp; aÞðq; bÞðr;pÞðs; cÞ (a word in ��

of length 7),

and so on.

Note that the test can be empty, i.e.,
 ¼ true. This gives
the possibility to speak about action sequences of paths
without any (further) constraints for the intermediate states.

Example 8. The asCSL formula

P�0:99 ðtrue; arriveÞ�; ðtrue; processÞð Þ
denotes that the probability for an action sequence in
arrive�; process is at least 0.99, whereas

P�0:99 ðtrue; arriveÞ�; ðtrue; processÞ�5
� �

asserts the same probability bound for action-sequences
arrive�; process to be performed within five time units.
As another intuitive example, the asCSL formula

P�0:99

�
ðtrue; arriveÞ�; ðfull;

pÞ�5
�

asserts at least a 99 percent chance to reach a state labeled
with full via an arrive�-labeled path within five time
units.

Example 9. In the context of the data transmission system of
Example 2, the formula

� ¼ P>0

�
ðtrue; arriveÞ; ðfull;

pÞ
�

characterizes exactly state s4, because it is the only state
from which a full-state can be reached with a single
arrive transition.

In the sequel, we illustrate several concepts by means
of the following formula:

� ¼ P�0:1 �
�7:3

� �
;

where

� ¼
�
ðtrue; arriveÞ
[ðtrue; arriveÞ; ðerror; correctÞ

��
;

ð�; arriveÞ; ðerror; correctÞ; ðfull;
pÞ:

Formula � states that the probability that the buffer is
full after at most 7.3 time units, the last packet contains a
correctable error, and that all other packets are either
error-free or with correctable error, is at most 10 percent.

3.2 Semantics of asCSL

The formal semantics of asCSL is provided by means of a
satisfaction relation� for the state and path formulas. In the
following, we assume a fixed ASMCM¼ ðS;Act;AP; L;RÞ.
For state s in M and state formula
, M; s �
 means that
the state property specified by
 holds for s. Similarly, for
an infinite path &, M; & � �I denotes that the behavior
specified by the path formula �I is fulfilled by &. The formal
definition of the satisfaction relation � for the state and
path formulas is by structural induction on the syntax of the
formulas.

Definition 10 (Semantics of asCSL). The satisfaction relation
� for the state formulas is defined as follows:

M; s � q , q 2 LðsÞ
M; s � :
 , M; s 6�

M; s �
1 _
2 , M; s �
1 orM; s �
2

M; s � Sfflpð
Þ , 	Mðs; SatMð
ÞÞ ffl p
M; s � Pfflpð�IÞ , ProbMðs; �IÞ ffl p;

where SatMð
Þ ¼ fs 2 SjM; s �
g denotes the satisfaction
set of
 in M and

ProbMðs; �IÞ ¼ PrM & 2 PathM! ðsÞ
��M; & � �I

� �
:

The meaning of the path formulas is formalized as follows: If &
is an infinite path in M, then

M; & � �I

212 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

iff there exists a finite prefix � of & with � 2 PathMfinð�Þ and

�ð�Þ 2 I.2 Here, the set PathMfinð�Þ consists of all finite paths �
in M that can be viewed as instances of �. Formally, the sets

PathMfinð�Þ are defined as shown in Fig. 2, where �iþ1 ¼ �;�i

and �0 ¼ " (the empty word in ��).3

In the sequel, we often write s �
 and & � �I rather than
M; s �
 and M; & � �I , respectively. Moreover, ð
;BÞ
stands short for

S
a2Bð
; aÞ.

The reader should note the difference between the
programs

�1 ¼ ðtrue;ActÞ�ð
;pÞ

and

�2 ¼ ðtrue;ActÞ�ð
;ActÞ:

Program �1 defines all finite paths � that end in a
-state,
whereas �2 defines all finite paths whose prefinal state
satisfies
.

Example 11. Consider an infinite path & which has the finite
path

� ¼ s2 �!
arrive;1:1

s3 �!
arrive;1:2

s4 �!
arrive;0:8

s9 �!
correct;0:5

s5 �!
process;2:0

s1 �!
arrive;2:1

s2

of Example 4 as prefix. Then, & � ��7:3 where � is the
program of Example 9. Note that the last two transitions
of � are actually irrelevant for the validity of �I .

4 COMPARISON OF EXPRESSIVE POWER

In the following sections, we discuss the expressivity of
asCSL in relation to that of CSL, aCSL, and aCSL+.

4.1 asCSL versus CSL

We now study the relation between asCSL and CSL [3], [4].
The syntax of CSL-state formulas is as in asCSL, except for
the probabilistic operator which takes as input a probability
bound ffl p (as in asCSL) and a CSL-path formula of the
form
1UI
2 or XI
 (rather than a time-bounded asCSL

program �I). UI is called time-bounded until operator and
XI a time-bounded next step operator.

For the formal definition of the syntax and semantics of
CSL, we refer to [4]. Intuitively,
1UI
2 asserts that there is
some time point t 2 I such that the given path is in a

2-state at time point t and in
1-states at all earlier time

points. Similarly, the CSL-path formula XI
 holds for a
path & if the second state in & fulfills
 and the first transition
in & is taken at some time point t 2 I.

A CSL formula is said to be equivalent to an asCSL

formula
 iff for any ASMCM and all states s inM,
 holds
for s iff holds for s in the underlying CTMC of M. We
now discuss the possibilities to express the CSL modalities
UI and XI in asCSL by providing asCSL formulas that are
similar to the CSL formulas Pfflpð
1UI
2Þ and PfflpðXI
Þ.

We first observe that state-based formulas that abstract
from the action sequences and use CSL-like time-bounded
operators can be derived from the syntax of asCSL path
formulas. A CSL-like time-bounded until operator UI is
obtained in asCSL as follows:4

1UI
2¼
defðð
1;ActÞ�; ð
2;

pÞÞI :

If & ¼ s0�!
a0;t0

s1�!
a1;t1

. . . is an infinite path in an ASMC, then
& �
1UI
2 iff there exists some index i � 0 such that
si �
2,

Pi�1
k¼0 tk 2 I, and sj �
1 for all j < i. From this, we

may derive the time-bounded eventually-operator

�� I
 ¼def
true UI
:

We then have & � �� I
 (as opposed to the CSL formula �I
)
iff there exists some index i with si �
 and

Pi�1
k¼0 tk 2 I. For

instance, P�0:05ð�� �5errorÞ states that the probability to reach
an error state within five time units is at most 0.05. Its dual,
the time-bounded always-operator, is obtained (as in CSL)
by using the duality of the temporal modalities ”even-
tually” and ”always” and the duality of lower and upper
probability bounds. For instance, we may define

P�pðu�tI
Þ¼
defP�1�pð��I:
Þ:

Intuitively, the above asCSL formula states that
 con-
tinuously holds in the time interval I with probability at
least p. In an analogous way, time-bounded always with
other probability bounds can be defined.

A CSL-like time-bounded next operator can be ex-
pressed as

X I
 ¼def ððtrue;ActÞ; ð
pÞÞI :

We have & � X I
 iff & has the form s0 �!
a0;t0

& 0, where t0 2 I
and
 holds for the first state of & 0.

The asCSL semantics of the derived time-bounded until
or next step operators UI and X I agrees with the
corresponding CSL semantics of UI and XI if inf I ¼ 0 for

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 213

2. Recall that �ð�Þ denotes the execution time of �.
3. Note that all paths � with j�j ¼ 0 belong to PathMfin ð��Þ.

4. We will use calligraphic letters U and X for the until and next step
operators in asCSL and the letters U and X for until and next step operators
in CSL.

