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Abstract

State-space exploration is the essence of model checking and an in-
creasingly popular approach for automating test generation. A key issue
in exploration of object-oriented programs is handling the program state,
in particular the heap. Previous research has focused on standard program
execution that operates on one state/heap. We present Delta Execution,
a technique that simultaneously operates on several states/heaps. Delta
execution exploits the fact that many execution paths in state-space ex-
ploration partially overlap and speeds up the exploration by sharing the
common parts across the executions and separately executing only the
“deltas” where the executions differ. The heart of Delta Execution is an
efficient representation and manipulation of sets of states/heaps.

We have implemented Delta Execution in two model checkers: JPF
and BOX. JPF is a popular general-purpose model checker for Java pro-
grams, and BOX is a specialized model checker that we have developed
for efficient exploration of sequential Java programs. We have evaluated
Delta Execution for (bounded) exhaustive exploration of ten basic subject
programs without errors. The experimental results show that on average
Delta Execution improves the exploration time 10.97x (over an order of
magnitude) in JPF and 2.07x in BOX, while taking on average 1.51x less
memory in JPF and roughly the same amount of memory in BOX. We
have also evaluated Delta Execution for one larger case study with errors,
where the exploration time improved up to 1.43x. Additionally, the exper-
imental results for abstract matching, a recently proposed non-exhaustive
exploration in JPF, of four subject programs show that on average Delta
Execution improves the exploration time 3.37x.

1 Introduction

Software testing and model checking are important approaches for improving
software reliability. A core technique for model checking is state-space ex-
ploration [9]: it starts the program from the initial state, searches the states
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reachable through executions resulting from non-deterministic choices (includ-
ing thread interleavings), and prunes the search when it encounters an already
visited state. Stateful exploration is also increasingly used to automate test
generation, in particular for unit testing of object-oriented programs [13,15,26,
45,47,48]. In this context, each test creates one or more objects and invokes on
them a sequence of methods. State-space exploration can effectively search how
different method sequences affect the state of objects and can generate the test
sequences that satisfy certain testing criteria [13, 45, 47].

A key issue in state-space exploration is manipulating the program state:
saving the state at non-deterministic branch points, modifying the state dur-
ing execution, comparing states, and restoring the state for backtracking. For
object-oriented programs, the main challenge is manipulating the heap, the part
of the state that links dynamically allocated objects. Researchers have devel-
oped a large number of model checkers for object-oriented programs, including
Bandera [10], BogorVM [36], CMC [31], JCAT [16], JNuke [3], JPF [42], Spec-
Explorer [41], and Zing [2]. These model checkers have focused on efficient
manipulation and representation of states/heaps for the usual program execu-
tion that operates on one state/heap. We refer to such execution as standard
execution.

We present Delta Execution, referred to as ∆Execution, a technique where
program execution simultaneously operates on several states/heaps. ∆Execution
exploits the fact that many execution paths in state-space exploration partially
overlap. ∆Execution speeds up the state-space exploration by sharing the com-
mon parts across the executions and separately executing only the “deltas”
where the executions differ. The heart of ∆Execution is an efficient represen-
tation and manipulation of sets of states/heaps for object-oriented programs.
∆Execution is thus related to shape analysis [27,37,49], a static program anal-
ysis that checks heap properties and operates on sets of states. However, shape
analysis operates on abstract states, while ∆Execution operates on concrete
states.

∆Execution is inspired by symbolic model checking (SMC) [9, 25] but con-
siders states that include heap. SMC enabled a breakthrough in model checking
as it provided a much more efficient exploration than explicit-state model check-
ing. Conceptually, SMC executes the program on a set of states and exploits
the similarity among executions. Typical implementations of SMC represent
states with Binary Decision Diagrams (BDDs) [7] that support efficient oper-
ations on boolean functions. However, heap operations prevent the direct use
of BDDs for object-oriented programs. Although heaps are easily translated
into boolean functions [29, 46], the heap operations—including field reads and
writes, dynamic object allocation, garbage collection, and comparisons based
on heap symmetry [6,9,23,28,30]—do not translate directly into efficient BDD
operations.

This paper makes the following contributions.

Idea: We propose the idea of sharing similar executions to speed up state-space
exploration of object-oriented programs. The key insight is that many execution
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paths in state-space exploration partially overlap.

Technique: We describe ∆Execution, a specific technique for sharing common-
alities across executions and separately executing only the “delta” differences.
We introduce ∆States, a novel representation for sets of states, and present
efficient operations for manipulating ∆States.

Implementation: We have implemented ∆Execution in two model checkers,
JPF [42] and BOX. JPF is a general-purpose model checker for Java programs;
it can explore concurrent code and can save/backtrack complete Java states,
including stack and heap. We have developed BOX, a special-purpose model
checker that can explore only sequential code and can save/backtrack only heap.

Evaluation: We have evaluated ∆Execution for (bounded) exhaustive ex-
ploration. The results on ten basic subject programs show that on average
∆Execution improves the exploration time 10.97x (over an order of magnitude)
in JPF and 2.07x in BOX, while taking on average 1.51x less memory in JPF
and roughly the same amount of memory in BOX. We have also evaluated
∆Execution for one larger case study with errors, where the exploration time
improved up to 1.43x. Visser et al. [45] recently proposed and implemented
in JPF several non-exhaustive explorations. Their results on four subject pro-
grams showed that abstract matching achieved the best structural code coverage.
∆Execution improves exploration time for abstract matching on average 3.37x
in JPF. The relative decrease of improvement in ∆Execution – from 10.97x in
exhaustive to 3.37x in non-exhaustive – is justified by the sharp reduction in
the number of states and executions when using abstract matching.

2 Example

We next present an example that illustrates how ∆Execution speeds up the
state-space exploration compared to standard execution. Figure 1 shows a bi-
nary search tree class that implements a set. Each BST object stores the size of
the tree and its root node, and each Node object stores an integer value and ref-
erences to the two children. The BST class has methods to add and remove tree
elements. A test sequence for the binary search tree class consists of a sequence
of method calls, for example BST t = new BST(); t.add(1); t.remove(2);.

The goal of state-space exploration is to explore different sequences of method
calls. A common exploration scenario is to exhaustively explore all sequences of
method calls, up to some bound [15,45,48]. Such exploration does not actually
enumerate all sequences but instead uses state comparison to prune sequences
that exercise the same states [45, 48].

Figure 2 shows an example driver program that enables a model checker to
systematically explore different states of the tree. This driver operates using
standard execution and is thus called the standard driver. The driver creates
the initial state of the binary search tree and exhaustively explores sequences
(up to length N) of the methods add and remove (with values between 1 and N).
The driver selects different methods and input values using the library method
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public class BST {

private Node root;
private int size;

public void add(int info) {
if (root == null)

root = new Node(info);
else

for (Node temp = root; true; )
if (temp.info < info) {

if (temp.right == null) {
temp.right = new Node(info);
break;

} else temp = temp.right;
} else if (temp.info > info) {

if (temp.left == null) {
temp.left = new Node(info);
break;

} else temp = temp.left;
} else return; // no duplicates

size++;
}

public boolean remove(int info) { ... }
}

class Node {

Node left, right;
int info; Node(int info) { this.info = info; }

}

Figure 1: Excerpt from binary search tree implementing a set.

getInt(int lo, int hi) that introduces a non-deterministic choice point to re-
turn a number between lo and hi.

The standard driver discards from further exploration any sequence that
results in a state that has already been visited; the driver uses the library method
stopIfVisited(Object root) that ignores the current execution path and forces
backtracking (to a preceding choice point) if the state reachable from root has
already been visited in the exploration. Note that the comparison of states is
performed only at the method boundaries (not during method execution), which
naturally partitions an execution path into subpaths that each cover execution
of one method invocation. As in other related studies [13, 45, 48], we consider
a breadth-first exploration of the state space. (A depth-first exploration could
miss parts of the state space since state comparison could eliminate a state with
a shorter sequence in favor of a state with a longer sequence.)

Figure 4 illustrates some states that arise in the state-space exploration
corresponding to the call mainStandard(4). Among other states, the exploration
visits the five trees of size three shown at the top of the figure. (For simplicity,
the figure does not show the BST object that contains size 3 and points to the
root node.) The exploration executes add(4) on the five trees of size three. The
standard driver separately executes add(4) on each pre-state, resulting in the
five post-states shown at the bottom of the figure.

