
Integrating Formal Verification and
Conformance Testing for Reactive Systems

Camille Constant, Thierry Jéron, Hervé Marchand, and Vlad Rusu

Abstract—In this paper, we describe a methodology integrating verification and conformance testing. A specification of a system—

an extended input-output automaton, which may be infinite-state—and a set of safety properties (“nothing bad ever happens”) and

possibility properties (“something good may happen”) are assumed. The properties are first tentatively verified on the specification

using automatic techniques based on approximated state-space exploration, which are sound, but, as a price to pay for automation,

are not complete for the given class of properties. Because of this incompleteness and of state-space explosion, the verification may

not succeed in proving or disproving the properties. However, even if verification did not succeed, the testing phase can proceed and

provide useful information about the implementation. Test cases are automatically and symbolically generated from the specification

and the properties and are executed on a black-box implementation of the system. The test execution may detect violations of

conformance between implementation and specification; in addition, it may detect violation/satisfaction of the properties by the

implementation and by the specification. In this sense, testing completes verification. The approach is illustrated on simple examples

and on a Bounded Retransmission Protocol.

Index Terms—Software/program verification, formal methods, testing strategies.

Ç

1 INTRODUCTION

FORMAL verification and conformance testing are two well-
established approaches for the validation of reactive

systems. Both approaches consist in comparing two different
views, or levels of abstraction, of a system:

. Formal verification compares a formal specification of
the system with respect to a set of higher-level
properties that the system should satisfy.

. Conformance testing [1], [2] compares the observa-
ble behavior of an actual black-box implementation
of the system with the observable behavior de-
scribed by a formal specification, according to a
conformance relation. We adopt in this paper a
conformance testing theory based on IOLTS (input-
output labeled transition systems) and the ioco con-
formance relation [3].

Verification operates on formal models and allows in
principle for complete, exhaustive proofs of properties on
specifications. However, for expressive models such as
those considered in this document (symbolic, infinite-state
transition systems), verification is undecidable or too
complex to be carried out completely and one has to resort
to partial or approximated verification. For example, safety
properties can be checked on overapproximations of the
reachable states of the specification; if the property holds on
the overapproximation, then it also holds on the original
specification, but nothing can be concluded if the property
is violated by the overapproximation.

Unlike verification, conformance testing is performed on
the real implementation of the system by means of
interactions between the implementation and test cases
derived from the specification. In general, testing cannot
prove that the implementation conforms to the specifica-
tion: it can only detect nonconformances between the two
“views” of the system. Since the specification serves as a
basis for conformance testing, it is quite clear that the
specification itself should be verified against expected
properties.

Hence, the two techniques are complementary: Verifica-
tion proves that the specification is correct with respect to
the higher-level properties, and then conformance testing
checks the correctness of the implementation with respect to
the specification. Also, the two approaches use the same
basic techniques and algorithms [4], [5], [6], [7].

However, only applying verification followed by con-
formance testing is not fully satisfactory. One problem is
that the ioco conformance relation does not preserve safety
properties: Even if the properties hold on the specification
and the implementation ioco-conforms to the specification,
the implementation can still violate the properties. This
problem is worth mentioning although it has little practical
importance, since testing can, in general, only detect non-
conformances—it cannot prove conformance.

Another, more serious problem with the above “verifica-
tion-then-testing” approach is that it does not guarantee
that the properties are tested at all on the implementation.
This is because the testing step only checks the conformance
between implementation and specification, without taking
the properties into account. Not testing a property that was
worth verifying is a serious weakness.

Clearly, what is missing is a formal link between
properties and tests. In this paper, we describe a methodol-
ogy combining verification and testing that provides the

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

. The authors are with INRIA, Rennes, Campus universitaire de Beaulieu,
35042 Rennes, France.
E-mail: {camille.constant, thierry.jeron, herve.marchand,
vlad.rusu}@irisa.fr.

Manuscript received 28 Aug. 2006; revised 18 Jan. 2007; accepted 4 June
2007; published online 13 June 2007.
Recommended for acceptance by S. Uchitel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0206-0806.
Digital Object Identifier no. 10.1109/TSE.2007.70707.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

missing link, ensuring that properties verified on the
specification are also tested on the implementation, and
which also attempts to deal with the incompleteness of the
verification step:

. A specification of a system—an extended input-
output automaton, which may be infinite-state—and
a set of safety properties (“nothing bad ever happens
on any observable behavior”) and possibility proper-
ties (“something good will eventually happen on
some observable behaviors”) are assumed to be
given.1 In practice, the specification could be, e.g., a
UML statechart, and properties could be given by
some positive and negative scenarios.

. The properties are first tentatively verified on the
specification using automatic techniques based on
approximated state-space exploration, which are
sound, but, as a price to pay for automation, are
not complete for the given class of properties.
Because of this incompleteness, the verification
may not succeed in proving or disproving the
properties.

. However, even if verification did not fully succeed,
testing can be performed and provide useful
information. Test cases are automatically and sym-
bolically generated from the specification and the
properties and are executed on a black-box imple-
mentation of the system. The test execution may
detect violations of conformance between imple-
mentation and specification; in addition, it may
detect violation/satisfaction of the properties by the
implementation and by the specification. In this sense,
testing may complete verification.

From a methodological point of view, this means that it
is not required that the (typically difficult) verification of
the specification fully succeeds before testing of the final
implementation can start; and the approach provides
correct verdicts about the consistency between properties,
specification, and implementation.

From a more theoretical point of view, a uniform
presentation of verification and conformance testing is
given. All properties are represented using observers, which
are essentially automata (possibly extended with variables)
with a set of accepting locations. Observers can be seen as
an alternative to (temporal) logics for expressing properties;
and, for some temporal logics such as LTL, formulas can be
translated into “equivalent” observers; see, e.g., [8] for a
transformation of safety LTL formulas into observers.

We also show that, under some conditions, the specifica-
tion can be transformed into an observer for nonconfor-
mance. Such an observer is then a canonical tester [9] for
ioco-conformance with respect to a given specification,

which also proves that ioco-conformance to a specification
is a safety property.2 Then, test generation is essentially a
synchronous product between the canonical tester and
observers for the properties. It is followed by a test selection
operation, which consists of extracting a “part” of the
product that targets more specifically one or several of the
properties. Finally, test execution, which consists of actually
running the previously generated/selected tests, is not the
main object of the present work; we just note that the
symbolic test cases that we produce are reactive programs,
which are executed in parallel with the implementation and
attempt to “guide” the implementation toward satisfying or
violating the properties chosen as the target of test selection.

1.1 Comparison to Related Work

Combining verification and testing is not a new idea. We
compare here the present work with work from the
literature and with our own previous work.

The approach described in [10] considers a deterministic
finite-state specification S and an invariant P assumed to
hold on S. Then, mutants S0 of S are built using standard
mutation operators and a combined machine is generated,
which extends sequences of S with sequences of S0. Next, a
model checker is used to generate sequences of S0 that
violate P , which proves that S0 is a mutant of S violating P .
Finally, the obtained sequences are interpreted as test cases
to be executed on the implementation. In contrast, our
approach is able to deal with certain classes of nondetermi-
nistic infinite-state specifications, and we perform the tests
on black-box implementations, whereas [10] requires a
mechanism for observing internal details (such as values of
variables) of the implementation.

The approach described in [4] starts with a formal
specification S and a temporal-logic property P assumed to
hold on S and uses the ability of model checkers to
construct counterexamples for :P on S. These counter-
examples can be interpreted as witnesses (and eventually
transformed into test cases) for P on S. Other authors have
investigated this approach, e.g., Hamon et al. [11], who
propose efficient test generation techniques in this frame-
work. Blom et al. [12] and Hong et al. [13] extend this idea
by formalizing standard coverage criteria (all-definitions,
all-uses, etc.) using observers (or temporal logic). Again, test
cases are generated by model checking the observers (or the
temporal-logic formulas) on the specification. The ap-
proaches described in these papers are also restricted to
deterministic finite-state systems and do not apply to actual
black-box implementations, as they require the ability to
observe the values of variables in the implementation.

An approach combining model checking and black-box
testing is black-box checking [14]. Under some assumptions
on the implementation (the implementation is determinis-
tic; an upper bound n on its number of states is known), the
black-box checking approach constructs a complete test
suite of size exponential in n for checking properties
expressed by Büchi automata.

In [15], an approach for generating tests from finite-state
specifications (which can be nondeterministic) and from

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 559

1. This choice of properties is not arbitrary. Safety properties on the
observable behavior of the implementation are exactly the properties that
can be disproved by black-box testing, and possibility properties are exactly
the properties that can be established by black-box testing. We note that
possibility properties (”9U” properties, in branching-time temporal logic)
are one class of liveness properties. Another class is that of inevitability
properties (”8U” properties), which state that something shall eventually
happen on all observable behaviors of the implementation. Such properties
cannot be proved nor disproved by black-box testing and are not
considered here.

2. Intuitively, safety properties require that “nothing bad ever happens;”
here, “bad” is nonconformance to the specification.

observers describing linear-time temporal logic properties
is described. The generated test cases do not check for
conformance to the specification but only compare the
black-box implementation to the properties. The specifica-
tion is only used as a guideline for test selection. In contrast,
we deal with infinite-state specifications and generate tests
for checking the implementation against the specification
and the properties.

De Vries and Tretmans [16] describe a general frame-
work for test generation and execution of test cases from
nondeterministic specifications. The testing mechanism
additionally uses so-called observation objectives, which are
sets of traces of observable actions. The verdicts obtained by
test execution describe relations between the black-box
implementation and the specification, as well as the
satisfaction (or not) of the objectives by the implementation.
The authors instantiate their general approach in the TorX
tool [17], where test purposes are finite automata and test
generation and execution are performed on the fly. The
work presented here can be seen as another instantiation of
the same general approach, which differs from [16] with
respect to the expressiveness of observers (infinite-state
extended automata rather than finite) and with respect to
the test generation mechanism (offline, symbolic rather than
on-the-fly, enumerative). Offline test selection allows, in
principle, for better selection than the on-the-fly approach,
and symbolic test generation allows, in principle, a better
handling of the state-space explosion problem.

Our approach can also be related to the combination of
verification, testing, and monitoring proposed in [18]. In
their approach, monitoring is passive (pure observation),
whereas ours is interactive, guided by the choice of inputs
to deliver to the system, precomputed in a test case.

We now compare this paper with some of our own
previous work. In [19], we use a rudimentary combination
of positive and negative observers for enumerative test
generation for the SSCOP protocol, using the TGV and
ObjectGode (Telelogic) tools. An observer describes an
abstract view of the actions of the protocol, which over-
approximates its behaviors. Test generation uses additional
test purposes, which can be classified as positive observers.
During test generation, violation of negative observers by
the specification can be observed. However, the generated
test cases are not meant to observe violations of the negative
observers by the implementation.

