
Software Architecture Visualization:
An Evaluation Framework and Its Application

Keith Gallagher, Member, IEEE Computer Society, Andrew Hatch, and Malcolm Munro

Abstract—In order to characterize and improve software architecture visualization practice, the paper derives and constructs a

qualitative framework, with seven key areas and 31 features, for the assessment of software architecture visualization tools. The

framework is derived by the application of the Goal Question Metric paradigm to information obtained from a literature survey and

addresses a number of stakeholder issues. The evaluation is performed from multiple stakeholder perspectives and in various

architectural contexts. Stakeholders can apply the framework to determine if a particular software architecture visualization tool is

appropriate to a given task. The framework is applied in the evaluation of a collection of six software architecture visualization tools.

The framework may also be used as a design template for a comprehensive software architecture visualization tool.

Index Terms—Software architecture, visualization, visualization methodologies, visualization assessment.

Ç

1 INTRODUCTION

VISUALIZATION is used to enhance information under-
standing by reducing cognitive overload. Using visua-

lization tools, people are often able to understand the

information presented in a shorter period of time or to a

greater depth. The term “visualization” has two connota-

tions. Visualization can refer to the activity that people

undertake when building an internal picture about real-

world or abstract entities. Visualization can also refer to the

process of determining the mappings between abstract or
real-world objects and their graphical representation; this

process includes decisions on metaphors, environment, and

interactivity. This work uses the term “visualization” in the

latter sense: the process of mapping entities to graphical

representations.
Evaluating a particular visualization technique or tool is

problematic. Common practice is that some set of guide-

lines is followed and a qualitative summary is produced. As

the guidelines may have been used to produce the

visualization, there is some bias in such an evaluation.

Moreover, these summaries do not usually allow a

comparison of competing techniques or tools. A comparison

is important because it identifies possible “holes” in the

research area or development market. Therefore, for

example, a software organization may have the requirement

that it needs to visualize their current system with an

emphasis on being able to obtain multiple views for

multiple users and should also allow querying. Other

aspects of the visualization may be less important at this

point in time.

Thus, a framework for describing the attributes of tools is
needed. Once the tools have been assessed in this common
framework, a comparison is possible. Such a framework
will not be complete and indeed may never be. However, a
framework can be used for comparison, discussion, and
formative evaluation. In this milieu, we present a frame-
work for software architecture visualization evaluation.

1.1 Result Summary and Contribution

The major contribution of this paper is the evaluation
framework presented in Section 3. Software architecture
visualization evaluation falls into seven key areas: Static
Representation, Dynamic Representation, Views, Naviga-
tion and Interaction, Task Support, Implementation, and
Representation Quality. The key areas are refined further,
with each area having 2-10 features.

The framework is used to evaluate six existing software
architecture visualization tools. It is also used to assess tool
appropriateness from a variety of stakeholder perspectives.
The stakeholder list is extended from that presented in the
IEEE 1471 standard [15]. The framework can also be used as
design guidelines for an “ideal” tool. A preliminary version
of these results was presented in [10].

1.2 Outline of the Paper

The paper is organized as follows: Section 2 lays the
foundation. Section 3, the major contribution of the paper,
outlines the framework itself and describes the rationale
and technique of its construction. Section 4 applies the
framework in various contexts and Section 5 concludes.

2 RELATED WORK

This background section briefly surveys the three main
areas of the contribution: architecture, visualization, and
evaluation.

2.1 Architecture

Architecture can take two roles: one describing how the
software system’s architecture should be and the other

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

. The authors are with the Visualisation Research Group, Department of
Computer Science, Durham University, South Road, Durham DH1 3LE,
UK. E-mail: {k.b.gallagher, andrew.hatch, malcolm.munro}@durham.ac.uk.

Manuscript received 6 June 2007; revised 17 Aug. 2007; accepted 4 Sept.
2007; published online 17 Oct. 2007.
Recommended for acceptance by R. Taylor.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-06-0183.
Digital Object Identifier no. 10.1109/TSE.2007.70757.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

describing how a software system’s architecture is. Part of
the usefulness of architecture analysis is to measure the
discrepancy between the prescribed architecture and the
architecture that describes the software produced.

There are many definitions of architecture [6], [9], [22].
For this work, the IEEE 1471 standard [15] is adopted,
where architecture is defined as “the fundamental organi-
zation of a system embodied in its components, their
relationships to each other and to the environment, and the
principles guiding its design and evolution.” This is used as
the starting definition in this work as it has been agreed
upon through a community vetting process. As the frame-
work evolved, other aspects, for example, the dynamic
aspects of architecture, needed to be incorporated into the
framework.

For any software system, there are a number of
individuals who have some interest in the architecture.
These stakeholders have differing requirements of the
software architecture depending on the role that they take.
The left column in Table 1, from the IEEE 1471 standard
[15], identifies a minimal collection of stakeholders that an
architectural description must address.

Communication and understanding of the architecture is
essential in ensuring that each stakeholder can play their
role during the design, development, and deployment of
that software system.

Software engineering research has examined the use of
specific languages to describe software architecture (see
Medvidovic and Taylor’s taxonomy [19]). These languages
are referred to as Architecture Description Languages
(ADLs). Rather than focusing on ADLs for capturing and
representing architectural information, the framework pre-
sented in this paper is more concerned with the visualiza-
tion of architectures in the large, whether they have been
encoded with an ADL or not. Visualizations may indeed
use the paradigm of components and connectors, but this is
at a lower level.

2.2 Software Visualization

The most prominent types of visualization defined in the
literature are Scientific Visualization, Information Visualiza-
tion, and Software Visualization. Scientific Visualization is
concerned with creating visualizations for physically-based
systems, whereas Information Visualization is concerned

with abstract nonphysical data [3]. Software Visualization
has been defined as

a discipline that makes use of various forms of imagery to
provide insight and understanding and to reduce complex-
ity of the existing software system under consideration [16].

