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Abstract

Component-Based Software Engineering focuses on the ofuesdsting software components. In practice, most
components cannot be integrated directly into an applinaid-be, because they are incompatible. Software Adaptat
aims at generating, as automatically as possible, adajst@@mpensate mismatch between component interfaces, and
is therefore a promising solution for the development ofa nearket of components promoting software reuse. In this
article, we present our approach for software adaptatioictwielies on an abstract notation based on synchronous
vectors and transition systems for governing adaptatitesriDur proposal is supported by dedicated algorithms that
generate automatically adaptor protocols. These algosithave been implemented in a tool, callkdaptor, that
can be used through a user-friendly graphical interface.

Index Terms

Software components, interfaces, mismatch, composisioftware adaptation, adaptation contracts, vectors; tran
sition systems, synchronous products, Petri nets, tools.

I. INTRODUCTION

Component-Based Software Engineering (CBSE) aims atibgildew systems by assembling existing software
components, which would jointly realize the system desfretttionality. However, one of the main issues raised
by this paradigm is that in practice we cannot expect that gimgn software component perfectly matches the
needs of a system where it is trying to be reused, nor thatahmonents being assembled fit perfectly one another.
Reusing software often requires a certain degree of adaptHt], [2], especially in presence of legacy code. To
deal with these problem§oftware Adaptatiofi3], [4] is emerging as a new discipline, concerned with fadang
techniques to arrange already developed pieces of softwanaler to reuse them in new systems, accommodating
the potential mismatches arising from their composition.

Software Adaptation promotes the useadfaptors specific computational entities developed for guarantgtiat
a set of mismatching components will interact correcthft@are adaptation is different from software evolution,
component customization, or adaptive middlew&waftware evolutioaims at modifying the code of the components,
for instance to take a new functionality into account, whsradaptation works in a non-intrusive way, that is without
modifying the code of the components, which is importantiuheir black-box nature. In the caseafstomization
the end-user may adjust the component behaviour by tuningd §iet of component parameters, which have been
considered and defined at design time by the developer.lfidaldicatedadaptive middlewarg5] can be used to
put the adaptation process into action, once an adaptorirhaddeen obtained. In this sense, adaptive middleware
complements software adaptation, which deals with adaptmteling and synthesis, providing the means for the
actual implementation of the proposal.

CBSE postulates that a component must be reusable frontét$aioe [6], which in fact constitutes its full technical
specification. The characteristics and expressivenedseofanguage used for interface description determines the
degree of interoperability we can achieve using it, and thd &f problems that can be solved. We distinguish several

levels of interoperability, and accordingly of interfacesdription [2], [4], [7]: technicallevel (data encoding and
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framework-related issuesgjgnaturelevel (operation names and typebghaviourallevel (interactionprotocolg,
quality of servicelevel (non-functional properties such as security or efficy), andsemanticlevel sometimes
referred as conceptual level (functional specification bhtthe component actually does). At each one, mismatch
may occur and have to be corrected. Currently, industrishpmment models, by using Interface Description
Languages (IDLs), are able to solve most of the technicakaation problems, but they fail to address mismatch
at the higher levels. Numerous approaches have been pddemntextending component interfaces with protocols
(see, for instance, [8]-[13]) thus resulting in what we &s#havioural IDLs (BIDLS). This interoperability level is
essential because, even if components match from a signadimt of view, their combination can lead to erroneous
behaviours or deadlock situations if the designer is notrewatheir execution flows, and does not take them into
account while building the full system.

In this article, we propose a model-based adaptation appr@eusing on mismatch appearing at the behavioural
level. Yet, since the component protocols are based on messahange relative to the component operations, we
also address name mismatch at the signature level. The agip(see Fig. 1 for a graphical overview of it) takes
as input the behavioural interfaces of components to betadapnd an adaptatiaontract[4], that is an abstract
description of the constraints which must be respected tkerttee involved components work together. Given these

two elements, an adaptor protocol is generated in an auiomvay.

Adaptation contract

¥,

Synchronous Product

Mismatch

Detection Adaptor Generation

o

[

¢

Component Behavioural Interfaces Adaptor Protocol

No adaptor required

Fig. 1. Overview of our model-based adaptation approach

The adaptation process begins with two (or more) comportaatsare not able —as they are— to interact suc-
cessfully {.e., ending in correct termination states). To compensate sustatch, we propose to use synchronous
vectors as adaptation contract language to make expleittieractions between components, possibly on different
message names. Our notation also allows the specificatiamdefring constraints on interactions, which enables
one to describe in an abstract way more complex adaptatimasios. In order to generate adaptor protocols for
such contracts, we present in this article two algorithne #iutomate the adaptation process. The first one is
based on synchronous products, and the second one is badedtromet encodings. Compared to the former,

the latter induces a higher computational complexity, sutible to reorder messages when necessary, and then

February 1, 2008 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

ensures a correct interaction when several componentsthavmessages exchanged in their protocols which are
not ordered correspondingly. Reordering is worked out delssonising the message emission by one component
and the message reception in another one. When requiretteémiessages are temporarily memorised until they
are used for effective interaction. This is why a formalisapable of representing memory, such as Petri nets, is
required. The adaptation techniques we present in thislartiave been implemented in a tool, calledaptor,
which has been applied to many non-trivial exampigs, examples where adaptor protocols could not have been
obtained by hand.

A preliminary version of this work has been presented in [4id is extended here in several aspects: (i) in-
troduction to the Petri nets concepts used in our proposakidtailed descriptions and proofs of the adaptation
algorithms, (iii) presentation of th&daptor tool, (iv) illustration on a more realistic and bigger casedy from
the pervasive computing domain, and (v) an updated revielwcamparison with related work.

The remainder of the article is organised as follows. Sactloformally introduces our component interface
model, and defines interface mismatch. Section Ill focusethe adaptation contract notation. Section IV presents
a first approach to component adaptation based on synctsgroducts. Section V presents a second solution
which goes further, considering reordering through theodimg of contracts and behavioural interfaces into Petri
nets. Section VI gives an overview of tielaptor tool. In Section VII, we survey the more advanced proposals f
behavioural software adaptation, and compare to themllfsigection VIII ends the article with some concluding

remarks.

Il. INTERFACES ANDMISMATCH

In this section, we present first the model of interfacesufhowhich components are accessed and used. Then,

we define the notion of interface mismatch that our approacinesses.

A. Component Interfaces

We assume that component interfaces are given using bothnatsie and a behavioural interface. Signature
interfaces usually correspond in component-based framane.g, CCM, .NET or J2EE) to operation profiles
described using an IDL,e., operation names associated with argument and return tgfmss/e to the data being
exchanged when the operation is called. Since we focus omehavioural level in this article, we omit in the
signature interfaces the elements relative to data exehahigis means that a signature is taken as a disjoint
set of provided and required operation names. Such alismadrom data exchange are often used in software
engineeringe.g, to check interface compatibility [11] or to perform comeon verification [10], [12]. Additionally,
we propose that behavioural interfaces are representedelaysrof Labelled Transition Systems (LTSs). Message-
based communication between components is thereforesesgeal usingventsrelative to the emission (denoted
using!) and reception (denoted usiy of messagesorresponding to operation calls.

However, taking data exchange into account is importanbsuee full compatibility. So far, this can be supported

in our approach using additional messages as follows. Th&s@n by a component of a messadogin with two data

February 1, 2008 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

information,username andpassword, would be encoded by the sequence of eviagm!.username!.password!

in the component LTS. Accordingly, the reception in a congurof a messagkgin with two data information,
username and password, would be encoded by the sequence of evédogin?.username?.password? in the
component LTS. Provided this encoding is performed as gppreessing, and the adaptation contract takes the
additional messages into account, the protocols can betetlaps demonstrated in [15] where we have applied
our adaptation techniques to Windows Workflow Foundatiof-\\N.6] which belongs to the .NET Framework 3.0
developed by Microsoff. Related perspectives are further discussed in Sectiohn VI

Definition 1 (LTS): A Labelled Transition Systeis a tuple(A, S, I, F, T) where:A is an alphabet (set of events),
S is a set of stated] € S is the initial state, ;' C S are final states, and C S x A x S is the transition function.

Final statescorrespond to correct service terminations in compond@ntsupport the correctness of the adaptation
process, we further assume that the initial state is alsd fiha& F'). The alphabet of the LTS is built on the
component signature. This means that for each providedatipep in the signature, there is a messagand an
eventp? in the alphabet, and, for each required operatipthere is a messageand an event! in the alphabet.
Complementary events are denoted with the same name of geessa opposite directions. Consequently, the
complementing function on events is defined @s= ¢!, ande! = e?.

LTSs are adequate models as far as user-friendliness arelogenent of formal algorithms are concerned.
However, higher-level languages such as process algebra<@n be used to define behavioural interfaces in a
more concise way. In a former version of this work [14], theusntial subset o€CS [18] was used as BIDL.
Moreover,CCS descriptions of component behavioural interfaces can biyemanslated into LTS models using
the operational rules defining the semantics of the formmalis this article, since we focus on the adaptor model
generation, we only present and work using LTS models. If, [ttt reader will find more details of how LTSs
can be extracted from component languages (namely, in thik,whe Windows Workflow Foundation language),

and how an adaptor model can be transformed into a compomegudge program.