In [20], we present an approach for combining model
checking of safety properties and conformance testing for
finite-state systems. That paper can be seen as a first step
toward the approach presented here, which deals with
infinite-state systems. In the finite-state settings of [20],
verification is decidable, which influences the whole
approach. For example, the generated test cases do not
need to take into account the possibility that the properties
might be violated by the specification—such violations are
always detected by the model-checking step, in which case
the test generation step is simply canceled.

In [21], we take one more step and lift the approach of
[20] to infinite-state specifications and properties. However,
unlike the present paper, in [21] we do not consider
possibility properties. Such properties (also called “test

purposes” in the literature) are a standard means for test
selection; without them, e.g., a test case cannot deliver the
standard “Pass” verdict.

Finally, in [22] and [23], we propose a symbolic algorithm
for selecting test cases from a specification by means of test
purposes. The difference with the present paper lies mainly
in methodology. Test purposes in [22] and [23] are essentially
a pragmatic means for test selection and are not necessarily
related to properties of the specification. In contrast, test
selection in the present paper uses safety or possibility
properties, which are actual properties that the specification
should satisfy, and the testing step is formally integrated
with the verification of the properties on the specification.

Summarizing, most approaches in the literature deal
with deterministic finite-state systems, whereas we deal
with some classes of nondeterministic infinite-state systems;
and this paper unifies and subsumes most of our works on
conformance testing and its relation with verification.

1.2 Paper Organization

In Section 2, we present the model of Input-Output
Symbolic Transition Systems (IOSTS). Transitions are
labeled by actions partitioned into inputs, outputs, and
internal actions; inputs and outputs may also carry
symbolic parameters. The semantics of IOSTS in terms of
(usually infinite) labeled transition systems is also given. In
Section 3, we define three symbolic operations on IOSTS
that are used for verification and conformance testing.
Section 4 presents the notion of observer for possibility and
for safety properties, the verification of such properties, and
the theory of conformance testing of [3] reformulated using
the notion of canonical tester, which is basically an observer
for nonconformance. In Section 5, we describe test genera-
tion from a specification and a set of properties, as a
product between observers for the properties and the
canonical tester obtained from the specification. We prove
that the resulting test cases are correct in the sense that the
verdicts that they emit correctly characterize the mutual
consistency between implementation, specification, and
properties. Then, test selection amounts to choosing one
or several properties of interest and targeting the test
toward checking the chosen properties; in Section 6, we
show how this can be done by using approximated analysis
techniques based on abstract interpretation [24]. The
methodology is illustrated with simple examples and also
on a larger example, the BRP protocol [25].

2 THE IOSTS MODEL

The Input/Output Symbolic Transition Systems (IOSTS) model
is inspired by I/O automata [26]. Transitions are labeled by
actions, partitioned into inputs, outputs, and internal
actions; inputs and outputs may carry symbolic parameters.
Unlike I/O automata, IOSTS do not require input-complete-
ness (i.e., all input actions do not need to be enabled all the
time).

2.1 Syntax of IOSTS

Definition 1 (IOSTS). An IOSTS is a tuple hV ; P;�; L;
l0;�; T i, where

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

. V is a finite set of typed variables.

. P is a finite set of parameters. For x 2 V [P ,
typeðxÞ denotes the type of x.

. � is the initial condition, a predicate with variables
in V .

. L is a nonempty, finite set of locations and l0 2 L is
the initial location.

. � is a nonempty, finite alphabet, which is the disjoint
union of a set �? of input actions, a set �! of output
actions, and a set �� of internal actions. For each
action a 2 �, its signature sigðaÞ ¼ hp1; . . . ; pki 2
Pk (k 2 IN) is a tuple of distinct parameters. The
signature of internal actions is the empty tuple;

. T is a set of transitions. Each transition t 2 T has

- a location l 2 L, called the origin of the transition,
- an action a 2 �, called the action of the transition,
- a predicate G with variables in V [sigðaÞ, called

the guard,
- an assignment A of the form ðx :¼ AxÞx2V , such

that, for each x 2 V , the right-hand side Ax of the

assignment x :¼ Ax is an expression on V [
sigðaÞ, and

- a location l0 2 L, called the destination of the
transition.

We assume that the assignments are “well typed,” that

is, each expression Ax in the right-hand side has a type that

matches that of the variable x in the left-hand side. Such

notions of well-typedness can be formalized, for example,

using abstract datatypes. We do not elaborate these notions

any further to avoid losing focus.
For technical reasons, we shall assume that the guards of

IOSTS are expressed in a theory which is closed under

quantifier elimination; that is, any predicate containing

quantifiers is equivalent to one without quantifiers (and

over the same set of variables). For example, Presburger

arithmetic with function symbols [27] satisfies these con-

straints (provided that quantifiers do not bind variables

within the scope of a function) and is expressive enough to

express common data structures such as integers and

arrays.
In graphical representations, inputs are followed by the

“?” symbol and outputs are followed by “!”. These symbols

are not part of an action’s name, but are used here only as

notations.

Example 1: A simple IOSTS is depicted in Fig. 1. This

system expects a START input carrying an integer

parameter p and saves the value of p into the variable x.

Then, as long as x is strictly positive, its value is emitted to
the environment via the output MSG carrying the
parameter m (the guard m ¼ x ^ x > 0 means “choose a
value for the parameter m that, together with the value of
the variable x, satisfies the guard”). The variable x is
decreased by 1 and, when it reaches 0, the STOP output is
emitted.

2.2 Semantics of IOSTS

The semantics of IOSTS is described in terms of input-
output labeled transition systems.

Definition 2 (IOLTS semantics of an IOSTS). An Input-
Output Labeled Transition System (IOLTS) is a tuple
hS; S0;�;!i where S is a possibly infinite set of states, S0 �
S is the possibly infinite set of initial states, � ¼ �? [�! [��

is a possibly infinite set of actions, partitioned into input,
output, and internal actions, and !� S � �� S is the
transition relation.

The set �? [�! is also called the set of observable actions.
Intuitively, the IOLTS semantics of an IOSTS hV ; P;�;
L; l0;�; T i explores the set of valuations of variables V and
parameters P , where a valuation of the variables V is a
mapping � which maps every variable x 2 V to a value �ðxÞ
in the domain of x. Valuations of the parameters P are
defined in a similar manner.

Let V denote the set of valuations of the variables V and
let � denote the set of valuations of the parameters P .
Then, for an expression E involving (a subset of) V [P , and
for � 2 V, � 2 �, we denote by Eð�; �Þ the value obtained by
evaluating the result of substituting in E each variable by its
value according to � and each parameter by its value
according to �. For P 0 � P , we denote by �P 0 the restriction
of the set � of valuations to the set P 0 of parameters.

Definition 3 (IOLTS semantics of an IOSTS). The semantics
of an IOSTS S ¼ hV ; P ;�; L; l0;�; T i is an IOLTS ½½S�� ¼
hS; S0;�;!i, defined as follows:

. The set of states is S ¼ L� V.

. The set of initial states is S0 ¼ fhl0; �ij�ð�Þ ¼ trueg.

. The set of actions � ¼ fha; �ija 2 �; � 2 �sigðaÞg,
hereafter called the set of valued actions, is partitioned
into the sets �? of valued inputs, �! of valued outputs,
and �� of internal actions3 such that, for # 2 f?; !; �g,
�# ¼ fha; �ija 2 �#; � 2 �sigðaÞg.

. ! is the smallest relation in S � �� S defined by the
following rule:

hl; �i; hl0; �0i 2 S ha; �i 2 � t : hl; a; G;A; l0i 2 T
Gð�; �Þ ¼ true �0 ¼ Að�; �Þ

hl; �i !ha;�ihl0; �0i
:

The rule says that the valued action ha; �i takes the
system from a state hl; �i to a state hl0; �0i if there exists a
transition t : hl; a;G;A; l0i whose guard G evaluates to true

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 561

3. Since internal actions do not carry parameters, the sets �� and �� can
be identified. Allowing internal actions to carry arbitrary parameters would
allow for infinite branching in the semantics of IOSTS, which seriously
complicates some operations on IOSTS (such as elimination of internal
actions) that are essential for our purposes.

Fig. 1. Sample IOSTS S.

when the variables evaluate according to � and the
parameters carried by the action a evaluate according to
�. Then, the assignment A maps the pair ð�; �Þ to �0.

Definition 4 (Execution). An execution fragment is a sequence

of alternating states and valued actions s1�1s2�2:::�n�1sn 2
S � ð� � SÞ� such that 8i ¼ 1; . . . ; n� 1: si !

�i
siþ1. An ex-

ecution is an execution fragment starting in an initial state.

We often write s1 !
�1
s2 !

�2 � � � sn !
�n
snþ1 as a shortcut for

8i ¼ 1; . . . ; n: si !
�i
siþ1, and s!t

�
s0 if s is obtained from s0 by

firing a certain transition t 2 T .

Definition 5 ((co)reachable states). A state is reachable if it

belongs to an execution. For a sequence � ¼ �1�2 � � ��n of

valued actions, we write s!� s0 for

9s1; . . . snþ1 2 S: s ¼ s1!
�1
s2!

�2 � � � sn!
�n
snþ1 ¼ s0:

For a set S0 � S of states of an IOSTS, we write s!� S0 if

there exists a state s0 2 S0 such that s!� s0. We say that s is

coreachable for S0.

Definition 6 (Trace). The trace traceð�Þ of an execution � is the
projection of � on the set �! [�? of observable actions. The set

of traces of an IOSTS S is the set of all traces of all executions

of S, and is denoted by TracesðSÞ.
Definition 7 (Recognized traces). Let F � L be a set of

locations of an IOSTS S. An execution � of S is recognized by

F if the execution terminates in a state in F � V. A trace is

recognized by F if it is the trace of an execution recognized by

F . The set of traces of an IOSTS S recognized by a set F of

locations is denoted by TracesðS; F Þ.

3 BASIC OPERATIONS ON IOSTS

In this section, we define a few basic operations on IOSTS
that are used in verification and conformance testing based
on this model. These operations are the parallel product of
two IOSTS, as well as the suspension and the determinization

of an IOSTS.

3.1 Parallel Product

The parallel product of two IOSTS S1, S2 will be used both in
verification (for defining the set of traces of an IOSTS that
are recognized by an observer) and in conformance testing
(for modeling the synchronous execution of a test case on an
implementation). This operation requires that S1, S2 share
the same sets of input and output actions (with the same
signatures), have the same set of parameters, and have no
variables or internal actions in common.