The motivation for visualizing software is to reduce the
cost of software development and its evolution. Software
visualization can support software system evolution by
helping stakeholders to understand the software at various
levels of abstraction and at different points of the software
life cycle. Software Visualization can be seen as the
application of Information Visualization techniques to
software, as the data collected from all areas of a system
development, such as code, documentation, and user
studies, is abstract and, hence, has no associated physical
structure.

Software Visualization is the process of mapping entities
in a software system domain to graphical representations to
aid comprehension and development. It has traditionally
been focused on aiding the understanding of software
systems by those who perform development and mainte-
nance tasks on that software. Although Software Visualiza-
tion supports the software development and maintenance
process, this focus excludes other valid stakeholders such as
Users and Acquirers as listed in Table 1. Software
Architecture Visualization can help all stakeholders to
understand the system at all points of the software life cycle.

2.3 Evaluating Software Visualizations

A number of taxonomies have been developed for classify-
ing software visualizations. Taxonomies define a number of
features that visualizations can be measured against. A
commonly used method for evaluating software visualiza-
tions is to apply these taxonomies as an evaluation
framework. Price et al. [20] present a taxonomy of Software
Visualization with six distinct categories: Scope (the range
of systems that can be visualized, platform for system, and
scalability), Content (the subset of data from Scope that is
actually used in the visualization: control flow, data flow,
and algorithms), Form (the characteristics of the visualiza-
tion: medium, level of detail, and synchronized views),
Method (how the data for the visualizations is gathered:
automatically generated visualization, code instrumenta-
tion, and noninvasive probes), Interaction (user interaction
and control: use of buttons and menus and navigation), and
Effectiveness (how well the visualizations meet their
objectives: purpose of the visualizations, clarity, and degree
of empirical evaluation). These categories are structured
hierarchically, with each category expanded into subcate-
gories. The categories were derived bottom-up, first by
surveying existing taxonomies, then examining current
tools, and finally letting these observations suggest a new
formulation.

Bassil and Keller [2] use Price et al.’s framework to
qualitatively analyze a collection of software visualization
tools. Maletic et al. [18] enhance the Price framework with
regard to task orientation. Task orientation is similar to our
use of stakeholders; however, we have a larger scope of task
than that presented by Maletic et al.

GALLAGHER ET AL.: SOFTWARE ARCHITECTURE VISUALIZATION: AN EVALUATION FRAMEWORK AND ITS APPLICATION 261

TABLE 1
Stakeholders

The left column shows those required by IEEE 1471 [15]. The right
column shows an expanded list that is discussed in Section 3.1.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

3 EVALUATION FRAMEWORK

Before describing the framework itself, the motivation for
its development is given. Next, the framework itself is
described while indicating the process by which it was
derived.

3.1 Motivation for an Architecture Framework

A number of frameworks and taxonomies exist for the
evaluation of software visualizations [20], [21], [28]. As
software visualization has tended to appeal to its roots in
program comprehension, these visualizations are typically
concerned with the representation of software at code level,
supporting programmers and maintainers. Existing frame-
works and taxonomies reflect this focus by looking at low-
level areas such as source code, algorithms, and data
structures [11], [12], [20], [26]. The proposed framework will
provide a mechanism to discuss key areas and related
features of tools and will indicate the trade-offs made by the
stakeholders. This is similar to the trade-off technique
applied in the cognitive dimensions discussed by Green
and Petre [12] in their work on visual programming
environments.

In supporting developers and maintainers, software
visualization has been largely concerned with represent-
ing static and dynamic aspects of software at the code
level. Architecture visualizations require a larger set of
stakeholders.

Stakeholders prescribed by IEEE 1471 are general classes
of users. For the purpose of software architecture visualiza-
tion, the list of stakeholders from the left column in Table 1
can be expanded to the list in the right column in Table 1.
The extended list on the right in Table 1 illustrates the point
that architecture visualization must support a larger
number of stakeholders than that supported by traditional
software visualization. The right column in Table 1 could
also be extended to include other intended stakeholders,
such as suppliers, configuration management staff, chief
information officers, and auditors.

3.2 Framework Overview

The proposed framework has seven key areas for describing
software architecture visualization: Static Representation,
Dynamic Representation, Views, Navigation and Interac-
tion, Task Support, Implementation, and Representation
Quality. The dimensions identified in the framework are
not proposed as a formal representation of the character-
istics of software architecture visualizations, but are
necessary for discussion about, and evaluation of, such
visualizations. Whether they are sufficient is an open
question and the subject of future research.

Each of the seven key areas of the proposed framework is
discussed in detail below. The Goal/Metric/Question
(GQM) paradigm [1] was used to identify the questions
and to then enable the formation of the framework features.
GQM was chosen because it defines a measurement model
on three levels:

. Conceptual level (goal). A goal is defined for an
object, for a variety of reasons, with respect to
various models of quality, from various points of
view, and relative to a particular environment.

. Operational level (question). A set of questions is
used to characterize the assessment/achievement
[how] of a specific goal is going to be performed
based on some model.

. Quantitative level (metric). A set of data is associated
with every question in order to answer it in a
quantitative way.

An example of the application of GQM in this research is
given later.

3.3 Relationship to Other Frameworks

The proposed framework has a strong basis in software
visualization evaluation. Frameworks and taxonomies such
as those by Price et al. [20], Storey et al. [28], and Roman
and Cox [21] have been used to categorize and evaluate
software visualizations. These works have influenced the
creation of the framework. Our approach here is similar to
that by Storey et al. “[A framework] can serve several
purposes: 1) as a formative evaluation tool... 2) for potential
tool users...; and 3) as a comparison tool...” [27]. The principal
difference is that this work is about architecture, whereas
theirs is about development.

