
1

Interface Grammars for Modular Software Model
Checking

Graham Hughes, Tevfik Bultan

Abstract—Verification techniques that rely on state enumera-
tion (such as model checking) face two important challenges: 1)
State-space explosion: exponential increase in the state space with
the increasing number of components. 2) Environment generation:
modeling components that are either not available for analysis,
or that are outside the scope of the verification tool at hand.
We propose a semi-automated approach for attacking these two
problems. In our approach, interfaces for the components that are
outside the scope of the current verification effort are specified
using an interface specification language based on grammars.
Specifically, an interface grammar for a component specifies
the sequences of method invocations that are allowed by that
component. Using interface grammars, one can specify nested call
sequences that cannot be specified using interface specification
formalisms that rely on finite state machines. Moreover, our
interface grammars allow specification of semantic predicates
and actions, which are Java code segments that can be used to
express additional interface constraints.

We have built an interface compiler that takes the interface
grammar for a component as input and generates a stub for that
component. The resulting stub is a table-driven parser. Invocation
of a method within the component becomes the lookahead symbol
for the stub/parser. The stub/parser uses a parser stack, the
lookahead, and a parse table to guide the parsing. The semantic
predicates and semantic actions that appear in the right hand
sides of the production rules are executed when they appear
at the top of the stack. The stub/parser generated from the
interface grammar of a component can be used to replace that
component during state space exploration, either to assuage the
state space explosion, or to provide an executable environment for
the component that is being verified. We conducted a case study
by writing an interface grammar for the Enterprise JavaBeans
(EJB) persistence interface. Using our interface compiler we
automatically generated an EJB stub using the EJB interface
grammar. We used the JPF model checker to check EJB clients
using this automatically generated EJB stub. Our results show
that EJB clients can be verified efficiently with JPF using our
approach, whereas they cannot be verified with JPF directly since
JPF cannot handle EJB components.

Index Terms—specification languages, model checking, inter-
face grammars, modular verification

I. INTRODUCTION

MODEL checking is an algorithmic verification technique
that exhaustively explores the state space of a system

in order to check for violations of temporal properties [1].
Earlier model checkers, with their dedicated specification
languages, have been used for specification and analysis
of numerous hardware and software systems [2], [3]. More
recently, the application of model checking techniques directly

Both authors are affiliated with the Computer Science Department of the
University of California, Santa Barbara, CA, 93106 USA. Email: {graham,
bultan}@cs.ucsb.edu

This work is supported by NSF grants CCF-0614002 and CCF-0716095.

to programs [4]–[11] has shown promise for specific verification
tasks, such as checking for concurrency errors [5] or checking
device drivers for interface violations [6]. However, software
model checking is not yet mature enough to be widely used
in software development. There are two related problems that
hinder the applicability of model checking to software in a
wider scale: 1) state space explosion (i.e., the exponential
increase in the search space by increasing number of variables
and concurrent components) limits the scalability of model
checking techniques; and 2) environment generation (i.e.,
finding models for the parts of the software that are outside the
scope of the model checker) limits the applicability of model
checking to the domains where such environment models are
available.

These limitations are shared by all software model checking
techniques and tools. In particular, they are apparent in the
Java Path Finder (JPF) [5], a model checker for Java programs.
JPF cannot handle native calls in Java programs. Hence, in
order to use JPF for verification of Java programs, one has to
write environment models for any component that uses native
code, which is a daunting task.

Inability to handle native code is not only a limitation specific
to JPF, but it is the sign of an inherent problem in model
checking. In order to search the state space of a program
exhaustively (as most model checkers attempt to do), one needs
a representation of that state space. JPF chooses to model the
state space of a Java program by recording configurations of
the Java Virtual Machine (JVM). JPF has its own JVM which
keeps track of different configurations that are visited during
the execution of the program that is being verified. Execution
of native code, by definition, moves the program execution
outside the scope of the JVM and hence cannot be observed
by JPF.

Even if one tries to keep track of program execution at
a lower level of abstraction, perhaps by keeping track of
the physical memory and processor state, a similar problem
will arise if one tries to analyze a distributed program which
involves interactions among multiple machines, or a program
that interacts with a database server, etc. Eventually, this will
require keeping track of the state of each and every component
that the program interacts with. This is unlikely to be a scalable
approach due to the state space explosion. Moreover, in many
(if not the majority) of cases, the developer who is trying to
check the correctness of a program may not have access to the
code of all the components that the program interacts with.

In this paper, we propose a semi-automated approach to
attack the above mentioned problems. We propose an interface
specification language and require the users to write interface

2

In
te

rfa
ce

G

ra
m

m
ar

Interface
Compiler

Program

Model
Checker

Top-down
parser

parse
table

semantic
predicates

and
semantic
actions

pa
rs

er
 s

ta
ck

C
om

po
ne

nt
 S

tu
b

method invocation
(lookahead)

Fig. 1. An overview of our approach

specifications for components that are outside the scope of the
current verification effort. Our interface specification language
allows a user to write an interface grammar for a component
to specify the constraints on the ordering of calls made by the
program to that component. This approach enables modeling
of nested call structures that cannot be expressed by interfaces
based on finite state machines. Moreover, in order to provide a
flexible approach that can handle complex interface constraints,
our interface specification language allows the users to escape
to Java and write semantic predicates or actions in Java,
specifying the behavior of the component (similar to the
approach used by parser generators such as Yacc [12]). We
believe that our approach provides a balance between two
extreme alternatives, i.e., writing stubs completely manually or
automatically extracting simple abstract models such as finite
state machines.

Fig. 1 shows an overview of our approach. We have built
an interface compiler that takes an interface grammar as
input and automatically generates a stub for the corresponding
component. The component stub is a table-driven top-down
parser that parses the sequence of incoming method calls (i.e.,
the method invocations) based on the grammar provided in
the interface specification. During execution, the stub/parser
executes the semantic predicates and actions at the appropriate
times based on their placement in the productions of the
interface grammar. If the program that uses the component
violates the component’s interface, then the component stub
either reports a parse error—which corresponds to an error in
the call sequence—or a semantic predicate violation—which
corresponds to an error in an argument that is passed to the
component.

In order to write compact interfaces it is necessary to support
nondeterminism in an interface specification language. A stub
generated from an interface specification of a component
should generate an over-approximation of the behavior of that
component. The use of nondeterminism allows specification
of a set of behaviors in a concise manner. To address
this need, our interface specification language provides a

nondeterministic switch operator; that is, if two or more switch
cases evaluate to true, then one of them is selected for execution
nondeterministically.

We assume that the target software model checker provides a
nondeterministic choice primitive. Support for nondeterministic
choice primitives in software model checking is common [4]
since it is a useful tool for environment modeling [13], i.e.,
it can be used for developing environment models that over-
approximate the behaviors of the components that are outside
the scope of the model checker. Our current interface compiler
uses the nondeterministic choice primitives provided by JPF.
We can easily modify our interface compiler to support other
model checkers as long they support nondeterministic choice.
During verification, the model checker exhaustively checks all
possible choices that can result from the use of nondeterministic
choice primitives. While generating the stub code, our interface
compiler converts the nondeterministic choices in the interface
grammar to calls to the nondeterministic choice primitive of the
model checker. This means that all possible behaviors provided
by the interface will be checked by the model checker during
verification of the program with the automatically generated
stub.

Our approach enables model checking to be executed in
a modular fashion by replacing different components in the
software system with environment models generated from their
interfaces. Our current approach has two limitations: 1) We
focus on client-side verification and do not check the server-
side interface conformance. 2) Our interface grammars and
interface compiler do not handle component interfaces with
call-backs. We will clarify these limitations with a hypothetical
scenario. Assume that we wish to check the behavior of a
component A which calls the methods of another component
B. Also, assume that, we are unable to include component B
in our verification effort (either we may not have access to
component B, or it may not be possible to represent component
B in a form that can be analyzed with the available verification
tool). In this scenario, our approach works as follows: We ask
the user to write an interface grammar that summarizes (i.e.,
over-approximates) the behavior of component B. Our interface
compiler converts this interface grammar to an executable stub
for component B. Then, we check the behavior of component
A by replacing component B with the automatically generated
stub. Due to limitation 2, currently, our tool only handles
scenarios where component A calls the methods of component
B but there is no call-back from component B to component
A. Furthermore, we do not currently check the conformance
of component B to the interface specification. We believe that
both of these limitations can be addressed in the future by
extending our interface grammar language and compiler to a
bi-directional interface language and a bi-directional interface
compiler.

We conducted a case study to demonstrate our approach
using Enterprise JavaBeans (EJB) Persistence API clients. We
wrote an interface grammar for the Persistence API and verified
Persistence API clients using a stub automatically generated
from this interface. Our experimental results demonstrate
that interface grammars can be used effectively in modular
verification.

3

The rest of the paper is organized as follows. Section II
provides simple interface grammar examples and a formal
model for interface grammars. Section III presents our interface
specification language. Section IV discusses the interface
compiler. Section V discusses the EJB case study. Section VI
includes a discussion on related work, and Section VII
concludes the paper.

II. INTERFACE GRAMMARS

We propose interface grammars as a language for specifica-
tion of component interfaces. The core of an interface grammar
is a set of production rules that specifies all acceptable method
call sequences for the given component. Given an interface
specification for a component, our interface compiler generates
a stub for that component. This stub is a table-driven top-down
parser [14] that parses the sequence of incoming method calls
(i.e., the method invocations) based on the interface grammar
defined by the interface specification.

For example, consider a component for transaction man-
agement with the following methods: begin, which begins
a transaction; commit which commits a transaction; and
rollback which rolls back a transaction. Now consider the
following (simplified) interface grammar:

Grammar 1. Simple transaction grammar

Start → Inactive

Inactive → begin Active

| ε

Active → commit Inactive

| rollback Inactive

This is a context free grammar with the nonterminal symbols
Start, Inactive, and Active; the start symbol Start; and terminal
symbols begin, commit, and rollback. Note that this
grammar specifies a language that consists of sequences of
symbols begin, commit, and rollback. In our framework,
this language corresponds to the set of acceptable incoming call
sequences for a component, i.e., the interface of the component.
According to the above interface grammar, the first call to the
transaction component must be a begin call which then should
be followed by a commit or a rollback call.

Given the above grammar we can construct a parser which
can serve as a stub for the transaction component. This
stub/parser will simply use each incoming method call as
a lookahead symbol and implement a table driven parsing
algorithm. If at some point during the program execution the
stub/parser cannot continue parsing, then we know that we
have caught an interface violation.