Definition 8 (Compatible IOSTS). The IOSTS Sj ¼ hVj; Pj;
�j; Lj; l

0
j ;�j; T ji (j ¼ 1; 2) and �j ¼ �?

j [�!
j are compatible if

V1 \ V2 ¼ ;, P1 ¼ P2, �!
1 ¼ �!

2, �?
1 ¼ �?

2, and ��
1 \ ��

2 ¼ ;.
Definition 9 (Parallel products). The parallel product S ¼
S1jjS2 of two compatible IOSTS S1;S2 (see Definition 8) is the

IOSTS hV ; P ;�; L; l0;�; T i defined by: V ¼ V1 [V2, P ¼
P1 ¼ P2, � ¼ �1 ^�2, L ¼ L1 � L2, l0 ¼ hl01; l02i, �? ¼
�?

1 ¼ �?
2, �! ¼ �!

1 ¼ �!
2, �� ¼ ��

1 [��
2. The set T of

symbolic transitions of the parallel product is the smallest

set satisfying the following rules:

1.

hl1; a; G1; A1; l
0
1i 2 T 1; a 2 ��

1; l2 2 L2

hhl1; l2i; a;G1; A1 [ðx :¼ xÞx2V2
; hl01; l2ii 2 T

ðand symmetrically for a 2 ��
2Þ;

2.

hl1; a; G1; A1; l
0
1i 2 T 1 hl2; a; G2; A2; l

0
2i 2 T 2

hhl1; l2i; a; G1 ^G2; A1 [A2; hl01; l02ii 2 T
ðfor a 2 �! [�?Þ:

The parallel product allows internal actions to evolve

independently by Rule 1 and synchronizes on the obser-

vable actions (inputs and outputs) by Rule 2.

Lemma 1. TracesðS1jjS2Þ ¼ TracesðS1Þ \ TracesðS2Þ, and

TracesðS1jjS2; F1 � F2Þ ¼ TracesðS1; F1Þ \ TracesðS2; F2Þ:

3.2 Suspension

In conformance testing, it is assumed that the environment

may observe not only outputs, but also absence of outputs

(i.e., in a given state, the system is blocked, in the sense that

it does not emit any output for the environment to observe).

Such absence of output is called quiescence in the ioco theory

of conformance testing [28].
On black-box implementations, quiescence is observed

using timers: A timer is reset, e.g., whenever the tester sends a

stimulus to the implementation. It is assumed that the

duration of the timer is large enough such that, if no output

occurs while the timer is running, then no output will ever

occur. Then, when the timer expires, the environment

“observes” quiescence.
In order to distinguish between observations of quies-

cence that are allowed by a specification and those that are
not, quiescence is made explicit on specifications by means of
a symbolic operation called suspension. This operation
transforms an IOSTS S into an IOSTS S�, also called the
suspension IOSTS of S, in which quiescence is materialized
by a new output action �. For this, each location l of S�
contains a new self-looping transition, labeled with a new
output action �, which may be fired if and only if no other
output or internal action may be fired in l.

Definition 10. Given S ¼ hV ; P ;�; L; l0;�; T i, an IOSTS, with

� ¼ �! [�? [�� and � =2 �, the suspension IOSTS S� is the

tuple hV ; P ;�; L; l0;��; T �i, where �� ¼ ��! [�? [�� with

��! ¼ �! [f�g, T � ¼ T [fhl; �; G�;l; ðx :¼ xÞx2V ; li j l 2 Lg,
and

G�;l ¼4
^

a2�![��

:Ga;l and Ga;l ¼4
_

hl;a;G;A;l0i2T
9 sigðaÞ:G: ð1Þ

We have assumed that the guards are expressed in a
theory where existential quantifiers can be eliminated, such
as, e.g., Presburger Arithmetic. The guard G�;l in (1)
formalizes the conditions under which � may be fired in
location l, which are that no output or internal action may
be fired in l. Now, for a 2 �! [�� , Ga;l gives the conditions
on the system’s variables under which the action a is

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

fireable in l. Hence, G�;l is the conjunction of the negations of
all formulas Ga;l, for all a 2 �! [�� .

Example 2. For the IOSTS S depicted in Fig. 1, the IOSTS S�
is depicted in Fig. 2. In this system, a START input with
a negative parameter (p < 0) does not allow for MSG or
STOP outputs, i.e., the system is quiescent after START .
This is made explicit by a self-looping transition
labeled �, whose guard x < 0 is obtained by simplifying
the expression :ðx ¼ 0 _ ð9 m;m ¼ x ^ x > 0ÞÞ, which
corresponds to (1) above.

3.3 Deterministic IOSTS and Determinization

Intuitively, an IOSTS is deterministic if each of its traces
matches exactly one execution. For example, test cases in
conformance testing satisfy this property, as they must give
the same verdict on the same interaction trace with an
implementation.

Definition 11 (Determinism). An IOSTS hV ; P ;�; L; l0;
�; T i is deterministic if

. it has no internal actions: �� ¼ ;,

. it has at most one initial state, i.e., the initial condition
� is satisfied by at most one valuation �0 of the
variables (then, the initial state is hl0; �0i), and

. for all l 2 L and for each pair of distinct transitions
with origin in l and labeled by the same action a, i.e.,
t1 : hl; a; G1; A1; l1i and t2 : hl; a; G2; A2; l2i, the con-
junction of the guards G1 ^G2 is unsatisfiable.

Since we have assumed that the guards of transitions are
in a theory where existential quantifiers can be eliminated,
the satisfiability of (conjuntions of) guards is decidable. The
IOSTS seen so far in this paper (Fig. 1 and Fig. 2) meet the
first and third conditions for being deterministic but not the
second one (uniqueness of the initial state). Since their only
variable x is set to the value p coming from the environment
on the first input START ðpÞ, the initial value is irrelevant
for the rest of the behavior. A unique initial state can be
obtained by letting the variable x have some arbitrary
(fixed) value initially, e.g., x ¼ 0. Examples of nondetermi-
nistic IOSTS are given in Section 7.

The following lemma allows us to define a sequence of
transitions that “matches” a trace of an IOSTS. It will be
used for proving the correctness of our test generation
method.

Lemma 2 (Support of a trace). A sequence � : �1�2 � � ��n of
valued actions is a trace of a deterministic IOSTS S if and
only if there exist states si (i ¼ 1; n) of S and a sequence of
transitions ti ¼ hli; ai; Gi; Ai; liþ1i (i ¼ 1; . . .n) of the IOSTS
such that, for i ¼ 1 . . . ; n,

. l1 is the initial location of the IOSTS, and �1 satisfies
the initial condition � of the IOSTS,

. si ¼ hli; �ii, for some valuations �i of the variables of
the IOSTS,

. �i ¼ hai; �ii, for some valuation �i of the parameters
in sigðaiÞ, and

. the valuations of variables and parameters defined by
�i and �i satisfy the guard Gi, i.e., h�i; �ii � Gi, and
the valuation �iþ1 is obtained from �i; �i by applying
the assignments Ai, i.e., �iþ1 ¼ Aið�i; �iÞ.

In this case, the sequence of transitions ðtiÞi¼1;...;n is called a
support of the trace sigma. Moreover, each trace has a unique
support.

Proof. Follows directly from the semantics of IOSTS and the
definition of determinism. tu

3.4 Determinizing an IOSTS S
Determinizing an IOSTS S means computing a determinis-
tic IOSTS with the same traces as S. This operation consists
of two steps: eliminating internal actions and eliminating
nondeterminism between observable actions. The first step
is presented below. The second one is more complex and,
due to space limitations, is only sketched here; we refer the
reader to [29] for details.

3.4.1 Eliminating Internal Actions

For eliminating internal actions, the idea [22], [30] is to
compute the effect of any sequence of internal actions that
ends with an input-labeled or output-labeled transition and
to encode this effect in the guard and assignments of the last
transition.

The basic operation required for eliminating internal
actions is to compose guards and assignments of two
consecutive transitions in which the first one, t1 : hl1; �; G1;
A1; l

0
1i, is labeled by an internal action � , and the second one,

t2 : hl01; a; G2; A2; l2i, is labeled by an observable action a
(input or output). Then, we denote by A2 	A1 the function
that, to each valuation � of the variables and � of the
parameters in sigðaÞ, associates the valuation A2ðA1ð�Þ; �Þ of
the variables, and by G2 	A1 the function that, to each
valuation v of the variables, and � of the parameters in
sigðaÞ, associates the Boolean value G2ðA1ð�Þ; �Þ. Syntacti-
cally, the composition operation 	 is implemented using
substitution: If A1 is the assignment ðx :¼ A1

xÞx2V and A2 is
the assignment ðx :¼ A2

xÞx2V , then, A2 	A1 is the assignment
ðx :¼ A2

xðx=A1
xÞÞx2V , where every occurrence of x in the

expression A2
x has been replaced by A1

x. Similarly, the guard
G2 	A1 is obtained by substituting, for every x 2 V , all the
occurrences of x in G2 by the corresponding expression A1

x.
We shall also be needing the following notions before
defining the elimination of internal actions:

Definition 12 (Contiguous sequence). Let 	 : t1; t2; . . . tm
(m
 0) be a sequence of transitions of an IOSTS. We say that

the sequence is contiguous if, for i ¼ 1, n� 1, the destination

of ti is equal to the origin of tiþ1. In this case, we write

	 : l1 !
t1
l2 � � � lm !

tm
lmþ1, in which l1 is the origin of the first

transition, lmþ1 is the destination of the last transition, and,

for i ¼ 1;m� 1, liþ1 is both the destination of ti and the origin

of tiþ1.

Definition 13 (Eliminating a sequence of internal actions).
Let 	 : l1 !

t1
l2 � � � ln !

tn
lnþ1 !

tnþ1
lnþ2 (n
 1) be a finite,

contiguous sequence of transitions of an IOSTS. For i ¼ 1; n,

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 563

Fig. 2. Suspension IOSTS S�.

the action �i of ti is internal, the action of tnþ1 is an input or

output action a, and for i ¼ 1; . . . ; nþ 1, let the guard and

assignments of ti be Gi, Ai. We define the transition t ¼
Elimð	Þ as follows: The origin of t is l1, its action is a, its

guard is G1 ^ ðG2 	A1Þ ^ . . . ðGnþ1 	An 	 � � � 	A1Þ, its as-

signments are Anþ1 	An 	 � � � 	A1, and its destination is

lnþ2.

Definition 14 (Eliminable sequence of transitions). Let 	

be a sequence of transitions as in Definition 13. We say 	 is

eliminable if either the location l1 is initial or l1 is the

destination of some transition t labeled by an observable

action (input or output).

