The Probabilistic Program Dependence Graph and Its
Application to Fault Diagnosis

George K. Baah
College of Computing
Georgia Institute of
Technology
Atlanta, GA 30332
baah@cc.gatech.edu

Andy Podgurski
Electrical Engineering and
Computer Science Dept.
Case Western Reserve
University
Cleveland, OH 44106

Mary Jean Harrold
College of Computing
Georgia Institute of
Technology
Atlanta, GA 30332
harrold@cc.gatech.edu

andy@eecs.case.edu

ABSTRACT

This paper presents an innovative model of a program’s in-
ternal behavior over a set of test inputs, called the proba-
bilistic program dependence graph (PPDQG), that facilitates
probabilistic analysis and reasoning about uncertain pro-
gram behavior, particularly that associated with faults. The
PPDG is an augmentation of the structural dependences
represented by a program dependence graph with estimates
of statistical dependences between node states, which are
computed from the test set. The PPDG is based on the es-
tablished framework of probabilistic graphical models, which
are widely used in applications such as medical diagnosis.
This paper presents algorithms for constructing PPDGs and
applying the PPDG to fault diagnosis. This paper also
presents preliminary evidence indicating that PPDGs can
facilitate fault localization and fault comprehension.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging— Diagnostics, Moni-
tors

General Terms: Algorithms, Experimentation

Keywords: probabilistic graphical models, machine learn-
ing, fault diagnosis, program analysis

1. INTRODUCTION

A variety of graphical models have been used in software
engineering applications to abstract relevant relationships
between program elements or states, and thereby facilitate
program analysis and understanding. These models include
control-flow graphs, call graphs, finite-state automata, and
program dependence graphs. Models produced by static
analysis generally indicate that certain occurrences are pos-
sible at runtime (e.g., control transfers, calls, state occur-
rences, state transitions, and information flows), whereas
models produced by dynamic analysis indicate what actually
does occur during one or more executions. However, com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA'08, July 20-24, 2008, Seattle, Washington, USA.

Copyright 2008 ACM 978-1-60558-050-0/08/07 ...$5.00.

189

monly used graphical models of internal program dynamics
do not support making inferences about how likely partic-
ular program behaviors are. The inability of the models
to make inferences about program behaviors severely limits
the utility of the models for reasoning about the causes and
effects of inherently uncertain program behaviors, such as
runtime failures.

Program dependence graphs (PDGs) [7], which have proven
useful in such software engineering applications as testing
[11], debugging [28], and maintenance [9], model potential
semantic dependences [23] between program elements. How-
ever, they do not model the strengths of any corresponding
statistical dependences between the program elements. This
paper makes the case that by augmenting PDGs with sta-
tistical dependence (and independence) information in the
principled way provided by probabilistic graphical models
[20], it is possible to substantially increase the utility of
PDGs in some software engineering applications. Proba-
bilistic graphical models have proven useful in several fields
(e.g., medicine [8] and robotics [26]) due to their ability to
model both the presence of certain dependences between
variables of interest and the way in which the variables are
probabilistically conditioned on other variables. A prob-
abilistic graphical model derived from a PDG provides a
natural framework for modeling both the presence of depen-
dences and their statistical strengths.

In this paper, we present our technique that uses the
program dependence graph to create a novel probabilistic
graphical model. The model captures the conditional sta-
tistical dependence and independence relationships among
program elements in a way that facilitates making proba-
bilistic inferences about program behaviors. We call this
model a Probabilistic Program Dependence Graph (PPDG).
Our technique produces the PPDG for a program by aug-
menting its program dependence graph automatically. The
technique retains the nodes and edges of the original PDG
and, in some cases, adds nodes and edges. The technique
associates a set of abstract states with each node in the
PPDG. Each abstract state represents a (possibly large) set
of concrete nodes states, in a way that is chosen to be rele-
vant to one or more applications of PPDGs. Each node has
a conditional probability distribution that relates the states
of the node to the states of its parent nodes. The technique
estimates the parameters of the probability distribution by
analyzing executions of the program, which are induced by
a set of test cases or captured program inputs.

int Prog (){
int m = read(
int a read (
while(a < m){
a++;

)
=);

}

return m+a;

NoOoubk WwWN

(a)

Figure 1: (a) Example program (Prog), (b) PDG, and (c) transformed PDG.