Price et al. [20] use a phenomenological approach to
derive properties from existing tools, then generalize to a
framework. The framework engenders a set of open-ended
questions. Our proposed framework attempts to “qualita-
tively quantify” using an enumeration of possible re-
sponses, similar to a Likert scale; such an approach leaves
room for judgment on the part of the responder and
removes the judgment from the questioner. It is also easier
to measure. The measures are qualitative, following Bassil
and Keller [2].

Being modular, the framework allows individual con-
cerns to be addressed in comparative isolation and, so, the
application of the framework need not be performed in its
entirety.

The proposed framework has some degree of overlap
with the taxonomy proposed by Price et al. [20]. The
distinction between Static and Dynamic Representation in this
framework has some grounding in the “Data Gathering
Time” questions posed by Price et al. Static Representation is
concerned with the collection of static elements of the
software system (gathered at compile time) and Dynamic
Representation is concerned with runtime information.
Dynamic Representation also has relationships with Price
et al.’s taxonomy in its discussion of “Invasiveness.” Ideally,
a visualization system should be able to collect data from
the target system in such a way that the collection of that
data does not change the behavior of that system.

A common theme running throughout both Software
Architecture and Software Visualization research is the
concept of Multiple Views. Price et al. [20] identify the need
for “multiple synchronized views” within visualization, but
the proposed framework also considers the view definition,
in line with the recommendations of the IEEE 1471
standard [15].

Questions related to Navigation in this proposed frame-
work attempt to condense some of the questions proposed
by Storey et al. [28], Roman and Cox [21], and Price et al.
[20] in relation to interaction and interface. Although there

262 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

are some elements of navigation that remain desirable

throughout most types of view, navigation can be depen-

dent not only on the subject of the visualization but also on

a particular view of the subject within the visualization. The

proposed framework ensures that a particular navigation

technique is not enforced, but that suitable navigation

techniques are employed. The explicit inclusion of browsing

and searching is taken from that by Sim et al. [24].
Task Support constitutes a significant portion of the

proposed framework. The derivation of the tasks listed is
taken largely from the IEEE 1471 standard, which describes
the uses of architectural descriptions. Task support is also
described by Price et al. [20] in their discussion on
effectiveness.

The proposed framework considers Implementation be-
cause some properties of a visualization can be better
reasoned about in terms of its implementation. Some research
makes no attempt to evaluate the implementation of a
visualization but focuses on the concept of the visualization
itself, arguing that implementation is not a valid issue.
However, Price et al. [20] explicitly consider generality, a
category that encompasses questions regarding the hardware
and operating systems to which the visualization caters.
Roman et al. [21] also discuss implementation-specific
questions, particularly around the method of information
retrieval, such as the use of annotations in source.

Accurate representation is essential in information
representation and visualization [8]. Questions regarding
the capability of a visualization and its visual metaphor to
maintain fidelity are addressed in the Representation Quality
key area of the proposed framework.

Looking specifically at software architecture visualiza-

tion, there are features of existing software visualization

frameworks that do apply, along with other features that do

not. For example, the framework proposed by Storey et al.

[28] contains an item that relates to architecture visualiza-

tion, indicating that a visualization should provide “over-

views of the system architecture at various levels of

abstraction.” Conversely, Price et al.’s taxonomy discusses

elements that are irrelevant for architecture visualization,

such as “to what degree does the system visualize the

instructions in the algorithm” [20].

3.4 Framework Derivation

The primary goal of the proposed framework is to assess

system architectures. The framework was derived from an

extensive analysis of the literature in the area of software

visualization with special emphasis on software architec-

ture. Each of the seven key areas is a conceptual goal which

the framework must satisfy. It is this that makes the

application of the Goal Question Metric paradigm [1]

straightforward.
Rather than describing the complete GQM derivation for

each subgoal of the framework, its application in the Static

Representation subgoal/key area is demonstrated only. A

goal needs a purpose, issue, object, and viewpoint. Thus, here,

the need is to assess (the purpose) the adequacy (the issue) of

static representation (the object) from the researcher’s perspective

(viewpoint). Then, the question “Does the visualization

support a multitude of software architectures?” is posed.

This process yields the first question in Table 2 and feature

SR 1 in Table 3. Continuing in a like manner yields the other

three questions in Table 2 and items SR 2-4 in the Static

Representation portion in Table 3. Following this process in

all key areas provides a straightforward way to generate

questions for use in GQM. The metric for the GQM used is the

Likert scale with four ordered values plus two nonvalues as

this does not overcomplicate the application of the frame-

work, and the responses have intrinsic meaning.

GALLAGHER ET AL.: SOFTWARE ARCHITECTURE VISUALIZATION: AN EVALUATION FRAMEWORK AND ITS APPLICATION 263

TABLE 2
GQM Application to Static Representation

TABLE 3
Framework Summary and Evaluation

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

These values are summarized in Table 4. The response
“Not applicable” (NA) is used where the question is not
relevant because the feature is not in the scope of the tool
and is different from “No support” (N) in which the scope
of the tool would suggest that it should support the feature
but it does not. The “Unable to determine” (?) response is
used where the question is relevant, but the presence or
absence of the feature was not determined.

3.5 Framework Detail

There are some aspects of software architecture visualiza-
tion that are not addressed at all in existing software
visualization evaluation frameworks. This presents an
opportunity to develop a framework for the comparison
of such architecture visualizations.

The proposed framework is divided into seven key areas.
Static Represenation characterizes the size and accessibility
of the architectural information. Dynamic Representation
characterizes the support for runtime collection and
observation of architectural information. Views characterize
the perspective of the observer. Navigation Interaction
characterizes the ease of use of the tool. Task Support
characterizes the operational use of the visualization.
Implementation assesses the suitability of the information
for the particular computational environment. Representa-
tion Quality characterizes the quality of the information
presented to the observer.

In the following sections, parenthetical references refer to
the leftmost column in Table 3. The intent is to point the
discussion of a key area to the embodiment of the feature in
the framework by including the GQM questions.