Definition 15 (Eliminating internal actions). For S, an

IOSTS, the IOSTS ElimðSÞ is built as follows:

1. Except for the set of transitions, ElimðSÞ is identical
to S.

2. The set of transitions T ElimðSÞ consists of the

transitions of S labeled by observable actions and of

the set of transitions of the form Elimð	Þ for each

eliminable sequence 	 : l1!
t1
l2 � � � ln!

tn
lnþ1!

tnþ1
lnþ2 as

in Definition 14.

It can be shown that for IOSTS that do not contain

structural cycles of internal actions (that is, contiguous

sequences of the form l1!
t1
l2 � � � lm!

tm
lmþ1 with lmþ1 ¼ l1 and

the action of each of the transitions ti is internal), there are

finitely many eliminable sequences in the sense of Defini-

tion 14, and the above procedure terminates and produces a

trace-equivalent IOSTS.

3.5 Resolving Nondeterminism for Observable
Actions

The second step of the determinization operation consists in

resolving nondeterministic choices for observable actions.

For this, a symbolic determinization procedure is defined in

[29]. The procedure performs, in a certain order, a sequence

of local determinization steps, one of which is illustrated

below, where the IOSTS in the left-hand side is nondeter-

ministic due to the two transitions labeled a with origin in

l0, with two different destinations (l1 and l2) and two

different assignments (A1 and A2, respectively).

The idea for local deteriminism is to create a new

location (here, hl1; l2i, depicted in the right-hand side of the

picture) and three new transitions:

. a transition from l0 to hl1; l2i, with guard G1 _G2,
action a, and empty assignments; intuitively, this
transition represents “both” transitions involved into
nondeterminism, except for the fact that it does not
“know” which assignment to perform (A1 or A2);
hence, it performs none, but “postpones” the assign-
ment to perform onto the following transitions,

. a transition from hl1; l2i to l3, labeled b, whose
assignment A3 	A1 has “incorporated” the “post-
poned” assignment A1 from the previous transition;
similarly, the guard G1 ^ ðG3 	A1Þ of this transition
has “incorporated” the guard G1 and assignment A1

of the previous one, and
. a transition similar to the previous one, from hl1; l2i

to l4, labeled c.

In [29], we propose a procedure that iterates such local

determinization steps and that terminates for the class of

bounded lookahead IOSTS, for which a bounded trace allows

to infer which transition involved into a nondeterministic

choice has been taken.

Definition 16 (Bounded lookahead). An IOSTS S has look-

ahead n 2 IN in a state s 2 ½½S�� if 8t1; t2 2 T S

8s1; s
0
1; s2; s

0
2 2 ½½S��;

8� 2 ð�! [�?Þ, and 8�1; �2 2 ð�! [�?Þn, s!� t1 , s01!
�1
s1 and

s!� t2 s
0
2 !
�2
s2 imply t1 ¼ t2. An IOSTS S has lookeahad n if it

has lookahead n in all s 2 ½½S��, and S has bounded lookahead if

it has lookeahad n for some n 2 IN.

Overall, the determinization operation terminates if and

only if the IOSTS does not have cycles of internal actions and

satisfies the bounded lookahead condition. We denote by

detðSÞ the deterministic IOSTS obtained from the IOSTS S.

Lemma 3 (Traces of determinized IOSTS).

TracesðdetðSÞÞ ¼ TracesðSÞ:

4 VERIFICATION AND CONFORMANCE TESTING WITH

IOSTS

4.1 Verification

We consider the following standard verification problem:

Given a reactive system modeled using an IOSTS S and a

property on the system’s traces, does S satisfy ? We

consider two kinds of properties: Safety properties and

possibility properties. Both can be modeled using observers,

which are deterministic IOSTS equipped with a set of

recognizing locations.

Definition 17 (Observer). An observer is a deterministic

IOSTS ! together with a set of distinguished locations F � L!
with no outgoing transitions, i.e., no location in F is the origin

of any symbolic transition of !. An observer ð!; F Þ is

compatible with an IOSTS M if ! is compatible with M.

The set of observers compatible with M is denoted by �ðMÞ.

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

Let us recall the definition of the set of traces recognized

by a set of locations of an IOSTS (Definition 7). For an

observer ð!; F Þ, this gives

Tracesð!; F Þ ¼ f� 2 ��! j
9so 2 S0

!; 9l 2 F; 9� 2 V:so!
�
!hl; �ig:

ð2Þ

We shall attach to observers a “sign” attribute, that is,

observers can either be positive observers or negative

observers. The former shall denote possibility properties,

whereas the latter denote safety properties. By convention,

we denote the set of recognizing locations of positive

observers by Satisfy, and those of negative observers by

V iolate. We now define what it means for an observer to be

satisfied by an IOSTS.

Definition 18. Let M be an IOSTS and ð!; SatisfyÞ 2 �ðMÞ
a positive observer compatible with M. Then, M satisfies

ð!; SatisfyÞ, denoted by M �þ ð!; SatisfyÞ, if

TracesðMÞ \ Tracesð!; SatisfyÞ 6¼ ;:

That is, a positive observer is satisfied by an IOSTS if at

least one of the traces of the IOSTS is recognized by the

observer. This corresponds to the intuition for possibility

properties (“something good eventually happens on at least

one observable trace”). In contrast, safety properties say

that “nothing bad ever happens” and their satisfaction is

defined as follows:

Definition 19. Let M be an IOSTS and ð!; V iolateÞ 2 �ðMÞ
a negative observer compatible with M. Then, M satisfies

ð!; V iolateÞ, denoted by M �� ð!; V iolateÞ, if

TracesðMÞ \ Tracesð!; V iolateÞ ¼ ;:

Note also that satisfying a negative observer (a safety

property) amounts to not satisfying, i.e., to violating a

positive observer (a possibility property)—and reciprocally.

4.1.1 Verifying Safety Properties

Consider an IOSTSM and a negative observer ð!; V iolateÞ 2
�ðMÞ. The safety property defined by the observer is

satisfied by sequences in ð�!
M [�?

MÞ
� n Tracesð!; V iolateÞ

(and these sequences only). In particular, if M is the

suspended IOSTS S� of a given IOSTS S, the property is

satisfied by a subset of ð�!
S [f�g [�?

SÞ
�.

Example 3. The observer !1 depicted in Fig. 3a encodes a

safety property saying that between a START input

carrying a parameter p satisfying p > 0 and a STOP

output, the system must emit at least one MSG output.

The set of recognizing locations is here the singleton

fV iolateg. The labels “*” are a shortcut notation for all

valued actions (including quiescence, �) that are not

explicitly carried by other transitions.
The observer !2 depicted in Fig. 3b describes almost

the same property except that the parameter p satisfies
the weaker constraint p
 0.

Let L be the set of locations of the IOSTS M. Then,

TracesðMÞ ¼ TracesðM;LÞ and, by Lemma 1,

TracesðMk!; L� V iolateÞ ¼ TracesðMÞ
\ Tracesð!; V iolateÞ:

Thus, verifying M �� ð!; V iolateÞ amounts to verifying
whether TracesðMk!; L� V iolateÞ is empty, which can be
done by establishing that the set of locations L� V iolate is
unreachable from the initial states of Mk!, or, alternatively,
that the initial states ofMk!are not coreachable forL� V iolate.

Reachability is probably the most studied verification
problem and many different approaches for solving it have
been proposed. Among the automatic ones, we consider
here model checking [31], which, in general, explores a finite
subset of the set of reachable states, and abstract interpreta-
tion [24], which symbolically explores a superset of the set
of reachable states. Thus, model checking can prove
reachability but, in general, cannot disprove it, and abstract
interpretation can disprove reachability but, in general,
cannot prove it. Indeed, reachability is undecidable for the
class of models considered here as it is in general for
infinite-state systems.

However, one can use abstract interpretation to try to
prove that a safety property is satisfied, and one can use
model checking to try to prove that it is violated. To this
end, our tool STG (Symbolic Test Generation) [32] was
connected with the NBac abstract interpretation tool NBac
[33]. For proving a safety property represented using a
negative observer ð!; V iolateÞ, STG automatically computes
the product !jjM; then, NBac automatically computes an
overapproximation of the set of states that are both
reachable from the initial states and coreachable for the
locations L� V iolate. If the result is empty, the safety
property holds, otherwise, no conclusions can be drawn.

For example, this approach allows to establish that the
IOSTS S� depicted in Fig. 2 satisfies the observer !1

depicted in the top of Fig. 3. However, using the same
IOSTS S� and the observer !2, we obtain an inconclusive
result. It turns out that the safety property described by !2

is violated by S�, as the START input carrying p ¼ 0 allows
a STOP output before any MSG output. Violations of
safety properties can be detected by model checking, but, of
course, neither satisfaction nor violation can be established
in general because of inherent undecidability problems.

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 565

Fig. 3. Observers encoding safety properties. (a) !1. (b) !2.

4.1.2 Verifying Possibility Properties

In contrast to safety properties, possibility properties
express that “something good eventually happens on some
observable behavior.” We express possibility properties
using positive observers ð!; SatisfyÞ; the property is
satisfied if some location in the set Satisfy is reachable. If
the observer is compatible with an IOSTS M, then the
property is satisfied by M if at least one trace of M is in
Tracesð!; SatisfyÞ.
Example 4. The observer !3 depicted in Fig. 4 describes the

possibility that, after a START input carrying a
parameter p
 0, the system can emit the MSG output.
The set of recognizing locations is the singleton
fSatisfyg.

The property is satisfied by the IOSTS S� depicted in
Fig. 2, e.g, the trace START ð1Þ �MSGð1Þ is a trace of S�
that reaches Satisfy, which can be established by model
checking. Again, it is important to note that neither
satisfaction nor violation of such properties can be
decided in general, hence, no automatic tool can hope
to prove or disprove all of them.

4.1.3 Combining Observers

The parallel product of two observers ð!1; F1Þ and ð!2; F2Þ
can also be interpreted as an observer by choosing the set of
recognising locations. Such combinations will be encoun-
tered in Section 5. A natural choice for this set is F1 � F2,
although other choices are possible. If both observers are
negative, i.e., they both describe safety properties, then
reaching F1 � F2 in the observer ð!1 k !2; F1 � F2Þ expresses
violation of both properties. If both observers are positive
(for possibility properties), then reaching F1 � F2 denotes
satisfaction of both. If the recognising locations are, e.g.,
F1 � ðL!2

n F2Þ, then the corresponding observer denotes
violation of the first safety property and not of the second
one, or, for possibility properties, satisfaction of the first
property but not of the second one.

It is also possible to give an interpretation of the parallel
product of a positive and a negative observer. For example,
if ð!1; F1Þ is positive and ð!2; F2Þ is negative, reaching F1 �
F2 in !1 k !2 means that the safety property has been
violated and the possibility property has been satisfied, that
is, the two properties are in conflict because the “bad thing”
prohibited by the safety property coincides, on some traces,
with the “good thing” required by the possibility property.