The ability of PPDGs to facilitate probabilistic reasoning
about program behaviors makes them potentially valuable
for several software engineering tasks. In this paper, we
present preliminary evidence indicating that PPDGs can be
useful for fault localization and fault comprehension. Intu-
itively, PPDGs are well suited to these tasks because they
can indicate how a failing execution differs from successful
ones, both structurally and statistically, and because con-
text information can be generated from PPDGs that is use-
ful for understanding why a particular program statement
might be suspected of causing a given failure. More gener-
ally, a PPDG can be used as a knowledge base, which can
be analyzed with different algorithms to understand various
program behaviors.

The main contributions of this paper are:

e The Probabilistic Program Dependence Graph (PPDG),
a novel probabilistic graphical model of program be-
havior based on the program dependence graph;

e Applications of the PPDG to fault localization and
fault comprehension;

e The results of experiments and case studies, which in-
dicate that the PPDG is potentially useful for these
applications.

2. BACKGROUND

In this section, we briefly review program dependence
graphs, which represent structural dependences between pro-
gram statements, and define a type of probabilistic graphical
model called a dependency network [12], which represents
conditional dependence and independence relationships be-
tween random variables. These two types of models are the
basis for the Probabilistic Program Dependence Graph.

2.1 Program Dependence Graph

A program dependence graph (PDG) [7] consists of nodes
and directed edges, where nodes represent program state-
ments and directed edges represent control or data depen-
dences between the nodes. Informally, a node X is control
dependent on node Y if Y represents the predicate of a con-
ditional branch that directly controls whether X is executed.
A node X is data dependent on node Y if a variable v defined
at Y is used at X and there is a path of the form Y - P- X,
where P is a path along which v is not redefined. Intuitively,
P permits the value of v to flow from Y to X.

Figures 1(a) and 1(b) show an example program (Prog),
and its corresponding program dependence graph, respec-
tively. The nodes in the program dependence graph are
labeled with the line numbers of the statements in the pro-
gram. Solid edges represent control dependences between

190

nodes and dotted edges represent data dependences between
nodes. Labels on the control dependence edges are either “T”
for true or “F” for false. Labels on the data dependence edges
represent the variables involved in the data flow between the
nodes.

For example, in Figure 1(b), node 4 is control dependent
on node 3 and it is data dependent on itself and node 2. The
control dependence edge between node 3 and node 4 has the
label “T”, which signifies that node 4 is executed when the
branch condition at node 3 is true. The label on the data
flow edge between node 4 and node 6 is “a,” which implies
that the value of variable a at node 4 flows to node 6.

2.2 Probabilistic Graphical Model

A probabilistic graphical model [20] is an annotated graph
that captures the probabilistic relationships among a set of
random variables. The nodes in the graph represent random
variables and the arcs represent conditional dependences be-
tween the random variables. There are different kinds of
probabilistic graphical models, including Bayesian networks
[21], Markov random fields [20], and dependency networks
[12]. Bayesian networks are directed acyclic graphs, whereas
Markov random fields are undirected graphs. Dependency
networks are similar to Bayesian networks except that the
former may contain cycles.

DEFINITION 1. A dependency network is a triple (S, G, P)
where S represents a set of random variables, G = (N, E)
is a possibly cyclic directed graph, and P represents a set
of conditional probability distributions. N and E represent
the set of nodes and directed edges in G, respectively, with
nodes in G corresponding to random variables in S and edges
in G representing dependences among the random variables.

Let S = {Xi1,---,Xn} be a set of random variables.
Each node in G corresponds to a variable X; € S and di-
rected edges between nodes represent dependences between
the variables in S. Given a node in G, the parents of X
(Pa(Xj;)) are the nodes that render X; conditionally inde-
pendent® of the other variables. For graph G, there is a
directed edge from each parent of X; to X;. Each X; has a
set of discrete states x = {x1, -+, 2k}, and X; can assume
any of the states x; € . Each node has a conditional prob-
ability distribution, p(X;|Pa(X;)) € P, relating the states
of X to the states of its parents Pa(Xj).

Figure 2 shows an example of a dependency network that

!Two random variables A and B are said to be condi-
tionally independent given C, if the distribution of A does
not depend on B given that the value of C' is known (i.e.,

P(A|B, C) = p(A|C)).

Figure 2: An example of a dependency network.

Tp
] v :
P execution data
Instrumentation » Execution N
PPDG
P Learning —————»
PDG PDG PDG transformed A
Generation Transformation] PDG

Figure 3: Building a PPDG.

has four random variables: X1, X2, X3, and X4. Thus, there
are four conditional probability distributions for the net-
work. The conditional probability distribution for X;,X2, X3,
and X4 are p(Xl |)(2)7 p(X2|X3), p(X3|X4), and p(X4|X2, Xg)
respectively.