The delta driver. Figure 3 also shows a driver that explores states using
∆Execution. The delta driver is similar to the standard driver: both use non-
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// N bounds sequence length and parameter values

public static void mainStandard(int N) {
BST bst = new BST(); // empty tree

for (int i = 0; i < N; i++) {
int methNum = Verify.getInt(0, 1);
int value = Verify.getInt(1, N);

switch (methNum) {
case 0: bst.add(value); break;

case 1: bst.remove(value); break;
}

Standard.stopIfVisited(bst);
}

}

Figure 2: Driver for standard execution.

deterministic choices to select different methods and input values, both prune
the exploration based on the state of bst, and both use breadth-first exploration.
However, the delta driver differs from the standard driver in the way it operates
on the state. First, bst in the delta driver is a ∆State that represents several
individual trees. Second, the delta driver backtracks the state differently than
the standard driver. Specifically, the method newIteration returns one ∆State
containing all individual states that should be explored in a given iteration. In
the first iteration, this ∆State is a singleton that has only the initial state (i.e.,
the empty tree). The method merge at the end of one method execution path
collects those trees (from bst) that have not been previously visited and thus
should be explored in the next loop iteration. Effectively, the driver combines
all distinct states reachable with the method sequences of length i into one
∆State for the iteration i+1. The method newValue updates the internal state
for ∆Execution as backtracking should not restore some parts of that internal
state (specifically the state mask discussed in Section 3.2).

Split and Merge. While standard execution invokes add(4) separately against
each standard state, ∆Execution invokes add(4) simultaneously against a set
of standard states. ∆Execution itself operates on one state, called a ∆State,
which represents a set of individual standard states. We call the operation that
combines standard states into a ∆State merging. The top of Figure 4 illustrates
one set consisting of the five pre-states. (Section 3.1 describes how to efficiently
represent a ∆State, and Section 3.5 describes how to efficiently merge states.)

During program execution, ∆Execution occasionally needs to split the ∆State.
Informally, we say that a state (or set of states) follows an execution path if
∆Execution operates on that state as it executes that path. For add(4), for
example, the five pre-states follow the same execution path until the first check
of temp.right == null. At that point, ∆Execution splits the set of states: one
subset (of two states) follows the true branch, and the other subset (of three
states) follows the false branch. Note that the split enforces the invariant that
all states in a set follow the same path.

Each split introduces a non-deterministic choice point in the execution. For
add(4), one execution with two states terminates after creating a node with value
4 and assigning it to the right of the root. The figure depicts this execution with
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// N bounds sequence length and parameter values

public static void mainDelta(int N) {
BST bst = new BST(); // empty tree

for (int i = 0; i < N; i++) {
bst = Delta.newIteration(bst);
int methNum = Verify.getInt(0, 1);

int value = Verify.getInt(1, N);
Delta.newValue();

switch (methNum) {
case 0: bst.add(value); break;

case 1: bst.remove(value); break;
}
Delta.merge(bst);

}
}

Figure 3: Driver for delta execution.

the left arrow. The other execution with three states splits at the second check
of temp.right == null: two (middle) states follow the true branch, and one
(rightmost) state follows the false branch. These two executions terminate
without further splits, appropriately adding the value 4 to the final trees.

We next describe the merging that ∆Execution performs to build a ∆State
from individual states. Merging is a dual operation of splitting: while splitting
partitions a set of states into subsets, merging combines several sets of states
(or several individual states) into a larger set. In principle, merging can be
performed on any sets of states whenever the executions associated with those
states reach the same program point. For example, ∆Execution could merge
all three sets of states from Figure 4 when they reach size++. However, our
current implementation of ∆Execution considers only the program points that
are method boundaries: it merges the states only after all of them finish the
execution path for one method, since that is also where state comparison is
done.

Performance. We next discuss how the performance of ∆Execution and stan-
dard execution compare. In our running example, ∆Execution requires only
three execution paths to reach all five post-states that add(4) creates for the
five pre-states. Additionally, these three paths share some prefixes that can be
thus executed only once. In contrast, standard execution requires five execu-
tions of add(4), one execution for each pre-state, to reach the five post-states.
Also, each of these five separate executions needs to be executed for the en-
tire path. The trade-off between ∆Execution and standard execution can be
summarized like this: ∆Execution performs fewer executions (avoiding separate
execution of the same path shared by multiple states) than standard execution,
but each execution in ∆Execution (that operates on a set of standard states)
is more expensive than in standard execution (that operates on one standard
state). It is also important to note that the presence of constants (i.e., values
that are the same across a set of states) is essential to efficient operations under
∆Execution. Whether ∆Execution is faster or slower than standard execution
for some exploration depends on several factors, including the number of exe-
cution paths, the number of splits, the cost to execute one path, the number of
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Figure 4: Executions of add(4) on a set of states.

constants, and the sharing of execution prefixes.
The experimental results from Section 5 show that ∆Execution is faster

than standard execution for a number of subject programs and values for the
bound N from the drivers. For example, for the binary search tree example
and N = 10, ∆Execution speeds up JPF 4.41x and our model checker BOX
1.67x, while using over 2x more memory in JPF and 3x more memory in BOX.
(On average, ∆Execution uses roughly the same amount of memory as standard
execution.)
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Figure 5: ∆State for the five pre-states from Figure 4.

3 Technique

The key idea of ∆Execution is to execute a program simultaneously on a set
of standard states. We first discuss ∆States that represent sets of states. We
describe in detail two main operations on ∆States: splitting, which divides a
set of states into subsets for executing different program paths, and merging,
which combines several states together into a set. We also present how program
execution works in ∆Execution and how ∆Execution facilitates an optimized
comparison of states.

3.1 ∆State

∆Execution represents a set of individual standard states as a single ∆State.
Each ∆State encodes all the information from the original individual states.
A ∆State includes ∆Objects that can store multiple values (either references
or primitives) that exist across the multiple individual states represented by a
∆State.

Figures 6, 7, and 8 show the classes used to represent ∆States for the binary
search tree example. We discuss here only the field declarations from those
classes. (The methods from those classes implement the operations on ∆State
and are explained later in the text.) Each object of the class DeltaNode stores
a collection of references to Node objects, and each object of the class DeltaInt

stores a collection of primitive integer values. The BST and Node objects are
changed such that they have fields that are ∆Objects.

Figure 5 shows the ∆State that represents the set of five pre-states from
Figure 4. Each ∆State consists of layers of “regular” objects and ∆Objects. In
this ∆State, each of the pre-states has a corresponding state index that ranges
from 0 to 4. Note that we could extract each of the five pre-states by traversing
the ∆State while indexing it with the appropriate state index. For example,
we can extract the balanced tree using state index 2. Also note that some of
the values in the example ∆State are “don’t cares” (labeled with “?”) because
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the corresponding object is not reachable for that state index. For example, the
first node to the left of the root has “?” in the field info for the last two states
(with indexes 3 and 4) because those states have the value null for the field
root.left.

While each ∆Object conceptually represents a collection of values, the im-
plementation does not always need to use collections or arrays. In particular, a
value is often constant across all (relevant) states. For example, the info fields
for all tree leaves in Figure 5 have constant values (for the relevant states). Our
implementation uses an optimized representation for constants. The optimiza-
tion is straightforward, and we do not discuss it in detail. We point out, however,
that the optimization is important both for reducing the memory requirements
of ∆States and for improving the efficiency of operations on ∆States.

3.2 Splitting

∆Execution operates on a ∆State that represents a set of standard states.
∆Execution can perform many operations on the entire set. It needs to split
the set only at a branch control point (e.g., an if statement) where some states
from the set evaluate to different branch outcomes (e.g., for one subset of states,
the branch condition evaluates to true, and for the other subset of states, it
evaluates to false). We call such points split points ; effectively, they introduce
non-deterministic choice points as ∆Execution needs to explore both outcomes.
(Note that no split is necessary even for branch control points when all states
evaluate to the same branch outcome.)

One challenge in ∆Execution is to efficiently split ∆States. Our solution
is to introduce a state mask that identifies the currently active states within
a ∆State. Each state mask is a set of state indexes. At the beginning of an
execution, ∆Execution initializes the state mask to the set of all state indexes.
For example, the execution of add(4) for the ∆State from Figure 5 starts with
the state mask being {0, 1, 2, 3, 4}.