Fig. 2. Semantics of the programs.

the time interval I. In fact, as long as we restrict our

attention to time bounds of the form � t or < t where

t 2 RRRR [f1g, then CSL can be viewed as a sublogic of

asCSL. More precisely, any CSL formula can be trans-

formed into an equivalent asCSL formula by replacing X/t

with X /t and U/t with U/t, where / 2 f<;�g. (The proof can

be provided by induction on the length of the given CSL

formula.) Thus, we obtain:

Proposition 12. CSL with lower time bound equal to zero is a

sublogic of asCSL.

For time bounds specified by intervals I with inf I > 0,

there is a slight difference between the semantics of the

asCSL program ’ ¼
1UI
2 ¼ ðð
1;ActÞ�; ð
2;
pÞÞI and the

CSL path formula ¼
1UI
2. Let us consider the case I ¼
½t; t0	where 0 < t < t0. The reason ’ and are not equivalent

is that & � but & 6� ’ if & is an infinite path that starts with

a prefix

s0�!
a0;t0

s1�!
a1;t1 � � � �!an�2;tn�2

sn�1 �!
an�1;tn�1

sn�!
an;tn

snþ1:

such that

1. si �
1, i ¼ 0; 1; . . . ; n� 1,
2. sn �
1 ^
2,
3. snþ1 6�
1 _
2, and
4. t0 þ . . .þ tn�1 < t < t0 þ . . .þ tn�1 þ tn.

Note that the CSL semantics captures the possibility of

time passage in the
2-state sn, whereas the asCSL semantics

requires the
2-state to be entered at some time instant

� 2 ½t; t0	. However, assuming
1 and
2 to be disjoint (i.e.,

1 ^
2 false) the CSL semantics and asCSL semantics of

the until operator agree. In case
1 and
2 can hold in the same

state, the CSL and the asCSL semantics of the until operator

are different.
We now restrict our attention to the fragment of CSL and

asCSL where inf I ¼ 0 for all time intervals I. It is not

surprising that asCSL formulas that refer to the action

labels in a nontrivial way cannot be expressed by CSL

formulas. For example, there is no CSL formula
 which is

equivalent to the asCSL formula

 ¼ P�1

�
ðtrue; aÞ; ðtrue; bÞ

�
which holds exactly for those states where all outgoing

paths start with action a followed by b.
For instance, in the ASMC shown in Fig. 3, states s1 and

s2 differ only in the action-name of the outgoing transition,

but have the same labeling fgreeng and exit rate. Hence,

they fulfill the same CSL formulas,5 but s1 and s2 can be

distinguished by the asCSL formula
 as we have s1 �

and s2 6�
.

We finally restrict ourselves to the state-based frag-

ment of asCSL, i.e., the fragment of asCSL in which the

programs � are regular expressions using the atoms

ð
;ActÞ and ð
;pÞ. First, we observe that the asCSL

formula

 ¼ Pfflpððtrue;ActÞ; ðq;ActÞ; ðp;ActÞÞ;

where p 2	0; 1½ and q; p 2 AP cannot be described in CSL.

We skip here a formal argument, but observe that
 states a

nontrivial probability bound for reaching a q-state with the

first transition and a p-state with the second transition. In

CSL, however, we can formalize the possibility to reach a

q-state followed by a p-state via two next step operators, but

each of them has to be augmented with a probability bound.
A final example that illustrates that even the state-based

fragment of asCSL is strictly more expressive than CSL is

given by the asCSL formula

0 ¼ P>0 ððtrue;ActÞ; ðq;ActÞÞ�; ðp;pÞð Þ;

which states that a p-state is reachable via a finite path

where any state at an odd position is labeled by q. Using a

formal argument similar to [16], it can be shown that there

is no CSL formula equivalent to
0.

4.2 asCSL versus aCSL and aCSL+

The logic aCSL [7] is the action-based counterpart of CSL,

just as aCTL [20] is the action-based counterpart of CTL.

aCSL, which does not provide atomic propositions, is

interpreted over a CTMC with action labels only, i.e., an

ASMC without state labeling. Similar to CSL, aCSL offers a

probability operator (Pfflp) and a steady-state operator

(Sfflp). In aCSL, only time intervals with lower time bound

equal to zero can be defined. Similar to aCTL, aCSL offers

means to characterize satisfying paths via action-decorated

versions of the next and until operators.
As we have shown for CSL, it can also be demonstrated

that every aCSL formula can be translated into an

equivalent asCSL formula. Using an argument similar to

the one in Section 4.1, it can be proven that asCSL is strictly

more expressive than aCSL. In [11], the logic aCSL+ was

introduced; it extends aCSL in two ways:

. aCSL+ supports atomic propositions and its seman-
tic model is an ASMC (as in the case of asCSL), and

. satisfying paths are characterized by regular expres-
sions of actions, but not tests.

By means of elementary examples, it can be shown that,

using the test feature of asCSL, it becomes possible to

differentiate between paths which were indistinguishable in

aCSL+.

5 asCSL-EQUIVALENCE AND BISIMULATION

It is well-known that bisimulation equivalence on CTMCs is

the coarsest equivalence that identifies all states of a CTMC

fulfilling the same CSL formulas [21], [4], [22]. We now

establish a similar result for asCSL, which we need in the

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

5. Formally, this follows from the observation that s1 and s2 are
bisimulation equivalent in the underlying CTMC (see Section 5).

Fig. 3. A simple ASMC M.

correctness proof of the model checking algorithm pre-
sented in Section 6.

Definition 13 (Bisimulation equivalence). Bisimulation
equivalence � for an ASMC:
M¼ ðS;Act;AP; L;RÞ is the coarsest equivalence on S

such that, for all states s1 � s2:

1. Lðs1Þ ¼ Lðs2Þ and
2. Rðs1; a; CÞ ¼ Rðs2; a; CÞ for all actions a 2 Act and

all equivalence classes C 2 S=� .

For CTMCs with just state labels, bisimulation equivalence is
defined in the same way by ignoring the action labels in item 2.

Bisimulation equivalence can be viewed as a refinement
of ordinary lumpability of Markov chains [23], [24], since
bisimulation equivalence takes both the state labeling and
the action labeling into account. It essentially agrees with
Markovian bisimulation for action-labeled Markov chains
as introduced in [25], [26] (which takes the action labeling,
but not the state labeling, into account).

In the following, asCSL-equivalence denotes the equiva-
lence relation which identifies exactly those states that
cannot be distinguished by asCSL formulas. We now show
that bisimulation equivalence on ASMCs agrees with
asCSL-equivalence. Using structural induction on the
syntax of state formulas and programs of asCSL, the
preservation property for asCSL and bisimulation equiva-
lence can be established in the following sense: If s1 � s2,
then we have

s1 �
 iff s2 �
 for all state formulas
 of asCSL: ð1Þ

ProbMðs1; �
IÞ ¼

ProbMðs2; �
IÞ for all path formulas �I of asCSL:

ð2Þ

The argumentation for (1) is straightforward and omitted
here. In order to prove (2), a more general result can be
established by structural induction on the syntax of programs
which states that, for each program �, we have

ProbMðs1; �
I; CÞ ¼ ProbMðs2; �

I; CÞ:

for all bisimulation equivalent states s1, s1, all time
intervals I, and all bisimulation equivalence classes
C 2 S= � . Here, ProbMðs; �I; CÞ denotes the probability
to reach a C-state from s via a finite path � 2 PathsMfinð�Þ.
The fact that

ProbMðs; �IÞ ¼ ProbMðs; �I; SÞ;

finally yields the claim. Thus, bisimulation-equivalent states
are asCSL-equivalent. To show the converse, similar
arguments as in [22] can be used, to obtain:

Proposition 14. Bisimulation equivalence for ASMCs agrees
with asCSL-equivalence.