3. PROBABILISTIC PROGRAM
DEPENDENCE GRAPH

Our PPDG model is based on the dependency network
model defined in Section 2. We use dependency networks
because they permit directed cycles, which are present in
the program dependence graphs of typical programs, due to
the presence of program loops. Henceforth, we shall use the
terms “loop” and “cycle” interchangeably.

The process of producing a PPDG consists of five main
steps: PDG generation, PDG transformation, instrumenta-
tion, execution, and learning. These steps are illustrated
in Figure 3. First, the PDG-generation step generates the
PDG of the input program P. The PDG is then input into
the PDG transformation step, which transforms the PDG,
resulting in a transformed PDG. The instrumentation step
inserts probes into P to gather the execution data needed
to estimate the parameters of the PPDG, and produces the
instrumented program P’. During the execution step, P’
is executed with its test suite Tp to generate the execution
data. Finally, the learning step generates a PPDG based on
the execution data and transformed PDG.

DEFINITION 2. A Probabilistic Program Dependence Graph
(PPDG) for program P is a triple (G,S,Q) where G =
(N, E) is the transformed PDG of P, whose node and edge
sets are N and F, respectively, and S and) are mappings
from nodes to states and nodes to conditional probability
distributions, respectively, that relate the states of nodes N
in G.

Figure 1 shows an example program (Prog) with its corre-
sponding PDG and transformed PDG. We use the example
program throughout our discussion of the steps involved in
generating a PPDG.

3.1 PDG Transformation

During this step, our technique transforms the PDG by
adding nodes to it and specifying the states of the nodes.
The technique treats all nodes in the PDG as random vari-

101

ables; hence, we use the terms “nodes” and “random vari-
ables” interchangeably. The technique assigns to each node
in a program’s transformed PDG a finite set of discrete ab-
stract states, each of which represents a set of related con-
crete states of the corresponding statement. Hereafter, we
use the term “state” to refer to an abstract state. The states
of a node must be mutually exclusive® (i.e., a node cannot
be in two different states at the same time). Before a node is
executed, it has the default state denoted by the symbol L.
When a node is executed, it assumes a state distinct from
1, and it is said to be an active state. Each node has a
conditional probability distribution, that relates the states
of the node to the states of its parent nodes in the PPDG.
We call the graph that results from the PDG transformation
step the transformed PDG. Figure 1(c) shows the structure
of the transformed PDG of the example program (Prog).

3.1.1 Specifying Node States

The state of a PPDG node abstracts the part of a pro-
gram’s state that pertains to the node when the program
executes. There are different ways to model this “local” con-
crete state. In this paper, our technique models the state in
one or both of two simple ways depending on whether the
node represents a branch predicate, a statement that uses
one or more variables, or both. These characterizations are
intended to reflect certain aspects of a node’s concrete state
that are relevant to applications such as fault localization
and fault comprehension. (Other aspects are also relevant,
but we shall not consider them in this paper.) Our technique
characterizes the state of a node representing a branch pred-
icate by the outcome of the predicate, and it characterizes
the state of a node representing a statement s that uses one
or more variables by the set of variable definitions that reach
those uses during execution (i.e., by the definitions on which
s is dynamically data dependent). Note that the static de-
pendences represented in a program dependence graph do
not in general reflect the dynamic data dependences accu-
rately.

The state of a predicate node can be characterized by
both a predicate outcome and a set of dynamic dependences.
Thus, the state of a predicate node may have two compo-
nents or substates (i.e., a predicate substate and a data de-
pendence substate). If a node has two substates, our tech-
nique splits the node into two nodes and assigns a substate
to each node. (We discuss substates further in Section 3.1.2.)
In this paper, all predicates are transformed into simple
predicates. A simple predicate is a predicate of the form
(vl relop v2) where vl and v2 are program variables. Our
technique assumes that all conditions with compound pred-
icates (i.e., conjunctions and/or disjunctions of simple pred-
icates) are transformed into conditions with simple predi-
cates. Note that if a condition (e.g., if(v1)) consists of a
single variable (i.e., v1), our technique treats the condition
as if(vl == 0). Hence, the predicate for the condition is
vl == 0 (i.e., v2 == 0). Transforming all predicates into
simple predicates simplifies the specification of node states.