At the appropriate branch points, ∆Execution needs to split the set of states
into two subsets. Our approach does not explicitly divide a ∆State into two
∆States; instead, it simply changes the state mask to reflect the splitting of
the set of states. Specifically, ∆Execution builds a new state mask to identify
the new subset of active states in the ∆State. It also saves the state mask for
the other subset that should be explored later on. The execution then proceeds
with the new subset.

After ∆Execution finishes the execution path for some (sub)set of states, it
backtracks to some unexplored split point to explore the other path using the
state mask saved at the split point. Backtracking changes the state mask but
restores the ∆State to exactly what it was at the split point. Backtracking can
be implemented in several ways; Section 4 discusses how JPF uses state saving
and restoration while BOX uses re-execution.

To illustrate how the state mask changes during the execution, consider the
example from Figure 4. The state mask is initially {0, 1, 2, 3, 4}. At the first
split point, the execution proceeds with the state mask being {0, 1}. After the
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first backtracking, the state mask is set to {2, 3, 4}. At the second split point,
the execution proceeds with the state mask being {2, 3}. After the second
backtracking, the state mask is set to {4} for the final execution.

Appropriate use of a state mask can facilitate optimizations on the ∆State.
Consider, for example, a ∆Object that is not a constant when all states are
active. This object can temporarily be transformed into a constant if all its
values are the same for some state mask occurring during the execution. For
instance, in our running example, the value of root.right becomes the constant
null when the state mask is {0, 1}. Additionally, the state mask allows the
use of sparse representations for ∆Objects: instead of using an array to map
all possible state indexes into values, a sparse ∆Object can use representations
that map only the active state indexes into values, thereby reducing the memory
requirement.

3.3 Program execution model

We next discuss how ∆Execution executes program operations. The key is to
execute each operation simultaneously on a set of values. ∆Execution uses a
non-standard program execution that manipulates a ∆State that represents a
set of standard states. Such non-standard execution can be implemented in
two ways: (1) instrumenting the code such that the regular execution of the
instrumented code corresponds to the non-standard execution [26, 43, 48] or
(2) changing the execution engine such that it interprets the operations in the
non-standard semantics [13]. Our current implementation uses instrumentation:
the subject code is preprocessed to support ∆Execution.

We use parts of the instrumentation to describe the semantics of ∆Execution.

3.3.1 Classes

The instrumentation changes the original program classes and generates new
classes for ∆Objects. Figure 1 from Section 2 shows a part of the original code
for the binary search tree example. Figures 6, 7, and 8 show the key parts of the
instrumented code for this example. Figure 6 shows the instrumented version of
the original BST and Node classes. Figure 7 shows the new class DeltaNode that
stores and manipulates the multiple Node references that can exist across the
multiple states in a ∆State. Figure 8 shows the class DeltaInt that stores and
manipulates multiple int values; this class is a part of the ∆Execution library
and is not generated anew for each program.

It is important to note that ∆Objects are immutable from the perspective of
the instrumented code in the same way that regular primitive and reference val-
ues are immutable for standard execution. This allows sharing of ∆Objects. For
example, this allows direct assignment of one DeltaInt object to another (e.g.,
int x = y simply becomes DeltaInt x = y). Our implementation internally mu-
tates ∆Objects to achieve higher performance, in particular when values become
constant across active states. The mutation handles the situations that involve
shared ∆Objects and require a “copy-on-write” cloning.
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public class BST {

private DeltaNode root = DeltaNode.NULL;
private DeltaInt size = DeltaInt._new(0);

public void add(DeltaInt info) {
if (get_root().eq(DeltaNode.NULL))

set_root(DeltaNode._new(info));
else

for (DeltaNode temp = get_root(); true; )
if (temp.get_info().lt(info)) {

if (temp.get_right().eq(DeltaNode.NULL)) {
temp.set_right(DeltaNode._new(info));
break;

} else temp = temp.get_right();
} else if (temp.get_info().gt(info)) {

if (temp.get_left().eq(DeltaNode.NULL) {
temp.set_left(DeltaNode._new(info));
break;

} else temp = temp.get_left();
} else return; // no duplicates

}
set_size(get_size().add(DeltaInt._new(1)));

}

public DeltaBoolean remove(DeltaInt info) { ... }

}

class Node {
DeltaNode left, right;
DeltaInt info;

Node(DeltaInt info) { this.info = info; }
}

Figure 6: Instrumented BST and Node classes.

3.3.2 Types

The instrumentation changes all types in the original program to their delta
versions. Comparing figures 1 and 6, notice that the occurrences of Node and
int have been replaced with the new DeltaNode class (from Figure 7) and the
DeltaInt class (from Figure 8), respectively. The instrumentation also appropri-
ately changes all definitions and uses of fields, variables, and method parameters
to use ∆Objects.

3.3.3 Field accesses

The instrumentation replaces standard object field reads and writes with calls
to new methods that read and write fields across multiple objects. For example,
all reads and writes of Node fields are replaced with calls to getter and setter
methods in DeltaNode. Consider, for instance, the field read temp.left. In
∆Execution, temp is no longer a reference to a single Node object but a reference
to a DeltaNode object that tracks multiple references to possibly many different
Node objects. The left field of Node is now accessed via the get left method
in DeltaNode. This method returns a DeltaNode object that references (one or
more) Node objects that correspond to the left fields of all temp objects whose
states are active in the state mask. In general, this can result in an execution
split when some objects in temp are null.

11



class DeltaNode {

// maps each state index to a Node object
Node[] values; // conceptually

DeltaNode(int size) { values = new Node[size]; }
private DeltaNode(Node n) { values = new Node[]{ n }; }

public static DeltaNode _new(DeltaInt info) {
return new DeltaNode(new Node(info));

}

public boolean eq(DeltaNode arg) {
StateMask sm = StateMask.getStateMask();
StateMask trueMask = new StateMask(sm.size());

StateMask falseMask = new StateMask(sm.size());
foreach (int index : sm)

if (values[index] == arg.values[index])
trueMask.enable(index);

else

falseMask.enable(index);
boolean result;

if (trueMask.isEmpty()) result = false;
else if (falseMask.isEmpty()) result = true;

else result = (Verify.getInt(0, 1) == 0); // split
StateMask.setStateMask(result ? trueMask : falseMask);
return result;

}

public DeltaNode get_left() {
StateMask sm = StateMask.getStateMask();
DeltaNode result = new DeltaNode(sm.size());

foreach (int index : sm) {
DeltaNode dn = values[index].left;

result.values[index] = dn.values[index];
}

return result;
}
public void set_left(DeltaNode arg) {

StateMask sm = StateMask.getStateMask();
IdentitySet<Node> set = new IdentitySet<Node>();

foreach (int index : sm) {
Node n = values[index];
if (set.add(n)) // true if n was added

n.left = n.left.clone();
n.left.values[index] = arg.values[index];

}
}

public DeltaNode get_right() { ... }
public void set_right(DeltaNode arg) { ... }
public DeltaInt get_info() { ... }

public void set_info(DeltaInt arg) { ... }
}

Figure 7: New DeltaNode class.

3.3.4 Operations

The instrumentation replaces (relational and arithmetic) operations on reference
and primitive values with method calls to DeltaNode and DeltaInt objects. All
original operations on values now operate on ∆Objects that represent sets of
values. More precisely, the methods in ∆Objects do not need to operate on all
values but only on those values that correspond to the active state indexes as
indicated by the state mask.

For an example arithmetic operation, consider integer addition. In standard
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class DeltaInt {

// maps each state index to an integer value
int[] values; // conceptually

DeltaInt add(DeltaInt arg) {
StateMask sm = StateMask.getStateMask();

DeltaInt result = new DeltaInt(sm.size());
foreach (int index : sm)

result.values[index] = values[index] + arg.values[index];
return result;

}
...

}

Figure 8: Part of DeltaInt library class.

execution, the addition takes two integer values and creates a single value. In
∆Execution, it takes two DeltaInt objects and creates a new DeltaInt object.
The add method in DeltaInt (From Figure 8) shows how ∆Execution concep-
tually performs pairwise addition across all active state indexes for the two
DeltaInt objects. Our implementation optimizes the cases when those objects
are constant (to avoid the loop or state indexing).

For an example relational operation, consider reference equality. The method
eq in DeltaNode (from Figure 7) performs this operation across all active state
indexes. Note that this method can create a split point in the execution if
the result of the operation differs across the states. If so, eq introduces a non-
deterministic choice (with getInt) that returns a boolean true or false after
appropriately setting the state mask.