Fig. 2. TheeMuseum application

Example 1:eMuseum (Fig. 2) is an added-value application whose objective imugment the visitors’ ex-
perience in museums by displaying, on their portable deyigdormation about seen pieces of art. We will use

this example throughout the article. Let us first begin witkiraplified version of iteMuseum is built using two
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separately designed components: a room seR&CM) and a Personal Digital Assistant applicatid?D@). On
the one handROOM can be askedgliery message) to send a list of artifacts present in the rd@hriiessage)
and is then informed about one being selecteldbice message)ROOM may afterwards be requested to send
information about this artifact either in textual (pdf) ddeo (mpeg) format using respectively ttextrequest and
videorequest messages. The files themselves are sent withetkteor thevideo message. On the other haDA
first issues a resource discovery query, then may be usedeitt segiven item from a list of available resources,
and the resource is eventually displayetpég or pdf). PDA can be also turned off using tls#lutdown message.
The LTSs for these two components are given in Figure 3, witiial and final states respectively marked using
bullet arrows é.g, state0 in PDA) and hollow statese(g, statesO and4 in PDA). Transitions sharing the same

source and target states are represented using a sings@itnarand the list of the possible labels.

shutdown!

query! ‘/1\ list?
o/

o @ query?

mpeg?, pdf? choice!

video! -
videorequest?

(a) ROOM LTS (b) PDA LTS

Fig. 3. eMuseum, version 1

B. Behavioural Mismatch

Mismatch situations between component interfaces may bsechby message names that do not correspond,
by an ordering of messages which is not compatible in two orem@mmponents, or by some messages in one
component that have no counterpart or match with severasages in another component (one-to-zero, one-to-
many or many-to-one correspondences). All these casestavimiral mismatch can be worked out using the
contract notation (Section Ill) and the adaptation aldgwni$ (Section IV and V) that we propose in this article. We
will give examples of such mismatch in the case study we pitesethe sequel.

There exists numerous definitions of compatibility and, asasequence, of mismatch between protocols [4],
[19], but deadlock is the most commonly accepted notion. tioraate deadlock mismatch detection, the first step
is to define the semantics of a system composed of severalawmmis. This semantics can be given by means
of the synchronous product [20] of LTSs. The synchronouslycb of several component LTSs results in a new
LTS which contains all the possible interactions betweenitivolved components, assuming they synchronise on
complementary events ).

Definition 2 (Synchronous Producthesynchronous produdf n LTSsC; = (A;, S;, I;, F;, T;),i € {1,...,n},
is the LTSC,||...||Cn = (A, S, I, F,T) such that:

e A=A U{}x...xAU{},S=51%x...x8, [=(L1,....1,), F=F; X ... x F,,
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o T is defined using the following rule:
V(s1,...,80) € 9, Vi,j € {1,...,n},i <jsuch thatl(s;,a,s;) € T;, I(s;,a,s)) € Tj:
(X1,...,2n) € Sand((s1,...,8n), (1, -, ln),(x1,...,2p)) €T,
lk=a,z, =5, fk=i

whereVk € {1,...,n}: k=ax,=5, ifk=j

lp = _,xp = s, Otherwise
where thex operator stands for the cartesian product.

The states in the product correspond to sets of states obthpanents (called substates in the context of a product
state) . For example, a statey, ..., s,) denotes that each componefit is its states;. Initially, all components
are in their initial statei(e., I; for eachC;), which means that the initial state of the productis,...,I,). The
computation of the transitions expresses that, given samwosite statésy, ..., s,) in the product, there is some
transition outgoing from this state iff there are two comguts,; andj, that may perform at the same time - from
statess; ands; in their LTS - complementary eventsg, one sending a message and the other one receiving it),
while other components do not perform any action (denafe@he resulting target state of the product transition
corresponds to the source state of it, but for the substatgesponding to componenisand j. Transitions in
the product are labelled with a set of labels, one from eachpoment (including). An example of synchronous
product is given in Example 2, below.

We are now able to characterise mismatch by means of an agedefinition of deadlock that differentiates
deadlock states and correct final states. A system is bloakesh it cannot evolve and when at least one of the
components is not in one of its final states.

Definition 3 (Deadlock State)tet C' = (A, S,I, F,T) be an LTS. A states is a deadlock state fof’, noted
dead3s), iff it is in .S, not in F' and has no outgoing transitionsc SAs ¢ FA Al € A,s' € S . (s,1,¢') € T.

Definition 4 (Deadlock Mismatch)An LTS C = (A4, S, I, F,T) presents a deadlock mismatch if there is a state
s in S such thatdeads).

To check if a system composed of several components presesiisatch, its synchronous product is computed
and then Definition 4 is used. Synchronous products and deladletection are common in the Formal Methods
community and hence are supported by tools suctCA®P [21], a toolbox dedicated to the validation and
verification of concurrent systems. However, our deadlogfindtion is slightly different from the one used in these
tools, since it has to distinguish between success (deadioa final state), and failure (deadlock in a non-final
state). Yet, behavioural mismatch detection can be auioaligtcheckedge.g, by CADP, up to the adding within
component interfaces of loop transitions over final staabglled with a specific label (we usecept).

Example 2:In the synchronous product of tiROOM and thePDA components (Fig. 4), a deadlock stgt&3),
is reached after three successful interactions as this @jdtas no output transitions and (ii) is not final. The latte
(i), is caused by the fact that the corresponding statehérROOM (state3) and PDA (state3) components are
not final, while both should be fof3,3) to be final. The former, (i), is caused by the name mismatciwvéot,

respectively, thd®DA messagesnpeg and pdf, and theROOM messagesextrequest and videorequest. One
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would also note that thehutdown message irPDA has no counterpart iROOM. Hence there is no possible
sequence of transitions leading to the other potential fitetle in the product,e., state(0,4), corresponding to
state0 of ROOM and state4 of PDA.

A A
(0,0)4 o ;
® ( i )(query?,query!) ( ) (list!,list?) ( )(choice?,choice!) @

Fig. 4. Synchronous product for Example 1 LTSs

IIl. ADAPTATION CONTRACTS

In this section, we present the adaptation contract notdkiat enables one to specify how to work out mismatch
situations. We rely orsynchronous vector®0], which denote communication between several comptsnerere
each event appearing in one vector is executed by one compane the overall result corresponds to a synchroni-
sation between all the involved components. A vector magliesrany number of components and does not require
interactions to occur on the same names of events. Vectard&scribe expressive communication patterns, which
is especially useful to express n-ary interactions.

Definition 5 (Mector): A synchronous vectdor vectorfor short) for a set of component§ = (4,, S;, I;, F;, T;),
i€ {l,...,n}, is atuplefe,...,e,) with e; € 4, U {_}, - meaning that a component does not participate in a
synchronisation.

In order to identify unambiguously every communicationtia daptor, prior to the adaptation process, component
event names are prefixed by the component nagg,PDA:query!, or ROOM:query?. Yet, to favour readability,
prefixes are not given in component LTS when they are clean fite context.

Example 3:Let us get back to theMuseum example. We first define vectors for messages that matghs, =
(ROOM:query?,PDA:query!), viis = (ROOM:list!,PDA:list?), and Venoice = (ROOM:choice?,PDA:choice!).
Further, we have seen that mismatch came first from the wigaitizdshutdown reception. This would be solved by
a specific vectory.,q = (ROOM:_,PDA:shutdown!), to specify that the adaptor should not transmitghatdown
message to thROOM server. Moreover, mismatch also came from the text/videmiceh(usingtextrequest or
videorequest) which is not done byPDA, that waits for one resource to be sent, either withgtiEor the mpeg
message. A possible solution would require to express kieavideo (resp. text) choice is performed by the adap-
tation itself using vectors, 04 = (ROOM:videorequest?,PDA:_) andViyode = (ROOM:textrequest?,PDA..).
Moreover we would like to specify a correspondence betwbervideo sendingvideo in ROOM) and the mpeg
file reception (peg in PDA), and a correspondence between the text sendax in ROOM) and the pdf file
reception pdf in PDA). The corresponding vectors would bg,.; = (ROOM:video!,PDA:mpeg?) and Vige; =
(ROOM:text!,PDA:pdf?).

Vectors express correspondences between messages,nidiads between ports, or connectors, in architectural

descriptions [22]. Yet, vectors alone are not sufficienteéof@rm adaptation as one must take into account also the
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context in which messages are exchanged,the component protocols. Suppose we have a véctara!, c, : b?).
Directly sending in an adaptor the messdigto c, when messaga is received fromc; may lead the system to

a deadlock state if this interaction is incorrect. This isywhore complex adaptation algorithms, such as the ones
we define in this article are required. Moreover, vectors raok sufficient to support more advanced adaptation
scenarios such as contextual rules, choice between vemtorsore generally, orderingge(g, when one message

in some component corresponds to several in another componkich requires to apply several vectors). The
ordering in which vectors have to be applied can be specifs@yudifferent notations such as regular expressions,
LTSs, or (Hierarchical) Message Sequence Charts. Due tordalability and user-friendliness, we chose to specify
adaptation contracts usingector LTSsthat is, LTSs whose labels are vectors. In addition, vect@s facilitate

the development of adaptation algorithms since they peoaid explicit description of the contract behaviours set
of states, which makes their traversal easier. Other moisitisuch as the ones mentioned above, can be used to
specify the adaptation contract, provided that they canrdestated into vector LTSs. To this purpose, one can
rely on existing behavioural model synthesis techniqueb s1s those presented in [23] for regular expressions, or
in [24] for Message Sequence Charts.