2Note that our technique assumes it is processing the PDG
of a sequential program—a concurrent program can cause a
node to be in two states at the same time thus, violating the
mutually-exclusive property of the states of nodes.

Modeling Predicate Outcomes

The types of predicate outcomes that occur at a node in a
PDG determine the kinds of states that are associated with
the node. For a conditional statement (e.g., if-statement),
the state of its simple predicate characterizes the state of
the conditional statement. The predicate outcomes depend
on how the program variables involved in the predicate com-
putation relate to each other in terms of the relational op-
erators (i.e.,, <, >, <, >, ==, and #). The technique places
the simple predicates into two categories based on the state
assignments.

1. For nodes whose predicates involve primitive variables
[e.g., (v1 relop v2) where vl and v2 are primitive pro-
gram variables (i.e., char, int, float, double) and relop
is a relational operator], the outcomes of the predicate
computation are based on how vl relates to v2. For
example, Figure 1(b) shows a predicate (a < m) at
node 3. If a = 2 and m = 1 when node 3 is executed,
for that execution a > m and the predicate outcome
is >. Our technique therefore assigns <, >, ==, and
1 as the set of states for such nodes.

2. If the variables involved in the predicate are pointers or
references, our technique introduces states that model
pointer or reference equality and inequality, and thus,
assigns the states ==, #, and L to the node.

Modeling Data Flows

Our characterization of the states of certain nodes in terms
of data dependences is based on a data flow modeling tech-
nique proposed by Laski and Korel [17] as a guide to pro-
gram testing. Laski and Korel define the data environment
of a statement s as the set of variable definitions that reach
s, along any paths, and are used at s. To more precisely
model potential dynamic data flows, Laski and Korel in-
troduced the concepts of elementary data context and data
context for a statement s. An elementary data context of a
statement s, is the set of definitions that reach and are used
at a given occurrence of s along some path. The set of all
elementary data contexts of a statement s is called the data
context of the statement.

To illustrate, consider Figure 1(b), and suppose d;(x) de-
notes a definition of a variable z at node i. For node 3,
the data environment is {di(m), d2(a),ds(a)}, the elemen-
tary data contexts are {di(m),d2(a)} and {di1(m),ds(a)},
and the data context, which is the set of its elementary data
contexts, is {{di(m),dz2(a)},{d1(m),ds(a)}}. For node 4,
the data environment and data context are {d2(a),ds(a)}
and {{dz2(a)}, {ds(a)}}, respectively.

The set of states for a PPDG node having data depen-
dence states or substates corresponds to the data context of
that node, augmented with the L state. The data context
of a node characterizes the possible data dependence com-
ponents of a node’s state. Therefore, for example, the states
of node 4 are dz(a),ds(a), and L.

If the data context of a node n is the empty set, then
by default our technique assigns {T} as its data context.
Hence, the states of node n are T and 1. The state T
means that during a given execution the node was executed.
(Recall that L means that the node was not executed in a
given execution.) For example, the set of states of node 1 in
Figure 1(b) is {T, L}.

192

Nodes States CPDs

2,04 | T, L P(1), P(2), P(L4)
D3 (d1(m), d2(a)),(d1(m), da(a)), L | P(D3] 1,2, 3, 4)
3 < > ==, L P(3 [D3)
4 (d2(a)),(da(a)), L P(4]2, 3, Ld)
6 (di(m), da(a)),(di1(m), da(a)), L | P(6]1,2,4)

Table 1: Nodes with corresponding states and con-
ditional probability distributions for Prog.

3.1.2 Adding Nodes and Edges to the PDG

The technique adds nodes and edges to the PDG in two
cases: (1) if a node has two components or substates (i.e., a
predicate substate and a data dependence substate) or (2)
if there are self-loops (i.e., nodes that are control or data
dependent on themselves) in the PDG.

Nodes with two substates

Predicate nodes often have states based on both predicate
outcomes and data dependences. For example, in Figure
1(b), there is a predicate at node 3 but the data environ-
ment is {di1(m),dz2(a),ds(a)}. Node 3 has both predicate
substates ({<,>,==,1}) and data dependence substates
({(d1(m),d2(a)),(d1(m),ds(a)), L}). Our technique trans-
forms such a node into two nodes, each with substates of
one kind. The technique makes the node with the data de-
pendence substates the immediate successor of the predicate
node’s immediate predecessors, and makes the node with the
predicate substates an immediate successor of the node with
the data dependence substates. The technique also makes
the immediate successors of the predicate node, the imme-
diate successors of the node with the predicate substates.
Hence, for node 3 our technique introduces node D3.