3.3.5 Method calls

The instrumentation replaces a standard method call with a method call whose
receiver is a ∆Object, which allows making the call on several objects at once.
Note that each call introduces a semantic branch point (since different objects
may have different dynamic types) and can result in an execution split.

3.4 Optimized state comparison

Heap symmetry [9,23,28,30] is an important technique that model checkers use
to alleviate the state-space explosion problem. Heap symmetry detects equiva-
lent states: when the exploration encounters a state equivalent to some already
visited, the exploration path can be pruned. In object-oriented programs, two
heaps are equivalent if they are isomorphic (i.e., have the same structure and
primitive values, while their object identities can vary) [6, 23, 30]. An efficient
way to compare states for isomorphism is to use linearization (also known as
serialization or marshalling) that translates a heap into a sequence of integers
such that two heaps are isomorphic if and only if their linearizations are equal.

∆Execution exploits the fact that different heaps in a ∆State can share pre-
fixes of linearization. Instead of computing linearizations separately for each
state in a set of states, ∆Execution simultaneously computes a set of lineariza-
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void linearize(Object o, StateMask sm) {

foreach (int index : sm) {
Pair(Map _, Seq s) = linObject(o, new Map(), index);

checkVisited(index, s);
}

}

Pair<Map, Seq> linObject(Object o, Map ids, int index) {

if (o == null) return Pair(ids, Seq(NULL));
if (o in ids) return Pair(ids, Seq(ids.get(o)));

int id = ids.size();
return linFields(o, ids.put(o, id), Seq(id), index);
/*return linFields(o, 0, ids.put(o, id), Seq(id), index);*/

}

Pair<Map, Seq> linFields(Object o, Map ids,
Seq seq, int index) {

for (int f = 0; f < o.numberOfFields(); f++) {

Object fo = o.getField(f).values[index];
Pair(ids, Seq s) = linObject(fo, ids, index);

seq = seq.append(s);
}

return Pair(ids, seq);
}

Pair<Map, Seq> linFields(Object o, int f, Map ids,
Seq seq, int index) {

if (f < o.numberOfFields()) {
Object fo = o.getField(f).values[index];
Pair(Map m, Seq s) = linObject(fo, ids, index);

return linFields(o, f + 1, m, seq.append(s), index);
} else return Pair(ids, seq);

}

Figure 9: Non-optimized linearization of ∆State.

tions for a ∆State. Sharing the computation for the prefixes not only reduces
the execution time but also reduces memory requirements as it enables sharing
among the sequences used for linearizations.

We next present how to transform a basic algorithm that separately lin-
earizes each state from a ∆State into an efficient algorithm that simultaneously
linearizes all states from a ∆State. Figure 9 shows a pseudo-code of a basic
algorithm that iterates over each active state from the state mask and com-
putes the linearization for the individual state. For simplicity of presentation,
this algorithm assumes that the heaps contain only reference fields of only one
class. Our actual implementation handles general heaps with objects of different
classes, primitive fields, and arrays.

The method linObject produces a sequence of integers that represent lin-
earization for the state reachable from o. When o is null, linObject returns a
singleton sequence with the value that represents null. When o is a reference
to a previously linearized object, linObject returns a singleton sequence with
the identifier used for that object, which handles object aliasing. The map ids

stores the association between objects and their ids. When o is an object not
yet linearized, linObject creates a new id for it, appropriately extends the map,
and linearizes all the object fields.

The method linFields linearizes the fields of a given object. A typical

14



Stack stack; // mutable structure

void linearize(Object o, StateMask sm) {
stack = new Stack();

Triple(Map _, Seq s, StateMask tm) =
linObject(o, new Map(), sm);

checkVisited(tm, s); // all states from tm have sequence s

while (!stack.isEmpty()) {
Tuple(Object o, int f, Map ids,

Seq seq, StateMask nm) = stack.pop();
Triple(Map _, Seq s, StateMask tm) =

linFields(o, f, ids, seq, nm);
checkVisited(tm, s);

}

}

Triple<Map, Seq, StateMask>
linObject(Object o, Map ids, StateMask sm) {
if (o == null) return Triple(ids, Seq(NULL), sm);

if (o in ids) return Triple(ids, Seq(ids.get(o)), sm);
int id = ids.size();

return linFields(o, 0, ids.put(o, id), Seq(id), sm);
}

Triple<Map, Seq, StateMask>
linFields(Object o, int f,

Map ids, Seq seq, StateMask sm) {
if (f < o.numberOfFields()) {

Triple(Object fo, StateMask em, StateMask nm) =
split(o.getField(f), sm);

if (nm is not empty)

stack.push(o, f, ids, seq, nm);
Triple(StateMask om, Map m, Seq s) = linObject(fo, ids, em);

return linFields(o, f + 1, m, seq.append(s), om);
} else return Triple(sm, ids, seq);

}

Figure 10: Optimized linearization of ∆State.

implementation is iterative, as shown in the first linFields method. It is im-
portant to note that the value of the expression o.getField(f).values[index]

determines the linearizations for different states. We target this expression to
be the split point in our optimized linearization algorithm. The algorithm thus
needs to explore different execution paths from this point, effectively performing
backtracking. We want to implement the optimized algorithm to execute on a
regular JVM, so to support backtracking.

An intermediate step in the optimization is to transform the algorithm to
conceptually use the continuation-passing style [19]. In practice, the method
linFields is transformed into a recursive implementation shown in the second
linFields method. This version exposes the field index f and linearizes the
fields of o between f and o.getNumberOfFields(). This version permits the
linearization to continue an execution from the point it was left at in linFields.
Note that linFields and linObject manipulate functional objects Map and Seq,
which facilitates backtracking of the state.

Figure 10 shows the pseudo-code of the optimized algorithm that linearizes
a ∆State in the ∆Execution mode. The new methods linObject and linFields

do not take one state index but a state mask with several active state indexes to
linearize. These methods now return a state mask and one linearization for all
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the states in that state mask. The linearization can introduce non-deterministic
choices to enforce the invariant that all states in the state mask have the same
linearization prefix. When the linearization completes for some state mask, it
needs to backtrack to explore the remaining state masks.

The stack object stores the backtracking points. Each entry stores the state
that needs to be restored to continue an execution from a split point: the root
object, the field index, the map for object identifiers, the current linearization
sequence, and the state mask. While stack is mutable, the other structures
are immutable, which makes it easy to restore the state. The while loop in
linearize visits each pending backtracking point until it finishes computing all
linearizations.

The only source of non-determinism in the linearization is the reading of
fields across different states from the state mask. The method split takes as
input a ∆Object do = o.getField(f) and a state mask sm. It returns a standard
object fo = do.values[idx] for some idx from sm, a state mask em of index

values such that do.values[index] == fo, and a state mask nm of index values
such that do.values[index] != fo. At this point, linFields first pushes on the
stack an entry with the backtracking information for nm and then continues the
linearization of fo for the states in em.

3.5 Merging

The dual of splitting sets of states into subsets is merging several sets of states
into a larger set. Recall the driver for ∆Execution from Figure 3. It merges
all non-visited states from one iteration into a ∆State to be used at the start
of the next iteration. Specifically, the merge method receives as the input a
∆State and (implicitly) a state mask. This method extracts the non-visited
states from the ∆State and only stores their linearized representations. The
method newIteration builds and returns a new ∆State from the stored linearized
representations.

Our merging uses delinearization to construct a ∆State from the linearized
representations of non-visited states. The standard delinearization is an inverse
of linearization: given one linearized representation, delinearization builds one
heap isomorphic to the heap that was originally linearized. The novelty of our
merging is that it operates on a set of linearized representations simultaneously
and, instead of building a set of standard heaps, it builds one ∆State that
encodes all the heaps. It is interesting to point out that we often used in
debugging our implementation the fact that linearization and delinearization
are inverses; the composition of these functions gives the identity function: for
any set of linearizations s, the linearization of the delinearization of s should
equal s.

We highlight two important aspects of the merging algorithm. First, it iden-
tifies ∆Objects that should be constants (with respect to the reachability of the
nodes), which results in a more efficient ∆State. Such constants can occur quite
often; for instance, in our experiments (see Section 5), the lowest percentage of
the constant ∆Objects in the merged ∆States is 33%. Second, the merging al-
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gorithm greedily shares the objects in the resulting ∆State: it attempts to share
the same ∆Object among as many individual states as possible. For example,
in Figure 5, the left node from the root is shared among three of the five states.