4.2 Conformance Relation: ioco

A conformance relation formalizes the set of implementations
that behave consistently with a specification. An imple-
mentation I is not a formal object (it is a physical system)
but, in order to reason about conformance, it is necessary to

assume that the semantics of I can be modeled by a formal
object. We assume here that it is modelled by an IOLTS (see
Definition 2). The notions of trace and quiescence are
defined for IOLTS just as for IOSTS. The implementation is
assumed to be input-complete, i.e., all its inputs are enabled
in all states and has the same interface (inputs and output
actions with their signatures) as the specification. These
assumptions are called test hypothesis in conformance
testing. The standard ioco relation defined by Tretmans
[28] can be rephrased in the following way:

Definition 20 (ioco). An implementation I ioco-conforms to a
specification S, denoted by I ioco S, if

TracesðS�Þ � ð�! [f�gÞ \ TracesðI �Þ � TracesðS�Þ:

An implementation I ioco-conforms to its specification S,
if, after each trace of the suspension IOSTS S�, the
implementation only exhibits outputs and quiescences
allowed by S�. In this framework, the specification may be
partial with respect to inputs, i.e., after an input that is not
described by the specification, the implementation can have
any behavior without violating conformance to the specifica-
tion. This corresponds to the intuition that a specification
models a given set of services that must be provided by a
system; a particular implementation of the system may
implement more services than specified, but these additional
features should not influence its conformance.

Example 5. An implementation I that exhibits the trace
START ð1Þ � STOP does not conform to the specification S
depicted in Fig. 1—this trace is not present in the IOSTS S�
(Fig. 2). For the same reason, the traceSTART ð1Þ � � reveals
a nonconformance to S. On the other hand, an implemen-
tation I0 that performs START ð1Þ � START ð1Þ � STOP
(followed by a self-loop on all inputs) does conform to S,
as S� does not constrain the traces of the implementation
after the second START in any way.

The implementation I0 also demonstrates that ioco-
conformance does not preserve safety properties. Indeed,
I0 conforms to the specification S depicted in Fig. 1;
S satisfies the safety property described by the observer
depicted in Fig. 1 but I0 violates that property.

5 TEST GENERATION

This section shows how to generate tests for checking
conformance to a given specification, as well as checking
other safety or possibility properties. The test cases attempt
to detect violations or satisfactions of the properties by an
implementation of the system and violations of the
conformance between the implementation and the specifi-
cation. In addition, if the verification steps described in the
previous section did not completely succeed, test execution
may also detect violation or satisfaction of properties by the
specification. Hence, the testing step may sometimes com-
plete verification. We prove that the test cases generated by
our method always return correct verdicts. In this sense, the
test generation method itself is correct.

Outline. We first define the output-completion �!ðMÞ of a
deterministic IOSTS M. We then show that the output-
completion of the IOSTS detðS�Þ, where detðÞ is the
determinization operation, is a canonical tester [9] for S and

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

Fig. 4. Observer for possibility property !3.

the ioco relation defined in Section 4.2. A canonical tester for a
specification with respect to a given relation makes it
possible, in principle, to detect every implementation that
disagrees with the specification according to the relation. This
derives from the fact, stated in Proposition 1 below, that ioco-
conformance to a specification S is equivalent to satisfying (a
safety property described by) an observer obtained from
�!ðdetðS�ÞÞ. By composing this observer of nonconformance
with other observers for safety or possibility properties, we
obtain test cases for checking the conformance to S and the
satisfaction/violation of the properties.

Definition 21 (Output completion). For a deterministic
IOSTS M ¼ hV ; P ;�; L; l0;�; T i, the output completion of
M is the IOSTS denoted by

�!ðMÞ ¼ hV ; P ;�; L [fFailg; l0;�; T [
fhl; a;

^

t: hl;a;Gt;At;l0i2T
:Gt; ðx :¼ xÞx2V ; Failijl 2 L; a 2 �!gi ;

where Fail =2 L.

Interpretation. �!ðMÞ is obtained from M by adding a new

location Fail =2 L and, for each l 2 L and a 2 �!, a

transition with origin l, destination Fail, action a,

identity assignments and guard
V
hl;a;Gt;At;l

0
ti2T
:Gt.

Hence, any output not fireable in M becomes fireable

in �!ðMÞ and leads to the new (deadlock) location Fail.

The output-completion of an IOSTS M can be seen as a

negative observer by choosing fFailg as the set of

recognizing locations. The following lemma says that

conformance to a specification S is a safety property,

namely, the property represented by the negative

observer ð�!ðdetðS�ÞÞ; fFailgÞ.
Proposition 1. I ioco S iff I � �� �! det S�

� �� �
; fFailg

� �
.

We first need to introduce the following technical lemma
(whose proof is omitted):

Lemma 4. For a deterministic IOSTS M,

Tracesð�!ðMÞ; fFailgÞ ¼ TracesðMÞ:�!
M n TracesðMÞ:

Proof of Proposition 1. By Definition 20, I ioco S is

TracesðS�Þ � ð�! [f�gÞ \ TracesðI �Þ � TracesðS�Þ;

which is equivalent to TracesðI �Þ \ ½TracesðS�Þ � ð�! [
f�gÞ n TracesðS�Þ� ¼ ;. By Lemma 4 and Lemma 3,

TracesðS�Þ � ð�! [f�gÞ n TracesðS�Þ ¼
Tracesð�!ðdetðS�ÞÞ; fFailgÞ:

Hence, I iocoS is equivalent to

TracesðS�Þ \ Tracesð�!ðdetðS�ÞÞ; fFailgÞ ¼ ;;

which, by Definition 19, is equivalent to

I � �� ð�!ðdetðS�ÞÞ; fFailgÞ:
tu

In the rest of the paper we denote the IOSTS �!ðdetðS�ÞÞ
by canonðSÞ. Now, the statement in Proposition 1, I � ��
ðcanonðSÞ; fFailgÞ can be interpreted as follows: The

execution of canonðSÞ in parallel with the implementation
I never reaches the Fail location. By Proposition 1, this is
equivalent to I ioco S; hence, canonðSÞ and its Fail location
completely characterize ioco-conformance of I to S, which
amounts to saying that ðcanonðSÞ; FailgÞ is a canonical tester
[9] for ioco-conformance to the specification S.

A canonical tester is, in principle, enough for detecting
all implementations that do not conform to a given
specification. However, our goal is to detect, in addition
to such nonconformances, the violations/satisfactions of
other (additional) safety/possibility properties coming
from, e.g., the system’s requirements. The observers
expressing such properties can also serve as mechanisms
for test selection. Using Lemma 1, the product between an
observer and the canonical tester defines a subset of
“interesting” traces among all the traces generated by the
canonical tester.

Definition 22 (testðS; !þ; !�Þ). Consider a safety property
defined by a negative observer ð!�; V iolateÞ and a

possibility property defined by a positive observer
ð!þ; SatisfyÞ, where both observers are assumed to be

compatible, in the sense of Definition 8, with S�.4 Then, the
parallel product !þjjcanonðSÞjj!� is defined, and it is

denoted by testðS; !þ; !�Þ.

Then, testðS; !þ; !�Þ can be seen as a test case that refines
the canonical tester in the sense that violations/satisfactions
of the safety/possibility properties by the implementation I
can also be detected.

Definition 23 (Verdict location sets). Consider a specifi-
cationS, and two observers: one negative, ð!�; V iolateÞ and one

positive: ð!þ; SatisfyÞ, that are both compatible with S�. We
define seven sets of locations of the parallel product

testðS; !þ; !�Þ, hereafter called verdict locations sets, or simply
verdict locations, as follows:

1. Satisfy ¼

Satisfy� ðLcanonðSÞ n fFailgÞ � ðL!� n V iolateÞ:

2. Violate ¼

ðL!þ n Satisfy� ðLcanonðSÞ n fFailgÞ � V iolate:

3. Fail ¼

ðL!þ n SatisfyÞ � Fail� ðL!� n V iolateÞ:

4. SatisfyFail ¼

Satisfy� Fail� ðL!� n V iolateÞ:

5. ViolateFail ¼

ðL!þ n SatisfyÞ � Fail� V iolate:

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 567

4. If more than one observer of each kind is present, one “large,” global
negative (respectively, positive) observer can be built as the product of the
“small” negative (respectively, positive) observers.

6. SatisfyViolate ¼

Satisfy� LcanonðSÞ n fFailgÞ � V iolate:

7. SatisfyViolateFail ¼

Satisfy� Fail� V iolate:

We use the terminology of “verdict locations” because of
the corresponding verdicts obtained by running the ob-
server testðS; !þ; !�Þ in parallel with an implementation.

Definition 24 (Verdicts). Consider an observer of the form
testðS; !þ; !�Þ as in Definition 22, equipped with the
corresponding verdict location sets, and an implementation I
compatible with S. Then, I � is also compatible with S�, and
then the parallel composition I �jjtestðS; !þ; !�Þ is defined.
For each sigma 2 TracesðI �jjtestðS; !þ; !�ÞÞ and each

W 2 fSatisfy;Violate;Fail;SatisfyFail;ViolateFail;

SatisfyViolate;SatisfyViolateFailg;

we say that the trace � gives verdict W to I if � 2
TracesðtestðS; !þ; !�Þ;W Þ.
The following proposition characterizes the verdicts

given by a trace to an implementation, from the point of
view of the consistency between implementation, specifica-
tion, and properties.

Proposition 2 (Correctness of test verdicts). With the
notations of Definitions 23 and 24, consider a trace � 2
TracesðtestðS; !þ; !�ÞÞ that gives a certain verdict W to an
implementation I . Then,

1. If W ¼ Satisfy, then both I � and S� satisfy the
possibility property defined by ð!þ; SatisfyÞ. No
violations of the safety property defined by ð!�;
V iolateÞ, and no nonconformances between I and S
were detected.5

2. If W ¼ Violate, then both I � and S� violate the
safety property defined by ð!�; V iolateÞ. No satisfac-
tions of the possibility property defined by ð!þ;
SatisfyÞ and no nonconformances between I and S
were detected.6

3. If W ¼ Fail, then there is a nonconformance between
I and S.7 No violations/satisfaction of either of the
properties by either I � or S� were detected.

4. If W ¼ SatisfyFail, then I � satisfies the possibility
property and there is a nonconformance between I
and S.

5. If W ¼ ViolateFail, then I � violates the safety
property and there is a nonconformance between I
and S.

6. If W ¼ SatisfyViolate, then both I � and S� satisfy
the possibility property and violate the safety property.
No nonconformances between I and S were detected.