Loops in PDG

A self-loop is a directed edge from a node to itself. Loopsin a
program may cause the program’s PDG to contain self-loops.
However, self-loops are not permitted in the dependency net-
work formalism on which PPDGs are based. Therefore, our
technique eliminates self-loops from a PDG by introducing
new nodes and edges. A self-loop in a PDG may involve
either a control dependence or a data dependence. If a node
is control dependent on itself and the data environment of
the node is empty, our technique removes the self-loop and
adds a new node to the PDG. If a node is data dependent on
itself, our technique removes the self-loop and again adds a
new node. Our technique makes the node that was control
or data dependent on itself an immediate successor of the
new node. The edge from the new node to the immediate
successor node is either a control or a data dependence edge
depending on the type of self-loop. Our technique assigns
the states T and L to the new node.

For example, in Figure 1(b), node 4 is data dependent on
itself. Thus, our technique adds node L4 to the PDG with
a directed edge from L4 to node 4. The edge has the same
data flow variable as the data flow variable on the self-loop
edge. Note that even though node 3 has a self-loop (i.e., it
is control dependent on itself), its data environment is not
empty. Hence, our technique does not add a new node into
the PDG. Instead, our technique treats the node as having
two substates. Table 1 shows all the nodes for the example
program (Prog) with their respective states.

3.2 Learning

Our technique estimates the parameters of the PPDG
from the set of execution data (D = {D;}i—,) generated by
executing the instrumented program P’ with its test suite
Tp. Each D; € D corresponds to a test case in Tp. Different
kinds of execution data (e.g., coverage or trace information)
might be used to estimate the parameters of the PPDG—in
this paper, our technique uses node-state traces. A node-
state trace is a sequence of executed nodes, along with their
active states, in the transformed PDG. Our technique uses
node-state traces to estimate the parameters of the PPDG
so that the PPDG will capture some of the temporal behav-
iors of the program. Each D; € D is a node-state trace. A
node can appear multiple times in the trace, although the
states the node assumes can be different.

In this paper we present a batch-learning algorithm, (shown
in Figure 4). However, the algorithm can be modified easily
into an on-line learning algorithm.

3.2.1 Estimating Parameters of the PPDG

Learning the parameters of the PPDG consists of estimat-
ing conditional probability distributions, which are repre-
sented as tables, called conditional probability tables, because
the states of the nodes in the transformed PDG are discrete.
Suppose X = {X1,---, X} denotes the set of nodes in the
transformed PDG. We denote the ith state associated with
node X; by zj;, the parents (immediate predecessors) of a
node X; by Pa(X;), and the i¢th assignment of states to the
parents of X; by pa;i.

For a node with no parents, our technique estimates the
probabilities (p(X; = z;;)) of the nodes as

n(X; = xj;)
X = ;) = L2 = Tii) 1
p(X; = wj4) n(X;) 1)
where n(X; = xzj;) is the number of times node (X;) is

in state xj; across all node-state traces and n(X;) is the
number of times the node X; occurs across all node-state
traces.

For a node with parents, our technique estimates the prob-
abilities (p(X; = z;;|Pa(X;) = pa;;)) of the node as

n(X; = x5, Pa(X;) = paji)
n(Pa(X;) = paji)

p(X; = x| Pa(X;) = paji) =

(2)
where n(X; = xzj;, Pa(X;) = paj;) is the number of times
node X; and its parents assume a specific state configuration
across all node-state traces, and n(Pa(X;) = paj;) is the
number of times Pa(X;) = paj; across all node-state traces.
A state configuration is a set of states assigned to a set of
nodes in the PPDG.

Figure 4 shows algorithm, LearnParam, that estimates the
parameters of a PPDG. The algorithm takes as input a set of
execution data D, generated by executing an instrumented
program P’ with its test suite T, and the program’s trans-
formed PDG. T he algorithm outputs the PPDG of the pro-
gram. LearnParam traverses each D; € D from beginning to
end, updating the parent states of nodes and the neccessary
counts depending on whether a node in a trace has parents
(lines 1 to 9). After LearnParam processes D, it computes
the conditional probabilities of each node in the transformed
PDG (line 10). Finally, it returns the PPDG (line 11). Table
1 shows the conditional probabilities (CPDs) of each node
in the transformed PDG of the example program (Prog).