However, the simple interface example we gave above does
not require the power of grammars. The same interface can
be specified using finite state machines. Instead, consider a
transaction manager that allows nested transactions (also known
as subtransactions). In nested transactions a subtransaction can
begin within the scope of another transaction, hence allowing
only a subset of the operations of the parent transaction to be
rolled back in case of an error. The following interface grammar
specifies the interface for the nested transaction manager:

Grammar 2. Nested transaction grammar

Start → Base

Base → begin Base Tail Base

| ε

Tail → commit

| rollback

Note that this interface specification allows nesting of
matching begin and commit or rollback calls and,
therefore, cannot be expressed using finite state machines.

Our interface specification language also supports specifying
semantic predicates and semantic actions that can be used to
write complex interface constraints. A semantic predicate is a
piece of code that can influence the parse, whereas a semantic
action is a piece of code that is executed during the parse.
Semantic predicates and actions provide a way to escape out
of the interface grammar framework and write Java code that
becomes part of the component stub. The semantic predicates
and actions are inserted to the right hand sides of the production
rules, and they are executed at the appropriate time during the
program execution (i.e., when the parser finds them at the top
of the parse stack).

To demonstrate the use of semantic predicates and
actions, we add to our nested transaction manager the
setRollbackOnly method which forces all pending trans-
actions to finish with rollback instead of commit. The
method setRollbackOnly can only be invoked if there is
an active transaction, and after it is invoked, the only way
to finish the pending transactions is to invoke rollback.
We will add a r global Boolean variable to keep track of the
rollback-only state, and a l global variable to keep track of
how many pending transactions are active; if l ≡ 0 we can
reset r to false. If we denote the semantic action containing
the code x as 〈〈x〉〉 and the semantic predicate evaluating the
code p as JpK, then the amended grammar looks as follows:

Grammar 3. Nested transaction grammar with semantic
elements

Start → 〈〈r ← false; l← 0〉〉 Base

Base → begin 〈〈l← l + 1〉〉 Base Tail

〈〈l← l − 1; if l ≡ 0 then r ← false〉〉 Base

| setRollbackOnly 〈〈r ← true〉〉 Base

| ε

Tail → Jr ≡ falseK commit
| rollback

To summarize, the call sequences specified by Grammar 1
above can also be specified using a finite state machine.
However, the call sequences for recursive transactions specified
by Grammars 2 and 3 cannot be specified using finite state
machines.

A. Formal Interface Grammars

The above description of interface grammars has been
somewhat informal; we have not defined the effects of the

4

semantic elements used in Grammar 3 nor have we established
what sentences belong to such a grammar. Although the
methods used in the Grammars 1, 2, and 3 do not have any
arguments and do not return any values, we do not restrict
interface grammars to specification of such sequences. I.e.,
interface grammars have the ability to specify constraints on
the method call arguments and the return values. Hence, there
are two crucial differences between the standard context free
grammars and the interface grammars: 1) Instead of specifying
a set of sentences that correspond to sequences of terminal
symbols, interface grammars specify sequences of method calls
and returns, where the method arguments and return values
have to be taken into account, 2) Interface grammars have
semantic actions and predicates, and without specifying the
scoping and execution semantics for these semantic actions
and predicates the semantics of interface grammars cannot be
formalized. Here we present a formal definition for interface
grammars that clarifies both of these differences.

We define our grammars based on recognizing possible
execution traces. We restrict our focus to method calls between
a component and the rest of the program, and further on method
calls from the program to the component, and the returns of
these calls. We denote the initiation of a method call from
a program into the component for the method a by ?a, and
we denote the termination of that method call—that is, the
return—by ¿a. For accurate modeling of a component, we
must also track the method arguments and the return values.
We assume that methods have one argument and one return
value; multiple arguments are represented as a tuple. We write
the initiation of a method call a with argument x by ?a[x]
and the termination of that method call with return value y by
¿a[y]. We frequently write the initiation of a method call that
takes no arguments as ?a[] or ?a[⊥], and the termination of a
method call that has a void return value as ¿a[] or ¿a[⊥].

We can use these traces to formalize interface grammars. We
do so here, using notation based on that of Nielson, et al. [15].
Briefly, the fundamental sets we deal with here are written
in boldface; v∗ means the Kleene closure of v; f [x 7→ y] is
the function that maps x to y and otherwise behaves as f ;
f [x 7→ y, a 7→ b] = f [x 7→ y][a 7→ b]; f � g is the function
that behaves as f for all values in dom(f) and behaves as g
otherwise; and [] is a function with empty domain and range.

We require several sets to define the semantics of our
grammars. Accordingly, we presume the following ground sets:
B = {true, false} is the set of Boolean values; S ∈ NT is a
member of the set of nonterminals; ?a, ¿a ∈ Σ are members
of the alphabet of method calls and returns, where ?a denotes
a call to a method a and ¿a denotes the return from a method
a; ξ ∈ Loc is a member of the set of locations where we may
store values of variables; x, y ∈ Var are variables; and Dom
is an unconstrained domain set that represents the values the

variables can take. Using these we define the following sets:

ρ ∈ Env = Var→ Loc

ς ∈ Store = Loc→ Dom

σ ∈ State = Var→ Dom

〈〈f〉〉 ∈ Action = State→ State

JpK ∈ Pred = State→ B

∆x ∈ Decl ⊆ Var

s1, s2 . . . ∈ Sym = NT ∪Σ ∪Action ∪Pred

∪Decl ∪ {↑, ↓}
A,B,C ∈ Sym∗

Prod = P(NT× Sym∗)

Here ρ, ς and σ are partial functions; every location may not
be assigned a value, nor must every variable be bound to a
location. In practice we will construct elements of State by
composing elements of Env and Store; so σ = ς◦ρ. We use ↑
and ↓ to denote opening and closing a new scope, respectively.

Unfortunately the above definition of Σ is not really
sufficient; specifically we must record, as a part of our traces,
the method arguments and method return values. We define
the set Σ◦ = Σ × Var to be the set of symbols combined
with variable names to denote the arguments or return values
as appropriate, and Σ• = Σ × Dom to be the set of
symbols combined with values that represent the record of
a trace. To ease the presentation, we write 〈?a, x〉 ∈ Σ◦
as ?a(x), and 〈?a, d〉 ∈ Σ• as ?a[d]. Similarly we need a
Sym◦ = NT ∪Σ◦ ∪Action ∪ Pred ∪Decl ∪ {↑, ↓} and
Prod◦ = P(NT× Sym∗◦).

From this we can define an interface grammar G as a tuple

G = 〈NT,Σ◦,Q,SA,SP,P, S〉

with Q ⊆ State being the grammar states, SA ⊆ Action
being the semantic actions used in the grammar, SP ⊆ Pred
being the semantic predicates used in the grammar, P ⊆
Prod◦ being the production rules, and S ∈ NT being the start
symbol. We would like to define derivation for this grammar,
so that we can fully describe whether a sentence is in the
language of the grammar. We define single-step derivation (⇒)
and ultimate derivation (⇒∗) in Fig. 2.

The signatures for ⇒ and ⇒∗ are as follows. For the
arguments, first a string of trace symbols Σ∗•. Next, a Env
and Store, representing the current environment and store
values. Finally a string of grammar symbols we have yet to
process Sym∗◦. The result is either a string of trace symbols
Σ∗•, denoting that we have applied Equation (1) and are in
a state where we can accept the string; or a string like the
argument, meaning more work has to be completed before we
can accept a derivation. We must keep track of the environment
and store at all for the semantic predicates to function, and we
must keep track of them separately rather than conflating them
into a single State to permit lexical scoping of declarations.

Equation (1) defines the derivation when the end of a string
has been reached; we drop the scoping information ρ and the
store information ς and accept.

Equation (2) defines the derivation rule for a semantic action

5

⇒,⇒∗: Σ∗• ×Env × Store× Sym∗◦ → Σ∗• ∪
(
Σ∗• ×Env × Store× Sym∗◦

)
A {ρ, ς} ⇒ A (1)

dom(dom(f)) ⊆ dom(ρ) ς ′ = (ρ−1 ◦ f(ς ◦ ρ))� ς
A {ρ, ς} 〈〈f〉〉B ⇒ A {ρ, ς ′}B

(2)

dom(dom(p)) ⊆ dom(ρ) p(ς ◦ ρ) = true
A {ρ, ς} JpKB ⇒ A {ρ, ς}B

(3)

ξ /∈ dom(ς)
A {ρ, ς}∆xB ⇒ A {ρ[x 7→ ξ], ς[ξ 7→ ⊥]}B

(4)

〈S, s1 . . . sn〉 ∈ P
A {ρ, ς}S B ⇒ A {ρ, ς} s1 . . . snB

(5)

{ρ, ς}B ⇒∗ B′ {ρ′, ς ′}
A {ρ, ς} ↑ B ↓ C ⇒ AB′ {ρ, ς ′}C

(6)

ξ1, ξ2 /∈ dom(ς) {ρ[x 7→ ξ1, y 7→ ξ2], ς[ξ1 7→ v, ξ2 7→ ⊥]}B ⇒∗ B′ {ρ′, ς ′}
A {ρ, ς} ?a(x)B ¿a(y)C ⇒ A ?a[v]B′ ¿a[(ς ′ ◦ ρ′)(y)] {ρ, ς ′}C

(7)

∃u1, . . . un : A {ρ, ς}BC ⇒ u1 ⇒ · · · ⇒ un ⇒ AB′ {ρ′, ς ′}C
A {ρ, ς}BC ⇒∗ AB′ {ρ′, ς ′}C

(8)

∃u1, . . . un : A {ρ, ς}B ⇒ u1 ⇒ · · · ⇒ un ⇒ AB′ {ρ′, ς ′}
A {ρ, ς}B ⇒∗ AB′

(9)

Fig. 2. Derivation rules

〈〈f〉〉. Since 〈〈f〉〉 maps State to State, dom(f) = State =
Var→ Dom and dom(dom(f)) is just the variables it uses.
Since it is syntactically possible for f to refer to variables that
are not in dom(ρ), that is variables that are not in scope, we
disallow derivation unless all variables f uses are in scope.
ς ◦ρ ∈ State is the current state, and f(ς ◦ρ) is the new state.
However, we need an updated store, ς ′, rather than a state. We
can reconstruct f ’s changes to the state by applying ρ−1, but
this will ignore the part of the state that f may not have been
able to see and so we must adjoin it to the old store with �.
We justify the existence of ρ−1 by noting that ρ is one-to-one;
it is only modified in Equations (7) and (4), and there ξ, ξ1
and ξ2 are constrained to be values that have never been in
ran(ρ).