More precisely, using the arguments of [22], it can be
shown that even the sublogic of asCSL consisting of
formulas built by conjunctions of atomic propositions and
probabilistic formulas with upper time bounds and
programs consisting of the base symbols ð
; bÞ is sufficient
to provide a characterization of bisimulation equivalence
for ASMCs.

As Markovian testing equivalence [27] is weaker than
bisimulation equivalence, states that fulfill the same asCSL
formulas are also Markovian testing equivalent.

6 MODEL CHECKING asCSL

The model checking procedure for asCSL is similar to that

for CTL [28]. Given the asCSL state formula
 and an ASMC

M, we successively consider the subformulas of
 and

calculate the satisfaction sets SatMð Þ ¼ fs 2 SjM; s � g.
This technique allows us to treat subformulas as atomic

propositions. The treatment of subformulas whose top-level

operator is a Boolean connective (negation or disjunction) is

obvious. Subformulas of the form Sfflpð
Þ can be handled

with the same procedure as for CSL; see [4]. The new and

challenging case is the treatment of formulas of type

 ¼ Pfflpð�IÞ. For each state s we have to compute the

probability

ProbMðs; �IÞ ¼ PrMf& 2 PathM! ðsÞ j M; & � �Ig;

and check whether it lies within the specified bound ffl p.
The approach to calculate the values ProbMðs; �IÞ is to
build the product of M and a finite automaton A�
(representing the program �), which yields a new Markov
chain, denoted M�A�, and then to apply the CSL model
checking procedure to calculate the probabilities inM�A�
to reach a state hs0; qi, with s0 a state inM and q an accepting
state in A�, within the time interval I.

Section 6.1 is devoted to the construction of the
automaton A� from the program �, whereas Section 6.2
presents the construction of the product Markov chain
M�A�.

6.1 The Program Automaton A�
Since programs are regular expressions, we can apply
standard techniques to construct a finite automaton for a
given program. We call this a nondeterministic program
automaton (NPA).

Definition 15 (NPA). An NPA is a quintuple

A ¼ ðZ;�0; �; Z0; F Þ;

where Z is a finite set of states, �0 is a finite subset of � (the
input alphabet),6 � : Z � �0 ! 2Z is the transition function,
Z0 � Z is the set of initial states, and F � Z is the set of
accepting (final) states. LðAÞ � ð�0Þ� denotes the accepted
language of A, which is defined in the standard way.

We now describe how a program automaton A can be
used to describe the path set PathMfinð�Þ for a program �.
Thus, we consider NPA as acceptors for finite paths in M
(rather than as acceptors for finite words over the alphabet
�0). The intuitive behavior of an NPA A for the input path
� ¼ s�!a;t �0 is as follows: The automaton starts in one of its
initial states z0 2 Z0. If the current automaton state is z, then
A chooses nondeterministically between one of the outgoing
transitions z�!
b z0, where s �
 and either b ¼ p or b ¼ a,
and then moves to state z0. In the latter case, i.e., if b ¼ a, A
proceeds in the same way for state z0 and the path �0. In the

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 215

6. � is the alphabet of programs as defined in Definition 6.

former case, i.e., if b ¼ p, no input symbol is consumed,
i.e., the procedure is repeated with state z0 and the path �. If
there is no outgoing transition from z which can be taken
for the input path �, then A rejects. As soon as A reaches a
final state (a state in F) and the whole input path has been
consumed, the automaton accepts.

The acceptance for paths is defined by means of runs,
which are sequences of automaton states that can be
generated by the operational behavior of A as sketched
above, as defined formally in the following definition:

Definition 16 (Runs in NPA, accepted paths). Let A be an
NPA andM an ASMC as above, z 2 Z, and � a finite path in
M. Then, we define Runsðz; �Þ as the greatest set of sequences
z; z1; . . . ; zn 2 Zþ such that the following two conditions are
fulfilled:

1. z 2 Runsðz; �Þ iff j�j ¼ 0
2. If z; z1; . . . ; zn 2 Runsðz; �Þ and n � 1, then there

exists
b 2 �0 such that

. z1 2 �ðz;
bÞ,

. �½0	 �
,

. if b 2 Act, then � ¼ s�!b;t �0 with z1; . . . ; zn 2
Runsðz1; �

0Þ, and
. if b ¼ p, then z1; . . . ; zn 2 Runsðz1; �Þ.

The existence of such a greatest set follows by Tarski’s fixed-
point theorem for monotonic operators 2Z

� ! 2Z
�
.

Let Z0 � Z. The elements of RunsðZ0; �Þ ¼
S
z2Z0

Runsðz; �Þ are called runs for � in A with starting state in

Z0. A run z0; z1; . . . ; zn for � is called accepting iff it is initial

(i.e., z0 2 Z0Þ and zn 2 F . The set of accepted paths,

PathsMfinðAÞ, denotes the set of finite paths in M that have

an accepting run in A.

Acceptance of A as an ordinary finite automaton
(acceptor for finite words over �0) and acceptance of A as
an NPA (acceptor for finite paths) are related in the same
way as the language Lð�Þ of a program � and the induced
path set PathsMfinð�Þ. Hence, it is easy to verify the following
proposition:

Proposition 17. If Lð�Þ ¼ LðAÞ, then

PathsMfinð�Þ ¼ PathsMfinðAÞ:

Example 18. Fig. 4 shows an NPA A� for the language
defined by the program � in Example 9.

State z1 is the single initial state, that is, Z0 ¼ fz1g. The
set of final states F consists of the single state z5.

We now extend the transition function � of A to a
transition relation �̂M, which associates with any pair ðZ0; �Þ
consisting of a set Z0 of automaton states and a finite path �
in the ASMCM, the set of automaton states z such that z is
the last state of a run for � that starts in a Z0-state. The idea
behind the definition of �̂M is similar to the definition of the
transition relation of the deterministic finite automaton
obtained from A (viewed as an acceptor for finite words)
via the standard power set construction. However, the
following remark shows that the process of making the
NPA deterministic as an acceptor for finite paths in M has
to be done “in conjunction” with M.

Remark 19. An NPA A ¼ ðZ;�0; �; Z0; F Þ is called determi-
nistic if Z0 is a singleton set and j�ðz;
bÞj � 1 for all states
z 2 Z and input symbols
b 2 �0. Given a deterministic
NPA A, the “behavior” of A for an input word over �0 is
deterministic, i.e., there is at most one run, whereas the
“behavior” of a deterministic NPA A for an input path �
can be nondeterministic, even if A does not containp

-transitions (i.e., transitions that are labeled with an
input symbol

p 2 �0). The reason is that the current
automaton state z might have two transitions z�!
a z0 and
z�! a z00, where a is the first action of the input path � and
where the first state of � satisfies both
 and .

We now return to the formal definition of the extended

transition relation �̂M. If � is a path of length 0, i.e., � ¼ s for

some state s, then �̂MðZ0; �Þ ¼ �̂MðZ0; sÞ consists of all

automaton states ~z that are reachable in A from a Z0-state0

via
p

-transitions z1�!

;
p
z2 where state s fulfills the state

formulas
. This corresponds to the so-called
p

-closure of Z0

for state s which is defined as follows:

Definition 20 (
p

-closure).
p
ClosureðZ0; sÞ denotes the least

subset of Z such that

Z0 [
[

z2pClosureðZ0;sÞ

[

 s:t:
s�

�ðz;
pÞ � pClosureðZ0; sÞ:

The existence of this least set follows from Tarski’s fixed-point
theorem for monotonic operators 2Z ! 2Z .