Definition 6 (Vector LTS)A vector LTSfor a set of vectord” is an LTS(V, S, I, F, T) where labels are vectors.

Definition 7 (Adaptation Contract)An adaptation contractfor a set of component§’; = (4, 5;, I;, F;, T;),
i€{1,.,n}, is a couple(V, L) whereV is a set of vectors for components, and L is a vector LTS forV.

If only message name correspondences are necessary tormsisivetch between components, the vector LTS
may leave the vector application order unconstrained uais@gle state and all vector transitions looping on it.
In particular, this pattern may be used on specific parts efdbntract for which the designer does not want to
impose any ordering.

The design of the adaptation contracts is the only step optatlan which is not handled automatically by
our approach. Yet, this step is essential because an inatéegantract could induce the generation of an adaptor
that would ensure deadlock freedom at the cost of too mamyantion removals, including ones expected by the
designer. Solutions and on-going work relative to contdedign are discussed in Section VIII.

Example 4:Using the vectors given in Example 3, one could express rdifteadaptation contracts (Fig. 5).
A simple example is contract 1. This contract is limited toled exchange as it does not use vectors for text
exchange \(imode andviget). But for this, the contract is very permissive. It enabley application ordering of
name mismatch resolution using the vectors, including wi@wideo is ever exchangedd, vectorsv, 4. and
Vyeet May never be applied). One could have either text or videaxbhasged with contract 2. Here, at esRDA
request the adaptor will non-deterministically be able hoase between text and video. One could also enforce
a very strict adaptation contract, with contract 3, whesau® and video information are alternatively used. Note
that the use of such highly constrained contracts, apptietiaptation without reordering, is not very interesting as
giving such a contract is often close to giving the solutiwhjle using more permissive contracts and adaptation
with reordering demonstrates the full power of our automha@gaptation process. Other contracts will be presented

in the sequel, together with the different algorithms thperate on them to produce the corresponding adaptor
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protocaols.

vend, vquery, vlist,
vchoice,vvmode, vvget
(a) contract 1 vector LTS

vchoice

vquery

vtmode

vimode vchoice

(b) contract 2 vector LTS

(c) contract 3 vector LTS

Fig. 5. Adaptation contracts f@Museum, version 1

An adaptor is given by an LTS which, put into a non-deadladgefsystem yields a deadlock-free one. All the
exchanged messages will pass through the adaptor, whicheaeen as a coordinator for the components to be
adapted. This can be formalised as follows.

Definition 8 (Adaptation algorithm correctnessiiven n componentsC;, i € {1,...,n} and a contract, the
adaptation algorithm builds an adaptéd such that there is no deadlock state in the systeif(Ci||...||Cn).

In the sequel, we present two different correct algorithorstfie generation of adaptor protocols.

IV. ADAPTATION WITHOUT REORDERING

In this section, we present a first adaptation algorithmebtam synchronous products. More precisely, we rely
on an extension of the synchronous product, Def. 2, thastake account the correspondences of events described
in the vectors, but also their ordering in the vector LTS. Stmuently, the vector LTS is used as a guide to build
the resulting product.

Definition 9 (Synchronous Vector Product (with vector LTS)he synchronous vector product (with vector LTS)
of n LTS C; = (A;,S;,L;, F;,T;), i € {1,..,n} with a vector LTSL = (A,S, I, Fr,T1), is the LTS
I, ((Cy,...,Cn), L) = (A,S,I,F,T) such that:

e A=A x A U{}x..xA,U{},S=8LxS1x...xSp, I =, I1,...., 1), F=Fp X F} X ... X Fy,

and
« T contains a transitioQ(sz., s1, .. ., Sn), (ar,a1,...,an), (s,81,...,s,)) iff there is a statész,, s1,. .., s,)
in S, there is a transitiofisy, (l1,...,1,),sy) in Ty, and for everyi in {1,...,n}:

— if [; = _thens, = s; anda; = _,

— otherwise there is a transitiq®s;, a;, s;) with a; = I; in T;.
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Algorithm 1 build_adaptornoreordo
constructs an adaptor without reordering for a set of congus given an adaptation contract

inputs component<’, ..., C, with eachC; = (A;, S;, I;, F;, T;), and an adaptation contra@t, L)
output adaptorAd = (A, S, I, F,T)

1 P =T,((Cy,...,Cn), L) I/ product with vector LTS,

2: P =proj(Pr) /I discarding vector LTS elements in the result
3. Prestr := removedeadlockéP) I/l removing paths leading to deadlocks
4: Spqq =0

5 Tag:=10

6: forall t =(s=(s1,...,8n),(l1,---,1n),s =(s),...,5,))in Tp,_,. do

70 Lpee ={171U e (ly,...,0l0)} /I mirroring: emissions to receptions
8  Lem ={Ul|17€ (l,...,1n)} /I mirroring: receptions to emissions
9:  Seq,,. = compute_permutations(Lyec) /I permutations between receptions
10:  Seq,,, = compute_permutations(Lem ) /I permutations between emissions
11:  forall (R=(r1,...,7:),E =(e1,...,€p)) € Seqyec X Seqq,, dO

12: Tag:=TaaU{s B g o1 2 v @it 2 Gigas e Gt 2 8"}

13: Sadd = Sadd U{q1,-. -, qn-1}

14: end for

15: end for

16: return Ad = (APx'estr ) SPrestr U Sadd’ IPrestr ? FPx'estr ) TAd)

As with Def. 2, states in the product correspond to sets déstaf the components, but take also into account
the vector LTS. For example, a stdt®, s1, . .., s,) denotes that each componéiitis in its states; and that the
vector LTS is insg. Initially all components and the vector LTS are in theirtiadi state {.e., I; for eachC; and
I;, for the vector LTS), which means that the initial state of gveduct is(Iy, I1, ..., I,). The computation of
the transitions is also slightly different from Def. 2. Thés an outgoing transition from a state,, s1, . . ., s,) iff
there is a transition labelled by a vectdy, . . ., l,) outgoing from state, in the vector LTS and, as a consequence,
if for every component; there is a transition outgoing from and labelled withl; in the C; LTS. A commented
example of synchronous vector product computation is gimeBxample 5, Figure 8.

To generate an adaptor protocol from a synchronous veabolugt we have to discard the first element of the prod-
uct components to keep only the elements correspondingtodmponent exchanges. More formally, it means that
froman LTSP, = . ((Cy,...,Cy), L) = (A4, S,I, F,T) we compute the LTS = proj(Pr) = (A, 8", I', F',T")
such thatvX € {A,S,I,F} X' = {cdr(z) | z € X} andT’ = {(cdr(s),cdr(l),cdr(s’)) | (s,I,s") € T} with

cdr((zo, 1, .-, Zn)) = (T1,...,Tyn).
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Our algorithm (Alg. 1) takes as input a set of component LTS$sand an adaptation contra¢V, L). This
algorithm is based on three main steps: (i) computation efsynchronous vector product taking the vector LTS
L into account, and discarding in the result the vector LTSnelets (Alg. 1:1-2), (ii) removal of interaction
sequences (paths) leading to deadlock (funatemnovedeadlocksAlg. 1:3), and (iii) for each transition (Alg. 1:6—
15), reversal of the directions for all events appearindatector on the transition, called mirroring (Alg. 1:7-8),
and computation of all possible interleavings (functimmputepermutation¥starting with receptions (Alg. 1:9-14).

Removing deadlock paths is required to suppress spurioersotions that would not leave the system in a stable
(final) state, as shown in Example 5 below. This is achievedrsively removing transitions and states yielding
deadlocks: find a statesuch thatleads), removes and any transition with targets, and do this until there is no
more suchs in the LTS. Mirroring ensures that the adaptor and the coraptencan perfectly communicate using
the same event message names with opposite directions (%/?) oMoreover, event interleaving is essential when
vectors involve more than two events in a communicatmg.(in case of broadcast or multicast communication).
Interleavings make the adaptor support non-determimsinthe orderings in which events will occur, hence accept
any possible one.

Note that Algorithm 1 builds an adaptor protocol by applyoe vector after the other, that is, all interactions
involved in one vector occur before starting the interawtiof another vector. Consequently, events belonging to
two vectors appearing as labels in the synchronous prodectever interleaved. Such an interleaving is mandatory
when events need to be reordered. This additional featdrdevsupported by the algorithm presented in Section V.
The complexity of Algorithm 1 lies on the synchronous veqtosduct computation, and 9(|S|"*!) whereS is
the largest set of states for all component (and vector) @RS + 1 stands for the: components plus the vector

LTS. The proof of correctness of Algorithm 1 can be found inpapdix 1.

Example 5:Let us now present a second versiorebfuseum. A new version of thdcROOM component supports
an additional feature: once a video has been sent, it can-bente(upon reception of thegain message) to be
played again. Thejuit message is then used to t&IOOM one is done with the selected video. TROOM
designer has also refactored this component. The namesrad sperations (namelguery and choice) and, as
a consequence, of the corresponding messages, have begedhA new version of th®DA component is also
used. It now supports to be integrated in contexts wherdsigan be different depending on two modes: a guest
mode (with less rights) and a user mode (with more rigfR®A can sendogin (respectivelylogout) messages
to go from guest to user mode (respectively from user to gmeste). The new interfaces of the two components
are given in Figure 6 (changes are in bold).