7. If W ¼ SatisfyViolateFail, then both I � and S�
satisfy the possibility property and violate the safety

property and there is a nonconformance between I
and S.

Proof. We here focus on the proof for the ViolateFail

verdict (Item 5). The proofs for the other items are

very similar and are omitted. We need to prove the

following fact: If a trace � 2 TracesðI �ktestðS; !þ; !�ÞÞ
gives verdict ViolateFail to an implementation I , then I �
violates the safety property and there is a nonconformance

between I and S.

To prove this fact: the hypothesis is that, in the parallel

product I �jjtestðS; !þ; !�Þ, the verdict ViolateFail is

given by some trace. This implies that the ViolateFail

set of locations is reachable; thus, TracesðI �Þ \
TracesðtestðS; !þ; !�Þ;ViolateFailÞ 6¼ ;.

By Lemma 1 and Lemma 3,

TracesðtestðS; !þ; !�Þ;ViolateFailÞ ¼
TracesðcanonðSÞ; FailÞ \ Tracesð!�; V iolateÞ:

Hence, we obtain

TracesðI �Þ \ TracesðcanonðSÞ; FailÞ
\ Tracesð!�; V iolateÞ 6¼;;

which implies both

. TracesðI �Þ \ TracesðcanonðSÞ; FailÞ 6¼ ; and

. TracesðI �Þ \ Tracesð!�; V iolateÞ 6¼ ;
By Definition 19, we obtain

. I � 6� ðcanonðSÞ; FailÞ, which, by Proposition 1, is

equivalent to :ðI ioco SÞ, and

. I � 6� ð!�; V iolateÞ.
That is, the implementation violates both conformance

to the specification and the safety property, which

establishes Item 5 of the theorem. The other items are

proved similarly. tu
Example 6. For the IOSTS S depicted in Fig. 3 and the

observers !2 depicted in Fig. 3b and !3 depicted in Fig. 4,

the corresponding test case is depicted in Fig. 5.
The SatisfyFail verdict results from the fact that the

possibility property is satisfied, e.g., by the trace

START ð0Þ �MSGð0Þ, which diverges from the specifica-

tion. Another interesting verdict is Violate: If it is

reached, e.g., by the trace START ð0Þ � STOP , it indicates

568 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

5. This verdict is usually called “Pass” in conformance testing.
6. This is a situation that may only occur if verification of the safety

property on the specification did not succeed, and shows that testing can
sometimes complement verification.

7. This is the standard “Fail” verdict in conformance testing.

Fig. 5. Test case obtained from S (Fig. 1).

that not only the implementation but also the specifica-
tion violate the safety property. This means that the

verification step failed to detect the latter violation; here,

the testing step has completed the information obtained

by verification. Finally, the Fail verdict denotes non-

conformance, and it is reached by all outputs (denoted

“!*”) that do not label other transitions.

Test execution. To conclude this section, let us imagine

what it would mean to actually execute the test case

depicted in Fig. 5 on a real implementation. First, this

requires mapping the abstract actions START , STOP , etc.,

to concrete inputs and outputs of the implementation. Then,

to start running the test on the implementation, the test

execution mechanism has to “choose” an output p satisfying

p
 0, send it to the implementation via the corresponding

concrete “START” input, and wait for the implementation’s

outputs; depending on the latter, execution here goes to

either of the four verdict locations and ends there.
Choosing a value satisfying p
 0 is a very simple

example of on-the-fly constraint solving, which, in general,

cannot be completely avoided at test execution time

because, specifically, the parameters of inputs to be sent

to the implementation need to be computed by “solving”

guards that constrain them. However, some operations on

constraints can be performed statically by the test selection

operation defined in the next section. For example, if, in

the above test case, we were “trying” to reach the

ViolateFail verdict, this would require us to “strengthen”

the guard p
 0 of the START -labeled transition to

p > 0—because, if p ¼ 0, the ViolateFail verdict is not

“reachable,” and this can be detected by a static analysis of

the test case. Of course, this would not dispense the test

execution mechanism to actually choose a value satisfying

p > 0 at test execution time.
The interactions between static constraint strengthening

and dynamic constraint solving are discussed in more detail

in [23].

6 TEST SELECTION

A test case like testðS; !þ; !�Þ with so many verdicts is

mostly interesting from a theoretical point of view, as all

information about nonconformances and satisfaction/

violation of several properties are embodied in it. In

practice, more focused test cases, which target only one or

a few properties at a time, are preferable. This can be

performed by the test selection operation described below

and illustrated on the case study in the next section.
Assume that we have built the test case testðS; !þ; !�Þ as in

the previous section, and we have decided on a subset of the

verdicts that we want to target more specifically. These could

be any of the verdicts of the test case and are encoded in a

subset Ltarget of its verdict locations. For example, if we want

to target the satisfaction of the possibility property, the target

locations are

Ltarget ¼ Satisfy [SatisfyFail [SatisfyViolateFail:

Then, the test selection process consists (ideally) in
selecting, from a given test case, the subset of states that are
coreachable for Ltarget.

It should be quite clear that an exact computation of this
set of states is impossible in general. However, there exist
techniques that enable us to compute overapproximations.
We here use one such technique based on abstract
interpretation and implemented in the NBac tool [33]. The
tool computes, for each location l, a symbolic coreachable state,
which, intuitively, overapproximates the states with loca-
tion l that are coreachable for a given set of locations L0 (see
Definition 5):

Definition 25 (Symbolic coreachable state). For l a location
and L0 a set of locations of an IOSTS S, we say hl; ’l!L0 i is
a symbolic coreachable state if ’l!L0 is a formula such that
we have the inclusion fhl; �ij� � ’l!L0 g � fhl; �ij� 2 Vg \
coreachðL0Þ.

The following algorithm uses this information for
performing test selection for

Ltarget � Satisfy [Violate [Fail [SatisfyViolate

[SatisfyFail [ViolateFail [SatisfyViolateFail :

Definition 26 (Test selection).

1. The test case testðS; !þ; !�Þ is built as described in
Section 5. Let L be its set of locations, T its set of
transitions, and � ¼ �! [�? its alphabet, where �? ¼
�?
S and �! ¼ �!

S [f�g. Also let Inconc =2 L be a new
location.

2. For each location l 2 L, a symbolic coreachable state
hl; ’l!Ltargeti is computed.

3. Next, for each location l 2 L of the IOSTS and each
transition t 2 T of the IOSTS with origin l, guard G,
and label a,

. if a 2 �?, then

- if G ^ ’l!Ltarget is unsatisfiable, then t is
eliminated from T ,

- otherwise, the guard of t becomes G ^
’l!Ltarget .

. if a 2 �!, then

. the guard of t becomes G ^ ’l!Ltarget

. a new transition is added to T , with origin l,
destination Inconc, action a, guard G ^
:’l!Ltarget , and identity assignments.

The test selection operation consists, essentially, of
detecting transitions to states that are not coreachable for
the target set of locations. This is done by performing a
coreachability analysis to these locations using the NBac
tool [33]. If such a “useless” transition is labeled by an input,
then it may be removed from the test case: A test case
controls the inputs it provides to the implementation;
hence, it may decide not to provide an input if it “knows”
that the target locations are unreachable. On the other hand,
outputs from the implementation cannot be prevented from
occurring; hence, the transitions labeled by outputs, by
which the locations in Ltarget cannot be reached, are
reoriented to a new location, called Inconc. This location

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 569

also corresponds to an “Inconclusive” verdict, whose
meaning is that the current test cannot reach the chosen
target and, therefore, the current test execution can be
stopped. In this way, all traces from the original test case
leading to the chosen target Ltarget are preserved, and the
correctness of verdicts and verdict enabledness are pre-
served as well.

Lemma 5. Let � : �1�2 � � ��n be a trace of a deterministic

IOSTS S, let ti ¼ hli; ai; Gi; Ai; liþ1i (i ¼ 1; . . . ; n) be a

sequence of transitions that supports �, such that the last

location lnþ1 2 Ltarget, and let hli; ’li!Ltargeti (i ¼ 1; . . .n) be

symbolic coreachability sets for Ltarget. Then, for all

i ¼ 1; . . .n, the formula Gi ^ ’li!Ltarget is satisfiable. More-

over, the sequence of modified transitions t0i ¼ hli; ai; Gi ^
’li!Ltarget ; Ai; liþ1i (i ¼ 1 . . .n) is a support for the trace � as

well.

Proof (sketch). For i ¼ 1; . . . ; n, let �i ¼ hai; �ii. By

Lemma 2, there exist states si ¼ hli; �ii such that

1) h�i; �ii � Gi. Moreover, by hypothesis, hli; ’li!Ltargeti
is a symbolic coreachability set for Ltarget and the

location lnþ1 2 Ltarget is reachable from si; hence, by

Definition 25, 2) �i � ’li!Ltarget . Now, 1 and 2 imply that

hvi; �ii � Gi ^ ’l!Ltarget , and we have proved that Gi ^
’li!Ltarget is satisfiable.

Then, the states si ¼ hli; �ii, valued actions �i ¼
hai; �ii, and the sequence of transitions t0i ¼ hli; ai; Gi ^
’li!Ltarget ; Ai; liþ1i (i ¼ 1 . . .n) satisfy all the conditions of
Lemma 2, i.e., the sequence t0i ¼ hli; ai; Gi ^ ’li!Ltarget ;
Ai; liþ1i (i ¼ 1 . . .n) is a support for the trace �1�2 � � ��n.tu

Correctness of verdicts after test selection. We denote by

selectðtestðS; !þ; !�Þ; LtargetÞ the result of applying the selec-

tion operation to the test case testðS; !þ; !�Þ for a target

Ltarget � Lverdict, where Lverdict has been defined as the union

Satisfy [Violate [Fail [SatisfyViolate [ViolateFail

[SatisfyFail [SatisfyViolateFail:

We also denote by � the set of valued actions (only

valued inputs and valued outputs, including quiescence

—internal actions have been eliminated) of the test case,

and the test case itself by TC ¼4 testðS; !þ; !�Þ.
The correctness of the selection procedure then consists

in establishing the following proposition:

Proposition 3 (Correctness of test cases after selection). Let
TC ¼ testðS; !þ; !�Þ a test case generated as described in
Section 4, and let � be the set of valued actions (valued inputs
and valued outputs, including quiescence) of the test case. Then,

1.

TracesðselectðTC;LtargetÞ; LtargetÞ ¼
TracesðTC;LtargetÞ:

That is, the traces that reach the target before the test
selection still do so after test selection, and test
selection does not add new traces leading to the target.

2.