3.5.1 Static Representation (SR)

Static Represenation is the architectural information which
can be extracted before runtime, for example, source code,
test plans, data dictionaries, and other documentation.

It is possible that a visualization system will be restricted to
a small number of possible architectures. A visualization
need not support a multitude of software architectures if that
is not the intention of the visualization. (SR 1: Does the
visualization support a multitude of software architectures?) In
some cases, the software architecture is clearly defined and a
single data source exists from which the visualization can
take its input. Often, architectural data does not reside in a
single location and must be extracted from a multitude of
sources. (SR 2: Does the visualization support the appropriate
types of static software architecture data sources?) An architecture
visualization certainly benefits from the ability to support the
recovery of data from a number of disparate sources.
Moreover, with multiple data sources, there should be a

mechanism for ensuring that the data can be consolidated
into a meaningful model for the visualization.

Architectural information may not be available directly
but is recovered from sources that are nonarchitectural.
(SR 3: Does the visualization support the recovery of architectural
information from sources that are not directly architectural?) For
example, file systems may not be directly architecturally
related, but they can contain important information that
relates to architecture. Even more so, namespaces, modules,
classes, methods, and variables can all contribute to a view
of the software architecture and, so, a visualization system
should support language-specific constructs.

If architectural data is to be retrieved from nonarchitectur-
al data, there is a potential for the data repository to contain
large amounts of data from lower levels of abstraction. (SR 4:
Can the visualization accommodate large amounts of architectural
data?) If this is the strategy employed by the visualization,
then the visualization should be able to deal with large
volumes of information, that is, the system should be
scalable.

3.5.2 Dynamic Representation (DR)

Dynamic Representation is the architectural information
that can be extracted during runtime. Some relationships
between components of a system will be formed only
during execution due the nature of late-binding mechan-
isms such as inheritance and polymorphism.

Runtime information can indicate a number of aspects of
the software architecture. (DR 1: Does the visualization
support an appropriate set of dynamic data sources?) Visualiza-
tions should support the collection of runtime information
from dynamic data sources in order to relay runtime
information. Typically, for smaller software systems, this
runtime information will only be available from one source,
but, for larger distributed software systems, the visualiza-
tion may need the capability of recovering data from a
number of different sources. These data sources may not
reside on the same machine as the visualization system, so
the ability to use remote dynamic data sources is useful.
Some sources may produce data of one type, where another
source produces different data. In this case, the visualiza-
tion should provide a mechanism by which this data is
made coherent.

When dynamic events occur, the visualization should be
able to display these events appropriately and within the
context of the architecture. (DR 2: Does the visualization
support association of dynamic events with elements of the
software architecture, during execution of the software?) The
visualization must therefore be able to associate incoming
events with architectural entities.

Any method of recording dynamic information from a
software system will affect that software system in some
way. (DR 4: Does the visualization allow live collection of
dynamic data?) At one extreme, there is the directly invasive
approach of adding lines to the software source code. At the
other extreme, there is retrieval of information from a
virtual machine. The visualization system should support a
suitable approach to recovery of dynamic architecture data
in the least invasive way; disruptive behavior is not
desirable. (DR 3: Does the visualization support noninvasive
collection of dynamic data?)

264 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

TABLE 4
The Metrics: Possible Responses to Items in Table 3

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

By visualizing the dynamic data as it is generated, there
may be an affect on the software being visualized. A
“postmortem style” has the benefit of knowing the period of
time over which the visualization occurs. This is useful to a
visualization in that it can render a display for a particular
instance in time while knowing what will occur next. (DR 5:
Does the visualization allow recording of dynamic data for
subsequent replay?)

3.5.3 Views (V)

Kruchten [17] identifies four specific views of software
architecture, whereas the IEEE 1471 standard allows for the
definition of an arbitrary number of views. (V 1: Does the
visualization allow for multiple views of software architecture?)
A visualization may support the creation of a number of
views of the software architecture and may wish to allow
simultaneous access to these views. In the IEEE 1471
standard, architectural views have viewpoints associated
with them. A viewpoint defines a number of important
aspects about that view, including the stakeholders and
concerns that are addressed by that viewpoint, along with
the language, modeling techniques, and analytical methods
used in constructing the view based on that viewpoint. (V 2:
Does the visualization display a representation of the viewpoint
definition?) A visualization may make this information
available to the user in order to assist in their understanding
of the view they are using.

3.5.4 Navigation and Interaction (NI)

Interactive visualizations systems provide a means by
which users will move within, and interact with, the
graphical environment. (NI 1: Can users browse the visualiza-
tion by following concepts?) Common user navigation
techniques such as panning, zooming, bookmarking, and
rotating are usually offered in both 2D and 3D environ-
ments. Interaction with the environment can involve
selection, deletion, creation, modification, and so on.

An important part of the comprehension process is the
formulation of relationships between concepts. Having the
ability to follow these relationships is fundamental. Storey
et al. [28] indicate that a software visualization system
should provide directional navigation. The visualization
should support the user being able to follow concepts in
order to gain an understanding of the software architecture.

Searching is the data-space navigation process that
allows the user to locate information with respect to a set
of criteria. (NI 2: Can users search for arbitrary architectural
information?) Storey et al. [28] label this as arbitrary
navigation—being able to move to a location that is not
necessarily reachable by direct links. Sim et al. [24] identify
the need for searching architectures for information; so, the
visualization should support this searching for arbitrary
information.

Query drilling is a term that describes a method of data-
space navigation that is a particular hybrid of browsing and
searching. (NI 3: Can the user query-drill architectural
information?) It allows a user to search the data space and
then recursively search within the resulting data set.