Figure 11 shows the pseudo-code of our merging algorithm. The input is a
collection of linearizations, and the output is a root object for a ∆State. The al-
gorithm maintains a collection of maps from object ids to actual objects (which
handles aliasing) and a collection of offsets that track progress through the dif-
ferent linearizations (since they do not need to go in a “lockstep”). The method
createObject constructs one object shared for all states in the given state mask
and invokes createDeltaObject to construct each field of the object. Note that
this sharing does not constitute aliasing in the standard semantics since: only
one reference is visible for any given state. The method createDeltaObject ex-
amines the field values across all states in the state mask sm. For each state it
checks for three possible options for the field’s object id: (1) it denotes the null
reference, (2) it denotes an alias, or (3) it denotes a new object. For the first two
options the algorithm assigns the value to the delta object d as it performs the
check. For the third it just records in the state mask object cm the index of the
state during the check. If the statemask cm is not empty after the check across
all states, the algorithm recursively invokes (once) createObject to create an
object that will be shared among the states in cm. Lastly, the algorithm checks
if the the delta object d is semantically a constants, i.e., it contains the same
value across all states denoted by sm. A special constant object is created in
that case.

For states that have aliases between objects (unlike binary search tree), this
greedy algorithm does not always produce a ∆State with the smallest number
of nodes, and some alternative algorithms could produce smaller graphs. Fig-
ure 12 illustrates an example where an alternative merging algorithm could find
more sharing. Given the two states at the top, our greedy algorithm produces
the ∆State at the bottom-left that does not share the two subgraphs denoted
by shaded triangles. In contrast, a more complex algorithm could potentially
identify this sharing opportunity and construct the ∆State at the bottom-right.
However, such alternative algorithms would require more time to search for
appropriate sharing opportunities that result in smaller ∆States.

4 Implementation

We have implemented ∆Execution in two model checkers, JPF and BOX. JPF [42]
is a popular model checker for Java programs, but it is general-purpose and has
a high overhead [14] for the subject programs considered in our study and re-
lated studies [14,44,45]. We have thus implemented a specialized model checker,
called BOX (from Bounded Object eXploration), for efficient exploration of such
subject programs.
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Seq[] lin; // input

Map<int, Object>[] maps; // intermediate result, mutable
int[] offsets; // intermediate result, mutable

Object merge() {
maps = new Map[lin.length](); // all empty maps
offsets = new int[lin.length]; // all zeroes

// the state mask starts as the set {0..lin.length-1}
return createObject(new StateMask(lin.length));

}
Object createObject(StateMask sm) {

Object o = new Object();
foreach (int index : sm) {

int id = lin[index][offsets[index]++];

maps[index].put(id, o);
}

foreach (field f in o) o.f = createDeltaObject(sm);
return o;

}

DeltaObject createDeltaObject(StateMask sm) {
DeltaObject d = new DeltaObject(lin.length);

// state indexes for which to create a new object
StateMask cm = new StateMask();

foreach (int index : sm) {
int id = lin[index][offsets[index]++];
if (id == NULL) d.values[index] = null;

else if (maps[index].contains(id))
d.values[index] = maps[index].get(id);

else { // need to create a new object for this id
cm.add(index); offsets[index]--; }

}

if (cm not empty) {
// key: greedily sharing the new object across indexes

Object co = createObject(cm);
foreach (int index : cm) d.values[index] = co;

}
// optimization for constants
if (d.values is constant with respect to sm)

d = new DeltaObjectConstant(d.values[some index from sm]);
return d;

}

Figure 11: Pseudo-code of the merging algorithm.

4.1 JPF

We have implemented ∆Execution by modifying JPF version 4 [1]. JPF is
implemented as a backtrackable Java Virtual Machine (JVM) running on top
of a regular, host JVM. JPF provides operations for state-space exploration:
storing states, restoring them during backtracking, and comparing them. By
default, JPF compares the entire JVM state that consists of the heap, stack (for
each thread), and class-info area (that is mostly static but can be modified due to
the dynamic class loading in Java). However, our experiments require only the
part of the heap reachable from the root object in the driver. We have therefore
disabled the JPF’s default state comparison and instead use a specialized state
comparison as done in some previous studies with JPF [13,45,48].

We next discuss how we have implemented each component of ∆Execution
in JPF. We call the resulting system ∆JPF. ∆JPF keeps ∆State as a part of the
JPF state, which enables the use of JPF backtracking to restore ∆State at the
split points. We have implemented the library operations on ∆State (such as
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Figure 12: Greedy vs. alternative merging.

arithmetic and relational operations or field reads and writes) to execute on the
host JVM. Effectively, the library forms an extension of JPF; our goal is not to
model check the library itself but the subject code that uses the library. ∆JPF
uses instrumented code to invoke the operations that manipulate the ∆State.

We have implemented splitting in ∆JPF on top of the existing non-deterministic
choices in JPF. It is important to point out that our implementation leverages
JPF to restore the entire ∆State but uses state masks to indicate the active
states. Therefore, ∆JPF manages state masks on the host JVM, outside of
the backtracked state. We have implemented merging also to execute on the
host JVM and to create one ∆State as a JPF state that encodes all the non-
visited states encountered in the previous iteration of the exploration. Recall
from Section 2 that the drivers in our experiments use breadth-first exploration.
∆JPF does not use the optimized state comparison (Section 3.4) except for the
non-exhaustive exploration as described in Section 5.3.

To automate the instrumentation of code for execution on ∆JPF, we have
developed a plug-in for Eclipse version 3.2 [17]. This plug-in takes a subject
program and manipulates its Eclipse internal AST representation to automate
the steps described in Section 3.3.

4.2 BOX

We have developed BOX, a model checker optimized for sequential Java pro-
grams. JPF is a general-purpose model checker for Java that can handle concur-
rent code and can store/restore/compare the entire JVM state that consists of
heap, stack, and class-info area. However, in unit testing of object-oriented pro-
grams, most code is sequential and most drivers need to store/restore/compare
only the heap part of the state. Therefore, we have used the existing ideas
from state-space exploration research [2, 10, 18, 20, 23, 31, 36, 42] to engineer a
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high-performance model checker for such cases.
BOX can store/restore/compare only a part of the program heap reachable

from a given root. The root corresponds to the main object under exploration in
the driver. BOX uses a stateful exploration (by restoring the entire state) across
iterations and stateless exploration (by re-executing one method at a time)
within one iteration. BOX needs to re-execute a method within an iteration
as it does not store the state of the program stack. Instead, BOX only keeps
a list of changes performed on the heap during a single method execution and
restores the state by undoing those changes. For efficient manipulation of the
changes, BOX requires that code under exploration be instrumented.

We refer to the ∆Execution implementation in BOX as ∆BOX. ∆BOX
needs to backtrack the ∆State in order to explore a method for various state
masks. ∆BOX re-executes the method from the beginning to reach the latest
split point. While re-execution is seemingly slow, it can actually work extremely
well in many situations. For example, Verisoft [20] is a well-known model checker
that effectively employs re-execution.

∆BOX implements the components of ∆Execution as presented in Section 3.
∆BOX represents ∆State as a regular Java state that contains both ∆Objects
and objects of the instrumented classes. Our instrumentation for ∆BOX (as
well as for BOX) is mostly manual at this time. ∆BOX uses instrumented
code to perform the operations on the ∆State. Similarly to ∆JPF, ∆BOX
merges states between iterations of the breadth-first exploration. ∆BOX always
employs the optimized state comparison as presented in Section 3.4.

5 Evaluation

We present an experimental evaluation of ∆Execution. We first describe the
ten basic subject programs used in the evaluation and then discuss the im-
provements that ∆Execution provides for an exhaustive exploration of these
programs in both JPF and BOX and a non-exhaustive exploration in JPF. We
finally present the improvements that ∆Execution provides on a larger case
study, an implementation of the AODV routing protocol [34].

We performed all experiments on a Pentium 4 3.4GHz workstation running
under RedHat Enterprise Linux 4. We used Sun’s JVM 1.5.0 07, limiting each
run to 1.8GB of memory and 1 hour of elapsed time.