TracesðselectðTC;LtargetÞ; Lverdict n LtargetÞ �
TracesðTC;Lverdict n LtargetÞ:

That is, for verdicts other than the target, selection

does not add new traces leading to them.

3.

TracesðselectðTC;LtargetÞ; InconcÞ � ��\
TracesðselectðTC;LtargetÞÞ ¼ ;:

That is, if the inconclusive verdict has been reached,

then the target cannot be reached anymore.

Proof (sketch). Let us first prove inclusion 1.

TracesðselectðTC;LtargetÞ; LtargetÞ � TracesðTC;LtargetÞ:

Let � 2 TracesðselectðTC;LtargetÞ; LtargetÞ. Then, by
Lemma 2, there exists a sequence of transitions of
selectðTC;LtargetÞ that supports � and, by Definition 26
of the selection operation, this sequence is of the form
t0i ¼ hli; ai; Gi ^ ’li!Ltarget ; Ai; liþ1i (i ¼ 1 . . .n), such that,
for all i ¼ 1 . . .n, hli; ai; Gi; Ai; liþ1i is a transition of TC,
and lnþ1 2 Ltarget. Indeed, all locations li of the sequence
must be locations of TC—the only location of selectðTC;
LtargetÞ that is not a location of TC is Inconc, which is a
deadlock, i.e., Ltarget is not reachable from it, which
contradicts lnþ1 2 Ltarget, and selectðTC;LtargetÞ is ob-
tained by strengthening the guards of transitions of TC
with the predicates ’li!Ltarget .

Then, the sequence of transitions of TC : ti ¼
hli; ai; Gi; Ai; liþ1i (i ¼ 1 . . .n) satisfies all the conditions
of Lemma 2, i.e., it supports the sequence �, which
implies � 2 TracesðTC;LtargetÞ.

TracesðselectðTC;LtargetÞ; LtargetÞ � TracesðTC;LtargetÞ:

Let � 2 TracesðTC;LtargetÞ. Then, by Lemma 2, there
exists a sequence of transitions of TC : ti ¼ hli; ai;
Gi; Ai; liþ1i (i ¼ 1 . . .n) that supports the sequence �,
and lnþ1 2 Ltarget. By Lemma 5, the sequence of modified
transitions t0i ¼ hli; ai; Gi ^ ’li!Ltarget ; Ai; liþ1i (i ¼ 1 . . .n)
supports � as well. All the transitions of the sequence
ðt0iÞ (i ¼ 1 . . .n) are transitions of selectðTC; LtargetÞ;
indeed (see Definition 26), the only transitions of TC
that are removed, or whose destination is changed to
Inconc by the selection operation, are such that Gi ^
’li!Ltarget is unsatisfiable, which contradicts Lemma 5.
Hence, � is supported by the sequence ðt0iÞ of transitions
of selectðTC;LtargetÞ which ends in Ltarget, i.e., � 2
TracesðselectðTC;LtargetÞ; LtargetÞ.

The proof of inclusion 2 is similar to the proof of the
� inclusion 1.

Let � 2 TracesðselectðTC;LtargetÞ; InconcÞ, and as-
sume there exists an extension

� � �0 2 TracesðselectðTC;LtargetÞ; LtargetÞ:

570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

Then, by Lemma 2, the trace � � �0 has a unique support
in selectðTC;LtargetÞ, i.e., a sequence of contiguous
transitions ðtiÞi¼1;...n of selectðTC;LtargetÞ, and its prefix
� also has a unique support, which is necessarily a strict
prefix of the sequence ðtiÞi¼1;...n. Let tj (j < n) be the last
transition in the support of � 2 TracesðselectðTC;
LtargetÞ; InconcÞ. Then, the destination of tj is Inconc,
which is a deadlock; hence, the sequence ðtiÞ actually
stops at tj (j < n), i.e., it is not a support for � � �0, a
contradiction. tu

7 EXAMPLE: THE BRP PROTOCOL

We now give a larger example, in which we present all the
operations of test generation and selection defined up to
this point. We consider a Bounded Retransmission Protocol
[25], whose role is to transmit data in a reliable manner over
an unreliable network. We focus on the sender of the
protocol.

Specification. The specification of the sender is depicted
in Fig. 6. Execution starts by receiving a request REQ with
an integer parameter l. The meaning of the parameter l is
that the current session must transmit fðheadÞ; fðheadþ 1Þ;
. . . fðl� 1Þ, where f is the file to transmit, and the variable
head, initialized to 0, is the index of the next “piece” of the
file to be transmitted. Hence, the request makes sense only
if l > head.

Then, the sender proceeds by transmitting mes-sages
MSG, together with the data to transmit: fðheadÞ;
fðheadþ 1Þ; . . . , and an alternating bit allowing the receiver
to distinguish between new messages and retransmissions.
After each message, the sender waits for an acknowl-
edgment ACK after which it proceeds by sending the next
message. If the acknowledgment does not arrive, the
current message is retransmitted at most max� 1 times,

where max is a symbolic constant of the protocol. The
number of retransmissions is counted by the variable rn.
Globally, the transmission terminates successfully when the
last message has been transmitted and acknowledged. In
this case, the sender confirms the success to its client by
sending it an OK confirmation. The transmission may also
terminate unsuccessfully (confirmation NOT_OK) if some
message (except the last one) is not acknowledged, or the
outcome may be unknown (confirmation DONT_KNOW)
if the last message is not acknowledged—either the message
or its acknowledgment could have been lost.

Properties. We consider here two properties of the
sender, represented by the observers depicted in Fig. 7. The
possibility property, in the left-hand side of the figure,
describes an ideal scenario in which the sender transmits
each message exactly once, without retransmissions. The
scenario ends in the Satisfy location after the OK confirma-
tion. Retransmissions lead to the location represented at the
extreme left of the figure, from which the Satisfy location is
unreachable. The observer uses a Boolean variable b, which
is used to distinguish new messages from retransmissions.
The safety property, depicted in the right-hand side of the
figure, expresses the fact that the BRP sender is not allowed
to be blocked between the request REQ and any of the
confirmations OK, NOT_OK, or DONT_KNOW. If the
specialy output �, denoting blocking/quiescence, is ob-
served between request and confirmation, the V iolate
location is reached, which expresses violation of the safety
property. All other valued actions (that do not explicilty
appear in the automata representing the properties) are
denoted by the *-labeled self-loops.

Verification. Both properties are satisfied by the speci-
fication. For the safety property, this is proved using the
abstract interpretation-based tool NBac, and the possibility
property is proved by model checking.

Test Generation. We follow here the test generation
steps described in Section 5.

Suspension. The suspended IOSTS Sender� correspond-
ing to the Sender of the BRP is depicted in Fig. 8. In location
Wait_Req, the system is blocked waiting for an input from
the environment, hence, it has a self-loop labeled with the
suspension action �. The other locations where � is
potentially firable are Wait_Ack and Send_Complete. For
example, in Wait_Ack, the guard of the �-labeled self loop is
rn > max, which is the complement of the two conditions
(rn ¼ max, rn < max) labeling transitions by which the

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 571

Fig. 6. Sender of the BRP.

Fig. 7. Properties. (a) Possibility. (b) Safety.

system can leave the location without intervention of the
environment.

Determinization and output-completion. The determinized
system detðSender�Þ obtained from Sender� is depicted in
Fig. 9. Here, determinization consisted in eliminating the
internal actions �1; �2 as described in Section 3.3. Note that
detðSender�Þ is not, strictly speaking, deterministic, because
its initial condition is satisfied by more than one (actually,
by infinitely many) valuations of the symbolic constants
max and f . However, any instance of detðSender�Þ obtained
by instantiating max and f to actual values is deterministic,
because instantiating max and f to actual values determines
unique values for all the other variables. All the IOSTS

mentioned hereafter in this section also have this property,
which is weaker than determinism but strong enough for
test cases since, at test execution time, max and f will have
concrete values.

The canonical tester has one more location, Fail, and
implicit transitions from each location to it, as explained in
Section 3.3 by the output-completion operation.

Test Selection. The test case obtained by specializing the
canonical tester to the properties depicted in Fig. 7,
followed by selection targeting the possibility property, is
depicted in Fig. 10. Several locations are grouped into so-
called “macrostates” à la Statecharts.

The “macrotransitions” leaving the macrostates repre-
sent several transitions in the sense of IOSTS. For instance,
the transition labeled otherwise represents all transitions
labeled by outputs that are not allowed by the specification,
and their destination Fail denotes the Fail verdict—
nonconformance between implementation and specifica-
tion. The macrotransition labeled � represents three transi-
tions with the same label, originating in three locations of
the test case. Their destination V iolateFail and the
corresponding ViolateFail verdict indicates violation of
the property by the implementation and violation of the
conformance between implementation and specification.
The Satisfy verdict is given when the positive OK

confirmation is observed by the tester, and corresponds to
the satisfaction of the possibility property. Finally, the
Inconc location and verdict mean that, from there on, the
possibility property cannot be satisfied anymore. Since both
properties (safety and possibility) are satisfied by the
specification, these are the only possible verdicts here.
There are no unreachable verdicts (and no unreachable
locations at all), which means that, in this case, the
approximations performed by NBac at test selection time
were quite good. This is not always the case, but
approximations can, in principle, be made “as precise as
desired” by using better abstraction functions and/or

572 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

Fig. 8. Suspended BRP.

Fig. 10. Test case obtained by selection for Satisfy.

Fig. 9. Determinized BRP.

unfolding IOSTS executions up to a bounded depth before
computing abstractions.

Finally, let us consider again the problem of actually
executing such a test case on a real implementation. Besides
mapping abstract inputs and outputs to concrete actions of
the implementation, we need to instantiate the symbolic
constants max and f to concrete values corresponding to
those of the implementation, which are supposed to be
known.8 Then, each time the implementation needs an
input, carrying some parameter, on-the-fly constraint solving
is performed to compute that parameter’s value, and each
time the implementation provides an output, with or
without a parameter, only constraint satisfaction (i.e.,
computation, which, in general, is easier than solving)
is performed to compute the next transition that fires
(which has been made unique by determinisation). In the
above particular case, the constraint-solving is rather
simple, as the only constraints to be solved are of the form
parameter ¼ variable, i.e., the variable’s value at test
execution time will be chosen as the value of the
corresponding parameter. In general, on-the-fly constraint
solving is not so simple, especially when complex data
types are involved. The interplay between statically analyz-
ing the test case for trying to target a certain (set of) location
verdict(s), and the on-the-fly constraint solving, remains a
matter for future work.