We now have all the ingredients to define �̂MðZ0; �Þ by
induction on the length of �:

Definition 21 (Extended transition function). The function
�̂M : 2Z � PathMfin ! 2Z is given by

�̂MðZ0; sÞ ¼ pClosureðZ0; sÞ

and �̂MðZ0; s�!a;t �0Þ ¼ �̂M Y ; �0ð Þ where

Y ¼
[

z2pClosureðZ0;sÞ

[

 s:t
s�

�ðz;
aÞ:

Note that Y stands for the set of all automaton states y that
are reachable in A from a state z0 2 Z0 via transitions labeled
with elements

p 2 � such that s � followed by a
transition with a label
a 2 � such that s �
.

It can be shown by induction on j�j that �̂MðZ0; �Þ
consists of all states that are reachable in A via a run
starting in Z0 for �, i.e.,

�̂MðZ0; �Þ ¼ z 2 Z j 9z0; z1; . . . ; zn 2 RunsðZ0; �Þ : zn ¼ zf g:

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

Fig. 4. NPA A� for the program � in Example 9.

For Z0 ¼ Z0, we obtain that �̂MðZ0; �Þ consists of all
automaton states that can be reached via an initial run for
�. From this observation, we obtain:

Proposition 22. If � is a program and A an NPA with
Lð�Þ ¼ LðAÞ, then we have

PathsMfinð�Þ ¼ � 2 PathsMfin j �̂MðZ0; �Þ \ F 6¼ ;
n o

:

Example 23. We consider the ASMC of the running example
shown in Fig. 1 and the program � of Example 9. The
corresponding program automaton A ¼ A� is shown in
Fig. 4. Consider the finite path

�1 ¼ s2 �!
arrive;�

s3 �!
arrive;�

s4 �!
arrive;�

s9 �!
correct;�

s5:

with arbitrary sojourn times in the states. We then have

�̂ fz1g; �1ð Þ ¼ fz1; z4; z5g:

The path �1 belongs to PathMfinðA�Þ, because

z5 2 �̂ fz1g; �1ð Þ:

For the following path,

�2 ¼ s1 �!
arrive;�

s6 �!no correct;�
s10 �!retransmit;�

s1;

we have

�̂ fz1g; �2ð Þ ¼ ;:

This path is not contained in PathsMfinðA�Þ.

6.2 The Product Markov Chain M�A
We now return to the question of how to calculate the
satisfaction set SatMð
Þ with
 ¼ Pfflpð�IÞ. First, we recur-
sively apply an asCSL-model checking algorithm to the state
formulas that occur in the program �. As soon as the
satisfaction sets SatMð Þ are known for all state formulas
in �, we can treat them as atomic propositions. Then, we

apply standard algorithms to construct a (nondeterministic)
finite automaton A for � (viewed as an ordinary regular
expression over the alphabet �). We then consider A as an
NPA and build the product of the ASMCM andA (which is
defined below) and finally apply a CSL model checking
algorithm to M�A to calculate the probability to reach a
final automaton state within the given time interval I.

Definition 24 (Product Markov chain M�A). Let M¼
ðS;Act;AP; L;RÞ be an ASMC and let A ¼ ðZ;�; �, Z0; F Þ
be an NPA. The product ASMC is defined as

M�A ¼ ðS�;Act�;AP�; L�;R�Þ

with

. S� ¼ fhs; Z0i
�� s 2 S ^ Z0 2 2Zg,

. Act� ¼ Act, and

. AP� ¼ AP [facceptg (where accept 62 AP).
The labeling function is defined by

L�ðhs; Z0iÞ ¼ LðsÞ [facceptg; if Z0 \ F 6¼ ;
LðsÞ; otherwise:

	

The rate matrix is given by

R�ðhs1; Z1i; a; hs2; Z2iÞ ¼ Rðs1; a; s2Þ;

if Z2 ¼ �̂MðZ1; s1 �!
a;�

s2Þ, and R�ð�Þ ¼ 0 otherwise.

The idea behind the definition of R� is to copy the
transitions from M, provided that the corresponding
transition is possible in the current set of states of A.

Example 25. Fig. 5 shows the product Markov chain
resulting from the ASMC in Example 2 and the
automaton in Example 18. Recall that s4 is the only
ASMC state satisfying �. Only product states reachable
from one of the “initial” states hs; Z0i are shown. There is
exactly one state labeled with accept where the auto-
maton component contains the final state z5; in Fig. 5, it is
drawn in bold. Any transitions leaving the final state or

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 217

Fig. 5. Product Markov chain.

one of the sink states (the automaton component is ;) are
omitted.

Our goal is to show that the values ProbMðs; �IÞ can be
calculated using a model checking procedure for M�A
and the simpler path formula �� I accept (which means that a
state labeled with the atomic proposition accept will be
reached at some point in the time interval I). To establish
this result, we first observe thatM andM�A are statewise
bisimulation equivalent when the set of atomic propositions
inM�A is restricted to AP, i.e., we deal with the labeling
function L�AP which is given by L�APðhs; ZiÞ ¼ LðsÞ rather
than L�. This follows by the fact that the coarsest
equivalence R on S] ðS � 2ZÞ, which identifies any state
s with any of its copies hs; Z0i where Z0 � Z is a
bisimulation. Hence, s � hs; Z0i for all states s in M and
all subsets Z0 of Z. Using (2), we obtain:

Proposition 26. For any state s of M, we have

ProbMðs; �IÞ ¼ ProbM�Aðhs; Z0i; �IÞ:

Next, we observe the one-to-one-correspondence be-
tween paths in M and paths in M�A (when we fix the
states hs; Z0i as starting states). Clearly, by removing the
automaton component of any state in a path inM�A, one
obtains a path in M. Vice versa, each finite path

� ¼ s0�!
a0;t0

s1�!
a1;t1 � � � �!an�1;tn�1

sn in M

can be lifted to a path �� inM�A by extending the states
by sets of automaton states with the help of �̂M:

�� ¼ hs0; Z0i�!
a0;t0hs1; Z1i�!

a1;t1 �!an�1;tn�1hsn; Zni;

where, for k ¼ 1; . . . ; n

Zk ¼ �̂M Zk�1; sk�1�!
ak�1;�

sk

� �
:

Hence, if Lð�Þ ¼ ðAÞ then (by Proposition 22):

hsn; Zni � accept iff accept 2 L�ðhsn; ZniÞ
iff Zn \ F 6¼ ;
iff �̂MðZ0; �Þ \ F 6¼ ;
iff � 2 PathMfinðAÞ ¼ PathMfinð�Þ:

Thus, for all infinite paths &� 2 PathsM�A! ðhs; Z0iÞ, we
have

M�A; &� � �� I accept iff M�A; &� � �I:

Hence, for all states s in M we have

ProbM�Aðhs; Z0i; �IÞ ¼ ProbM�Aðhs; Z0i; �� I acceptÞ:

Using this observation and Proposition 26, we obtain the
following theorem:

Theorem 27. If � is an asCSL program, A an NPA with

Lð�Þ ¼ LðAÞ, and s a state in M, then

ProbMðs; �IÞ ¼ ProbM�Aðhs; Z0i; �� I acceptÞ:

In the case I ¼ ½0; t	, the eventually operators of asCSL

and CSL agree (Proposition 12). Theorem 27 then states that

the problem of computing the satisfaction set SatMð
Þ for
the asCSL-formula
 ¼ Pfflpð��tÞ can be reduced to the
problem of calculating the satisfaction set SatM�Að
CSLÞ for
the CSL-state formula
CSL ¼ Pfflpð��tacceptÞ, as illustrated
in Fig. 6. In summary, to calculate SatMð
Þ where
 is as
above, we

. apply standard techniques to generate a nondeter-
ministic finite automaton A for � (viewed as an
ordinary regular expression over the alphabet �),

. calculate the product ASMCM�A, where it suffices
to calculate the reachable part ofM�A with an on-
the-fly construction that starts with the states hs; Z0i,
and to ignore the action labels in the sense that rates
of “parallel” transitions are accumulated,

. apply a CSL model checker to calculate the values
ps ¼ ProbM�Aðhs; Z0i; ��tacceptÞ for all states s inM,
e.g., with the help of a transient analysis of the
Markov chain, which is obtained fromM�A when
all states labeled with accept and all states from
which one cannot reach a state labeled with accept
(especially those that have an empty automaton
part) are made absorbing [21], [4], and

. return the set
�
s 2 S jps ffl p

�
.

Example 28. We want to check the formula � ¼ P�0:1 �
�7:3ð Þ

for � as defined in Example 9 on the running example
ASMC M shown in Fig. 1. An automaton A� for the
program � has been shown in Fig. 4. Fig. 5 presents the
resulting product ASMCM�A�. Let � ¼ 9, � ¼ 1, � ¼ 3,
� ¼ 1, ! ¼ 2, and � ¼ 20. Applying a CSL model checker
(which uses uniformization to compute the transient
probabilities) results in the following probabilities:

ps1
¼ 0:0695; ps2

¼ 0:0713; ps3
¼ 0:0731; ps4

¼ 0:075

for states, where packets can arrive and

ps5
¼ ps6

¼ ps7
¼ ps8

¼ ps9
¼ ps10

¼ 0:

for states where the program cannot be followed for
structural reasons. Since all these probabilities are � 0:1
the satisfaction set SatMð�Þ ¼ S.

In the case I ¼ ½t; t0	, where t > 0, the model checking
procedure for Pfflpð�IÞ has to be modified as follows: For

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

Fig. 6. Schema for the handling of the probabilistic path operator.

every state x ¼ ðs; Z0Þ of the product Markov chain with
accept 2 L�ðxÞ, a duplicate state x with L�ðxÞ ¼ facceptg is
generated, where accept is a new atomic proposition. These
duplicate states are made absorbing (note that x is not
necessarily absorbing). The analysis now consists of two
phases:

1. In the first phase, the duplicate states are not yet
reachable. A transient analysis for time point t is
carried out, yielding a probability vector ~	ðtÞ, where,
for each duplicate state x, the corresponding prob-
ability 	xðtÞ is zero (because these states are
unreachable).

2. In the second phase, the product Markov chain is
modified by redirecting all incoming arcs of a state
x ¼ ðs; Z0Þ with accept 2 L�ðxÞ to the corresponding
duplicate state x. On this modified Markov chain, a
transient analysis for the time point t0 � t is carried
out, taking the vector ~	ðtÞ obtained in the first phase
as the initial distribution. This yields the probability
vector ~	ðt0 � tÞ from which the final result is
computed as

ProbMðs; �IÞ ¼
X

x � accept

	xðt0 � tÞ:

In [4], it was shown that the time complexity of the
uniformization-based model checking algorithm for CSL
formulas of type Pfflpð
1U½t;t

0 	
2Þ is OðM � q � t0Þ, where M is
the number of transitions in the CTMC and q is the
uniformization rate (given by the largest exit rate of a state
in the CTMC). In our approach, an asCSL formula of type
Pfflpð�IÞ is checked by first constructing an NPA A�, which
has jZj ¼ Oðj�jÞ states, and then constructing the product
Markov chain, which has at most M � 2jZj transitions. The
uniformization rate and the time bound t0 are not affected
by the product automaton construction. Therefore, the
overall time complexity of our algorithm to calculate the
satisfaction set for an asCSL formula of type Pfflpð�½t;t

0 	Þ is
bounded by OðM � 2j�j � q � t0Þ.

7 HANDOVER IN A CELLULAR MOBILE

COMMUNICATION NETWORK

In this section, we present an elaborated example in order
to illustrate the techniques we have developed. We consider
a scalable cellular mobile communication network. Each
cell is ruled by a base station subsystem (BSS). We are
especially interested in the behavior of the system concern-
ing a distinguished mobile radio station (MS) (also called
the distinguished user) moving from one cell to another,
thereby possibly triggering a so-called handover procedure.
Handovers between the different cells are managed by the
corresponding BSSs and the global mobile switching center
(MSC). Depending on the load of the MSC and the
availability of channels at the BSSs, a handover might
succeed or fail. The model is inspired by the description of
the GSM handover procedure in [29] and [30]. We describe
the system as a set of synchronizing processes, namely, the
switching center, the distinguished user’s spatial movement
and the user’s functional behavior. The properties of

interest are expressed with asCSL formulas involving
programs. We show the corresponding NPA and relate
the size of the resulting product Markov chains to the size
of the original model. Finally we use a CSL-model checking
tool to evaluate the formulas.

7.1 The Model

The distinguished MS is situated in one of several GSM cells
and is allowed to move between neighboring cells. Each cell
has a hexagonal shape. Together, cells are arranged in such
a way that they again form a hexagon. The size of this
hexagon is described by the number M of cells that
constitute one edge of it. In Fig. 7, one can see the cell
topologies for M ¼ 2 and M ¼ 3. It also illustrates the
unique cell identifiers. The parameter M is used for scaling
the model; the complete hexagon has M2 þMðM � 1Þ þ
ðM � 1Þ2 ¼ 3MðM � 1Þ þ 1 cells. We now describe the
model of the MS functional behavior. When not active with
a connection, the MS is idle. At any time, the MS can
become active, meaning that it either accepts or establishes
a (radio) connection. After a while, the connection can be
terminated and the MS becomes idle again. If it moves from
one cell to another while being active, the corresponding
BSS commands a handover to the new cell from the MSC. If
the handover is eventually completed, the MS returns to the
active state (note that the connection is continued during
the entire handover procedure). If the handover procedure
is not completed in time, the connection is lost. The
connection is then terminated (assume that the distance to
the former cell has become too large) and the MS returns to
the idle state.

Fig. 8 shows a state-transition diagram for the distin-
guished MS. Transitions are labeled with action names.
Note that, in ASMCs, we allow more than one transition
between two states as long as they are labeled with different
action names. Such “parallel” (or coexisting) transitions
(receive and activate) can be found between states Idle and
Active. The move transition synchronizes with the user’s
spatial movement whenever active.

The mobile services switching center (MSC) is modeled
by its load. It has low, medium, or high load. The time
needed for the handover procedure depends on the current
load. Under high load, the MSC does not process any
request for handover at all. Table 1 states the rates for

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 219

Fig. 7. Hexagon of cells for M ¼ 2 and M ¼ 3.

transitions labeled with the given actions. Note that all

numbers are educated guesses made on the basis of [31].

7.2 asCSL Properties

In the following section, we present several asCSL formulas,
which are constructed with two goals in mind: On the one
hand, they demonstrate the expressive power of asCSL. On
the other hand, they formalize interesting properties of the
handover procedure. For each formula, the model checking
procedure involves the construction of a product ASMC.
The results are interpreted in Section 7.4.