5.1 Basic subjects

We evaluated ∆Execution on ten subject programs taken from a variety of
sources. All but one of these subjects have been previously used to evaluate
testing and model-checking techniques. The following nine subjects are data
structures:

• binheap is an implementation of priority queues using binomial heaps [45]
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• bst is our running example that implements a set using binary search
trees [6, 48]

• deque is our implementation of a double-ended queue using doubly-linked
lists

• fibheap is an implementation of priority queues using Fibonacci heaps [45]

• heaparray is an array-based implementation of priority queues [6, 48]

• queue is an object queue implemented using two stacks [15]

• stack is an object stack [15]

• treemap is an implementation of maps using red-black trees based on Java
collection 1.4 [6, 45, 48]

• ubstack is an array-based implementation of a stack bounded in size, stor-
ing integers without repetition [11, 33, 40, 47]

The tenth subject is filesystem, which is based on the Daisy file-system
code [35]. While the original code had seeded errors, we use a corrected version
from another study [15]. The primary purpose of our evaluation is to compare
the efficiency of ∆Execution and standard execution, so we use correct imple-
mentations of all basic subjects. (The AODV case study described in Section 5.4
uses code with errors that violate a safety property.)

For each subject, we wrote drivers for standard execution and for ∆Execution
(similar to figures 2 and 3). The drivers exercise the main mutator methods.
For data structures, the drivers add and remove elements. For filesystem, the
drivers create and remove directories, create and remove files, and write to and
read from files.

5.2 Exhaustive exploration

Figure 13 shows the experimental results for exhaustive exploration. For each
subject and several bounds (on the sequence length and parameter size, as in
the driver shown in Figure 3), we tabulate the overall exploration time and peak
memory usage with and without ∆Execution in both JPF and BOX, and the
characteristics of the explored state spaces. The cells marked with “*” represent
that the experiment either ran out of 1.8GB memory or exceeded the 1 hour
time limit.

The columns labeled “std/delta” show the improvements that ∆Execution
provides over standard execution. Note that the numbers are ratios and not
percentages; for example, for binheap and N = 7, the ratio is 9.55x, which
corresponds to about 90% improvement. For JPF, the speedup ranges from
1.03x (for filesystem and N = 3) to 100.81x (for heaparray and N = 9), with
the average of 10.97x, which is over an order of magnitude improvement. (The
averages are geometric means over all the experiments.) For BOX, the speedup
ranges from 0.58x (for filesystem and N = 3) to 4.27x (for stack and N = 7),
with the average of 2.07x.
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experiment JPF time JPF mem. BOX time BOX mem. # states # executions
subject N std delta std/delta std/delta std delta std/delta std/delta std delta std/delta

7 25.40 2.66 9.55x 1.16x 0.80 0.35 2.26x 2.71x 16864 236096 401 588
binheap 8 466.00 15.34 30.37x 1.03x 11.70 3.40 3.44x 1.08x 250083 4001328 863 4636

9 * * * * 107.14 32.91 3.26x 1.04x 1353196 24357528 1069 22785
9 44.34 10.98 4.04x 0.70x 2.45 1.55 1.58x 0.77x 46960 845280 10846 77

bst 10 216.72 49.17 4.41x 0.46x 12.65 7.57 1.67x 0.30x 206395 4127900 22688 181
11 * * * * 68.31 49.86 1.37x 0.18x 915641 20144102 46731 431
8 54.86 6.64 8.27x 1.50x 2.30 0.83 2.77x 1.54x 69281 1108496 576 1924

deque 9 550.57 57.72 9.54x 1.48x 22.53 7.58 2.97x 1.14x 623530 11223540 810 13856
10 * * * * 280.66 100.22 2.80x 1.18x 6235301 124706020 1100 113369
6 3.13 1.52 2.06x 0.98x 0.22 0.16 1.34x - 3003 21021 82 256

fibheap 7 24.88 3.13 7.94x 2.13x 1.17 0.67 1.75x 1.24x 36730 293840 130 2260
8 398.13 28.31 14.06x 0.88x 16.89 9.80 1.72x 0.68x 544659 4901931 209 23454
3 2.03 1.98 1.03x 0.97x 0.15 0.25 0.58x - 58 6264 576 10

filesystem 4 17.13 3.70 4.63x 11.50x 1.20 0.72 1.67x 1.72x 1353 194832 1568 124
5 * * * * 37.84 30.01 1.26x 0.97x 64576 11623680 3940 2950
8 104.50 4.18 24.99x 2.31x 1.24 0.89 1.39x 1.24x 97092 873828 258 3386

heaparray 9 2,718.12 26.96 100.81x 1.22x 12.02 9.00 1.33x 0.53x 804809 8048090 359 22418
10 * * * * 128.27 110.78 1.16x 0.58x 8722946 95952406 488 196623
6 7.76 1.62 4.79x 2.64x 0.37 0.18 2.10x - 10057 70399 45 1564

queue 7 104.41 6.37 16.38x 1.77x 3.90 0.94 4.14x 1.44x 147995 1183960 60 19732
8 * * * * 78.79 25.32 3.11x 1.00x 2578641 23207769 77 301399
6 4.95 1.46 3.38x 1.01x 0.31 0.12 2.50x - 9331 65317 42 1555

stack 7 59.44 5.08 11.71x 1.31x 2.93 0.68 4.27x 1.87x 137257 1098056 56 19608
8 * * * * 60.07 17.80 3.37x 1.31x 2396745 21570705 72 299593
10 579.50 7.61 76.14x 2.69x 3.29 1.25 2.63x 1.04x 13076 261520 3579 73

treemap 11 1,754.34 19.42 90.34x 3.04x 10.80 3.26 3.32x 1.38x 35405 778910 5269 147
12 * * * * 32.81 9.14 3.59x 1.34x 96401 2313624 7774 297
8 60.37 6.26 9.64x 1.57x 2.28 1.29 1.77x 1.30x 109681 987129 595 1659

ubstack 9 1,482.75 48.75 30.41x 1.48x 22.69 13.59 1.67x 0.66x 991189 9911890 931 10646
10 * * * * 271.56 175.61 1.55x 0.62x 9922641 109149051 1414 77191

gmean - - - 10.97x 1.51x - - 2.07x 0.97x - - - 3040x

Figure 13: Overall time and memory for exhaustive exploration in JPF and BOX and characteristics of the explored state
spaces.
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experiment standard execution time ∆Execution time

subject N exec. comp. backt. exec. comp. backt. merg.

binheap 7 18.21 0.54 6.65 0.57 0.59 1.10 0.39
8 369.49 5.55 90.97 4.09 6.11 1.04 4.10

bst 9 20.77 3.75 19.81 2.30 5.42 2.01 1.26
10 104.54 20.68 91.50 7.32 31.98 4.02 5.86
6 1.24 0.07 1.82 0.21 0.13 1.06 0.12

fibheap 7 15.03 0.52 9.33 0.40 0.79 1.09 0.84
8 257.91 8.21 132.01 3.89 11.43 1.34 11.64

treemap 10 567.16 2.65 9.69 1.39 4.34 1.48 0.41
11 1,724.36 8.55 21.44 2.48 14.36 1.59 0.98

Figure 14: Time breakdown for JPF experiments.

Note that the ratio less than 1.00 means that ∆Execution ran slower (or
required more memory) than standard execution, for example for filesystem

and N = 3 in BOX. While this can happen for smaller bounds, ∆Execution
consistently runs faster than standard execution for important cases with larger
bounds.

∆Execution provides these significant improvements because it exploits the
overlap among executions in the state-space exploration. Figure 13 shows the
information about the state spaces explored in the experiments. Note that the
number of explored states is the same with and without ∆Execution. This is
as expected: ∆Execution focuses on improving the exploration time and does
not change the exploration itself. (We used the difference in the number of
states to debug our implementations of ∆Execution.) However, the numbers
of executions with and without ∆Execution do differ, and the column labeled
“std/delta” shows the ratio of the numbers of executions. The ratio ranges
from 10x to 301399x. While this ratio effectively enables ∆Execution to provide
the speedup, there is no strict correlation between the ratio and the speedup.
The overall exploration time depends on several factors, including the number
of execution paths, the number of splits, the cost to execute one path, the
frequency of constants in ∆States, and the sharing of execution prefixes.

5.2.1 Time

We next discuss in more detail where state-space exploration spends time and
where ∆Execution reduces the time. Each state-space exploration includes
three components—(1) code execution, (2) state comparison, and (3) state
backtracking—and ∆Execution additionally includes (4) merging. Figures 14
and 15 show the breakdown of the overall exploration time on these four compo-
nents for JPF and BOX. We show the numbers for only some of the experiments
(for subjects from Section 5.3); the conclusions are the same for the other ex-
periments.