Architecture is often comprised of a number of views.
Moving between views is essential in order to understand an
architecture from different viewpoints. (NI 4: Can users

navigate between views?) Context should also be maintained
when switching between views so as to reduce disorientation.
Along with data-space navigation, the movement within a
view is also important. Shneiderman’s mantra for visua-
lization is overview first, zoom, and filter, and then show
details on demand [23]. A visualization system should
support this strategy. Also, the visualization should allow
the user to move around so as to focus on and see the
information they are looking for. Typical navigational
support would be pan and zoom. While allowing the user
to navigate, the visualization should provide orientation
clues in order to reduce disorientation. (NI 5: Can users
navigate appropriately within a view?)

3.5.5 Task Support (TS)

Task Support is crucial for any usable software visualiza-
tion system. This area of the framework explores the ability
of the visualization to support stakeholders while they are
developing and understanding the software architecture.

The visualization should support architectural analysis
tasks. As comprehension strategies are task dependent,
architecture visualizations should support either of top-
down or bottom-up strategies, or a combination of the two.
(TS 2: Does the visualization support software architectural
comprehension?) An important comprehension task is the
identification of anomalies. Architectures may be broken or
misused and exhibit unwarranted behavior. (TS 1: Does the
visualization support the representation of anomalies?) The
ability to tag graphical elements in a visualization is
important for various activities. Annotation can allow users
to tag entities with information during the formulation of a
hypothesis. (TS 3: Does the visualization support annotation?)
Visualizations should support any number of stakeholders.
In order to facilitate the communication of the architecture
to a stakeholder, the visualization must represent the
architecture in a suitable manner. (TS 4: Does the visualiza-
tion support the communication of the architecture to intended
stakeholders?) Stakeholders may require very different views
from other stakeholders.

Software architecture can evolve over time. Subsystems
may be redesigned; components replaced, new components
added, new connectors added, and so on. (TS 5: Does the
visualization show the evolution of software architecture?) An
architecture visualization should provide a facility to show
the evolution. This support may be basic, showing
architectural snapshots, or the support may be more
advanced by using animation.

Visualizations may offer the capability for the users to
create, edit, and delete objects in the visualization. In order
to be able to fully support the construction of software
architecture, the visualization must be able to allow the user
to create objects in the domain of the supported viewpoint.
(TS 6: Does the visualization support construction of software
architectures?) Of course, the visualization should also then
support the editing and deleting of those objects. Archi-
tectural descriptions can be used for the planning, mana-
ging, and execution of software development [15]. In order
for the visualization to support this task, it should provide
rudimentary functionality of a project management tool—or
have the ability to communicate with an existing project

GALLAGHER ET AL.: SOFTWARE ARCHITECTURE VISUALIZATION: AN EVALUATION FRAMEWORK AND ITS APPLICATION 265

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

management tool. (TS 7: Does the visualization support
software planning and development?)

Software architecture evaluation allows the architects
and designers to determine the quality of the software
architecture and to predict the quality of the software that
conforms to the architecture description [15]. To support
this, a visualization should have some mechanism by which
quality descriptions can be associated with components of
the software being visualized. (TS 8: Does the visualization
support evaluation of software architectures?) A typical use of
software architecture visualization is the comparison of as-
implemented with as-designed architecture. The visualiza-
tion should be able to support the display of these two
architectures and allow users to make meaningful compar-
isons between them. (TS 9: Does the visualization support the
comparison of software architectures?) Software built from a
software product line is a typical scenario where compar-
ison of architectures is particularly useful.

The rationale for the selection of architecture and the
selection of the individual architectures of the components
of that architecture are included in architectural descrip-
tions. (TS 10: Does the visualization represent rationale?)
Rationale can also be associated with each viewpoint of
an architecture. By showing the rationale for the elements of
the architecture and the architecture as a whole, a
visualization will allow a user to have an insight into the
decision making process.

3.5.6 Implementation (I)

Visualizations should be able to be generated automatically.
(I 1: Can the visualization be generated automatically?) If
platform choice prohibits remote capture of system data,
the visualization should be able to execute on the same
platform as the software it is intended to visualize. (I 2: Can
the visualization be executed on the platform of the target
system?) Where possible, remote capture may be preferred
for its potential in reducing unwanted interaction with the
software. As there are many stakeholder roles in a software

system, there may also be a one-to-one mapping of role to
physical users. Therefore, the visualization should support
multiple users concurrently or asynchronously. (I 3: Does the
visualization support multiple users?)

3.5.7 Representation Quality (RQ)

Representation Quality is an area of the framework that
deals with the capability of the visualization to adequately
represent the software architecture. For software architec-
ture visualization, the visualization must present the
architecture accurately and represent all of that architecture
if the visualization purports to do so. (RQ 1: Does the
visualization achieve high fidelity and completeness?) During its
execution, software may change its configuration in such a
way that its architecture has changed. Software that
changes its architecture in such a way is labeled software
that has a dynamic architecture. If the visualization is able
to support architectural views of the software at runtime,
then it may be capable of showing the dynamic aspects of
the architecture. (RQ 2: Does the visualization support the
representation of dynamically changing software architecture?)
In order to do so, the visualization may either support
snapshot views of the progression or animate the changes.

3.6 Framework Summary

The two left-hand columns in Table 3 show the outcomes of
the application of the GQM paradigm for each key area. The
abbreviated key area names in the leftmost column are used
in Figs. 1 and 2. The values in the right-hand columns
(using the values in Table 4) are discussed and developed in
Section 4.

4 APPLYING THE FRAMEWORK

4.1 Tools

This section presents a brief summary and discussion of the
features of tools that are to be assessed using the framework.

266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 1. Starplots of analyzed tools.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

These tools were chosen as a representative sample of the
software architecture tools available.

4.1.1 ArchView (AV)

The ArchView [9] tool uses the architecture analysis
activities of extraction, visualization, and calculation. It
produces an architecture visualization that presents the use
relations in software systems. The relations are stored in a
set of files that are read by a browser. The browser reads
layout information files and allows the selection of shapes
and the manual configuration of layout. A collection of tools
is used to manipulate the set of relations to perform selected
operations. A VRML generator creates a 3D representation
using the 2D layouts and layer position.