7.2.1 Move

The MS is always free to move from one cell to one of its
neighboring cells. We ask whether the probability of
moving within the next two minutes (120 seconds) is at
least 98 percent. A program describing this behavior is

�a ¼ ðtrue;ActnfmovegÞ�; ðtrue; moveÞ:
First, the ASMC is allowed to perform arbitrary transi-

tions as long as they are not labeled move. If, then, a move

transition occurs, the ASMC has shown the specified
behavior. Fig. 9a shows an NPA for �a.

The complete asCSL formula becomes

a ¼ P>0:98ð�½0;120	
a Þ:

In this case, we could still state a CSL formula that has the
same meaning. Moving is equivalent to being in one cell at
one moment and in another cell at the next moment. So, the

following CSL path formula describes moving out of a cell
ði; jÞ within 120 seconds:

’ði; jÞ ¼ InCellði; jÞU½0;120	:InCellði; jÞ:

A CSL formula equivalent to
a is then

 ¼
_
i;j

P>0:98ð’ði; jÞÞ:

It has to account for every cell the MS might be in. This
makes the formula lengthy. We think that the asCSL
version is much more readable and elegant. Note, however,
that property
a can be expressed (in a straightforward
manner) in aCSL by a single until operator, decorated with
the action move as the final action.

7.2.2 Inbound Connection

In this paragraph, we describe an asCSL formula that relies
on a special feature of ASMCs: the possibility of having
more than one transition between two states. In our model,
both transitions activate and receive lead from state
Idle to state Active. We can never find out whether a
connection is inbound or outbound just by looking at state
properties, unless we split (duplicate) states. Only the
transitions tell us what is the case. The following program
has a similar structure to that of �a but cannot be replaced
by a CSL path formula:

�b ¼ ðtrue;Actnfactivate; receivegÞ�; ðIdle; receiveÞ:

See an NPA for �b in Fig. 9b. With
b ¼ P�0:3 �
½0; 2500	
b

� �
, we

check whether the probability of receiving an inbound
connection within the next 2,500 seconds (without activat-
ing an outbound call) is at least 30 percent. Consider also
the following asCSL formula:
S ¼ S�0:85ð
bÞ. It holds if the
steady-state probability of states that satisfy
b is at least
85 percent.

7.2.3 Outdated Handover

When the MS moves from one cell to the next, the BSS
requests a handover to the new cell. However, the model
does not prevent the MS from moving on to yet another cell.
This behavior is not explicitly visible in the model: Here, a
handover is simply made to the cell the MS is in, no matter
where it has been in between. In reality this type of

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

Fig. 8. State machine for the distinguished MS behavior.

TABLE 1
Action Labels and Rates of the Transitions of the Cellular Network Model

movement could cause a problem. So, we would like to
know whether the probability of such an outdated hand-
over is lower than, say, 3.5 percent. As an asCSL formula,
this becomes:

c ¼ P�0:035ð�½0;1	c Þ;

with

�c ¼ ðActive; moveÞ; ð3Þ
ðRequestHandover _WaitForHandover; ð4Þ
ActnfhandoverComplete; movegÞ�; ð5Þ
ðRequestHandover _WaitForHandover; moveÞ: ð6Þ

A move while the MS is active triggers a handover. Lines
(4/3) describe the system inside the handover procedure. A
move (6) leads to an outdated handover. An NPA for the
program �c is given in Fig. 9c.

7.2.4 Return without Interruption

Assume that the MS initiates a connection while in the

center cell ðM;MÞ. It is free to move between cells. We

would like it to leave the center cell and to return within

10 minutes (600 seconds) without terminating or losing the

connection. Is the probability for this scenario at least

10 percent? Coded into an asCSL-formula this reads
d ¼
P>0:1 �

½0; 600	
d

� �
; with

�d ¼ ðInCenterCell; activateÞ; ð7Þ
ðtrue;Actnfdeactivate; lossgÞ�; ð8Þ
ð:InCenterCell;

pÞ; ð9Þ
true;Actnfdeactivate; lossgÞ�; ð10Þ
ðInCenterCell;

pÞ: ð11Þ

The regular expression first ensures that the user

activates a connection while being in the center cell (7).

Then, the user can behave arbitrarily, as long as the

connection is not ended via a deactivate or loss event

(8). At some time, the user must have left the center cell (9)

and can again behave arbitrarily, as long as the connection

remains established (10). Finally, he should return to the

center cell (11). Fig. 9d shows an NPA for the program �d.

7.2.5 Ping-Pong

Sometimes there are handovers from a cell ði; jÞ to a

neighboring cell ði0; j0Þ and back to cell ði; jÞ within a short

time interval. From a performance point of view, this is not

desirable since, presumably, the call could have remained

in cell ði; jÞ.
A ping-pong between cell ði; jÞ and its neighboring cells

is described by the program for �ði;jÞ:

ðInCellði; jÞ;pÞ; ðActive; moveÞ; ðtrue; B1Þ�;

[
ði0;j0Þ neighbor of ði;jÞ

ððInCellði0; j0Þ; handoverCompleteÞ;
ðInCellði0; j0Þ; B2Þ�;
ðInCellði0; j0Þ; moveÞÞ

0
@

1
A;

ðtrue; B1Þ�; ðInCellði; jÞ; handoverCompleteÞ;

where

B1 ¼ Actnfmove; loss; handoverCompleteg

and B2 ¼ Actnfdeactivate; moveg. If ði; jÞ is an inner cell,

that is, has all six neighbors, an NPA for the program �ði;jÞ is

given in Fig. 9e. All possible ping-pong situations are

described by �e ¼
S
ði;jÞ �ði;jÞ. The NPA for �e consists of one

replica of the automaton in Fig. 9e for each cell ði; jÞ. It has

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 221

Fig. 9. NPA for the programs �a; . . . ; �d and �ði; jÞ.

an initial and a final state for each cell. The asCSL-formula

e ¼ P�0:01ð�½0;10	

e Þ formalizes the following question: “Dur-
ing an active connection, is the probability of such a ping-
pong handover to occur within 10 seconds at most
1 percent?”

7.3 Tool Support/Implementation

A prototype that performs the construction of the product
Markov chain given an ASMC and an NPA has been
implemented in C++.

For modeling and evaluation, we employ a stochastic
Petri net (SPN) model of the cellular system. All compo-
nents of the systems are described by simple state machines;
we therefore do not show their SPN representation here.
The SPN is described in an extension of CSPL [32], which
also allows the specification of marking-dependent proper-
ties, which can be seen as atomic propositions in the
underlying Markov chain. The state space generation code
of [33] has been extended in order to record these properties
and the transition names (as action labels) and generates an
ASMC, including any coexisting transitions. A state of the
ASMC generated for this example is a triple consisting of
the current cell the MS resides in, the state of the MS, and
the load of the MSC. An example for such a state is ((2.2),
Idle, low). The actions in Act are listed in Table 1. The set of
atomic propositions AP is given by the possible states of the
MS, that is, Idle, Active, RequestHandover, and Wait-
ForHandover, and atomic propositions related to the
position of the MS, that is, InCellði; iÞ or InCenterCell.

Programs are described directly via their corresponding
NPA. Our prototype implementation takes the ASMC and
the NPA as input and computes the reduced product
Markov chain where only reachable states are generated
and where accept-states and reject states hs; ;i with an
empty automaton part are merged into two special states.

The final computation of the satisfaction relation of the
corresponding CSL formula is done using CSL model
checking procedures. The size of the ASMCs was restricted
by the runtime of the prototype implementation computing
the reduced product Markov chain.