It is conceivable that ς ◦ ρ may not be well defined; that
is, ran(ρ) 6⊆ dom(ς). We in fact guarantee that ς ◦ ρ is well
defined by construction; no matter what the derivation, dom(ς)
never shrinks, and each time we add a new element to ran(ρ)—
that is, each time we map a variable to a new location—we
map that same location to a value in ς . So ς ◦ ρ is always well
defined.

Equation (3) is similar to Equation (2), but as semantic
predicates may not modify the state, it is somewhat simpler.
Again dom(dom(p)) is the variables p uses, which we insist
be a subset of the variables in scope. Similarly we insist that
the predicate p be true in the current state.

Equation (4) deals with variable declarations. We insist that
ξ here be a fresh location, one that has never been assigned to
any variable; since every location that has even been assigned
to a variable is in dom(ς) this is easily achieved. We must
update ρ to reflect that x has been bound to the location ξ,
and then bind the location ξ to ⊥, reflecting that it has not yet
been assigned a value.

Equation (5) defines nonterminal substitution; for any
production S → s1 . . . sn in P, which is equivalently stated
〈S, s1 . . . sn〉 ∈ P, we can substitute S’s right hand side for
S wherever it appears.

Equation (6) defines block semantics; for a matched pair of
↑ and ↓, if we can derive B′ with scope ρ′ and store ς ′ from
B with the original scope ρ and store ς , then we may continue
with the original scope ρ (reflecting block scoping rules) and
the new store ς ′ (reflecting any changes that may have been
made to the store in B).

Equation (7) defines method call semantics; given a matched
pair ?a(x) (meaning the incoming method call a with argument
x) and ¿a(y) (meaning the return from that method call,
returning the value of y), we must first bind ?(a)’s argument
x to the value seen (here v) and bind the return variable y
into a new scope. To do this we need two new locations ξ1
and ξ2. Now, if B with the original scope augmented with x
and y derives B′ with scope ρ′ and store ς ′, we can derive the
original method call, retaining the old scope but using the new

6

store as in Equation (6) above. But, we must reconstruct the
return value for ¿a; this is simply the value of y in the state
following the derivation of B′, which is ς ′ ◦ ρ′. We record v
and (ς ′ ◦ ρ′)(y) for the trace in the result, using the shorthand
defined above for Σ•.

Finally, Equation (8) and (9) define how to define multiple
step derivation from the above rules. We need two rules to
permit Equation (1) to be used.

Now, given all this we can define the language of our
grammar; a string A ∈ Σ∗• is in L(G) iff {[], []}S ⇒∗ A. If
we want to have global variables, we can say a string A ∈ Σ∗•
is in L(G[ρ, ς]) iff {ρ, ς}S ⇒∗ A; here the global variables
would be defined in the ρ and ς accordingly.

B. An Example

An example is in order. Consider Grammar 3. We restate it
formally here as the grammar G, where:

G = 〈NT,Σ◦,Q,SA,SP,P, S〉
NT = {Start,Base,Tail}

Σ = {?begin, ?setRollbackOnly, ?commit,
?rollback, ¿begin, ¿setRollbackOnly,
¿commit, ¿rollback}

Var = {r, l}
Dom = B ∪ Z

Q =

〈〈
λσ.σ′ =σ[l 7→ σ(l)− 1];

σ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]

〉〉
SA = {〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉, 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉,

Q, 〈〈λσ.σ[r 7→ true]〉〉}
SP = {Jλσ.σ(r) ≡ falseK}

P = {〈Start,〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 Base〉,
〈Base,?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉

¿begin() Base Tail Q Base〉,
〈Base,?setRollbackOnly() 〈〈λσ.σ[r 7→ true]〉〉

¿setRollbackOnly() Base〉,
〈Base,ε〉,
〈Tail, Jλσ.σ(r) ≡ falseK ?commit() ¿commit()〉,
〈Tail, ?rollback() ¿rollback()〉}

Here, to simplify presentation we abbreviate one frequently
used semantic action as Q. As a notational convenience, when
a method has no arguments rather than writing it as ?a(x) and
then not using x, we write it as ?a() or ?a[]. Similarly, when
a method has a void return value, we write it as ¿a() or ¿a[].
All the methods in this example take no arguments and have
void returns. We use the syntax λx.y to denote the anonymous
function taking one argument, x, and performing y.

In constructing this formal grammar, we have distinguished
method calls and returns, which Grammar 3 conflated. We
distinguish returns rather than conflating them with calls for
two reasons: first, because the point at which a method returns
has control flow implications in the system external to our
component. Second, because we must track the return values

from a method in the trace, and the only way to do that is to
mark method returns in some fashion.

We assert that the trace

t1 = ?begin[⊥] ¿begin[⊥] ?begin[⊥] ¿begin[⊥]
?commit[⊥] ¿commit[⊥] ?rollback[⊥]
¿rollback[⊥]

is in L(G), or rather is in L(G[ρ0, ς0]) where ρ0 = [r 7→
ξ0, l 7→ ξ1], and ς0 = [ξ0 7→ ⊥, ξ1 7→ ⊥] since r and l are both
global variables.

To prove this assertion, we begin a derivation from
{ρ0, ς0}S, as follows:

{ρ0, ς0}S
⇒ by (5)
{ρ0, ς0} 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 Base

⇒ by (2)
{ρ0, [ξ0 7→ false, ξ1 7→ 0]} Base

⇒ by (5)
{ρ0, [ξ0 7→ false, ξ1 7→ 0]} ?begin()
〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin() Base Tail

Q Base

To proceed, we need to apply Equation (7); to do that we need
to perform a sub-derivation as follows:

{ρ0[x 7→ ξ2, y 7→ ξ3], [ξ0 7→ false, ξ1 7→ 0, ξ2...3 7→ ⊥]}
〈〈λσ.σ[l 7→ σ(l) + 1]〉〉

⇒ by (2)
{ρ0[x 7→ ξ2, y 7→ ξ3], [ξ0 7→ false, ξ1 7→ 1, ξ2...3 7→ ⊥]}

Now, we can apply Equation (7):

{ρ0, [ξ0 7→ false, ξ1 7→ 0]} ?begin()
〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin() Base Tail Q Base

⇒ by (7)
?begin[⊥] ¿begin[⊥]
{ρ0, [ξ0 7→ false, ξ1 7→ 1, ξ2...3 7→ ⊥]}
Base Tail Q Base

Continuing in this same vein, we eventually derive that

{ρ0, ς0}S ⇒∗ ?begin[⊥] ¿begin[⊥] ?begin[⊥]
¿begin[⊥] ?commit[⊥] ¿commit[⊥]
?rollback[⊥] ¿rollback[⊥]

which is precisely the trace t1. Therefore t1 ∈ L(G[ρ0, ς0]).

III. INTERFACE GRAMMAR LANGUAGE

Having defined the formalisms, we now proceed to define
the language we use to write the grammars. In Fig. 3 we
show a (simplified) grammar defining the abstract syntax of
our interface grammar language. We denote nonterminal and
terminal symbols and Java CODE and IDENTIFIERS with

7

main→ class∗ (10)

class→class CLASSID { item∗ } (11)

item→ semact ; (12)
| rule (13)

rule→rule RULEID block (14)

block→{ statement∗} (15)

statement→ block (16)
| apply RULEID ; (17)
| semact ; (18)
| declaration ; (19)
| choose { cbody∗ } (20)
| ? MINVOCATION (arguments) ; (21)
| return MRETURN semexpr? ; (22)

cbody→case select? : { statement∗ } (23)

select→? MINVOCATION (arguments) sempred? (24)
| sempred (25)

arguments→ (TYPE ID (, TYPE ID)∗)? (26)

sempred →〈〈EXPR〉〉 (27)

semexpr→〈〈EXPR〉〉 (28)

semact→〈〈STATEMENT〉〉 (29)

declaration→ TYPE ID = 〈〈EXPR〉〉 (30)

Fig. 3. Abstract syntax for the interface grammar language

different fonts. The symbols 〈〈 and 〉〉 are used to enclose
Java statements and expressions. Incoming method calls to the
component (i.e., method invocations) are shown with adding
the symbol ? to the method name as a prefix. In the grammar
shown in Fig. 3, we use “∗” to denote zero or more repetitions
of the preceding symbol, and “?” to denote that the preceding
symbol can appear zero or one times. In Fig. 4, we have
translated Grammar 3 into this syntax.

An interface grammar consists of a set of class interfaces—
not to be confused with Java interfaces—(represented in
Equation (10) in Fig. 3). The interface compiler generates
one stub class for each class interface. These stub classes
generated by the interface compiler pass the incoming calls
to the table-driven parser generated by the interface compiler
as lookahead symbols. The parser uses the parser stack, the
lookahead, and the parse table to guide the behavior. We explain
the behavior of the parser generated by the interface compiler
in detail in Section IV.

Each class interface in an interface grammar consists of
a set of semantic actions and a set of production rules that
define the interface grammar for that class (Equations (11), (12)
and (13)). A semantic action is simply a piece of Java code
that is inserted to the stub class that is generated for the
component (Equation (29)). A rule corresponds to a production

class NestedTransaction {
〈〈bool r; int i;〉〉
rule start {
〈〈r = false; i = 0;〉〉
apply base;

}
rule base {
choose {
case ?begin(): {
〈〈l++;〉〉
return begin;
apply base;
apply tail;
〈〈l--; if (l == 0) r = false;〉〉
apply base;

}
case ?setRollbackOnly(): {
〈〈r = true;〉〉
return setRollbackOnly;
apply base;

}
case: { }

}
}
rule tail {
choose {
case ?commit() 〈〈r == false〉〉: {
return commit;

}
case ?rollback(): {
return rollback;

}
}

}
}

Fig. 4. Interface grammar for Grammar 3

rule in the interface grammar. Each rule has a name and a
block (Equation (14)). A rule block consists of a sequence
of statements (Equation (15)). Each statement can be a rule
application, a semantic action, a declaration, a choose block,
a method invocation, a method return or a method call
(Equations (16)–(22)). A semantic action corresponds to a
piece of Java code that is executed when the parser sees the
nonterminal that corresponds to that semantic action at the
top of the parse stack. A rule application corresponds to the
case where a nonterminal appears on the right hand side of
a production rule. A declaration corresponds to a Java code
block where a variable is declared and is assigned a value
(Equation (30)). A choose block is simply a switch statement
(Equations (20) and (23)). A selector for a switch case can
either be a method invocation (i.e., an incoming method call), a
semantic predicate or the combination of both (Equations (24)
and (25)). A switch case is selected if the semantic predicate
is true and if the lookahead token matches to the method
invocation for that switch case. Finally, a method return simply
corresponds to a return statement in Java. When the component
stub receives a method invocation from the program, it first
calls the interface parser with the incoming method invocation,
which is the lookahead token for the interface parser. When
the parser returns, the component stub calls the interface parser
again, this time with the token which corresponds to the method
return.