4.1.2 The Searchable Bookshelf (SB)

The Searchable Bookshelf [24] visualization attempts to
combine both searching and browsing approaches to
software comprehension. The Searchable Bookshelf adds
search capabilities to the Software Bookshelf. Users can
browse the software structure from an initial overview by
navigating through an HTML style display and a software
landscape central view. Here is an example of the difference
between searching and query drilling. The Searchable
Bookshelf allows searching but does not allow extended
searching within the resulting data space.

This visualization affords the user a number of different
views; however, the number of views is limited and the
user cannot add custom views. Dynamic data is not linked
to the static representations of the architecture. The
visualization is therefore unable to deal with architectures
that change configuration during runtime.

4.1.3 SoftArch (SA)

SoftArch [13] is both a modeling and visualization system
for software, allowing information from software systems to
be visualized in architectural views. SoftArch supports both
static and dynamic visualization of software architecture
components and does so at various levels of abstraction.
SoftArch’s implementation of dynamic visualization is that
of annotating and animating static visual forms. SoftArch
defines a metamodel of available architecture component
types from which software systems can be modeled. In this
way, a system’s behavior can be visualized using copies of
static visualization views at varying levels of abstraction to
show both the highly detailed or highly abstracted running

system information. SoftArch is integrated into a develop-
ment environment; thus, it addresses a key criticism of
other visualizations: It provides a mechanism by which it
can be used by developers during software development.
Other aspects of architecture such as project management,
architecture comparison, and architecture evaluation are
not directly supported in SoftArch.

4.1.4 SoFi

SoFi [4] is a tool that performs source code analysis in order
to compare intended architecture with implemented archi-
tecture. SoFi’s clusters source files into a structure based on
source file naming schemes. SoFi relies heavily on inter-
vention by an architect to perform restructuring. This
restricts the applicability of this visualization to scenarios
that require automated generation of a visualization of an
existing sytem. SoFi is focused on lower level areas of
architecture and does not support dynamic data. Visualiz-
ing evolution can only be supported by repeated applica-
tion of the tool and visually comparing the differences
between subsequent images.

4.1.5 LePUS

LePUS is a formal language dedicated to the specification of
object-oriented design and architecture [5], [6], [7]. LePUS
diagrams are intended to be used in the specification of
architectures and design patterns and in the documentation
of frameworks and programs. As a visual language, LePUS
is not concerned with the extraction of architectural
information from systems but is simply a means by which
an architect can encode software architecture for commu-
nication to other stakeholders in that architecture. This will
allow for some activities, such as construction, evaluation,
and comparison, but is not suited to core visualization
activities such as searching and query drilling.

4.1.6 Enterprise Architect (EA)

Enterprise Architect [25] is a UML CASE tool that allows
software architects, designers, and analysts to design
software from several viewpoints. EA can be used from
requirements capture to UML modeling to testing and
project management. EA utilizes a graphical user interface
that sits above an entity-relationship repository. The
primary mechanism for modeling software systems in EA
is to use diagrams. Entity templates are dragged onto a
diagram area, causing a new entity to be created. These
entities can be edited using the graphical user interface.
Links can be formed between diagram entities. These links
cause relationships to be formed between entities in the
underlying model. Existing entities can be dragged onto
newly formed diagrams and any existing relationships are
automatically shown. Thus, the entity-relationship model is
distinct from the visual representations that form the user-
interface. EA’s primary use is for designing new software
but it also offers a broad range of other tools. For example,
EA also allows existing software to be parsed and imported.
EA supports many activities and is suited to a wider
audience of stakeholders. It does not support dynamic data
and has difficulty in showing architectural evolution. EA
does permit the construction of new views.

GALLAGHER ET AL.: SOFTWARE ARCHITECTURE VISUALIZATION: AN EVALUATION FRAMEWORK AND ITS APPLICATION 267

Fig. 2. Combined starplot of all tools.

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

4.2 Application Summary

Table 3 presents the evaluation of the features of the six
tools in tabular form. Most tools do reasonably well in Static
Representation. Dynamic Representation is another matter
as only one of the surveyed tools has good support in this
key area. Most tools support multiple views (V 1); only one
supports viewpoint definition (V 2). Navigation and
Interaction is supported by browsing (NI 1) in most tools.
The Enterprise Architect is the only tool that has all of the
searching (NI 2), querying (NI 3), and view navigation
features (NI 4 and NI 5). It seems that all tools are deficient
in some aspect of Task Support. This is mildly surprising as
one would expect architecture tools to be closely allied with
project management and IDE systems. It is also surprising
to note that not all tools have automatic generation (I 1) and
multiple user support (I 3). All tools support high fidelity
visualization (RQ 1) but not dynamically changing archi-
tectures (RQ 2). LePUS is interesting in the context of this
framework. As a visual language for communicating
architectures, it is not applicable to measure navigation
and interaction (NA) features for it, hence, an NA results.

Fig. 1 shows the starplot representation of the evaluation of
the six architecture visualization tools. Each axis in the
starplot is scaled according to the possible responses in
Table 4, with the “yes” value (“Y”) being on the outer rim. The
starplot can be used to make comparisons between the tools.

4.3 Using the Stakeholder Viewpoints

This section gives an example application of the framework
and applies it against a number of stakeholders. It is not
intended to give a high degree of detail, but to simply state
how each stakeholder might find a matching tool for their
role within a software development organization.

Table 5 summarizes the result of stakeholder analysis
through consultation with practitioners and by using the
authors’ knowledge and experience. It is representative of
the practices of four diverse software organizations. For the
purposes of the table, we are taking the union of the
possible tasks that a stakeholder might carry out. For
example, an architect building a new system would have a
different set of tasks from an architect rearchitecting an
existing system. Although the table does not show the
completeness of the framework, it does illustrate that all of
the elements of the framework are relevant to at least one
stakeholder, whereas some elements are relevant to all
stakeholders. The very general approach of the process
makes a straight yes/no answer appropriate.