As far as the adaptation contract is concerned, one doestamtfeom scratch. The vectors we had before
are reused, replacing old messages by new ones where we bav@ame mismatch (in bold font).,q =
(ROOM:_,PDA:shutdown!), Vymede = (ROOM:videorequest?,PDA:_), Vyzer = (ROOM:video!,PDA:mpeg?),
Vimode = (ROOM:textrequest?,PDA:_), Vige, = (ROOM:text!,PDA:pdf?), Vyuery = (ROOM:access?,PDA:que-
ryl), viise = (ROOM:list!, PDA:list?), andvpoice = (ROOM:selection?,PDA:choice!).
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queryl /7 list?
N

video! videorequest?

choice!

2. pdf?
again? ’ (peg?, pdf:
login!,

logout!
(@) ROOM LTS (b) PDA LTS

Fig. 6. eMuseum, version 2

We also add vectors for unspecified receptions of messagédpehe PDA for changing mode, aROOM has
not been builtwrt. such modesv,ser = (ROOM:_,PDA:login!) and Vguest = (ROOM:_,PDA:logout!). The
support for changing mode, and more generally contextsheilachieved using the vector LTS, below. Finally, we
add vectors corresponding to the new featurdcRGBfOM (re-sending videoSN again = (ROOM:again?,PDA:_)
andvquit = (ROOM:quit?,PDA:_). The adaptor will be in charge of sending them when requissdfor the
video and text requests. Note that if we had used a singl@ev&ROOM:quit?,PDA:shutdown!) in place of g
and V,g.in, We would have enforced th&®0OOM and PDA exchange information exactly once (forbidding DA

to shut down directly and to ask several times information).

SELECT SELECT
. —vuser . SELECT: vquery, viist, vchoice
GUEST USER TEXT: vtmode, vtget
VIDEO: vvmode, vvget, vagain, vquit
W
i (U (L
TEXT VIDEO

Fig. 7. Adaptation contract foeMuseum, version 2

By using a vector LTS (Fig. 7), we will enforce the followingrtstraints:

« there are two mode§&UEST andUSER. In the eMuseum application, we take benefit of these two modes
as follows. INGUEST mode the sent information is text. IWISER mode, the sent information is video. This
demonstrates how an adaptation contract can be used tocerdonstraints which are defined system-wide,
not at the level of individual components;

« the two modes alternate (starting@UEST mode), with going from one to another using thgin andlogout
messages;

« we know that communication is based on two phases, selemtidrgetting information, yet we keep an abstract

description level for these. Non-determinism may be kegiténcontracte.g, in USER mode, between different
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possible application orderings Of\éry, Viist: Vehoices Vvmodes Vvgets Vagain, @Nd Wquit t0 let the adaptation
process decide which one — if any — is correct (see the canelipg adaptor, Fig. 9). For this, the adaptation
process uses the orderings which are defined in the companerfaces.

In order to generate the adaptor protocol, we first computesynchronous vector product (Fig. 8) of the
ROOM LTS (Fig. 6(a)) and théDA LTS (Fig. 6(b)) with the vector LTS (Fig. 7). To understandahthis works,
let us take for example the computation of the transitiongaing from the product initial state. This initial state,
(0,0,GUEST), corresponds to the composition of the components’ ancbvedtTS initial states. Different sets of
transitions are possible in the three LTSs used in the ptoduc

« access? in ROOM,;

« shutdown!, login!, logout!, andquery! in PDA,

e VECOrsVe,q ((ROOM:., PDA:shutdown!)), Vyser ((ROOM:_, PDA:login!)), Vquery ((ROOM:access?, PDA:
query!)), viist ((ROOM:list!, PDA:liSt?)), Vehoice ((ROOM:selection?, PDA:choice!)), Vimode ((ROOM:text-
request?, PDA:_)), andVig; ((ROOM:text!, PDA:pdf?)) in the vector LTS.

Therefore, there are only three possible transitions onggivom the product initial state (corresponding to thetfirs
three vectors above):

o { (ROOM:_,PDA:shutdown!), ROOM:_, PDA:shutdown! ), going to statg0,4,0);

« ( (ROOM:_,PDA:login!), ROOM:_, PDA:login! ), going to statg0,0,USER);

o { (ROOM:access?,PDA:query!), ROOM:access?, PDA:query! ), going to statg1,1, GUEST).

The other possibilities are forbidden, either because ongonent corresponding to a message in a possible vector
is not ready for it é.g, ROOM cannot receivaextrequest in its initial state,0) or because components may be
ready for some message but the contract forbids.g.(PDA may sendogout but vectorvg,es: is not enabled in

the initial state of the vector LT0,0,GUEST)). We may proceed similarily, step by step, computing fomegke

now the transitions outgoing from tl§@,4,0), (0,0,USER), and(1,1,GUEST) states. The result is given in Figure 8
where the part of the labels corresponding to the vectorglismarded due to place matteise( wrt. Alg. 1, we

give P in place of Pp).

O (ROOM:textrequest?,PDA: ) R

(ROOM:selection?,PDA:choice!)
(ROOM:list!,PDAIlist?) /),  (ROOM:access?,PDA:query!) (0.0,GUEST)

(ROOM:text!, PDA:pdf?) @(0 40)

(ROOM:_,PDA:shutdown!)

1,1,GUEST )
( ) (ROOM:_,PDA:logout!) (ROOM:_,PDA:login!)
(ROOM:list!,PDAlist?)  /~ \ . (ROOM:access?,PDA:query!) 0.0,USER)
< < N
(ROOM:selection?,PDA:choice!) (ROOM:quit?,PDA:_) .
O(ROOM:videorequest?,PDA:_) ./~ \ROOM:video!,PDA:mpeg?) (ROOM:again?,PDA: )

Fig. 8. Product LTS foeMuseum, version 2
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One may note a path leading to a deadlock state on this examfits ROOM and PDA have successfully
exchanged a first video, the adaptor may hBX2OM send it again using thagain message. HoweveROOM
would then send theideo message which would block the systenP43A is not ready to receive the corresponding
mpeg message. Indeed this could have been prevented by remoetigrv,..i» from the adaptation contract.
Yet, as one cannot ensure the perfect contract is always givehows the need for the suppression of spurious

interactions after the product is computed.

ROOM:textrequest! /O ROOM:text?
ROOM:selection! u PDA:pdf!
PDA:shutdown?
-choice? PDA:list! OOM:list? _ROOM:access! __PDA:query?
PDA:choice \_04___05 O‘ O+« PEPS

PDA:logout? PDA:login?

PDAlistt_~ROOM:list? /~ \ ROOM:access! ~ . PDA:query?
PDA:choice? < O+ A A
ROOM:quit!
video? )
ROOM:selection! O ROOM:videorequest! s ROOM:video? _ ppA:mpeg!

Fig. 9. Adaptor protocol foeMuseum, version 2

We finally compute the adaptor by mirroring the labels and moting permutations of inputs and then outputs
for it, see Figure 9. In this adaptor protocol, we see thatabielural mismatch (one-to-zerag., unanticipated
reception, such ashutdown, one-to-one such aguery vsaccess, many-to-one such asdeorequest andvideo
vs mpeg) have been worked out. The adaptor follows a coordinatiariogol which is restricted to the contract
and modes we specifie@.(, text is sent to guests and video to users). Finally, the taddyas also removed all

possible interaction sequences leading to deadlocks fasrtgrated above with video re-sending).

V. ADAPTATION WITH REORDERING

Let us now extend the domain of mismatch problems we deal Witlhr goal is now also to address behavioural
mismatch which requires reordering. This occurs when exgbd messages present non-compatible orderings in the
components’ protocols. To support this kind of mismatchk, ddaptation process may try to accommodate protocols
by reordering events in-between the components. The balvaliadaptation proposal presented in Section IV may
yield an empty adaptor in presence of such mismatch bectirsguices application of one vector after the other,
and therefore prevents the application of several vectbtheasame time that is necessary to make reordering
effective.

To this purpose, we present a second approach which comptertie one presented in Section IV. Messages
received by the adaptor are seenrasourceswhich are memorised until they need to be sarg.(until they
may be received by some component to make it evolve). Thisbeaachieved first thanks to @ancodingof the

component protocols and of the adaptation contract intarmdtsm that supports memoryand aresource-based
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vision of adaptationas follows: (i) reception of messages (by the adaptor)espwnds to a resource creation,
(i) emission of messages (by the adaptor) is possible gealisome resource is available and corresponds to
resource consumption, and finally, (iii) vectors corresptmresource transfer. Petri nets [25] are such a formalism,
which further benefits from good tool support. Moreover, ti@rking graph of such a Petri net encoding represents
all possible resource-based evolutions of the adaptorqagesreception, emission and transfer).

Before presenting our algorithm for adaptation with reoirtgin more details, let us introduce first the basics of
Petri nets. A Petri net consists of places, transitions aretiéd arcs between places and transitions. A transition
is connected by input arcs to a set of input places, and byubatgs to a set of output places. Places may contain
any number of tokens that model resources. Transitionsrattikens by a process known fagng. A transition can
be fired if there are enough tokens in each of its input plad#een a transition fires, it consumes one token from
each of its input places, and adds a token into each of itsubpipces. The presentation of Petri nets is simplified
here for conciseness purposes &g, generalised Petri nets support arcs labelled with naturadbers to denote
the need of more than one token in an input place and the ptioduzf more than one token in an output place.
A distribution of tokens over the places of a net is calleshaking A marking graphdescribes all the markings

that can be reached from an initial marking by firing traosif.