7.4 Results

7.4.1 Product Markov Chains.

Fig. 10a shows the number of states and (Fig. 10b shows the
number of transitions of the original ASMC model of a
cellular radio network and of the product Markov chains
needed for the model checking procedure of the given
asCSL-formulas as a function of the number M of cells per
hexagon edge that ranges from 2 to 10.

The original model has 3,252 states and 27,900 transitions
for M ¼ 10. For all presented programs, the number of
states in the product Markov chain is equal to or larger than
in the original ASMC. This could be expected, since the
state space is a subset of the Cartesian product S � 2jZj. For
the “move” (Section 7.2.1) and “inbound connection”
programs (Section 7.2.2), the state space is the original state
space plus the two special merge states for rejecting and
accepting states. No additional states are created because ,
after allowing arbitrary behavior, the automata go directly
to their final states once the decisive action (move or
receive) occurs. For the programs of “outdated hand-
over” (Section 7.2.3) and “return without interruption”
(Section 7.2.4), the size of the state space is roughly scaled
by a factor of 1.75. This is the result of having more than one
automaton state visited before reaching a final state.

The largest state space is the one of the ping-pong
property (Section 7.2.5); it has more than 44,000 states for
M ¼ 10. Because we keep only those states from which the
accept state is reachable and merge the others into one
absorbing state, the number of states can also become
smaller than the original state space. However, with the
presented examples and formulas, this is not the case. The
program for “inbound connection” leads to a product
Markov chain in which there is exactly one transition for
each transition in the original model. Transitions labeled
receive now lead into the newly created accept state,
transitions labeled activate lead into the reject state.

Even though the program for “move” has exactly the
same structure as the program for “inbound connection,” it
generates fewer transitions. This is because of the merging
of accept states into one state, which causes also all move

222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

Fig. 10. Size of (a) state space and (b) number of transitions in the original ASMC and the product Markov chains.

transitions (up to six) leaving a state to be aggregated into a
single transition.

For the properties “outdated handover” and “return
without interruption,” the number of transitions in the
product Markov chain is smaller than in the original ASMC
as well. The corresponding program automata are very
restrictive, in the sense that in each state of the original
ASMC only a subset of all outgoing transitions is allowed
by the NPA. The NPA for “ping-pong” allows a broad
range of different combinations of states and transitions.
Consequently, it shows the largest growth in state space,
and the number of transitions is much larger than in the
original model (147;175 for M ¼ 10).

7.4.2 Model Checking

Applying a CSL model checker to the “move” product
Markov chains reveals that all states of the ASMC satisfy the
“move” formula
a for all parameters M. This is not
surprising, since the move transition exists in every state and
the mean time between two moves is 1=0:02 ¼ 50 seconds.
This results in a sufficiently high probability of moving
within two minutes.

The “inbound connection” formula
b is only satisfied
by part of the states. That means that for some of the
states the probability of having an inbound call within
the next 2,500 seconds is less than 30 percent. To see the
satisfaction of
b on the long run, we consider the
formula
S ¼ S�0:85ð
bÞ. Since the ASMC is strongly
connected, the satisfaction set of
S is either empty or
equals the complete state space. For M ¼ 2; . . . ; 6, no state
satisfies the steady-state formula. The accumulated steady-
state probability for all
b-states is smaller than 85 percent.
For M ¼ 7; . . . ; 10, all states satisfy formula
S .

Not all states satisfy the “outdated handover” formula.
For states where the MS isactive and the MSC has low load,
there are some states that do not fulfill
c. The cells are
arranged in rings around the center cell ðM;MÞ, as can be
seen in Fig. 7. If the MS resides in one of theM � 2 inner rings
(and is active and the MSC load is low), the probability of
following the behavior defined by�c is above 3.5 percent and
the state does not satisfy
c.

Formula
d (“return without interruption”) is not valid
in any state. For most of the states, the probability of
following a path specified by �d is 0 anyway because the MS
is not in the center cell. But also for those states where the
MS is in the center cell, the probability of returning with an
ongoing call is too small to meet the bound.

Finally, in all states of the ASMC the “ping-pong”
formula
e holds. This is not surprising when making a
comparison with the result of checking
d: Already, the less
restrictive specification of returning to the same cell yields
very low probabilities and the probability of having a ping-
pong handover is even always below 1 percent.

8 CONCLUSIONS

In this paper, we introduced the logic asCSL as a new
temporal logical framework for reasoning about perfor-
mance and dependability measures for Markov chains with
both action labels and state labels. asCSL subsumes CSL
(with time intervals ½0; t) as well as several other logics that

have recently been suggested in the literature, such as

aCSL, aCSL+ [7], [11], [12], [13]. Although the proposed

logic asCSL is quite expressive, it still yields a simple and

intuitive specification formalism, as illustrated by the

example provided in Section 7, where complex properties

referring to both state labels and actions have been

formalized by means of rather simple asCSL formulas.
The model checking problem for asCSL can be solved by

a procedure that combines well-known techniques for finite

automata and for verifying continuous-time Markov chains.

The calculation of the satisfaction set for formulas of type

Pfflpð�IÞ relies on a reduction to the CSL model checking

problem via a product construction of the Markov chainM
and an automaton for the path formula �I , while the

treatment of other formulas is exactly as in CSL. Thus,

established techniques and tools for CSL model checking

are still applicable for reasoning about complex properties

specified by asCSL formulas.

ACKNOWLEDGMENTS

The work in this paper was developed in the context of the

joint DFG-NWO project “Validation of Stochastic Systems,”

through DFG grants BA 1679/2 (University of Bonn) and

SI 710/2 (University of the Federal Armed Forces, Munich),

and NWO grant DN 62-600 (University of Twente).

REFERENCES

[1] Lectures on Formal Methods and Performance Analysis: Proc. First
EEF/Euro Summer School on Trends in Computer Science,
E. Brinksma, H. Hermanns, and J.-P. Katoen, eds., 2001.

[2] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying
Continuous Time Markov Chains,” Proc. Conf. Computer-Aided
Verification, pp. 269-276, 1996.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
Checking Algorithms for Continuous-Time Markov Chains,” IEEE
Trans. Software Eng., vol. 29, no. 7, pp. 1-18, July 2003.

[5] H. Hansson and B. Jonsson, “A Logic for Reasoning about Time
and Reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512-
535, 1994.

[6] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “On the
Logical Characterisation of Performability Properties,” Proc. Int’l
Colloquium Automata, Languages, and Programming (ICALP ’00),
pp. 780-792, 2000.

[7] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle,
“Towards Model Checking Stochastic Process Algebra,” Proc.
Conf. Integrated Formal Methods (IFM ’00), pp. 420-439, 2000.

[8] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle,
“Implementing a Model Checker for Performability Behaviour,”
Proc. Fifth Int’l Workshop Performability Modelling of Computer and
Comm. Systems, pp. 110-115, 2001.

[9] R.D. Nicola and F. Vaandrager, “Three Logics for Branching
Bisimulation (Extended Abstract),” Proc. Fifth Ann. IEEE Symp.
Logic In Computer Science, pp. 118-129, 1990.

[10] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha,
“State/Event-Based Software Model Checking,” Proc. Conf.
Integrated Formal Methods (IFM), 2004.

[11] J. Meyer-Kayser, “Automatische Verifikation Stochastischer Sys-
teme,” PhD dissertation, Universität Erlangen-Nürnberg, Institut
für Informatik (in German), 2004.

[12] C. Baier, L. Cloth, B. Haverkort, H. Hermanns, and J.-P. Katoen,
“Model Checking pathCSL,” Proc. Sixth Int’l Workshop Perform-
ability Modeling of Computer and Comm. Systems, pp. 19-22, 2003.