In an organization, the stakeholders (job titles) vary.
Tasks assigned to a particular stakeholder vary between
organizations as well. It is recognized that the mapping
between the features of the framework against the
stakeholders will vary. Thus, the table will look different
for different organizations.

As an example, an organization begins a project to
develop a new piece of enterprise software. It is anticipated
that the software will evolve over time as new requirements
are captured by the professional services team. Each
architecture stakeholder is considered in turn for determin-
ing tool suitability.

In this example, the Architect is principally concerned
with visualizing the implemented system once it has been

created and, so, looks to tools that fare strongly in Static
Representation (SR). SoFi, AchViev (AV), and Searchable
Bookshelf (SB) score strongly in this area and, so, are good
candidates as tools to support the Architect.

In order to support his design tasks, the Designer is
interested in a tool that supports the construction of a
software architecture and does so using a number of
different views. Here, he is interested in elements of Task
Support, specifically construction (TS 6), and many ele-
ments from Navigation and Interaction (NI). Enterprise
Architect (EA) is a clear match.

Developers will work with the architecture and designs
produced by the Architect and Designer. During develop-
ment tasks, they are interested in understanding the design.
During testing and maintenance tasks, they will be
interested in understanding the architectural context of
source code in the system and also extracting architectural
information from that source code and comparing this
against the design of the system. Comprehension (TS 2) and
Annotation (TS 3) are core to development activities,
indicating SoftArch (SA) and Enterprise Architect (EA) as
candidates; however, developers also share similar require-
ments to the Architect and Software Designer, meaning
these tools are not entirely suitable.

Working closely with the Architect, Designer, and
Developers, the Development Manager shares concerns
with all of these roles; however, no one tool provides full
support. Sales and field support, system administrators,
and end users may care little for lower levels of detail of the
software’s architecture but are keen to be able to under-
stand and discuss the architecture at a high level. Here,
multiple views (V) are useful along with a number of
methods of interaction (NI). Enterprise Architect (EA) suits
these types of requirements well.

Thus, to satisfy the competing demands of the stake-
holders in this example, no one tool provides all the support
needed and SoftArch (SA), ArchView (AV), and Enterprise
Architect (EA) will be required. The framework will
provide the mechanism for further analysis of the support
needed and will assist in choosing the most appropriate tool
(if only one is required). In practice, the framework should
be used in conjunction with the analysis of other context-
specific constraints such as organizational standards,
experience, and cost.

4.4 Ideal Tool

Representing architecture visualization tools through star-
plots gives an immediate impression as to the tool’s
capability. Each tool has its own relative merit and none
supports all of the framework’s elements and thus
represents the trade-offs made by the tool developers. This
highlights a potential problem, where an organization may
want a single tool to give all stakeholders a central
repository for architectural information that can be repre-
sented in different ways to each stakeholder. Fig. 2
illustrates a hypothetical tool that combines the features of
all tools analyzed under the framework. A salient feature is
that this would still not provide full support of all elements
of the framework. It is not the direction of this paper to
suggest whether or not such a “perfect” tool may be
possible to construct. Further, it is undecided whether such
a tool is desirable.

268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

While such a tool may, on the surface, appear to be ideal,

there may be a risk of introducing cognitive overload to

some stakeholders in the architecture. Not all stakeholders

will be able to make use of all features of the tool and they

may find that the tool is unwieldy.

5 CONCLUSION

Software architecture is the gross structure of a system; as

such, it presents a different set of problems for visualization

than those of visualizing the software at a lower level of

abstraction. We have developed and presented a framework

for the assessment of the capabilities of software architec-

ture visualization tools and evaluated six tools in this

framework. It turns out that no one tool meets all of the

criteria of our framework. This is not a bad thing. Moreover,

it may be that a one-size-fits-all approach may increase

information overload and that a collection of small tools

appropriate to each stakeholder’s task may be preferable.
A side effect of the application of the framework is that it

has highlighted features not present in existing tools, for

example, Planning and execution (TS 7) and Dynamically

GALLAGHER ET AL.: SOFTWARE ARCHITECTURE VISUALIZATION: AN EVALUATION FRAMEWORK AND ITS APPLICATION 269

TABLE 5
Stakeholder Analysis against the Framework

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

changing architecture (RQ 2). These are shown clearly in

Fig. 2 and open up the possibility of future research and

development.
The question of whether or not one size fits all is

appropriate for an architecture visualization tool is open.

Thus, we are using the framework to define and prototype

an architecture visualization tool [14]. It seems clear that

such a tool will need to be tailorable to the specific

stakeholder in order to be of any practicable use. This

resembles the “subsetting problem” of programming

language design (certain stakeholders/users need only

certain subsets of the functionality) and, thus, orthogonality

of features is paramount so that a user does not accidentally

stumble onto a feature and its corresponding interaction

that was evidently unneeded.
The issue of the completeness and sufficiency of the

framework is an open one and needs to be addressed by

further research. One approach to increase confidence in the

framework is by applying it to a larger population of tools.

Software engineering theory and practice are evolving, and

the notion of software architecture is changing; thus, the

definition of software architecture itself will necessarily

change. These new developments may give insights into the

questions of completeness and sufficiency.

REFERENCES

[1] V. Basili, G. Caldiera, and H.D. Rombach, “The Goal Question
Metric Paradigm,” Encyclopedia of Software Eng., vol. 2, pp. 528-532,
John Wiley & Sons, 1994.

[2] S. Bassil and R. Keller, “A Qualitative and Quantitative Evaluation
of Software Visualization Tools,” Proc. 23rd IEEE Int’l Conf.
Software Eng. Workshop Software Visualization, pp. 33-37, 2001.