8 CONCLUSION AND FUTURE WORK

A system may be viewed at several levels of abstraction:
high-level properties, operational specification, and black-box
implementation. In our framework, properties and specifica-
tions are described using Input-Output Symbolic Transition
Systems (IOSTS), which are extended automata that operate
on symbolic variables and communicate with the environ-
ment through input and output actions carrying para-
meters. IOSTS are given a formal semantics in terms of
input-output labeled transition systems (IOLTS). The
implementation is a black box, but it is assumed that its
semantics can be described by an unknown IOLTS. This
enables the formal linking of the implementation and the
specification by a conformance relation. A satisfaction
relation links them both to higher-level properties: safety
properties, which express that something bad never
happens, and possibility properties, which express that
something good can happen.

A methodology is proposed for checking the consistency
between the different views of the system: First, the
properties are tentatively verified on the specification using
automatic approximate analysis techniques, which are
sound but, because of undecidability problems, are in-
herently incomplete. Then, test cases are automatically
generated from the specification and the properties and are
executed on the implementation of the system. If the
verification step was successful, that is, it has proved or
disproved each property on the specification, then, test
execution may detect violation or satisfaction of the

properties by the implementation and the violation of
the conformance relation between implementation and
specification. On the other hand, if the verification did not
enable the proving or disproving of some properties, the
test execution may additionally detect violation or
satisfaction of the properties by the specification. In this
sense, the testing step completes the verification step. The
approach is illustrated on a simple example as well as on
a larger example (a BRP protocol [25]).

Future Work One important issue that needs to be
solved is that of coverage: defining a coverage measure on
the specification and/or the properties and computing, e.g.,
at test execution time, how much of the measure has been
performed. Another issue, which is solved in this paper, but
not in a completely satisfying manner, is the selection of test
inputs. We solve it here by on-the-fly constraint solving,
which is computationally expensive and may, in practice,
prevent actual test execution to happen (e.g., if no output
value is computed in due time, some behaviors of the
implementation will never be tested, especially if the
implementation uses timers to control the delay during
which it is willing to wait for inputs). It is an interesting
question to understand how much of the test data selection
can be performed offline by static analysis, and how much
of it must remain on the fly.

The problem of test selection and test data selection bears
a close resemblance to searching for strategies in games, in
which the implementation can be seen as playing against
the test case; the test case wins if it manages to reach the
verdicts that it targets, and the implementation attempts to
prevent the tester from reaching those verdicts.

Finally, the integration of testing systems with data and
of timed testing, for which many interesting results have
recently emerged, is another important future research
topic.

REFERENCES

[1] ISO/IEC 9646, “Conformance Testing Methodology and Frame-
work,” 1992.

[2] E. Brinskma, A. Alderen, R. Langerak, J. van de Laagemat, and J.
Tretmans, “A Formal Approach to Conformance Testing,” Proc.
Conf. Protocol Secification, Testing, and Verification (PSTV ’90),
pp. 349-363, 1990.

[3] J. Tretmans, “Test Generation with Inputs, Outputs, and Repeti-
tive Quiescence,” Software—Concepts and Tools, vol. 17, no. 3,
pp. 103-120, 1996.

[4] A. Gargantini and C.L. Heitmeyer, “Using Model Checking to
Generate Tests from Requirements Specifications,” Proc. European
Software Eng. Conf. and ACM SIGSOFT Symp. Foundations of
Software Eng. (ESEC/FSE ’99), pp. 146-162, 1999.

[5] C. Jard and T. Jéron, “TGV: Theory, Principles and Algorithms, a
Tool for the Automatic Synthesis of Conformance Test Cases for
Non-Deterministic Reactive Systems,” Software Tools for Technology
Transfer, vol. 6, Oct. 2004.

[6] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying and
Generating Test Cases Using Observer Automata,” Proc. Workshop
Formal Approaches to Software Testing (FATES ’04), J. Grabowski
and B. Nielsen, eds., 2004.

[7] H.S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Temporal Logic
Based Theory of Test Coverage and Generation,” Proc. Conf. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS
’02), pp. 327-341, Apr. 2002.

[8] O. Kupferman and M.Y. Vardi, “Model Checking of Safety
Properties,” Formal Methods in System Design, vol. 19, no. 3,
pp. 291-314, 2001.

CONSTANT ET AL.: INTEGRATING FORMAL VERIFICATION AND CONFORMANCE TESTING FOR REACTIVE SYSTEMS 573

8. This small breach in the black-box testing dogma is admitted in
conformance testing and bears the name PIXIT (Protocol Implementation
eXtra Information for Testing).

[9] E. Brinskma, “A Theory for the Derivation of Tests,” Proc. Conf.
Protocol Specification, Testing, and Verification (PSTV ’88), pp. 63-74,
1988.

[10] P. Ammann, W. Ding, and D. Xu, “Using a Model Checker to Test
Safety Properties,” Proc. Int’l Conf. Eng. Complex Computer Systems,
2001.

[11] G. Hamon, L. de Moura, and J. Rushby, “Generating Efficient Test
Sets with a Model Checker,” Proc. Second Int’l Conf. Software Eng.
and Formal Methods, pp. 261-270, Sept. 2004.

[12] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying and
Generating Test Cases Using Observer Automata,” Proc. Formal
Approaches to Software Testing, J. Grabowski and B. Nielsen, eds.,
pp. 137-152, 2004.

[13] H. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Temporal Logic
Based Theory of Test Coverage and Generation,” Proc. Conf. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS
’02), pp. 327-341, 2002.

[14] D. Peled, M. Vardi, and M. Yannakakis, “Black-Box Checking,”
J. Automata, Languages, and Combinatorics, vol. 7, no. 2, pp. 225-246,
2001.

[15] J.C. Fernandez, L. Mounier, and C. Pachon, “Property-Oriented
Test Generation,” Proc. Formal Aspects of Software Testing Workshop,
2003.

[16] R. de Vries and J. Tretmans, “Towards Formal Test Purposes,”
Formal Approaches to Testing of Software (FATES ’01), pp. 61-76,
2001.

[17] A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L.
Feijs, and S. Mauw, “Formal Test Automation: A Simple
Experiment,” Proc. Int’l Workshop Testing of Comm. Systems (IWTCS
’99), 1996. pp. 179-196

[18] K. Havelund and G. Rosu, “Synthesizing Monitors for Safety
Properties,” Proc. Int’l Conf. Tools and Algorithms for Construction
and Analysis of Systems (TACAS ’02), pp. 342-356, 2002.

[19] M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron, A. Kerbrat,
P. Morel, and L. Mounier, “Verification and Test Generation for
the SSCOP Protocol,” J. Science of Computer Programming, special
issue on formal methods in industry, vol. 36, no. 1, pp. 27-52, Jan.
2000.

[20] V. Rusu, H. Marchand, V. Tschaen, T. Jéron, and B. Jeannet, “From
Safety Verifcation to Safety Testing,” Proc. Int’l Conf. Testing
Comm. Systems (TestCom), 2004.

[21] V. Rusu, H. Marchand, and T. Jéron, “Automatic Verification and
Conformance Testing for Validating Safety Properties of Reactive
Systems,” Proc. Symp. Formal Methods Europe (FM), 2005.

[22] V. Rusu, L. du Bousquet, and T. Jéron, “An Approach to Symbolic
Test Generation,” Proc. Int’l Conf. Integrating Formal Methods (IFM
’00), pp. 338-357 2000.

[23] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva, “Symbolic Test
Selection Based on Approximate Analysis,” Proc. 11th Int’l Conf.
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’05), Apr. 2005.

[24] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints,” Proc. Fourth Symp. Principles of
Programming Languages (POPL), pp. 238-252, Jan. 1977.

[25] L. Helmink, M.P.A. Sellink, and F. Vaandrager, “Proof-Checking a
Data Link Protocol,” Proc. Conf. Types for Proofs and Programs
(TYPES ’94), pp. 127-165, 1994.

[26] N. Lynch and M. Tuttle, “Introduction to IO Automata,” CWI
Quarterly, vol. 3, no. 2, 1999.

[27] R.E. Shostak, “A Practical Decision Procedure for Arithmetic with
Function Symbols,” J. ACM vol. 26, no. 2, pp. 351-360, 1979.

[28] J. Tretmans, “Testing Concurrent Systems: A Formal Approach,”
Proc. Conf. Conccurrency Theory (CONCUR ’99) pp. 46-65, 1999.

[29] T. Jéron, H. Marchand, and V. Rusu, “Symbolic Determinisation of
Extended Automata,” Proc. Fourth IFIP Int’l Conf. Theoretical
Computer Science, 2006.

[30] E. Zinovieva, “Symbolic Test Generation for Reactive Systems,”
PhD thesis, Univ. of Rennes I, Nov. 2004.

[31] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking. MIT
Press, 1999.

[32] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva, “STG: A Symbolic
Test Generation Tool,” Proc. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’02) pp. 470-475, 2002.

[33] B. Jeannet, “Dynamic Partitioning in Linear Relation Analysis,”
Formal Methods in System Design, vol. 23, no. 1, pp. 5-37, 2003.

Camille Constant received the master’s degree
in computer science from the University of
Rennes 1 in 1999. Since October 1999, she
has been a PhD student at IRISA in Rennes in
the VerTeCs project. Her research interests
include verification and automatic test genera-
tion in reactive systems.

Thierry Jéron received the PhD degree in com-
puter science from the University of Rennes 1, in
the IRISA laboratory in 1991. He then spent one
year as a research engineer in the Alcatel
research laboratory. He came back to IRISA in
1993 as an INRIA research scientist. He has
been the scientific leader of the VerTeCS team
since 2001 and has been the research director
since 2006. His research topics concern the
formal verification and validation of reactive

systems, including model-checking, model-based testing, control synth-
esis and diagnosis of discrete event systems. He is author or co-author
of around 50 international publications in these domains and has been
involved in a number of academic and industrial collaborations.

Hervé Marchand received the master’s degree in
mathematics from the Universiy of Rennes 1 in
1993 and the PhD degree in computer science
from the University of Rennes 1 in October 1997.
From November 1997 to October 1998, he was a
postdoctoral fellow at the University of Michigan,
Ann Arbor. Since 1998, he has held an INRIA
research position at IRISA in Rennes in the
VerTeCs project. His research interests include
supervisory control, automatic test generation

and diagnosis of discrete events systems. He is also interested in
high-level languages for reactive and real-time systems.

Vlad Rusu received the master’s degree in
computer science in 1993 and the PhD degree in
computer science in January 1996, both from
the University of Nantes, France. He was a
research and teaching assistant at the University
of Nantes in 1996 and 1997. He then visited SRI
International in Menlo Park, California, where he
was a postdoctoral fellow from 1997 to 1999.
Since January 1999, he has held an INRIA
research position at IRISA Rennes, France. His

research interests include formal methods for verification and testing of
reactive systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 8, AUGUST 2007