In JPF, ∆Execution significantly reduces the time for code execution and
state backtracking. For example, for binheap and N = 7, ∆Execution reduces
the execution time from 18.21s to 0.57s and the backtracking time from 6.65s
to 1.10s. These savings are big enough and make the times for merging and
state comparison irrelevant. (For this exploration, ∆JPF does not even use the
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experiment standard execution time ∆Execution time

subject N exec. comp. backt. exec. comp. backt. merg.

7 0.23 0.34 0.14 0.09 0.15 0.00 0.06
binheap 8 4.58 3.72 2.88 1.03 1.45 0.01 0.87

9 21.64 68.57 15.27 4.73 21.95 0.00 6.20
9 0.17 1.93 0.19 0.48 0.74 0.01 0.28

bst 10 0.60 10.72 0.97 1.83 3.83 0.01 1.85
11 3.05 57.79 4.71 8.16 20.46 0.02 21.06
6 0.06 0.08 0.04 0.04 0.05 0.00 0.02

fibheap 7 0.32 0.54 0.24 0.20 0.24 0.00 0.18
8 4.77 7.80 3.90 2.79 3.78 0.00 3.15
10 0.20 2.86 0.20 0.34 0.78 0.01 0.07

treemap 11 0.60 9.72 0.52 0.64 2.29 0.02 0.23
12 1.51 29.69 1.26 1.47 6.91 0.02 0.67

Figure 15: Time breakdown for BOX experiments.

optimized state comparison, from section 3.4.) As mentioned earlier, JPF is a
general-purpose model checker that stores and restores the entire Java states
and thus has a high execution and backtracking overhead.

In BOX, ∆Execution sometimes results in a higher code execution time, yet
has a smaller overall exploration time. The reason is that ∆Execution achieves
significant savings in the state comparison using the optimized algorithm from
Section 3.4. For example, for bst and N = 11, ∆Execution increases the exe-
cution time from 3.05s to 8.16s. However, it reduces the state comparison time
from 57.79s to 20.46s, which more than makes up for the longer execution time.
Note that the number of states and state comparisons is the same in both stan-
dard execution and ∆Execution, but the optimized state comparison is only
possible for ∆Execution. Indeed, it is the execution on ∆States that enables
the simultaneous comparison of a set of states.

5.2.2 Memory

Figure 13 also provides a comparison of memory usage. Specifically, the columns
labeled “mem. std/delta” show the ratio of peak memory usage for standard
execution versus ∆Execution. Our setup uses the Sun’s jstat monitoring tool
to record the peak usage of garbage-collected heap in the JVM running an
experiment. Although this particular measurement does not include the entire
memory used by the JVM process, it does represent the most relevant amount
used by a model checker. (The cells marked “-” represent experiments where the
running time is so short that jstat does not provide accurate memory usage.)

For JPF, standard execution uses more memory than ∆Execution for most
experiments and uses 1.51x more memory on average. However, ∆Execution
occasionally uses more memory, for example for bst. For BOX, ∆Execution
and standard execution on average use about the same amount of memory.

Many factors, already mentioned for exploration time, can influence the
memory usage, but an important factor seems to be the number of constant
∆Objects. ∆Execution uses these objects to represent values that are the same
across all states in a ∆State. There is a relatively strong positive correlation
between the percentage of constant ∆Objects and the memory ratio for an
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experiment standard execution ∆Execution ratio
subject N #states #exec. tot.time #states #exec. tot.time tot. impr.

binheap 28 28 15680 4.38 28 956 4.12 1.06x
binheap 29 29 16820 4.49 29 958 4.12 1.09x
binheap 30 30 18000 4.64 30 1040 4.22 1.10x

bst 20 166064 10168360 546.65 150192 49645 88.70 6.16x
bst 21 381535 22466178 1,232.00 416946 77951 228.19 5.40x
bst 22 677848 43605496 2,397.16 626555 83569 367.64 6.52x

fibheap 28 881 182323 18.73 1041 7810 20.25 0.93x
fibheap 29 961 184320 18.94 1157 7269 20.19 0.94x
fibheap 30 1144 289571 28.53 1354 10981 28.15 1.01x

treemap 20 11879 1492080 808.72 11952 39131 43.50 18.59x
treemap 21 22455 2893212 1,478.80 20590 48974 67.80 21.81x
treemap 22 38126 4918100 2,275.67 36550 59693 105.00 21.67x

gmean - - - - - - - 3.37x

Figure 16: Overall time for non-exhaustive exploration.

experiment. For example, bst and N = 11 has a poor memory ratio, and the
percentage of constant objects in ∆States is 33%, the lowest of all subjects.
For treemap and N = 12, on the other hand, ∆Execution uses less memory
than standard execution, and the percentage of constant objects is 69%. These
percentages are computed across the entire exploration: it is the percentage of
constant delta objects produced during merging from the total number of delta
objects produced. The Ph.D. dissertation of the first author [12] includes more
details on the impact of constants on memory and time performance.

5.3 Non-exhaustive exploration

We next evaluate ∆Execution for a different state-space exploration. While
exhaustive exploration is the most commonly used, there are several others
such as random [11, 33] or symbolic execution [13, 26, 48]. Recently, Visser et
al. [45] have proposed abstract matching, a technique for non-exhaustive state-
space exploration of data structures. The main idea of abstract matching is
to compare states based on their shape abstraction: two states that have the
same shape are considered equivalent even if they have different values in nodes.
For example, all binary search trees of size one are considered equivalent. The
exploration is pruned whenever it reaches a state equivalent to some previously
explored state, which means that abstract matching can miss some portions of
the state space.

We have chosen to evaluate ∆Execution for abstract matching because the
JPF experiments done by Visser et al. [45] have shown that abstract matching
achieves better code coverage than five other exploration techniques, including
exhaustive exploration, random, and symbolic execution. (The experiments did
not consider whether higher code coverage results in finding more bugs.) Our
evaluation uses the same four subjects used to evaluate abstract matching in
JPF: binheap, bst, fibheap, and treemap. We ran each subject for sequence
bound up to N = 30 (as done in [45]) or until the experiment timed out of 1
hour. We used the same drivers as for exhaustive exploration but randomized
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the order of non-deterministic choices in getInt and used 10 different random
seeds; Visser et al. use the same experimental setup to minimize the bias that
a fixed order of method/value choices could have when combined with abstract
matching.

Figure 16 shows the results for abstract matching with and without ∆Execution.
∆Execution significantly reduces the overall exploration time for two subjects
(bst and treemap) and slightly reduces or increases the time for the other two
subjects (binheap and fibheap). ∆Execution provides a smaller speedup for the
bounds explored for abstract matching (Figure 16) than for the bounds explored
for exhaustive exploration (Figure 13). This can be attributed to the reduced
number of states and executions in abstract matching compared to exhaustive
exploration. For example, for bintree, abstract matching for N = 20 explores
fewer states and executions (166,064 and 10,168,360, respectively) than exhaus-
tive exploration for N = 11 (915,641 and 20,144,102). In addition, there is less
similarity across states and executions in abstract matching than in exhaustive
exploration. Indeed, abstract matching selects the states such that they differ
in shape. (The peculiarity of binheap is that it has only one possible shape for
any given size.)

Note that abstract matching can explore a different number of states and
executions with and without ∆Execution. The reason is that standard execution
and ∆Execution explore the states in a different order: while standard execution
explores each state index in order, ∆Execution explores at once various subsets
of state indexes based on the splits during the execution. Thus, these executions
can encounter in different order states that have the same shape, and only
the first encountered of those states gets explored. The randomization of non-
deterministic method/value choices, which is necessary for abstract matching,
also minimizes the effect that different orders could introduce for ∆Execution
and standard execution. As Figure 16 shows, ∆Execution can explore more
states (for example for bst and N = 21) or fewer states (for example for bst

and N = 20) than standard execution, but ∆Execution speeds up exploration
whenever the shapes have similarities.

5.4 AODV case study

We also evaluated ∆Execution on a larger application, namely the implementa-
tion of the Ad-Hoc On-Demand Distance Vector (AODV) routing protocol [34]
in the J-Sim network simulator [24]. This application was previously used to
evaluate a J-Sim model checker [39] and a technique for optimizing the execution
of deterministic code blocks in JPF [14].