We have defined the semantics of interface grammars using
the formalism introduced in Section II-A. To convert a grammar
in the syntax specified in Fig. 3 to our formalism, we use

8

an attributed grammar. The attributed grammar does the
following: given a parse tree from the grammar in Fig. 3,
it computes a formal grammar suitable for the derivation rules
in Fig. 2. This attributed grammar is presented in Fig. 5. In
this attributed grammar, for every symbol s, s.t ∈ Sym∗◦
is a sequence of nonterminals, terminals, semantic actions
and predicates, and s.p ⊆ Prod is a set of productions. For
arguments, arguments.v is a tuple of Var. We use ‖ to denote
concatenation of sequences.

The syntax the compiler reads is a faithful rendering of
Fig. 3’s grammar into text. Fig. 6 shows the transaction
and recursive transaction classes from the EJB interface
specification. In addition to the begin, commit, rollback
and setRollbackOnly methods we discussed in Sec-
tion II, we also include two query methods: isActive and
getRollbackOnly. The method isActive returns true if
a transaction is active and the method getRollbackOnly
returns the rollback-only state, i.e., it returns true if
setRollbackOnly has been called and all the pending
transactions that were active when setRollbackOnly was
called have not been roll-backed yet.

The specification shown in Fig. 6(a) is the interface
grammar for the transaction class and the specifica-
tion shown in Fig. 6(b) is the interface grammar for the
recursive_transaction class. The nonterminals used in
the non-recursive transaction grammar are start, inactive,
active, and rollback_only. By default start is the
start symbol. Note that the nonterminals start, inactive
and active in Fig. 6(a) are used similarly as the nonterminals
Start, Inactive, and Active in Grammar 1 from Section II. The
additional nonterminal rollback_only is used to keep track
of the rollback-only state.

The nonterminals used in the recursive transaction grammar
shown in Fig. 6(b) are start, base and tail. Again, these
nonterminals are used similarly as the the nonterminals Start,
Base, and Tail in Grammars 2 and 3 from Section II. Note
that the variables level and isRollbackOnly used in
the interface grammar shown in Fig. 6(b) correspond to the
variables l and r in the Grammar 3 from Section II.

An interesting difference between the transaction and recur-
sive transaction grammars in Fig. 6 is the way they handle
rollback-only status. In the transaction grammar, rollback-only
status is handled at the grammar level by using a nonterminal
that corresponds the case when rollback-only is set. In the
recursive transaction grammar, rollback-only status is handled
with semantic predicates and semantic actions. Our interface
specification language supports both of these approaches.
Note that relying on just grammar rules to keep such state
information would produce a large number of nonterminals.
On the other hand relying only on semantic predicates and
actions would cause the interface specification to degenerate
into a hand written Java stub.

IV. INTERFACE GRAMMAR COMPILER

We have implemented a compiler for our interface grammars,
targeting the Java language. Our interface compiler executes
in three major steps:

1) Parse the input interface grammar specification and
construct an abstract syntax tree;

2) Convert this abstract syntax tree into an interface gram-
mar;

3) Output a parser for this resulting interface grammar.
Our interface compiler generates a stub for each class in the
interface specification. At run time, the stub for a class calls
the parser that is generated based on the interface grammar
of that class, with the method calls it witnesses. Below,
we describe the conversion process from interface grammar
specifications to interface grammars, generation of parsers for
the resulting interface grammars, and the runtime system for
the automatically generated parser/stubs.

Our method generates a interface grammar from the inter-
face grammar specification and at runtime the automatically
generated stub uses this grammar to parse method invocations.
We chose to use a modified LL (1) algorithm [14] as the basis
for our parser, both for its familiarity and for its relative ease
of implementation. There are a number of different potential
ways to parse an LL (1) grammar, but for the purposes of
this discussion we will distinguish two; the recursive descent
parser and the table driven parser. Both of these approaches
have similar efficiency. A recursive descent parser is generally
considered easier to read for humans and therefore is preferable
for hand coded parsers (which is not the case for us). An
advantage of using a recursive descent parser for interface
grammars is the fact that we can insert the semantic predicates
and actions to the methods of the recursive descent parser,
whereas for a table driven parser, we must find a way to
represent semantic actions or semantic predicates as data. The
most important difference for our purposes, however, is where
the tokens come from.

We distinguish two styles of parsing: parser-calls where the
parser controls when the next token is produced, that is, the
parser has a way of demanding that its environment produce a
token for it when it chooses; and code-calls where the code
invoking the parser controls when the next token is produced.
We require the code-calls convention, because we are writing
stubs for components that will have their methods invoked
by user code. It is very difficult to write a single threaded
recursive descent parser using the code-calls convention in
Java, because the most natural implementation of a recursive
descent parser stores its internal state on the same control
stack that the user code will be using. We can use threads to
resolve this problem (in effect by creating a new control stack
for the parser); however, this would require synchronization
between the user code and the parser threads. More importantly
this additional concurrency would increase the state space and
degrade the performance of the target Java model checker, i.e.
it would contribute to the problem that we wish to solve in
the first place. Due to these concerns, our interface compiler
generates table-driven parsers for interface grammars.

A. Compile-time computation

The goal of our interface compiler is to translate an interface
grammar into a number of Java classes. First, our interface
compiler uses the ANTLR tool [16] to parse the input interface

9

rule→ rule RULEID block rule.p := {(RULEID, block.t)} ∪ block.p

block→ { statement∗} block.t := ↑ ‖
n

i

statementi.t ‖ ↓

block.p :=
⋃
i

statementi.p

statement→ block statement.t := block.t

statement.p := block.p

statement→ apply RULEID ; statement.t := RULEID

statement→ semact statement.t := 〈〈semact.statement〉〉
statement→ declaration ; statement.t := ∆declaration.id ‖

〈〈declaration.id = declaration.expr;〉〉
statement→ choose { cbody∗} statement.t := statement.id

statement.p :=
⋃
i

{(statement.id, cbodyi.t)} ∪ cbodyi.p

statement→ ? MINVOCATION (arguments); statement.t := ?MINVOCATION(arguments.v)
statement→ return MRETURN ; statement.t := ¿MRETURN(result)
statement→ return MRETURN semexpr ; statement.t := 〈〈result=semexpr.expr〉〉 ‖

¿MRETURN(result)

cbody→ case select? : { statement∗ } cbody.t := SELECT.t ‖ ↑ ‖
n

i

statementi.t ‖ ↓

cbody.p :=
⋃
i

statementi.p

select→ ? MINVOCATION (arguments) sempred select.t := ?MINVOCATION(arguments.v) ‖
Jsempred.exprK

select→ ? MINVOCATION (arguments) select.t := ?MINVOCATION(arguments.v)
select→ sempred select.t := Jsempred.exprK

arguments→ ε arguments.v := 〈〉

arguments→ TYPE IDa(, TYPE IDi)∗ arguments.v :=

〈
IDa‖

n

i

IDi

〉
Here, ‖ denotes sequence concatenation. Unless otherwise specified, for any symbol s, s.p = ∅. For statement, the attribute

statement.id is a unique identifier for that statement that can serve as a nonterminal.

Fig. 5. Translation from syntax tree to interface grammar

specification and construct an abstract syntax tree representing
the input specification.

1) Generating the interface grammar: The second ma-
jor step of computation in our interface compiler involves
converting the abstract syntax tree generated by the parser
into a interface grammar. In addition to nonterminal and
terminal symbols, the resulting interface grammar also contains
semantic predicates and actions. The terminal symbols of the
resulting interface grammar are the method invocations and
the method returns for each method m in the interface that
we are stubbing, and we represent these with the symbols ?m
and ¿m, respectively. Note that, ?m represents an external
client calling m, and ¿m represents a return from such a call.
To accomplish this, we use the attributed grammar defined
previously in Fig. 5.

2) The parsing algorithm: Given an interface grammar, we
can now begin to parse it. By embedding the grammar (or

its equivalent parse table, as discussed later) in the runtime
environment that completes the stub, we can parse it there. We
can consider each class in isolation since they are independent
and contain independent parsing tables.

The core parsing algorithm is given in Fig. 7. Each stub we
generate contains code that corresponds to an implementation
of this algorithm. The algorithm shown in Fig. 7 is based
on the standard LL (1) table-driven parsing algorithm but
adds semantic actions and semantic predicates and also allows
ambiguity.

For the purpose of verification, we assume the presence of a
model checker that has exposed its backtracking primitives in
the following function: choose(S) nondeterministically chooses
one element from the set S and returns it. For convenience,
we denote throwing an exception or violating an assertion with
fail.