[13] M. Kuntz and M. Siegle, “A Stochastic Extension of the Logic
PDL,” Proc. Sixth Int’l Workshop Performability Modeling of Computer
and Comm. Systems, pp. 58-61, 2003.

BAIER ET AL.: MODEL CHECKING MARKOV CHAINS WITH ACTIONS AND STATE LABELS 223

[14] W. Obal and W. Sanders, “State-Space Support for Path-Based
Reward Variables,” Performance Evaluation, vol. 35, nos. 3-4,
pp. 233-251, 1999.

[15] M. Fischer and R. Ladner, “Propositional Dynamic Logic of
Regular Programs,” J. Computer and System Sciences, vol. 8, pp. 194-
211, 1979.

[16] P. Wolper, “Specification and Synthesis of Communicating
Processes Using an Extended Temporal Logic,” Proc. Ninth Symp.
Principles of Programming Languages, pp. 20-33, 1982.

[17] A. Aziz, V. Singhal, F. Balarin, and R.K. Brayton, “It Usually
Works: The Temporal Logic of Stochastic Systems,” Proc. Conf.
Computer-Aided Verification, pp. 155-165, 1995.

[18] C. Baier, L. Cloth, B. Haverkort, M. Kuntz, and M. Siegle, “Model
Checking Action- and State-Labelled Markov Chains},” Proc. Int’l
Symp. Dependable Systems and Networks, pp. 701-710, 2004.

[19] W. Stewart, Introduction to the Numerical Solution of Markov Chains.
Princeton Univ. Press, 1994.

[20] A. Fantechi, S. Gnesi, and G. Ristori, “Model Checking for Action
Based Logics,” Formal Methods in System Design, vol. 4, pp. 187-
203, 1994.

[21] C. Baier, B. Haverkort, J.-P. Katoen, and H. Hermanns, “Model
Checking Continuous-Time Markov Chains by Transient Analy-
sis,” Proc. Conf. Computer-Aided Verification (CAV ’00), pp. 358-372,
2000.

[22] J. Desharnais and P. Panangaden, “Continuous Stochastic Logic
Characterizes Bisimulation of Continuous-Time Markov Pro-
cesses,” J. Logic and Algebraic Programming, vol. 56, nos. 1-2,
pp. 99-115, 2003.

[23] J. Kemeny and J. Snell, Finite Markov Chains. Springer, 1976.
[24] P. Buchholz, “Exact and Ordinary Lumpability in Finite Markov

Chains,” J. Applied Probability, no. 31, pp. 59-75, 1994.
[25] J. Hillston, “A Compositional Approach to Performance Model-

ling,” PhD dissertation, Univ. of Edinburgh, 1994.
[26] H. Hermanns and M. Rettelbach, “Syntax, Semantics, Equiva-

lences, and Axioms for MTIPP,” Proc. Workshop Process Algebras
and Performance Modeling (PAPMP ’94), pp. 71-88, 1994.

[27] M. Bernardo and R. Cleaveland, “A Theory of Testing for
Markovian Processes,” Proc. Conf. Concurrency Theory (CONCUR
’00), pp. 305-319, 2000.

[28] E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifica-
tions,” ACM Trans. Programming Languages and Systems, vol. 8,
no. 2, pp. 244-263, 1986.

[29] B. Walke, Mobile Radio Networks. Wiley, 1999.
[30] J.M. Thomsen and R. Manggaard, “Analysis of GSM Handover

Using Coloured Petri Nets,” master’s thesis, Univ. of Aarhus,
2003.

[31] J. Ventura Agustina, P. Zhang, and R. Kantola, “Performance
Evaluation of GSM Handover Traffic in a GPRS/GSM Network,”
Proc. Eighth IEEE Int’l. Symp. Computers and Comm., pp. 137-142,
2003.

[32] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri Net
Package,” Proc. Third Int’l Workshop Petri Nets and Performance
Models, pp. 142-151, 1989.

[33] B. Haverkort, H. Bohnenkamp, and A. Bell, “On the Efficient
Sequential and Distributed Evaluation of Very Large Stochastic
Petri Nets,” Proc. Int’l Workshop Petri Nets and Performance Models,
pp. 12-21, 1999.

Christel Baier received the diploma degree in
mathematics in 1990 from the University of
Mannheim in Germany. She received the PhD
degree in 1994 and the venia legendi in 1999,
both from the Department of Computer Science
at the University of Mannheim. From 1999 to
2006, she was an associate professor of
computer science at the Rheinische Friedrich-
Wilhelms Universit at Bonn. Since October
2006, she has been a full professor of computer

science at the Technical University Dresden. Her research interests are
the theory of concurrent and probabilistic systems, verification,
semantics of programming languages, and process calculi and
mathematical logic.

Lucia Cloth received the diploma degree in
computer science in 2000 from the RWTH
Aachen University and the PhD degree from
the University of Twente in 2006. Currently, she
is a researcher in the Faculty for Electrical
Engineering, Mathematics, and Computer
Science at the University of Twente. Her
research interests include model checking of
stochastic systems and the abstract modeling of
batteries.

Boudewijn R. Haverkort received the engineer-
ing degree and the PhD degree in computer
science, both from the University of Twente, in
1986 and 1991, respectively. Since 2003, he is
the chairholder for Design and Analysis of
Communication Systems at the University of
Twente, the Netherlands. Prior to that, he was,
among other things, a professor of performance
evaluation and distributed systems at the RWTH
Aachen, Germany, for seven years, a lecturer in

computer science at the University of Twente in the Netherlands for five
years, and a visiting researcher in the Teletraffic Research Centre at the
University of Adelaide. His research interests emcompass the design
and performance and dependability evaluation of computer-commu-
nication systems, model checking, parallel and distributed computing,
and fault-tolerant computer systems. He has published more than
75 papers in international journals and conference proceedings, edited
several books and conference proceedings, and wrote a monograph on
model-based performance evaluation of computer and communication
systems. Since 2005, he has served on the editorial board of
Performance Evaluation. He is a fellow of the IEEE and the IEEE
Computer Society.

Matthias Kuntz received the diploma and PhD
degrees from Friedrich-Alexander-University Er-
langen-Nuernberg in 2001 and 2006, respec-
tively. From 2001 to 2003, he was a research
assistant in the Department of Computer Net-
works and Communication Systems at Friedrich-
Alexander-Universitaet Erlangen-Nuernberg.
From 2004 to 2005, he was with the Design of
Computer and Communication Systems Re-
search Group at the University of Federal Armed

Forces in Munich. Since 2005, he has been a postdoctoral researcher in
the Department of Informatics at the University of Twente, the
Netherlands. His research interests include formal verification, espe-
cially model checking of systems with stochastic behavior.

Markus Siegle received the Dipl-Inf degree from
the University of Stuttgart (1989), the master’s
degree from North Carolina State University
(1990), the Dr-Ing degree from the University of
Erlangen-Nürnberg (1995), and the habilitation
degree from the University of Erlangen-Nürnberg
(2002), all in computer science. Since 2003, he
has been a professor with the Institute of
Computer Engineering at the University of the
Federal Armed Forces in München, Germany,

heading a research group with a focus on the design of computer and
communications systems. Previously, he was a researcher and lecturer
at the University of Erlangen-Nürnberg. His research interests include
performance and dependability evaluation, formal specification methods,
representation, and solution of very large Markovian models, symbolic
data structures, and the verification of nonfunctional requirements.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

224 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 4, APRIL 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