AODV is a routing protocol for ad-hoc wireless networks. Each of the nodes
in the network contains a routing table that describes where a message should
be delivered next, depending on the target. The safety property we check in
this study expresses that all routes from a source to a destination should be free
of cycles, i.e., not have the same node appear more than once in the route [39].

The implementation of AODV, including the J-Sim library classes that it
depends on, consists of 43 classes with over 3500 non-blank, non-comment lines
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experiment JPF time JPF mem. # states

subject N std delta std/delta std/delta

8 81.95 73.18 1.12x 0.52 14741
aodv 9 296.33 226.39 1.31x 0.58 51488

10 1,057.65 739.80 1.43x 0.51 173468

Figure 17: Exploration of AODV in JPF.

of code. We instrumented this code using the Eclipse plug-in that automates
instrumentation for ∆Execution on JPF. The resulting instrumented code con-
sisted of 143 classes with over 9500 lines of code. We did not try this case study
in BOX since it currently requires much more manual work for instrumentation.

We used for this case study the driver previously developed for AODV [39].
Like the bst driver shown in Figure 3, the AODV driver invokes various methods
that simulate protocol actions (sending messages, receiving messages, dropping
messages etc.). Unlike the bst driver, the AODV driver (1) includes guards
that ensure that an action is taken only if its preconditions are satisfied and (2)
includes a procedure that checks whether the resulting protocol state satisfies
the safety property described above. In our experiments, when a violation is
encountered, the driver prunes that state/path but continues the exploration.

We ran experiments on three variations of the AODV implementation, each
containing an error that leads to a violation of the safety property [39]. Figure 17
shows the results of experiments on one variation. Since the property was first
violated in the ninth iteration for all three variations, the results for the other
two variations were similar, and we do not present them here. It is important
to point out that we continue the exploration after encountering a bad state.

For AODV, ∆Execution improves the overall exploration time for up to
1.43x, while taking about twice as much peak memory as standard execution.
We believe that it would be possible to improve these results by using a spe-
cialized merging at the abstract state level. Namely, the default merging in
∆Execution works at the concrete state level, and AODV operates on complex
states, including for example routing tables. Even when two routing tables rep-
resent the same abstract state (say a set {〈N1, N0〉, 〈N2, N0〉}), they could have
different concrete states (say lists [〈N1, N0〉, 〈N2, N0〉] and [〈N2, N0〉, 〈N1, N0〉]).
While such differences of concrete states would disallow the default merging,
it should be possible to merge those states because they represent the same
abstract state.

6 Related work

Handling state is the central issue in explicit-state model checkers [22,23,28,30].
For example, JPF [42] implements techniques such as efficient encoding of Java
program state and symmetry reductions to help reduce the state-space size [28].
∆Execution uses the same state comparison, based on Iosif’s depth-first heap
linearization [23]. However, ∆Execution leverages the fact that ∆States can be
explored simultaneously to produce a set of linearizations. Musuvathi and Dill
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proposed an algorithm for incremental state hashing based on a breadth-first
heap linearization [30]. We plan to implement this algorithm in JPF and to use
∆Execution to optimize it.

The traditional heap linearization [23, 47] declares two states equivalent if
they have the same structure and primitive values, effectively comparing states
modulo object identities. Abstract matching [18, 44, 45] is a technique that
compares states based on an abstraction function. Visser et al. [44,45] recently
proposed the shape abstraction for the heap object graph. Shape abstraction
is a “lossy” technique, i.e., it explores only a subset of the state-space aiming
for high code coverage while possible missing some paths. Although abstract
matching results in fewer states that are similar, the experimental results show
that ∆Execution is beneficial even for abstract matching.

Darga and Boyapati proposed glass-box model checking [15] for pruning
search. They proposed a static analysis that can reduce state space without
sacrificing coverage. Glass-box exploration represents the search space as a
BDD and identifies, without execution, parts of the state space that would not
lead to more coverage. However, glass-box exploration requires the definition of
executable invariants in order to guarantee soundness. In contrast, ∆Execution
does not require any additional annotation on the code.

Symbolic execution [26,43,48] is a special kind of execution that operates on
symbolic values. In symbolic execution, the state includes symbolic variables
(that can represent a set of concrete values) and a path-condition that encodes
constraints on the symbolic variables. Symbolic execution has recently gained
popularity with the availability of fast constraint solvers and has been applied
to test-input generation of object-oriented programs [26,43, 48]. In the general
case, constraints generated during symbolic execution are undecidable. The
recent techniques combining symbolic execution and random execution show
good promise in handling some of these problems [8,21,38]. Conceptually, both
symbolic execution and ∆Execution operate on a set of states. While symbolic
execution can represent an unbounded number of states, ∆Execution uses an
efficient representation for a bounded set of concrete states. The use of concrete
states allows ∆Execution to overcome the problems that symbolic execution
has. Moreover, we plan to investigate how to apply ∆Execution to speed up
symbolic execution by sharing symbolic states.

Shape analysis [27,37,49] is a static program analysis that verifies programs
that manipulate dynamically allocated data structures. Shape analysis uses ab-
straction to represent infinite sets of concrete heaps and performs operations on
these sets, including operations similar to splitting and merging in ∆Execution.
Shape analysis computes overapproximations of the reachable sets of states and
loses precision to obtain tractability. In contrast, ∆Execution operates precisely
on sets of concrete states but can explore only bounded executions.

Offutt et al. [32] proposed DDR, a technique for test-input generation where
the values of variables are ranges of concrete values. DDR uses symbolic ex-
ecution (on ranges) to generate inputs. Intuitively, DDR can be efficiently
implemented as the ranges are split (using a technique called domain splitting)
when constraints are added to the system. DDR requires inputs to be given as
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ranges, implements a lossy abstraction (to reduce the size of the state space in
favor of more efficient decision procedures), and does not support object graphs.
∆Execution focuses on object graphs and does not require inputs to be ranges,
but the use of ranges as a special representation in ∆States could likely improve
∆Execution even more, and we plan to investigate this in the future.

In the introduction, we have discussed the relationship between symbolic
model checking [9, 25] and ∆Execution. ∆Execution is inspired by symbolic
model checking and conceptually performs the same exploration but handles
states that involve heaps. BDDs are typically used as an implementation tool for
symbolic model checking. Predicate abstraction in model checking [4,5] reduces
the checking of general programs into boolean programs that are efficiently
handled by BDDs. While predicate abstraction has shown great results in many
applications, it does not handle well complex data structures and heaps. BDDs
have been also used for efficient program analysis [29, 46] to represent analysis
information as sets and relations. These techniques employ either data [29]
or control abstraction [46] to reduce the domains of problems and make them
tractable. It remains to investigate if it is possible to leverage on a symbolic
representation, such as BDDs, to represent sets of concrete heaps to efficiently
execute programs in ∆Execution mode.

We previously proposed a technique, called Mixed Execution, for speeding up
straightline execution in JPF [14]. Mixed Execution considers only one state and
uses an existing JPF mechanism to execute code parts outside of the JPF back-
tracked state, improving the exploration time up to 37%. ∆Execution considers
multiple states and improves the exploration time by an order of magnitude.

7 Conclusions

We have presented ∆Execution, a novel technique that significantly speeds up
state-space exploration of object-oriented programs. State-space exploration
is an important component of model checking and automated test generation.
∆Execution executes the program simultaneously on a set of standard states,
sharing the common parts across the executions and separately executing only
the “deltas” where the executions differ. The key to efficiency of ∆Execution
is ∆State, a representation of a set of states that permits efficient operations
on the set. The experiments done on two model checkers, JPF and BOX, and
with two different kinds of exploration show that ∆Execution can reduce the
time for state-space exploration from two times to over an order of magnitude.
The experiments also reveal that ∆Execution takes on average less memory in
JPF and roughly the same amount of memory in BOX.

In the future, we plan to apply the ideas from ∆Execution in more domains.
First, we plan to manually transform some important algorithms to work in the
“delta mode”, as we did for the optimized comparison of states. For instance, we
plan to transform merging of ∆States, which would further improve the results
of ∆Execution. Second, we plan to evaluate automatic ∆Execution outside
of state-space exploration. For example, in regression testing the old and the
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new versions of a program can be run in the “delta mode”, which would allow a
detailed comparison of the states from two versions. We believe that ∆Execution
can also provide significant benefits in these new domains.
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