10

class transaction
implements EntityTransaction {

〈〈entity_manager m; ...〉〉
rule start { apply inactive; }
rule inactive {

choose {
case ?begin(): {
〈〈m.begin();〉〉
return begin; apply active;

}
case ?isActive(): {

return isActive 〈〈false〉〉;
apply active;

}
case ?getRollbackOnly(): {

return getRollbackOnly 〈〈false〉〉;
apply active;

}
case : { }

}
}
rule active {
choose {
case ?commit(): {
〈〈m.commit();〉〉
return commit; apply inactive;

}
case ?commit(): {
〈〈m.rollback();〉〉
〈〈throw new RollbackException();〉〉

}
case ?setRollbackOnly(): {

return setRollbackOnly;
apply rollback_only;

}
case ?isActive(): {
return isActive 〈〈true〉〉;
apply active;

}
case ?getRollbackOnly(): {

return getRollbackOnly 〈〈false〉〉;
apply active;

}
case ?rollback(): {
〈〈m.rollback();〉〉 return rollback;
apply inactive;

}
}

}
rule rollback_only {
choose {
case ?setRollbackOnly(): {

return setRollbackOnly;
apply rollback_only;

}
case ?isActive(): {
return isActive 〈〈true〉〉;
apply rollback_only;

}
case ?getRollbackOnly(): {
return getRollbackOnly 〈〈true〉〉;
apply rollback_only;

}
case ?rollback(): {
〈〈m.rollback();〉〉 return rollback;
apply inactive;

}
}

}
}

(a)

class recursive_transaction
implements EntityTransaction {

〈〈...〉〉
rule start { apply base; }
rule base {
choose {

case ?begin: {
〈〈level++;〉〉
〈〈m.begin();〉〉
return begin;
apply base;
apply tail;
apply base;

}
case ?setRollbackOnly(): {
〈〈isRollbackOnly = true;〉〉
return setRollbackOnly;
apply base;

}
case ?isActive(): {
return isActive 〈〈level > 0〉〉;
apply base;

}
case ?getRollbackOnly(): {
return getRollbackOnly

〈〈isRollbackOnly〉〉;
apply base;

}
case : { }

}
}
rule tail {
choose {

case ?commit() 〈〈!isRollbackOnly〉〉 : {
〈〈m.commit();〉〉
〈〈decrement();〉〉
return commit;

}
case ?commit() 〈〈!isRollbackOnly〉〉 : {
〈〈m.rollback();〉〉
〈〈decrement();〉〉
〈〈throw new RollbackException();〉〉

}
case ?setRollbackOnly(): {
〈〈isRollbackOnly = true;〉〉
return setRollbackOnly;
apply tail;

}
case ?isActive(): {
return isActive 〈〈true〉〉;
apply tail;

}
case ?getRollbackOnly(): {
return getRollbackOnly

〈〈isRollbackOnly〉〉;
apply tail;

}
case ?rollback(): {
〈〈m.rollback();〉〉
〈〈decrement();〉〉
return rollback;

}
}

}
}

(b)

Fig. 6. A portion of the EJB interface grammar that specifies the transactional interface constraints. (a) is the grammar for non-recursive transactions; (b) is
the grammar for recursive transactions.

11

procedure WITNESS(t)
while stack 6= t‖X do

o‖stack← stack
if o ∈ Σ then fail
else if o ∈ SP then

if ¬o.apply() then
fail

else if o ∈ SA then
o.apply()

else
productions← table(o, t)
viable← {prod : (p, prod) ∈ productions

∧ p.apply()}
chosen← choose(viable)
stack← chosen‖stack

stack← X

Fig. 7. Parsing algorithm

WITNESS is called with one terminal of lookahead. The
variable stack (here global, in practice a member variable of
the parsing class) is a list of terminals, nonterminals, semantic
predicates and semantic actions. If the first symbol on the stack
is the lookahead token, then we are done; pop it off and return.
If the first symbol on the stack is a terminal that is not the
lookahead symbol, then we have a problem; in this case the
parse fails. If it is not a terminal, then perhaps it is a semantic
predicate; in that case we verify that it returns true, and fail
otherwise. If it is neither, perhaps it is a semantic action; in
this case apply the semantic action and resume looping.

Finally, it could be a nonterminal. In this case, we examine
the parse table, looking for a production of o given a lookahead
of t. This gives a set containing predicate, production pairs;
the idea here is that if the predicate returns false, then that
production is not available at this time. Accordingly we filter
all unavailable productions from the list, and then choose one.
The production is then prepended to the stack, as in standard
table parsing.

This algorithm requires a modified LL (1) table; we describe
how to compute this next.

3) Constructing the parse table and computing the first and
follow sets: To perform the above parsing algorithm we need
the LL (1) parser table. We need to modify the standard LL (1)
parse table construction algorithm due to two reasons:
• We have semantic predicates that can influence the parse,

by disallowing certain productions;
• We want to support nondeterministic choice in interface

specifications which will be resolved by the target model
checker’s search heuristics at runtime.

Accordingly, for a given grammar G =
〈NT,Σ◦,Q,SA,SP,P, S〉 our parsing table is a function
t : NT×Σ→ P(SP×P).

Note that, in normal LL (1) parsing, given a nonterminal (at
the top of the parse stack) and a terminal (the lookahead)
the parsing table should return a single production; more
than one production in one cell of the table indicates that

the grammar is not LL (1). We relax this restriction since we
allow semantic predicates and since we allow some nondeter-
minism in the interface specifications with the nondeterministic
choose construct. When semantic predicates are added, some
productions may not be available at runtime since the semantic
predicate that is guarding that production may evaluate to false.
Accordingly we pair the semantic predicate controlling when
a production is available with the production in the parsing
table. To accommodate the nondeterministic choose operator,
we permit multiple entries in each cell in the parsing table.
Thus, the parsing tables we construct consist of lists of pairs of
semantic predicates and productions. More than one production
can be available given the nonterminal at the top of the parser
stack and the lookahead token; that is, more than one pair’s
semantic predicate can evaluate to true. The semantics of that
event are discussed in Section IV-A2.

To compute the parse table t, we need two auxiliary functions
first and follow [14], which we compute using the algorithms
shown in Fig.s 8 and 9. Because we are dealing with code
that writes code, we introduce some conventions to make our
presentation simpler:

• 〈〈x〉〉 means “code that will output x”.
• JxK is the predicate that, when evaluated, computes x.
• [] is the empty list.
• � is the end of input token.
• 〈〈. . . $x . . . 〉〉 means that x should be substituted into the

generated code.

The parse table is constructed using the FIRST and FOLLOW
functions based on the standard LL (1) parse table construction
algorithm [14], except, as we discussed above, we allow
multiple productions to be inserted to a single cell of the
parser table. The resulting parse tables is embedded directly in
the code we generate. We then generate stubs for each method
in the Java interface we are implementing; the details of the
stub code will be discussed in Section IV-B.

These algorithms merit some brief discussion. Our approach
for generating these sets is standard LL (1) save that we attach
a predicate to each production, informing us whether that
production is available. These productions are computed during
first set computation. These predicates are by default JtrueK;
that is, all productions default to available all the time. When
we encounter a semantic predicate, we compute the conjunction
of that semantic predicate and our current running predicate;
if the semantic predicate fails, that production is not, in fact,
available. If we encounter a semantic action, however, we
must stop these conjunctions; the environment for the semantic
predicate will not necessarily be the same and so we cannot
continue tracking these predicates.

After the productions have been computed, we merely have to
respect them during follow set computation. However we have
a new complication that arises during follow set computation;
we permit ambiguity in our parse table. In practice this means
that when the normal LL (1) table algorithm would conclude
that two or more entries need to go in one table cell and signal
an error, we put them all in a set, put that set in the table cell,
and continue execution.

12

procedure FIRST(G, out first)
〈NT,Σ◦,Q,SA,SP,P, S〉 ← G
first← {(n, ∅) : n ∈ NT} ∪ {([], {(JtrueK, ε)})}
repeat

for all productions P = X → Y1Y2 . . . Yn do
if P 6= X → ε then

s← first(Y1Y2 . . . Yn)
p← JtrueK
c← true
for all Yi do

d← false
if Yi ∈ SP then

if c then
p← p ∧ Yi

else if Yi ∈ SA then
c← false

else if Yi ∈ Σ◦ then
target← first(Yi)
if ε ∈ target then

putative← {(q, t) : (q, t) ∈ target ∧ t 6= ε}
if s 6= putative ∧ s 6= target then

first(Y1Y2 . . . Yn)← putative
else

if s 6= target then
first(Y1Y2 . . . Yn)← target

d← true
else

if Yi /∈ s then
first(Y1Y2 . . . Yn)← first(Y1Y2 . . . Yn) ∪ {(p, Yi)}

d← true
if ¬d then

first(Y1Y2 . . . Yn)← first(Y1Y2 . . . Yn) ∪ {(p, ε)}
for all productions P = X → Y1Y2 . . . Yn do

first(P)← first(P) ∪ first(Y1Y2 . . . Yn)
until no element in first has changed

Fig. 8. Algorithm for computing first sets

4) Closures and scoping: There remain some complications.
Our Java escapes here are code, but need to be encoded as
data for the runtime parser. We have ignored this so far, using
〈〈x〉〉 and JxK. To encode our code as data, we wrap all Java
escapes using anonymous inner classes, and refer to these as
closures; the code is then simply

new Closure () {
public Object apply () {

$code
}

}

Predicates can be constructed in a similar fashion.
This Java construct creates a new, anonymous subclass of

Closure with a new method apply overriding the method
in Closure; it then constructs a single object of this subclass.
It achieves precisely our aims; from this we get a data structure
with an apply method that executes the code we desire.

However, this introduces a new problem; now, every Java
escape is in a lexically distinct context from every other Java
escape. While writing interfaces, it is very useful to retain some
information across Java escapes, and additionally arguments
in method calls can define new variables that we must make
decisions on. If we were using a recursive descent parser,
we could exploit the Java compiler’s scoping, but we have
dismissed that possibility above; accordingly we have to track
it ourselves with our own symbol table.

We have implemented a symbol table at runtime with five
important methods. The methods openscope and closescope
open a new scope and close the most recent scope, respectively.
The method bind(n) introduces n as a new variable in the
topmost scope. The method get(n) searches the symbol table
for the most recently bound n and returns its associated value,
and the method put(n, o) is similar but sets that associated
value.

13

procedure FOLLOW(G, first, out follow)
〈NT,Σ◦,Q,SA,SP,P, S〉 ← G
follow← {(n, ∅) : n ∈ NT} ∪ {([], {(JtrueK,�)})}
repeat

for all productions P = X → Y1Y2 . . . Yn do
for i← 1 . . . n do

if Yi ∈ NT then
if i = n then

s← []
f ← {(JtrueK, ε)}

else
s← Yi+1 . . . Yn

f ← first(s)
if ∃p : (p, ε) ∈ f then

f ← f ∪ follow(X)
follow(Yi)← follow(Yi) ∪ f

until no element in follow has changed

Fig. 9. Algorithm for computing follow sets

If we used the variable names as keys, this would result in
dynamic scoping, whereas our goal is to implement lexical
scoping. Accordingly, we assign to each variable declaration
in the program a unique number, and use that as a key. We
must also keep track of the declarations that are visible both
before and after every Java escape. Given this, we can now
alter the body of the Java closure code to be as follows:

for all declaration ∈ visibleSymbolsBefore do
〈〈$(declaration.type), $(declaration.name)

=symbols.get($(declaration.id))〉〉
〈〈$code〉〉
for all declaration ∈ visibleSymbolsAfter do
〈〈symbols.put($(declaration.id),

$(declaration.name))〉〉
We must also have opening scopes, closing scopes, and
binding in our interface grammar; fortunately we have already
accommodated this need, and Fig. 5 includes the necessary
mapping.