[3] S. Card, J. Mackinlay, and B. Shneiderman, Reading in Information
Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

[4] I. Carmichael, V. Tzerpos, and R. Holt, “Design Maintenance:
Unexpected Architectural Interactions,” Proc. Int’l Conf. Software
Maintenance, pp. 134-137, 1995.

[5] A. Eden, “Formal Specification of Object-Oriented Design,” Proc.
Conf. Multidisciplinary Design in Eng., 2001.

[6] A. Eden, “Visualization of Object-Oriented Architectures,” Proc.
IEEE 23rd Int’l Conf. Software Eng. Workshop Software Visualization,
pp. 5-10, 2001.

[7] A. Eden, “Le PUS: A Visual Formalism for Object-Oriented
Architectures,” Proc. Sixth World Conf. Integrated Design and Process
Technology, June 2002.

[8] M. Eisenstadt and M. Brayshaw, “A Knowledge Engineering
Toolkit: Part I,” BYTE: The Small Systems J., pp. 268-282, 1990.

[9] L. Feijs and R. de Yong, “3D Visualization of Software
Architectures,” Comm. ACM, vol. 41, no. 12, pp. 73-78, Dec. 1998.

[10] K. Gallagher, A. Hatch, and M. Munro, “A Framework for
Software Architecture Visualization Assessment,” Proc. IEEE
Workshop Visualizing Software, pp. 76-82, Sept. 2005.

[11] T. Green, “Instructions and Descriptions: Some Cognitive Aspects
of Programming and Similar Activities,” Advanced Visual Inter-
faces, pp. 21-28, ACM Press, 2000.

[12] T.R.G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A “Cognitive Dimensions” Frame-
work,” J. Visual Languages and Computing, vol. 7, no. 2, pp. 131-174,
1996.

[13] J. Grundy and J. Hosking, “High-Level Static and Dynamic
Visualisation of Software Architectures,” Proc. IEEE Symp. Visual
Languages, pp. 5-12, Sept. 2000.

[14] A. Hatch, “Software Architecture Visualisation,” PhD dissertation,
Univ. of Durham, 2004.

[15] “IEEE Recommended Practice for Architectural Description of
Software Intensive Systems,” technical report, IEEE, 2000.

[16] C. Knight and M. Munro, “Visualising Software—A Key Research
Area,” Proc. Int’l Conf. Software Maintenance, p. 436, 1999.

[17] P. Kruchten, “The 4 + 1 View Model of Software Architecture,”
IEEE Software, vol. 12, no. 6, pp. 42-50, Nov. 1995.

[18] J. Maletic, A. Marcus, and M. Collard, “A Task Oriented View of
Software Visualization,” Proc. IEEE Workshop Visualizing Software
for Understanding and Analysis, pp. 32-40, 2002.

[19] N. Medvidovic and R. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,”
IEEE Trans. Software Eng., vol. 26, no. 1, pp. 70-93, Jan. 2000.

[20] B.A. Price, R. Baecker, and I.S. Small, “A Principled Taxonomy of
Software Visualization,” J. Visual Languages and Computing, vol. 4,
no. 3, pp. 211-266, 1993.

[21] G-C. Roman and K.C. Cox, “A Taxonomy of Program Visualiza-
tion Systems,” Computer, vol. 26, no. 12, pp. 11-24, Dec. 1993.

[22] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[23] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, 1998.

[24] S. Sim, C. Clarke, R. Holt, and A. Cox, “Browsing and Searching
Software Architectures,” Proc. Int’l Conf. Software Maintenance,
pp. 381-390, Sept. 1999.

[25] Sparx Systems, Enterprise Architect, http://www.sparxsystems.
com.au, 2008.

[26] J. Stasko and C. Patterson, “Understanding and Characterizing
Program Visualization Systems,” Proc. IEEE Workshop Visual
Languages, pp. 3-10, 1992.

[27] M. Storey, D. Cubranic, and D. German, “On the Use of
Visualization to Support Awareness of Human Activities in
Software Development: A Survey and Framework,” Proc. ACM
Symp. Software Visualization, pp. 193-202, 2005.

[28] M. Storey, F. Fracchia, and H. Muller, “Cognitive Design Elements
to Support the Construction of a Mental Model During Software
Exploration,” J. Systems and Software, vol. 44, pp. 171-185, 1999.

Keith Gallagher is the director of the Centre for
Software Maintenance and Evolution and a
member of the Software Visualisation Group
and the e-Science Research Institute at Durham
University, United Kingdom. He invented de-
composition slicing and has investigated its
application in software maintenance, change
impact analysis, software testing, program com-
prehension, program visualization, and general-
ized program analysis. He has been a faculty

research associate at the National Institute of Standards and Technol-
ogy, Washington, D.C., and a visiting senior research engineer for the
Commonwealth Scientific and Industrial Research Organization, Can-
berra, Australia. He is a member of the IEEE Computer Society.

Andrew Hatch received the BSc and PhD
degrees from the University of Durham, United
Kingdom. Currently, he is a teaching fellow of
the Centre for Excellence in Teaching and
Learning, Active Learning in Computing in the
Department of Computer Science at Durham
University. His main research interests include
technology-enhanced learning, human-compu-
ter interaction, and software visualization.

Malcolm Munro is a professor of software
engineering. His main research interests include
software visualization, software maintenance
and evolution, and program comprehension.
The concern of his research is to establish how
Legacy Systems evolve over time and to dis-
cover representations (visualizations) of those
systems to enable better understanding of
change. He has led a number of EPSRC funded
projects, including the Reconstruction of Legacy

Systems (Release), Visualising Software in a Virtual Reality Environ-
ment (VVSRE), and Guided Slicing and Targeted Transformation
(GUSTT). He is involved in research in Software as a Service (SaaS)
and the application of Bayesian Networks to software testing and
program comprehension.

270 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 10:02 from IEEE Xplore. Restrictions apply.