Algorithm 2 takes as input a set of component LT&sand an adaptation contract, and generates the corresjgondin
Petri net encoding. As regards component interface engofftig. 10, Alg. 2:2—12), every event emission or
reception in a component is translated into a Petri net itiandholding the same name as the event but the reversed
direction. This transition is connected to specific plates are used to store, using tokens, messages corresponding
to the events. For each event emission! in a component interface (Fig. 10(a)), there is a transition for reception
in the Petri net{:a?) and this transition has an output arc to the place where dhesponding message is stored
(?7c: a). Conversely, for each event receptiona? in a component interface (Fig. 10(b)), there is a transition
for emission in the Petri netc{ a!) and this transition has an input arc from the place wherectireesponding
message has been storéd:(a). The control flow between events in component interfacexgessed in the Petri
net by control places and related arcs connecting the diffdPetri net transitions. Moreover, tokens are placed in
the control places encoding the initial states of the LT®rfaces (Alg. 2:4), and their evolution will simulate the

execution of the entire system.

c:al cal

c:a? c.a?

: O c:a? @ :
cs cs' cs -
L~ L~

N . R

' 1272¢: ! } ?2c: '
! V?7ca ‘\.', c:a ‘.'
VYeo

cs

.

(a) Message emission in components / reception in adaptor (b) Message reception in components / emission in adaptor

Fig. 10. Encoding patterns for component protocols (anatedl marking evolution semantics)

As far as the contract encoding is concerned (Alg. 2:13-&4xy synchronous vector is encoded usirigua[18]
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Algorithm 2 build_PetriNet
constructs a Petri net encoding from component interfaces @an adaptation contract

inputs componentsCi,...,C, with each C; = (A4,,5; 1;, F;,T;), and an adaptation contra¢l/,L =
(Ar,Sp, I, Fr,,T1))
output Petri net\/
1: N := emptyPetriNe{) /I all the following actions operate o
2. forall C; = (A;, S, 1;, F;,T;) ,i € {1,...,n} do
3 forall s; €.S; do add a place:; :s; endfor
4: put a token in place;: I; Il I; is the initial state ofC;
5. forall a! € A; do add a plac€?c;:a endfor
6: forall a7 € A; do add a placé!c;:a endfor

7. forall (s,e,s') € T; withl =e do

8: add a transition with label, an arc from place; : s to the transition and an arc from the transition to
placec;:s’

9: if [ has the formu! then add an arc from the transition to platéc; : « endif

10: if [ has the formu? then add an arc from placéc; : a to the transitiorendif

11:  end for

12: end for

13: for all sy, € Sp, do add a place:, : sy, endfor

14: put a token in placey : Iy, Il I, is the initial state ofL

15: for all t;, = (s, {e1,...,en),sy) € T with Vi € {1,...,n} l; = ¢; do

16: add a transition with labdhu, an arc from place : sy to the transition and an arc from the transition to
placecy, : s,

17:  for all I; do

18: if ; has the formu! then add an arc from plac@?c; :a to the transitionendif
19: if ; has the formu? then add an arc from the transition to plate; :a endif
20: end for

21: end for

22: for all (f, f1,...,fn) € FL x F1 x...x F, do
23: add a (loop)accept transition with arcs from and to each of the tuple elements
24: end for

25: return N

transition (Fig. 11, Alg. 2:16-20) as it represents an imiéaction of the adaptor. Arcs are added (Alg. 2:16) to

connect thesé¢au transitions in order to enforce their application orderinghe vector LTS. Message transfer is
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Algorithm 3 build_adaptorreordo
constructs an adaptor with reordering for a set of compoagjiten an adaptation contract

inputs component<’, ..., C, with eachC; = (A;, S;, I;, F;, T;), and an adaptation contra@t, L)

output adaptorAd = (A, S, I, F,T)
1: N := build_PetriNet{{C,...,C,},(V, L)) /I see Algorithm 2
2. M := getmarkinggraph(\)
3: Ad :=reductior{removedeadlocksM))

4: return Ad

enabled using input/output arcs that connetdwatransition to the places related to the component eventdvied

in the corresponding vector (Alg. 2:17-20).

- Lo

.

N
' ' s
n_Juezb \!,‘1!:2:13

au tau au
CL:sL CLsL CL:sL CLsL
-~ iy R g

' ) U \ ' ) ' 1

‘ [y ! N v 1

~..’??cla ~<-’lic3ic s..’??2cla ~o.’le3c

<cl:al, c2:b?, c3:c? >

Fig. 11. Encoding pattern for adaptation contracts (anatedl marking evolution semantics)

We will illustrate further in this section (Ex. 6) this endnd into Petri nets on theMuseum application.

Algorithm 3 generates an adaptor protocol from a set of component KI;Sand an adaptation contract. This
algorithm respectively (i) builds a Petri net encoding fasthh component LTSs and the contract (Alg. 3:1),
(i) generates the marking graph for this Petri net whichtams all the possible evolutions of the adaptor
wrt. the component LTSs it is in charge of (Alg. 3:2), and (iii) @es remaining deadlocksefnovedeadlock}
which correspond to spurious interactions, &aal transitions eductior) introduced during the Petri net generation
(Alg. 3:3).

The reductionfunction is used to simplify the adaptor protocols. At théwdl, several behavioural reductions
modulo an equivalence relation can be applied{tau*.a, observational, branching). In our experimens,used
in particular a combination of branching and weak trace cédos that enable (i) to eliminate&u transitions
introduced for message transfer in the encoding of vectesRetri nets (which are meaningless at the level of the
adaptor) while preserving the deadlock freedom propeiijytq cut similar paths (traces), and (iii) to determinize
the adaptor protocols using a classical automata theooyritign.

The theoretical complexity of this algorithm lies mainly timle marking graph construction, which is exponen-
tial [26]. In practice, it is less expensive as parts of theare 1-bounded (there is only one token in only one of

the places corresponding to the component interface xtdtlesemphasise that the adaptation techniques presented
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in this section work also for adaptation without reorderikigwever, since the computational complexity of these
techniques is greater than those presented in the formgorsethey are privileged only if reordering is needed.

The proof of correctness of Algorithm 3 can be found in Apprnt

Example 6:Let us now describe the last version of taBluseum application. A third component, a generic
pay-per-view subscription serve3lUB, is used to manage subscription modes (guest mode for fesaand user
mode for paying access) and related access identifiers. thgmaption of a registration messagpi¢stmode or
usermode), it returns an access identifiauderid message). In case of user registration, reception of thmeay
information payinfo message) is required before sending the identifier. Moreossing debit, the user shopping
cart can be updated (with an access authorization sent lzatktene) before &ill is finally sent (the user account
being debited at the same time). There are also changes irvexsions of the other two components which are
reused. ROOM needs an identifierid) to be given before information sending in order to updateafile. The
access tdROOM is controlled by a signal detecting the entgnter) and the leavingléave) of the room.PDA
sends payment informatioreredentials) before logging in and waiting for an acknowledgemeiukét). Finally,

after logging outPDA waits for aninvoice of the services it acceded to.

textrequest?

/" selection?
/

videorequest?

(a) ROOM LTS

guestmode? usermode?

userid!

userid!
auth! debit?

(c) SUB LTS

Fig. 12. eMuseum, version 3

The new corresponding LTSs are given in Figure 12 (change@abold). One may note that:

« PDA does not deal with identifiers when doing requests, wRi@OM needs themid?);
« ROOM knows nothing about guest and user modes;

« reordering is required, first becauB®A and ROOM do not support requests in the same wWARA sends a
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query before waiting a list of items and selecting one, wR@OM presents its list of items and waits for one
to be selected before waiting for either a text or a video estjuMoreoverPDA and SUB do not treat the
logging in protocol in the same way, the order of the paymefdrmation and login request being different
in both components.
To work this out, vectors are first defined (differences wita previous example are in bold font). There are two
new vectors for the entering and leaving of the system (¢iigd by the adaptor), while the one DA shutdown
is reused. In the first case, entering also triggers the guede (initial mode).
Venter= (ROOM:enter?,PDA:_,SUB:guestmode?), Vieave= (ROOM:leave?,PDA:_,SUB:_), and
Vend = (ROOM:_,PDA:shutdown!,SUB:_).
Vectors for lists and choices are also reused:
Vit = (ROOM:list!,PDA:list?,SUB:_) and v peice = (ROOM:selection?,PDA:choice!,SUB:_).
Vectors for entering text (resp. video) mode and for texs§revideo) exchange are reused but for two differences:
(i) query in PDA now corresponds to requestsR®OM, and (ii) SUB should be informed about each video being
sent:
Vimode = (ROOM:textrequest?,PDA:query!,SUB:), Vit = (ROOM:text!,PDA:pdf?,SUB:_),
Vymode = (ROOM:videorequest?,PDA:query!,SUB:debit?), vyz. = (ROOM:video!,PDA:mpeg?,SUB:auth!),
and
Vquit = (ROOM:quit?,PDA:_,SUB:_).
Vectors for changing mode are reused and modified to sufgidB:
Vuser = (ROOM:_,PDA:login!,SUB:usermode?) andvgy,es, = (ROOM:_,PDA:logout!,SUB:guestmode?).
Vectors that support the additional payment relations betiPDA and SUB are added:
Vinfo= (ROOM:_PDA:credentials!,SUB:payinfo?), vpin= (ROOM:_,PDA:invoice?,SUB:bill!), and
Vexit= (ROOM:_,PDA:_,SUB:exit?).
Identifier exchange is finally specified with three vectoregdor guest mode, one for user mode and one for
re-sending):
Vgia= (ROOM:id?,PDA:_,SUB:userid!), v ia= (ROOM:id?,PDA:ticket?,SUB:userid!), and
Vyeia= (ROOM:id?,PDA:_,SUB:_).
Vector Vygain IS left over, suppressing the possibility for video re-sagd
As for the previous example, we may now use a vector LTS toifypieir possible orderings. We propose two
different contracts: one supporting only t8&JEST mode (Fig. 13(a)) and one supporting both modes (Fig. 13(b))
The contract for theGUEST mode (Fig. 13(a)) focuses on what happens between one artdrene leaves
the room. Moreover, it specifies that once the identifier hasnbfirst exchanged, the identifier is re-sent by the
adapter (vector y;q) only if a new query happens (vectof.Voqe)- But for these two constraints, the contract
is not restrictive and does not specify any particular drdeof vectors. The adaptation process will therefore
find all possible ones such that the adapted system does adlod&. The contract for the full mode (Fig. 13(b))