B. Stubbing methods

Armed with this algorithm we can finally discuss the methods
to be stubbed out; these become

public $returnType(stub) $name(stub)
($arguments(stub)) {

arguments = [arguments(stub)];
result = null; exception = null;
parser.witness (?$name(stub));
try {

parser.witness (¿$name(stub));
} catch (Exception e) {

parser.tossUntil (¿$name(stub));
exception = e;

}
if (exception != null)

throw exception;

return ($returnType(stub)) result;
}

The way we deal with result and exception deserves
commentary. Throwing exceptions in an uncontrolled manner
can cause the parse information to be destroyed; for example it
may not consume the ¿ tokens properly. We have to have some
support for this in case of exceptions in the Java escapes, but
arguably these are errors anyway; we recover in this situation
by throwing away everything on the parse stack until we reach
the ¿ we were expecting, and then propagate the exception.
But not all exceptions are errors: a faithful representation of
the interface may require that exceptions be thrown, and we
must then throw them in a manner consistent with our parsing
algorithm. Accordingly to handle this we store the exception
in a member variable and then throw it at the end of the stub
method.

Return values are similar; return in Java only works for the
most immediate enclosing method. Accordingly we use the
same technique we use for handling exceptions; we store the
return value in a member variable and then return it at the end
of the stub method.

V. VERIFICATION OF EJB CLIENTS

We have applied our technique and tool to the task of
verifying clients of the Enterprise Java Beans 3.0 Persistence
API.

A. Enterprise Java Beans 3.0 Persistence API

Enterprise Java Beans 3.0, or EJB 3.0, is the third major
revision of the Enterprise Java Beans specification. The full
specification is concerned with large scale software architecture
with a web focus; we are interested here in the Java Persistence
API, an affiliated but distinct API for object-relational mapping.
That is, the Java Persistence API is a standardized interface to
a framework for mapping a Java object graph to and from
a relational database. The Persistence API in EJB 3.0 has
been inspired by a number of third party object-relational
mapping tools, including Hibernate and JDO, and in turn the
new specification has been implemented independent of the
EJB 3.0 framework; examples of this include Hibernate again
and Glassfish.

The entry point to this API is the EntityManager
interface, an instance of which is obtained from a
EntityManagerFactory. The core of the interface is
simple enough, with methods like persist, remove, find and con-
tains. Each EntityManager has an associated transaction
object, and code sequences like em.getTransaction().
begin(); are a common idiom.

Objects in the Persistence API have a four phase life-cycle:
• unmanaged, or transient objects are not stored in the

database—for example, newly created objects;
• persistent objects are stored in the database;
• detached objects are persistent objects that have become

separated from their EntityManager—this becomes useful
in certain situations concerning long lived client objects
where a long term database transaction is undesirable;

14

• removed objects are scheduled to be removed from the
database.

The mapping from an object to a relational table is supported
by Java annotations on the classes, fields and methods of data
objects. For example, all classes intended to participate in the
Persistence API must have the Entity annotation on the class,
marking it as an entity bean. The primary key can be marked
with Id and can be attached to methods or fields, and as well
methods can be marked to be executed before or after database
events like insertion or updates.

The Persistence API also contains a query language similar to
SQL. We do not consider a simulation of the query language in
this paper, largely because simulating it properly would require
a full string parser for the SQL-like syntax. Our interface
specification also does not model concurrent update operations
or the XML extension defined by the Persistence API.

B. Persistence API clients

The normal life cycle of a Persistence API client is to use a
global EntityManagerFactory to retrieve a thread-local
EntityManager, begin a transaction, modify the database,
and then commit or rollback the transaction. Misbehaving
clients, or even properly behaving clients in some circumstances
can trigger exceptions during this process. Some of these
exceptions are pedestrian—for example, calling flush outside
of a transactional context—but others are more alarming.

As an example of the latter, the getReference method
returns a proxy for a database object. This proxy can serve
as a stand in for the real object in many cases, and is used
when making a separate database query to retrieve the object
is undesirable—for example, chasing links in a tree. An eager
loading implementation may load the entire tree into memory
one node at a time by requesting parents and children.

The part that makes this alarming is that the presence of the
referenced object is not checked at method call time; instead,
it is checked the first time data from the putative object is
referenced. This could be in an entirely different piece of code,
a piece of code unrelated to the database.

Another example of a properly behaving client nonetheless
triggering an exception is in committing a successful transac-
tion; because the Persistence API supports optimistic locking it
is possible that a commit can be aborted because the database
row corresponding to the object in question has changed since
it was first read, with no possibility of safe detection by the
user code.

These consequences, and the difficulty of verifying properties
of a program that depends intimately on an enormous third
party database for its operation, motivate some sort of modular
analysis that captures all these strange error conditions but yet
is not too heavyweight to be used; thus we applied our interface
grammar tools to the Persistence API. We can also use our
framework to analyze extensions to the API; one such extension
might be recursive transactions, which are not supported in
EJB 3.0 but are very common in the databases themselves.

To verify clients, we have written interface grammars
for each relevant interface: EntityManagerFactory,
EntityManager and EntityTransaction. Portions of

these grammars are shown in Fig. 6. Our grammars in total are
some 474 lines long, defining all three fundamental classes and
their behaviors; by comparison the abstract class in Hibernate
that defines just the EntityManager interface is some 657 lines
long, and the total code required to implement the Persistence
API using Hibernate as a back end is some 64,000 lines of
Java code.

C. Experiments

We have applied these grammars to several test cases from
the Hibernate implementation. In some sense these are excellent
measures of the fidelity of our interface; since they were written
to expose errors in Hibernate they should similarly expose
errors in our simulation of the Persistence API. As well, the
test cases include some invalid clients that trigger exceptions;
we can use these to verify clients against the interface, marking
clients with erroneous behavior.

To increase legibility, we give the full test name here once,
and refer to an abbreviation in future. We have analyzed the
following test cases:

• EntityManagerTest.testContains (Cont) tests
minimal normal functionality, like persisting an object
and retrieving it under its primary key. It also ensures that
trying to check the status of a non-manageable object will
fail with an exception.

• EntityManagerTest.testClear (Clear) ensures
that objects managed by the EntityManager transition
to the detached state after a clear.

• EntityManagerTest.testPersistNone-
Generator (Pers) ensures that a simple object
is equal to itself after it has been persisted and reloaded.

• EntityManagerTest.testIsOpen (Open) verifies
that an EntityManager is open upon creation and stays
that way until it is closed.

• AssociationTest.testBidirOneToOne (Bidir)
verifies that persisting one half of a bidirectional associa-
tion will persist the other half as well.

• AssociationTest.testMergeAndBidirOneTo-
One (Merge) verifies that the bidirectional association
works even with detached objects.

• CallbacksTest.testCallBackListeners-
Heirarchy (CBack) verifies that all methods tagged
with @PrePersist are called when the object in
question is persisted.

• CallbacksTest.testException (Exc) verifies
that methods in other classes that have a declared
@EntityListeners relationship with the persisted
object are also called. The name comes from the method
that is to be called, which throws an exception.

• GetReferenceTest.testWrongIdType (Get)
verifies that asking for objects using the wrong primary
key type is an illegal operation.

• ExceptionTest.testEntityNotFound-
Exception (Nonex) verifies that nonexistent objects
fetched with getReference should raise exceptions
when they are referred to.

15

• InheritanceTest.testFind (Inher) verifies that
if A is a subclass of B, persisting an instance of A and
asking for all Bs should retrieve the first object.

• FlushAndTransactionTest.testAlways-
TransactionalOperations (Trans) checks that
flushes and locks are only valid from within transactions.

As befits a good test harness, some of these tests verify that
correct use of the API gives correct results, and the rest verify
that incorrect use of the API is flagged as such. Errors are
flagged by throwing an exception. The test case itself captures
the exception and verifies that it is of the correct type.

This has an attractive corollary. While we can verify that
our interface represents a valid implementation of the EJB
Persistence API by running all the test cases as written, we
can also use the test cases that incorrectly use the API to
simulate an incorrect client. We do so by modifying the test
cases to rethrow any exceptions they catch. In our results in
Tables I through IV, we distinguish these two different modes
as “correct” and “incorrect” executions. Note that, some test
cases do not simulate an incorrect client, and so can only run
in the “correct” mode.

All these test cases have been written as unit tests with
swift execution in mind. While useful for test cases, they do
not necessarily simulate large clients well. Accordingly we
have parametrized each test case in two dimensions; the first
dimension specifies the maximum number of repetitions of the
operation under test, and the second specifies the maximum
number of objects created in the test. Because most operations
only make sense with newly allocated data (for example,
persisting a fresh object), each repetition reallocates up to
the maximum number of objects.

These bounds represent constraints on the maximum number
of repetitions, not the number of repetitions itself. That is,
when we report the run time for, say, Get running with 3
objects and 5 repetitions, we are reporting the time required
to run that test with each combination of 1 to 3 objects and 1
to 5 repetitions, for a total of 15 runs.

We ran each of the 11 tests twice (in “correct” and “incorrect”
modes, here “error state FALSE” and “error state TRUE”), and
with the maximum number of objects varying from 1 to 5,
and with the maximum number of repetitions varying from
1 to 5; this represents over 500 runs. This is far more than
can be conveniently displayed in a table. Accordingly, we
have excerpted representative results into Tables I and II, and
present several graphs showing selected results for “correct”
execution in Fig. 10 through Fig. 12. We present the number
of states JPF has visited as a more representative measure of
memory consumption; standard memory allocation algorithms
request only large blocks of memory from the operating system,
and so these figures are too coarse grained for out purposes.
We give timing and state data for “incorrect” execution in
Tables III and IV and show some graphs displaying timing
results for “incorrect” execution in Fig. 13; we have omitted
the state graphs for “incorrect” execution because, as shown in
Table IV, there is no increase in the number of states processed
in order to detect an error in any of those tests.

Our expectations for this data was that “correct” execution
would show a polynomial increase in time and memory usage as

the number of objects and number of repetitions was increased;
specifically it would increase by some function of complexity
O(n2m2) where n is the number of objects and m is the
number of repetitions. For “incorrect” execution, since we halt
verification the moment an error is detected it is difficult to
predict the run time or memory usage.

The expectation we set for “correct” execution is due to
the following reasoning. There are O(nm) test runs made
for any combination of n objects and m repetitions. A test
run with a maximum of 3 objects and a maximum of 5
repetitions performs 1 + 2 + 3 object allocations and performs
1 + 2 + 3 + 4 + 5 operations; in general we will see

∑n
i=1 i

object allocations for each operation, and
∑m

i=1 i operations.
This means that a test run for n objects and m repetitions
will see O(n(n−1)

2) = O(n2) object allocations per operation
and similarly O(m(m−1)

2) = O(m2) operations. If object
allocations and API operations are the dominant contributors to
test case run time, as seems plausible, then we would see the
run time follow a doubly quadratic curve O(n2m2). Because
JPF stores visited states indefinitely, we would also expect the
memory usage to increase by this same parameter.

We find that this expectation is upheld in all our tests,
save for the “incorrect” execution. That is, every test using
“correct” execution displays a clearly super-linear increase as
each parameter is increased. Because JPF aborts execution as
soon as any error is found, the execution times for “incorrect”
execution is uniformly low (below 2 seconds) and dominated
by noise that we cannot control for; for example variances in
start up time, cool caches or disk access.

Our results also demonstrate the efficiency of our approach.
For all tests the run time for repeating the API operation 5 times
is less than three times the run time for creating 5 objects, and
frequently considerably less. An test repeating an operation
5 times but creating one object will execute 5 operations but
also perform 5 object allocations; a test repeating an operation
once but creating 5 objects will execute one operation and 5
object allocations. The fact that the execution of these two
is comparable implies we have reduced the execution time
required to perform API operations to approximately the same
time required for object allocation.

VI. DISCUSSION AND RELATED WORK

This paper extends the results reported in [17]. In particular,
in this paper we provide a formal semantics for our interface
grammar specification language (discussed in Section II-A).
Furthermore, we provide a significantly larger set of experi-
ments in Section V, where each test case is parametrized with
respect to the number of operations performed and the number
of objects created.

Below, we first discuss the limitations of our approach and
possible extensions to overcome these limitations. Following
that, we discuss related work in grammar-based testing and
interface specification and environment generation.

A. Extensions to Interface Grammars

One limitation of our current interface language is that it
does not handle call-backs, i.e., we do not provide support for

16

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

1 2 3 4 5

EntityManagerTest.testContains

Number of repetitions

T
im

e
ta

ke
n

(in
 m

s)

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

0
10

00
20

00
30

00
40

00
50

00

1 2 3 4 5

EntityManagerTest.testContains

Number of repetitions

S
ta

te
s

vi
si

te
d

Fig. 10. Run time and state count vs. maximum number of repetitions and maximum number of objects for “correct” execution of Cont

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

1 2 3 4 5

CallbacksTest.testCallBackListenersHeirarchy

Number of repetitions

T
im

e
ta

ke
n

(in
 m

s)

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

0
50

0
10

00
15

00
20

00

1 2 3 4 5

CallbacksTest.testCallBackListenersHeirarchy

Number of repetitions

S
ta

te
s

vi
si

te
d

Fig. 11. Run time and state count vs. maximum number of repetitions and maximum number of objects for “correct” execution of CBack

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

0
20

00
0

40
00

0
60

00
0

80
00

0
12

00
00

1 2 3 4 5

FlushAndTransactionTest.testAlwaysTransactionalOperations

Number of repetitions

T
im

e
ta

ke
n

(in
 m

s)

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

0
20

00
40

00
60

00
80

00

1 2 3 4 5

FlushAndTransactionTest.testAlwaysTransactionalOperations

Number of repetitions

S
ta

te
s

vi
si

te
d

Fig. 12. Run time and state count vs. maximum number of repetitions and maximum number of objects for “correct” execution of Trans

17

TABLE I
“CORRECT” EXECUTION TIMES

Execution time (in ms)

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 3133 6662 10143 11898 31567 51930 26914 73628 126342
Clear 2115 3959 5876 6424 16688 27276 13338 37395 63491
Pers 2191 4247 6304 6974 18584 29622 15062 41746 70251
Open 1928 3473 4835 5659 14345 22306 12102 32407 52011
Bidir 2420 5288 8829 7504 22810 43396 16536 52894 99923
Merge 2358 4517 6992 7100 19122 32617 14839 43074 75385
CBack 2122 4018 6164 6357 16843 28087 13132 37677 64340
Exc 2100 4213 6399 6341 16903 29138 13144 39010 68074
Get 1944 3817 5962 5364 15242 27762 11053 34712 63903
Nonex 1816 3148 4237 4946 11637 18502 9996 26663 43501
Inher 2556 5374 8931 7867 23297 42481 17296 54548 102449
Trans 2520 6121 11784 7882 27999 58125 17122 64811 138157

TABLE II
“CORRECT” EXECUTION STATE COUNTS

States visited

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 66 198 338 377 1157 1985 932 2872 4932
Clear 32 96 168 173 545 965 422 1342 2382
Pers 41 123 213 227 707 1235 557 1747 3057
Open 28 78 128 149 437 725 362 1072 1782
Bidir 46 162 318 257 941 1865 632 2332 4632
Merge 36 114 208 197 653 1205 482 1612 2982
CBack 27 81 143 143 455 815 347 1117 2007
Exc 27 90 173 143 509 995 347 1252 2457
Get 15 57 123 71 311 695 167 757 1707
Nonex 12 30 48 53 149 245 122 352 582
Inher 44 168 348 245 977 2045 602 2422 5082
Trans 45 222 523 251 1301 3095 617 3232 7707

TABLE III
“INCORRECT” EXECUTION TIMES

Execution time (in ms)

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 1913 1910 1908 1905 1912 1909 1927 1897 1933
Get 1809 1807 1799 1799 1801 1807 1800 1800 1817
Nonex 1785 1785 1772 1778 1779 1776 1774 1774 1791
Trans 2064 2060 2085 2076 2068 2066 2062 2070 2058

TABLE IV
“INCORRECT” EXECUTION STATE COUNTS

States visited

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 25 25 25 25 25 25 25 25 25
Get 8 8 8 8 8 8 8 8 8
Nonex 10 10 10 10 10 10 10 10 10
Trans 23 23 23 23 23 23 23 23 23

tracking call sequences in both directions. Note that allowing
call-backs can result in situations where one or more method
calls from the main program to the component we are modeling
are pending while another method call from the main program

to the component is initiated. Although this is an important
limitation, it has not prevented us from analyzing the EJB
Persistence API, nor would it prevent us from analyzing a
SAX- or DOM-based XML library, a SOAP library, and many

18

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

19
00

19
10

19
20

19
30

1 2 3 4 5

EntityManagerTest.testContains

Number of repetitions

T
im

e
ta

ke
n

(in
 m

s)

: 1 maximum objects
: 2 maximum objects
: 3 maximum objects
: 4 maximum objects
: 5 maximum objects

20
60

20
65

20
70

20
75

20
80

20
85

1 2 3 4 5

FlushAndTransactionTest.testAlwaysTransactionalOperations

Number of repetitions

T
im

e
ta

ke
n

(in
 m

s)

Fig. 13. Run time for “incorrect” execution for Cont and Trans

other applications. However, this restriction would prevent us
from analyzing Swing listeners for example. We are currently
working on a version of the interface grammar language and
compiler that will accommodate interfaces with call-backs, and
will thus be able to model this larger set of interfaces.

In this paper, we have discussed client-side verification; that
is, we can check the correctness of the program assuming a
correct implementation of the component. It would be desirable
to be able to check correctness in both directions, that is
to check the correctness of the program assuming a correct
implementation of the component, and to check the correctness
of the component assuming a correct implementation of the
program. There are two major approaches to this goal:

1) Using our current approach, write two interface gram-
mars, one for each direction, and use two separate
verification steps to check each direction modularly. This
can be done with the interface grammar and compiler
we have presented in this paper; however, one must be
careful to ensure that each interface is consistent with
the other.

2) Extend our interface specification language and compiler
to allow bidirectional interface grammars, and then write
a single bidirectional interface grammar. We are currently
working on extending our interface specification language
in this direction as well.

In this paper we have not addressed generating or verifying
the data associated with each method call, concentrating instead
on control flow. Generating or verifying recursive data presents
many of the same difficulties as analyzing recursive control
flow; accordingly, it would be desirable to bring the power
of interface grammars to bear in this task as well. We have
extended our interface grammar language and compiler [18] by
adding parameters to non-terminals, which permits specification
of recursive data structures using grammar rules in precisely
this fashion.

B. Grammar-based Testing

There has been some prior work relating to grammar based
testing, although none of it attempts to model components

of a program with a grammar. Purdom [19] presented a
fast algorithm for generating the minimal set of test cases
required to achieve production coverage of a grammar, targeting
parsers specifically. Because our grammars are interactive, this
algorithm cannot be directly applied, but in future work we
intend to adapt it.

Lämmel and Schulte [20] describe several techniques for
limiting the combinatorial explosion of grammar based testing.
Their technique uses a grammar to generate test cases; our
work uses a grammar to act as an interactive component of a
system. The idea of exploring different coverage criteria, and
in particular of adapting their combinatorial coverage technique
is appealing but can be difficult due to the interactive nature
of our stubs; one cannot achieve even full production coverage
(which they call rule coverage) if the host program does not
cooperate.

Maurer [21], [22] also generates test data with an enhanced
context free grammar for his DGL tool. The same differences
as with Lämmel and Schulte’s work apply; our tool generates
interactive stubs, Maurer’s generates test data. Maurer’s tool
also permits variables, which is an interesting precursor to our
rule parameters; however he does not attempt to preserve the
lexical scoping of his variables, as we must with ours.

Offutt, Ammann and Liu [23] describe how mutation testing
can be regarded as a type of grammar based testing, and give
several useful coverage algorithms. We do not consider muta-
tion at this time, and in any case their technique concentrates
on test cases whereas ours is interactive.

Bauer and Finger [24] generate test cases using a regular
grammar, which is strictly less powerful than ours and cannot
accommodate recursion. As well, their technique generates
non-interactive test cases.

Duncan and Hutchison [25] use attributed grammars to
generate test cases. There are similarities in their attributed
grammars and our interface grammars; for example, we both
permit run-time guards, and in many cases their inherited
and synthesized attributes can be made equivalent to our rule
parameters. However their technique remains focused on test
case generation and ours on interactive stubs.