adds a part relative to thdSER mode. One may note that it is symmetric to B&JEST mode contract but for
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._-y INIT

venter SelectT, vtmode

vtmode

vquit
SelectV q

vuser Y
GUEST 1st

vgid

USER 1st

.—y INIT

venter SelectT, vtmode

4
GUEST 1st
vieave

vieave

vieave

vleave

SelectT

SelectV

vgid

USER xth

GUEST xth

vexit
vieave

SelectT

vreid vtmode

GUEST xth

vreid vimode

Select = vlist, vchoice, vend
SelectT = Select, vtget
SelectT = Select, vtget SelectV = Select, vvget, vinfo

Select = vlist, vchoice, vend

(a) GUEST mode vector LTS (b) full mode vector LTS

Fig. 13. Adaptation contracts f@Museum, version 3

some differences. We must first take into accountghié message emission by the adaptor (vectqyy) to avoid
blocking once a video has been exchanged. This is put intttipeae.g, by adding this vector in the vector LTS

at the end of the ynode l0OpS (twice). Moreover, while passing fro@UEST to USER mode is quite simple
(vector Vyser), leavingUSER mode should also take into account the final payment usintpr&e®,;; and \exit -

This is representative of one-to-many correspondence, eweeriogout in PDA and bothexit andguestmode

in SUB. The obtaining of the full mode contract (and the differebetween thdJSER and theGUEST modes)

has been achieved in several steps, using post-generataptioa assessment (see support for contract design in
Section VIII). In the sequel, we will present our approachtioa first contract due to the complexity of the adaptor
for the full mode.

The Petri net generated for this example is given in FigureTbdhelp the reader, we present separately the
parts of the Petri net which are generated R&OM, PDA, SUB, and the contract. The nets are glued on dashed
places,accept transitions and, for the contract, on vector transitions.

The adaptor for theGUEST mode has 204 states and 404 transitions (494 states and rHt&itibns before
pruning paths to deadlocks). After reduction, the resglfinal adaptor has 52 states and 104 transitions (Fig. 15,
where the initial state is in light gray and the final states iarblack). We emphasize that it is much simpler to
give an adaptation contract and use our automatic adapddoqml generation techniques than writing directly the
protocol by hand.

One may note different things (see the zoom in Fig. 15):
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« hame mismatch is solved,g, choice in PDA vs selection in ROOM,;

o messages are reordered when requiged, PDA sendingquery and then waiting for thdist of possible
information to be displayed, whilROOM sending first thdist and waiting for aselection before waiting for
either atextrequest or videorequest which correspond tguery;

« id is re-sent toROOM when required;

« the contract is permissive e.g. wrt.in which order to apply vectorsii, Vchoices Vimodes Veget @Nd Wend —
and the adaptor contains all possible orderings not leattindeadlocks (yet we only have represented one
possible ordering on the zoom).

The adaptor for the full mode has 1477 states and 3326 tiamsi(2719 states and 6464 transitions before
pruning paths to deadlocks). After reduction, the resglfimal adaptor has 307 states and 627 transitions. Due
to its size, the adaptor is given in Appendix |. Performingifigation on the adapted system (made up of the
components and the adaptor) we have been able to checkGADP that important system-level properties are
enforced through adaptation: (i) no video is sent beforeRBé logs on, and (ii) adebit is performed for each

video being sent.
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VI. THE ADAPTORTOOL

The approach for software adaptation that we have presentéite former sections of this article has been
implemented in a tool, calleddaptor [27]. The kernel ofAdaptor corresponds to the implementation of the
algorithms that generate adaptor protocols being giveraviebral interfaces of components and an adaptation
contract. In addition Adaptor presents graphical interfaces to load and visualise therdiit inputs, to apply
the different adaptation steps, and to visualise the irgeiate encodings and final results. The tool was initially
developed in Python (about 9,000 lines of cdand usesGTK+ technology for the development of the user
interface. More recently, to simplify the access and usehef tbol, a Web service version @daptor (WS-
Adaptor) has been implemented in Java. It enables one to adapt cempprotocols without installing more than
a GUI client (the engine and the required dependencies mgninithe distant Web service host).

Different input and output formats are used to describeaesgely interfaces of components, contracts, and
resulting adaptors. As regards inputs, LTS interfaces maydéscribed usingKML or the Aldebaran textual
format [21] (file extensionaut). Vectors and vector LTSs involved in contracts are spetifisngXML.

Once the inputs are loadefidaptor usesdot [28] (graphviz) to visualise interfaces of componentsgiintediate
results for contracts, Petri nets, and adaptors. Textuahdts are also possible for visualisation, or storing and
analysis purposes, namelgut for LTSs and.net for Petri nets.Adaptor interacts with two other external tools,
namely TINA and CADP. TINA [29] is a tool to design and validate Petri nets. It allows pplg structural and
reachability analysis on Petri nefBINA is used inAdaptor to compute marking graphs from Petri nets encodings.
CADP [21] is a toolbox to verify concurrent systems. It is used amnpute the mismatch test using EXP.OPEN
tool, and to perform reductions of the adaptor LTSs us@G_MIN and Reductor.

The current version ofAdaptor fully supports transactional components. For non-tratimaal ones, avoiding
state explosion when computing marking graphs requirdsniegsages cannot be infinitely generated. This means
first that a component should not send some message infimitelyindependentlyi.e., without having this action
triggered by a message reception or requiring an acknowtedgt). In the same way, the adaptor should not
infinitely and independently generate messages using rgesteh ag_,...,c:m?,_ ...).

Adaptor has been used to generate the adaptor protocols preserited article but it has been validated and
applied to many other examples as well (approximately 70ng@s which correspond to 25,000 lines XML
specification) such as a Video-On-Demand service, a peevasisic player, a library lending system, and several
simpler client/server systems. More details are availabléhe Adaptor Web page [27].

We show in Figure 16 three screenshotsAofaptor to give a flavour of what the tool looks like, here applied
to eMuseum. The Adaptor GUI is made up of three different windows: the left-hand sidadow contains the
already loaded component interfaces and contracts, themand side window is used to visualise all the elements
involved in the adaptation process (interfaces, contyd®tsri nets, adaptors) under different formats (graphical

textual, XML), and the bottom window is the console window. The first stsbet in Figure 16 shows theUB

Lapprox. 5,000 lines of code correspond to the encoding ofittaptation techniques, and approx. 4,000 lines to the nganfdce.
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Fig. 16. Screenshots of th&daptor tool — eMuseum, version 3

component LTS. The second screenshot is a textual deseripfithe contract we have presented in Example 6.

Finally, the last one shows a piece of the adaptor during tlatation process (before reduction).

VII. RELATED WORK

Software composition and adaptation is currently a hotctapi Software Engineering research. A quick look
over the Web will easily produce a great number of works —immdrom deep theoretical worke@.,[30], which
uses category theory for signature adaptationsuiperposition or name morphisms) to more practical proposals
(e.0.,[31] for Web Services). Furthermore, an increasing numlfesvents are specifically focused on adaptation,
or have it as one of their main topics.g.,the WCAT series of workshops [32], starting in 2004).

The issues related with software component integratiore Hmen a classical field of study in Software Engi-
neering, and component mismatch has been described aedéwbls of interoperability. A taxonomy of interface
mismatches appears in [2], classifying them itechnicalmismatch, coming from the use of different operating
systems, platforms and frameworkdgnature mismatch, related with different names of methods and eesyi
parameter and exception types, and parameter ordepiogpcol or behaviouralmismatch, caused by different
message ordering, and absence or surplus of messqagaiy of servicemismatch, linked to different assumptions
on properties like security, persistency, reliability dficency; and finally,conceptualor semanticmismatch,
coming from the use of homonyms, synonyms for describingsttreices provided, or the existence of sub- and
super-ordination relations between services.