Sirer and Bershad [26] have developed a grammar based test

19

tool lava, with a focus on validating their Java Virtual Machine.
Their tool has two different roles, one as a straightforward test
case generator and another that makes minute permutations
in an attempt to discern hidden flaws. As befits a test case
generator, they include certificates to solve the oracle problem,
which describe the intended result of the test case. The same
interactive-versus-generative considerations above apply, and
we can mimic their certificates using our semantic predicates;
nonetheless in future work we intend to include some form of
test certificate in our tool.

C. Interface Specification and Environment Generation

The use of finite state machines for specification, verification
and extraction of interfaces have been studied extensively [27]–
[32]. Finite state machines cannot specify nested-call structures
such as the recursive transaction example we use in this
paper. The interface grammars we propose in this paper
enables us to specify such interactions. Moreover, we believe
that the semantic predicates and actions that are allowed in
our interface grammars are necessary to model interfaces of
complex components. Another factor that differentiates our
work from that of Whaley et al. [29] or Alur et al. [30] is that
we do not extract interfaces; rather, we use interface grammar
specifications to check both interface conformance and also to
achieve modular verification.

The Specification Language for Interface Checking (SLIC)
is used to specify interface constraints in the SLAM project [6],
[33]. In SLIC, interfaces are specified using state machines. The
transitions of state machines are associated with C statements
that can be used to specify additional constraints on the
interface. As with the other state machine based approaches
discussed above, the approach used by SLIC is not appropriate
for specification of nested call sequences.

In Betin-Can’s work [31], [32], [34], finite state interface
specifications are used to achieve modular verification where
behavior verification and interface verification are executed
as two separate steps. Interface grammars as proposed here
provide a richer language for specification of interfaces and
can be integrated to the modular verification approach used in
that work.

Environment generation is a critical problem for achiev-
ing modularity in software model checking and has been
studied before. Godefroid et al. [13] present techniques for
automatically closing environments of open reactive programs
by automatically creating the most general environment for
the program using dataflow analysis. In contrast Tkachuk and
Dwyer [35] investigate automatically generating environments
for components using side effect and points-to analyses for
modular model checking. We use a semi-automated approach
where the user writes an interface grammar and the interface
grammar is automatically compiled to a component stub for
modular verification. We believe that for specification of rich
interfaces such as the EJB interface discussed in this paper it
is necessary to get user input in order to restrict the behaviors
allowed by the interface.

Tkachuk et al.’s [36] Bandera environment generator also
uses a semi-automated approach in which environment models

are automatically synthesized from environment assumptions.
The environment assumptions are given as LTL formulas or
regular expressions specifying ordering of program actions
which are unit method calls or field assignments that can be
executed by the environment. Our approach based on interface
grammars enables us to specify nested call sequences that
cannot be expressed using formalisms, such as LTL or regular
expressions, that can be recognized by finite state machines.
Also rather than focusing on environment generation, we are
focusing on specification of interfaces. Of course, these are
closely related concepts since the interfaces of components that
interact with a program forms the environment of that program.
However, we believe that it is more likely for developers to
write interface specifications for different components rather
than writing an environment for a particular program.

Finally, it would be worthwhile to investigate restricted
classes of interface grammars for efficient verification. For
example, some closure properties that are undecidable for
context free languages are decidable for visibly pushdown
languages [37]. These results can be useful for some interface
analysis problems if the interface grammar can be characterized
as a visibly pushdown grammar. Also, it would be interesting
to investigate applicability of the results on verification of push-
down systems (e.g., [38], [39]) to verification with interface
grammars.

VII. CONCLUSIONS

We have proposed and implemented a new framework for
conducting modular software model checking based on inter-
face grammars. We proposed an interface specification language
based on interface grammars and we built a compiler that
automatically generates stubs for components using interface
specifications written in our interface specification language.
We have used this tool to conduct model checking relating
to the key interfaces of the Enterprise JavaBeans Persistence
API, and have demonstrated that our approach is feasible and
efficient. In future work, we would like to apply our interface
grammars to model checking of concurrent programs, as well
as the generation of object graphs for model checking.

REFERENCES

[1] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cambridge,
Massachusetts: The MIT Press, 1999.

[2] G. J. Holzmann, Design and validation of computer protocols. New
Jersey: Prentice Hall, 1991.

[3] K. L. McMillan, Symbolic model checking. Massachusetts: Kluwer
Academic Publishers, 1993.

[4] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in Proceedings of the 24th ACM Symposium on Principles of
Programming Languages, January 1997, pp. 174–186.

[5] W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking programs,”
Automated Software Engineering Journal, vol. 10, no. 2, pp. 203–232,
2003.

[6] T. Ball and S. K. Rajamani, “Automatically validating temporal safety
properties of interfaces,” in Proceedings of the SPIN Workshop, 2001,
pp. 103–122.

[7] H. Chen, D. Dean, and D. Wagner, “Model checking one million lines
of c code.” in NDSS. The Internet Society, 2004.

[8] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and
J. White, “Formal analysis of the remote agent before and after flight,”
in Proceedings of the 5th NASA Langley Formal Methods Workshop,
June 2000.

20

[9] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill, “CMC: A Pragmatic Approach to Model Checking Real
Code,” in Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, December 2002. [Online]. Available:
citeseer.ist.psu.edu/musuvathi02cmc.html

[10] W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking programs,”
in Proceedings of the The Fifteenth IEEE International Conference on
Automated Software Engineering (ASE’00). IEEE Computer Society,
2000, p. 3.

[11] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, “Using model checking
to find serious file system errors,” in Proceedings of the Sixth Symposium
on Operating Systems Design and Implementation, 2004.

[12] J. R. Levine, T. Mason, and D. Brown, Lex & Yacc. O’Reilly &
Associates, 1992.

[13] P. Godefroid, C. Colby, and L. Jagadeesan, “Automatically closing
open reactive programs,” in Proceedings of the 1998 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 1998), 1998, pp. 345–357.

[14] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1988.

[15] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 1999.

[16] ANother Tool for Language Recognition (ANTLR). [Online]. Available:
http://www.antlr.org/

[17] G. Hughes and T. Bultan, “Interface grammars for modular software
model checking,” in Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA ’07), 2007, pp. 39–49. [Online]. Avail-
able: x-yojimbo-item://CC3D1214-37E5-4BFA-9D7F-D22F43161CEC

[18] ——, “Extended interface grammars for automated stub generation,” in
Proceedings of the Automated Formal Methods Workshop (AFM 2007),
2007.

[19] P. Purdom, “A sentence generator for testing parsers,” BIT, vol. 12, no. 3,
pp. 366–375, 1972.

[20] R. Lämmel and W. Schulte, “Controllable combinatorial coverage in
grammar-based testing,” in Proceedings of the 18th IFIP International
Conference on Testing Communicating Systems (TestCom 2006), ser.
LNCS, U. Uyar, M. Fecko, and A. Duale, Eds., vol. 3964. New York,
NY, USA: Springer-Verlag, May 2006.

[21] P. M. Maurer, “Generating test data with enhanced context-free grammars,”
IEEE Software, vol. 7, no. 4, pp. 50–55, 1990.

[22] ——, “The design and implementation of a grammar-based data
generator,” Software Practice and Experience, vol. 22, no. 3, pp. 223–244,
March 1992.

[23] J. Offutt, P. E. Ammann, and L. L. Liu, “Mutation testing implements
grammar-based testing,” in Proceedings of the 2nd Workshop on Mutation
Analysis, November 2006.

[24] J. A. Bauer and A. B. Finger, “Test plan generation using formal
grammars,” in Proceedings of the 4th International Conference on
Software Engineering, Munich, Germany, September 1979, pp. 425–432.

[25] A. G. Duncan and J. S. Hutchison, “Using attributed grammars to test
designs and implementations,” in Proceedings of the 5th International
Conference on Software Engineering, New York, NY, USA, March 1981,
pp. 170–178.

[26] E. Sirer and B. N. Bershad, “Using production grammars in software
testing,” in Proceedings of DSL’99: the 2nd Conference on Domain-
Specific Languages, Austin, TX, US, 1999, pp. 1–13.

[27] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proceedings
9th Annual Symposium on Foundations of Software Engineering, 2001,
pp. 109–120.

[28] A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdziński, and F. Mang,
“Interface compatibility checking for software modules,” in Proceedings
of the 14th International Conference on Computer Aided Verification
(CAV 2002), 2002, pp. 428–441.

[29] J. Whaley, M. Martin, and M. Lam, “Automatic extraction of
object-oriented component interfaces,” in Proceedings of the 2002
ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2002), 2002.

[30] R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis of interface
specifications for java classes,” in Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symp. on Principles of Prog. Languages, (POPL
2005), 2005.

[31] A. Betin-Can and T. Bultan, “Verifiable concurrent programming using
concurrency controllers.” in Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (ASE 2004), 2004, pp.
248–257.

[32] A. Betin-Can, T. Bultan, and X. Fu, “Design for verification for
asynchronously communicating web services,” in Proceedings of the
14th International World Wide Web Conference (WWW 2005), 2005, pp.
750–759.

[33] T. Ball and S. K. Rajamani, “SLIC: A Specification Language for
Interface Checking,” Microsoft Research, Tech. Rep. MSR-TR-2001-
21, January 2002.

[34] A. Betin-Can, T. Bultan, M. Lindvall, S. Topp, and B. Lux, “Application
of design for verification with concurrency controllers to air traffic control
software,” in Proceedings of the 20th IEEE International Conference on
Automated Software Engineering (ASE 2005), 2005.

[35] O. Tkachuk and M. B. Dwyer, “Adapting side-effects analysis for modular
program model checking,” in Proceedings of the 18th IEEE International
Conference on Automated Software Engineering (ASE), 2003, pp. 188–
197.

[36] O. Tkachuk, M. B. Dwyer, and C. Pasareanu, “Automated environment
generation for software model checking,” in Proceedings of the 4th
Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2003), 2003, pp. 116–129.

[37] Alur and Madhusudan, “Visibly pushdown languages,” in STOC: ACM
Symposium on Theory of Computing (STOC), 2004.

[38] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of
pushdown automata: Application to model-checking,” in Proceedings of
the 8th International Conference on Concurrency Theory (CONCUR’97),
1997, pp. 135–150.

[39] R. Alur, K. Etessami, and P. Madhusudan, “A temporal logic
of nested calls and returns,” in Tools and Algorithms for the
Construction and Analysis of Systems, 10th International Conference,
TACAS 2004., ser. Lecture Notes in Computer Science, K. Jensen
and A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 467–481.
[Online]. Available: http://springerlink.metapress.com/openurl.asp?genre=
article&issn=0302-9743&volume=2988&spage=467