Although some practical issues related with technicalrogerability between different platforms still remain,
we consider that these are not demanding a significant dsedfort. Accordingly, the research in the field has
recently begun to explore the rest of sources of mismatchioreed above. In particular, in this work the focus on
both the signature and behavioural levels, where the userofdl notations based on logic formulas, Petri nets,
process algebras, state machines, and many others haveptmeated for enhancing software interfaces with a

behavioural description (see [33] for an early instance)e Of the first proposals for defining behavioural mismatch
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from a formal point of view can be found in [8], where procekgehra is used for specifying and reasoning about
software composition. The work is continued in [34], wherenaans of characterizing connector wrappers as
protocol transformations, and reasoning about their ptegseis presented. A similar approach is presented in [13],
where compatibility and substitutability is defined in thentext of CORBA, as a first attempt to put these ideas

into industrial practice.

However, once behavioural mismatch is detected, the isthevoto adapt component protocols in order to solve
it arises. Many of the approaches found in the literaturekvedrthe implementation level, some of them [35]-[37],
related with existing programming languages and platforsnsh as BPEL or SCA components, and suggesting
manual or at most semi-automated techniques for solvingubetiral mismatch. For instance, [35] describes a
model-based approach to verifying Web service compostiorluding the verification of properties created from
design specifications and implementation models to confixpeeted results. However, once a violation of the
properties is detected, it should be manually correctettieeiin the implementation of the components or in
the specification models, as part of an iterative developrpercess. Also in the context of Web services and
BPEL, [36] outlines a methodology for the generation of dadep capable of solving behavioural mismatches
between BPEL processes. In their adaptation methodolbgyatithors use an intermediate workflow language for
describing component behavioural interfaces, and theyaeckeanalysis techniques to detect behavioural mismatch.
Similarly, [37] provides automated support for the idenéfion of protocol-level mismatches, but is able to gererat
an adaptor only in the absence of deadlock. If deadlock misg drom the combination of the components, the
authors propose a way to handle the situation by generatirgpgor all mismatches that result in a deadlock, and
suggesting some hints for assisting the designer in the atamplementation of the actual adaptor.

Current approaches aiming to provide a fully automatedtsoiuo this problem are comparatively fewer, and
can be divided intaestrictive generative andad hoc[4]. Restrictive approaches [38]-[42] simply try to solve
the problem by cutting off the behaviour that may lead to naitrh, thus restricting the functionality of the
components involved. On the contrary, generative appexstke [9], [43], [44] try to accommodate the protocols
without restricting the behaviour of the components, byegating adaptors that act as mediators, remembering and
reordering events and data when necessary. Firadlyjocapproaches (see for instance [45]-[47]), do not address
the adaptation from a general, automatable point of view,prapose specific practical solutions for particular
situations instead.

The foundation for automatic behavioural adaptation wasg&ellin and Strom (YS). In their seminal article [9],
they introduced formally the notion afdaptoras a software entity capable of enabling the interoperaifamvo
components with mismatching behaviour. They used finitée staachines to specify component interaction, to
define a relation of compatibility, and to address the tasksefmi-)automatic adaptor construction following the
generative approach mentioned above.

More recently, Schmidt and Reussner (SR) presented a plartiadaptation approach as a solution to synchro-
nisation problems between concurrent components [45].prbposal addresses for instance situations where one

component is accessed simultaneously by two other comp&riEme approach is based on algorithms close to the
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synchronous products we use in this article. Moreover, ttagysolve protocol incompatibilities enabling one of the

involved components to perform several communicatioroastbefore or after synchronising with its partners. These
ideas are implemented in the CoConut/J tool suite [48], whlee authors introduce the concept of parameterised
contracts and a model for component interfaces. The papermesents algorithms and tools for specifying and

analysing component interfaces in order to check inteaipkty and to generate adapted component interfaces
automatically. In comparison, our proposal is more genaral based on a rich notation to deal with possibly

complex adaptation scenarios, whereas the SR approacls watlonly precise situations in which mismatch may

happen, without using any contract language for adaptaifsgetion.

In their paperAdapt or Perish[49], Dumas and collaborators presented an approach tovioeinal interface
adaptation based on the definition of a set of adaptationatipes for establishing the basic relation patterns
between the messages names used in the components beingdadaql they defined a trace-based algebra for
describing the transformations required to solve the adipot problem. They also present a visual notation for
describing a mapping between the behavioural interfacéiseofomponents. Their approach is similar to ours in the
sense that these basic operations correspond to the diffetations (one-to-one, one-to-many, many-to-one,tone-
zero, etc) between message names that can be defined by meansynchronous vectors. However, their proposal
does not present a solution for deriving an adaptor from theal mappings, but just contains a preliminaing.(
non sufficient) condition for detecting deadlock scenaiioghe behavioural interfaces. Moreover, their mappings
require to relate the messages at the behavioural legeliatching messages directly from the component protocol
specifications), while our adaptation contracts are mosgratt, since the mapping is performed at the signature
level (.e., between the messages declared in the component intérfaoes which we automatically obtain an
adaptor solving the mismatch at the behavioural level. I§intheir approach is not able to perform message
reordering when it is required for solving the problem.

Taking the YS proposal as a starting point, the work of Bragi @&ollaborators (BBCP) [43], [44] presents a
methodology for generative behavioural adaptation. Irrtheoposal, component behaviour is specified using a
process algebra —a subset of thecalculus—, where service offering/invocation is reprded by input/output
events in the calculus, respectively. The starting pointha&fir adaptation process is rmapping an adaptation
contract that states correspondences between the seofidk® components being adapted. Then, an adaptor
generation algorithm refines the specification given by tla@png into a concrete adaptor implementation, taking
into account the behavioural interfaces of the componeuitish ensures correct interaction between them according
to the mapping. The adaptor is able to accommodate not oghagire mismatch between service names, but also
behavioural mismatchi.€., the interaction protocols that the components follow, fa partial ordering in which
services are offered/invoked).

Another interesting proposal in this field is that of Invelisand Tivoli (IT) [38]. Certain aspects of their work go
beyond BBCP by addressing how to enforce certain behavipuoperties (namely liveness and safety properties
expressed as specific processes) out of a set of alreadynrapted behaviours. Starting from the specification

with MSCs of the components to be assembled and of the piepehiat the resulting system should verify, they
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automatically derive the adaptor glue code for the set offmmmments in order to obtain a property-satisfying system.
In order to do that, they follow the so-called restrictivpegach. The IT proposal was extended in [39] with the use
of temporal logic; coordination policies are expressed Hs properties, and then translated into Biichi automata.
Recent outcomes of this research line allow a distributgalémentation of the adaptors [40], and take into account
time and other QoS issues [41].

Another example of the restrictive approach is the work ofAtfaro and collaborators [11], [42], who use game
theory to achieve behavioural adaptation. One of the ratefemtures of the proposal is that time information can
be taken into account within the component interfaces.

Our approach to behavioural adaptation can be considerbdthsgenerative and restrictiyesince we address
behavioural adaptation by enabling event reordering (€BBE&P), while we also remove incorrect behaviour (as
in IT). Similarly to both of them, our main goal is to ensureadieck freedom. However, more complex adaptation
policies and properties can be specified by means of our vEEfes. A deeper comparison with the aforementioned
approaches yields that our proposal addresses systemadajgation i(e., differently from BBCP, it may involve
more than two components), and that it is based on LTS deseripof component behaviour, instead of using
process algebra as in BBCP. However, we may also descrilsvioein by means of a simple process algebra, and
use its operational semantics to derive LTSs from it [14ffédently from IT, which requires name matching, we
use synchronous vectors in our adaptation contracts, qgagisimilar function than the mapping rules in BBCP.
With that, we are able to perform adaptation of incompatéents. Finally, our approach is fully tool equipped,
while BBCP have only presented a sketch of the implememtaifaheir adaptation algorithm.

Nevertheless, the most relevant achievement of our cupmopiosal is the use of vector LTSs for imposing
additional properties over adaptation contracts. In f#ot, semantics of BBCP mappings can be expressed by
combining their different rules in a vector LTS with a singiate and all vector transitions looping on it. On the
contrary, our vector LTSs are much more expressive, solthiegporoblem of BBCP underspecified mappings [43],
and allowing to take into account a new class of adaptatioblpms.

A different characterisation of behavioural adaptatiahtéques may classify them inbmmutableandcontextual
Immutable approaches are those that define a static setesffiarl describing the adaptation required, and these rules
are applied uniformly during the whole adaptation proc€xs.the contrary, contextual adaptation pays attention
to context information in order to decide on-the-fly the ad#pn strategy to apply. Our present approach allows
contextual adaptation by the use of vector LTSs which gowenan the adaptation rules are applied (as shown
in Figs. 7 and 13), while the rest of the approaches mentiahede are static. Some recent works based on the
BBCP proposal try to address more flexible ways of contexadalptation [50].

Finally, most of the current adaptation proposals — and sasgnt work among them— may be considered as
global, since they proceed by computing global adaptors for cleystems made up of a predefined and fixed set
of components. However, this is not satisfactory when tlstesy may evolve, with components entering or leaving
it at any time,e.g, for pervasive computing. To enable adaptation on suctesystarnincrementalapproach should

be considered, by which the adaptation is dynamically régared depending on the components present in the
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system. One of the first attempts in this direction is [51]oa proposal for incremental software construction by
means of refinement allows for simple signature adaptatiomever, to our knowledge the only proposal addressing

incremental adaptation at the behavioural level is [52].

VIIl. CONCLUDING REMARKS

Software Adaptation is widely accepted as a promising sniuto favour the reuse of black-box components
that require non intrusive adjustments to make them fit withgpecificities of the system-to-be. In this article, we
have presented a proposal for software adaptation at tinatsige and behavioural levels based on a simple adap-
tation contract notation. These contracts can be used tegxgorrespondences (possibly involving mismatching
messages) between an arbitrary number of components, smtcamplex adaptation scenarios. Our proposal is
equipped with two algorithms depending whether reordeisngecessary or not in the adaptation process. The first
one is based on synchronous product computation, and tllademne on encodings into Petri nets. Our proposal
is completely supported by a tool which was applied to margngxes.

In this article we follow a regular model-based approachufing on abstract (platform-independent) behavioural
interface models, LTSs. It has been demonstrated, usuatlydrification purposes, that such abstract models
could be derived from existing implementation platformendguagese.g, [53]-[55] for Web services. As regards
adaptation, model-based behavioural adaptation has lm#iecito COM/DCOM components in [38] and to Web
services in [36], [37]. In a recent paper [15], we have adkkdsWF components. We have shown how LTS
descriptions could be extracted automatically from WF vlorks, and how a new WF component could be obtained
from an adaptor protocol generated with the techniques we peesented here. Therefore, we think the proposed
adaptation techniques are of great interest for real-wsoftlivare components or Web services.

There are still some open issues in our proposal deservingefuwork. In this part of the conclusion, we
will particularly emphasise three perspectives, nameba dalaptation, contract design support, and application to

pervasive systems.

Data adaptation. Taking data exchange into account in protocols is impot@mnsure full compatibility. So far,
this can be supported in the approach at hand using additiieesages for data exchange in the abstract component
protocols (LTSs), as presented in Section II-A. Provided #ncoding is performed as a pre-processing, and the
adaptation contract takes the additional messages intmatahe protocols can be adapted, as demonstrated in [15].
Supporting directly data types would be more efficient buldorequire first more expressive models than
LTSs. In particular, we consider Symbolic Transition Syste(STSs) [56] or Extended State Diagrams [57] as
good candidates since they allow the description of the itataved in the operations within the protocol without
suffering from the state explosion problem. Then, data sygleould be taken into account also in the contract
specification as for the additional message encoding tqakniabove. As far as the adaptation process itself is
concerned, we are studying two possible techniques. Theofirs is compatible with the approach at haedy,
for the reordering approach, it consists in taking the dgbes into account in the Petri net encoding patterns (data

types resources being generated for component emissiate,tgpe resources being consumed for components
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receptions and data types being transferred for data wctdfe are currently looking for an efficient Petri net
encoding, using Petri net extensions, in order to avoick staplosion problems. The second technique specifically
addresses these efficiency issues. It consists in impléngedata adaptation separately from the message-based
one, through a data adaptation engine that would be embeddled adaptor implementation, and that would store

received values and redistribute thewt. the correspondences expressed in the data contract.

Support for contract design. The design of an adaptation contract may be a non-triviakarat-prone task, leading

to too many interactions being removed in the adaptationge®to ensure deadlock-freedom. To address this issue,
recent work has focused on post-generation adaptor assesseither by reusing existing model-checkers [58],

or by developing new tools such &lint [59], that is able to graphically represent deadlocks in gonents and
interactions that are removed in the adaptation process. fdtmer approach is more powerful yet it requires
temporal logic formulas are given. This is the approach weehged in this article to obtain our mappings. The
later is less expressive (as far as the kind of propertieshwhie assessed over the adapted system are concerned)
yet, it benefits from being fully-automatic.

Approaches dedicated to the automatic generation of coitigrsare indeed the current goal of research groups
working at the semantic interoperability levelg.,adding semantic annotation to (Web) services [60]. Yeemfig
a semantic description for all components (including lggawes) is a strong assumption.

We are convinced that an assisted design approach is a g aff between complete automation and manual
writing of the composition and adaptation contracts. Fentlit enables a end-user composition vision [61], [62].
As a perspective, we plan to propose techniques to suppaitahtract design task. A partial specification of the
contract could be given for which remaining compositionéss (such as deadlocks in components and interactions
that would be removed by the adaptation process) would bdasmed usinglint. In addition, incremental contract
construction, where at each step possible message condmpres to complete the contract would be proposed,

would foster the user-friendliness of the contract desigtess.

Self-adaptive pervasive system#\ perspective in the context of funded research projects &pply our adaptation
techniques to pervasive systems. In this field, self-adiaptés a mandatory feature because less assumptions can
be done on the system at hardg.,new components or services can show up or disappear atmenvthile the
overall adaptation mechanism should support these egakitind keep on making the system work in a reliable
way. Dynamic Aspect Oriented Programming is a technologyreecurrently exploring as well to put into practice

adaptation techniques in this highly dynamic context.
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Fig. 17. Adaptor protocol foeMuseum, version 3 (full mode)
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Il. PROOFS

Proof: [Alg. 1 correctness] It follows from Def. 9 that the set ofdes of the adaptor LTS resulting from
the productII;((Cy,..., Cy), L), contains all interactions which are possible in betweendbmponents. The
reason is that the product is computed taking into accoungéaah moment, which messages are available for
emission or reception in the different components, and &eephe product only the transitions corresponding
to legal correspondences defined in the vector LTS. Thenedfte application ofemovedeadlocksensures all
interactions ending in incorrect states (deadlocks) amowed. It therefore results from the two points above that
only correct interactiong,e., such that (i) they ensure termination in final states andigy correspond at each
step to messages that are sent or received by componentseasved.

Then, directions of events are reversed. This ensures #Hga@desulting from it, let us note it ;,, can communi-
cate correctly at each step of the aforementioned tracéstiadgt components: the produdt, || 11, ((Cy,...,Cy), L)
where synchronisation is made on a vector basis — LTS labelyectors inA;, andII.((C4,...,Cy), L), and
are synchronised if they correspond — is correct. Pernwsitthen replace iml; each transition labelled with a
vector by a sub-LTS whose set of traces corresponds to atifgesevent orderings of the vector, yielding adaptor
Ad. Therefore, for any order in which the different componemglied in a step of a vector trace do communicate
—i.e. for all possible component communications interleaving$ € the adaptor is ready to communicate on the
corresponding communication event. This yieltig||(C4]||...]|||Cy) is correct. Moreover, since prefixing is used,
components i || ... ||C,, do not synchronise and therefore it follows th&d||(C4]||...[||Cr) is equivalent to
Ad||(C1]]...]|Cr), and thereforedd is correct. Note that for optimising reasons, event revexsd permutations
are performed at the same time in the algorithm. Adaptat&ingba process which is dependent of the adaptation
contract, the process may yield empty adaptors in some ,cage®, as in all restrictive adaptation approaches
(see related work in Section VII), removal of paths to erratess (here deadlocks) may reduce the set of correct
interactions to none. Then, putting such an adaptor in tmepoment system will yield also an adapted system in

which no interactions are possible. Making initial stateing final ¢ € F', Def. 1) ensures this is correct. =

Proof: [Alg. 3 correctness] The Petri net based adaptor computaibes on the encoding of different parts
relative to the components interfaces with event mirrorfleg us note themPN;, i € {1,...,n}) and to the
vectors and vector LTS (let us note[tN). Taking eachP N, separately, and supposing the places corresponding
to messages sent by the adaptor (the a places) are always fed, then its marking graph(,P N;)?, is an LTS which
exactly corresponds (through mirroring) to compon@ntTS. Therefore, allM/ (P N,)||C; are correct (no deadlock,
components end in final states). Taking the product of th&& M (PNy)|| ... ||M(PN,), yields a perfect adaptor
— (M(PNy)|| ... |IM(PN))|IC1]|---]|Cr has no deadlock — as (\M(PNy)||...||[M(PN)||C]]-..||Cy is
equivalent to(M (PN1)||CY)]|...|[(M(PN,)||Cy) thanks to indexing which ensures event names disjointness,

and (ii) eachM (PN,)||C; is correct.

2M corresponds to thgetmarkinggraph function in Algorithm 3, and is used here for the sake of cemmess.
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Now, taking the global Petri net marking graph (let us notdd)), where separate nets are glued usihy,
we can observe that the set of tracesdef is, up to graph reduction (see comment below), a subset ofahef
traces ofM (PN,)||...||M(PN,). This results from the fact that now the input places are éedythrough place
transfers defined ilP Ny, e.g, some transitiory; : a!, requiring a token in placéc; : a, is only possible now if
(provided that a vectofc; :a?, ¢; :b!) exists) first, transitiorr; :b? has been fired — adding a token in pla@e; :b
— and then, a transfer from plat&c;:b to place!lc;:a has been done — usingtau transition. Yet, all remaining

traces ofAd (with respect toM (PN,)||...||M(PN,)) are correct as each such trace either:

(i) ends in a final state and, being also up to graph reductitace inM (PN,)||...||M(PN,), results in
correct interactions with the components (mirroring andeoing), or
(ii) does not end in a final state and hence is removed byahmwmvedeadlocksstep.
The reduction step is performed at the end of the adaptor otatipn process. As this reduction respects
deadlock freedom (in the usual acceptation of.&, there is no state it¥ without outgoing transitions), and since
our deadlock freedom property is a weaker property (themoistate inS\F without outgoing transitions), it

results that reduction respects the adaptor properties. [ ]
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