193

Algorithm: LearnParam

Input: D = {D;};; transformed PDG
Output: PPDG

1 foreach D; € D do

2 for j =1 to Length(D;) do

3 if Pa(X;) =0 then

4 increase n(X; = xj;) by 1

5 else

6 increase n(X,; = xj;, Pa(X;) = pa;;) by 1
7 end

8 end

9 end
10 compute probabilities of X; using equations (1), (2)

return PPDG

Figure 4: Batch learning algorithm: LearnParam

3.2.2 Learning Example

For simplicity, we present the estimation of the conditional
probability distribution of node 3 in the example program
(Prog). Note that node 3 is dependent on node D3 in the
transformed PDG. Suppose that variables a and m in Prog
receive the values 3 and 4, respectively. The node-state®
trace generated by Progis {(1:T), (2:T), (D3:(d1(m),dz2(a))),
(3:<), (4:d2(a)), (L4:T), (D3:(d1(m), da(a))), (3:==),
6:(d1(m),ds(a))}. Given this trace, LearnParam processes
the trace from the beginning, updating the parent states
of node 3, until it finds an occurrence of node 3 with its
corresponding state in the trace. For this trace, the first oc-
currence of node 3 has the state < and the current state of
node 3’s parent is (di(m),d2(a)). Therefore, the algorithm
increases n(3=<, D3=(d1(m),dz2(a))) by 1. LearnParam con-
tinues processing the trace until the second occurrence of
node 3 is found. The state of node 3 is == and the current
state of its parent is (d1(m), ds(a)). Therefore, LearnParam
increases n(3=(==), D3=(d1(m),d4(a))) by 1. At the end
of the trace, LearnParam computes the probabilities, p(3 =<
|D3 (d1 (m),d2(a))) and p(3 = (==)|D3 =(d1(m),ds(a))),
which are 1.0 and 1.0, respectively. All other entries in the
conditional probability table will be 0.

4. APPLICATIONS OF THE PPDG

In this section, we present two applications of the PPDG
to software engineering tasks. For the first task, fault lo-
calization, we show how the PPDG can be used to over-
come some of the limitations of current fault-localization
techniques, and introduce a simple ranking-based algorithm
that analyzes a faulty execution using the PPDG to deter-
mine the most suspicious statements in the program. For
the second task, fault comprehension, we also exploit the
interpretive nature of the PPDG, and present an algorithm
that generates contextual information related to suspicious
statements—information that indicates why a particular state-
ment is considered highly suspicious.

4.1 Fault Localization

Debugging software is often a difficult and time-consuming
task, which must be done manually. One of the most labo-
rious aspects of debugging is fault localization—locating the
fault or faults in a program that caused one or more observed
failures. To reduce the burden on the developer during fault

3We denote each node-state in the trace as “(node:state)”.

Algorithm: RankCP
Input: node-state trace:{X; : z;;};—; PPDG
Output: ranked nodes with state configurations

1 for j =1 tondo

2 prob « p(X; = z;:|Pa(X;) = pa;:)
3 if prob < lowest_prob(X;) then

4 lowest_prob(X;) < prob

5 index(X;) « j

6 configuration(X;) «— {z;; Upaj;}
7 end

8 end

9

rank nodes in ascending order by probability, break ties
using indexes
return ranked nodes with state configurations

Jun
o

Figure 5: RankCP algorithm.

localization, a number of fault-localization techniques (e.g.,
[5, 14, 16, 18, 19, 25, 28, 29]) have been developed.

Existing fault-localization techniques fall into two main
categories: those that require knowledge of the incorrect-
ness of the values of program variables and those that do
not require this knowledge. Techniques that require knowl-
edge of incorrectness of variable values are mostly slicing
techniques [28, 29]. The limitation of the slicing techniques
is that they do not provide a ranking of the statements in
the slices presented to the developer. This lack of guidance
as to how the statements in a slice should be examined may
increase the burden of finding the faulty statement.

The techniques that do not require knowledge of the in-
correctness of the values of program variables can be divided
into two main groups. The first group [14, 16, 18, 19] re-
quires access to multiple executions that fail because of the
fault, as well as access to multiple passing executions. The
second group [5, 25] requires access to multiple passing ex-
ecutions and access to only one execution that fails because
of the fault. The first group of techniques has been shown
through published results (i.e., [15, 19]) to be more effec-
tive in localizing faults than the second group. However, in
practice it is not always possible to have access to multiple
executions that fail because of a given fault.

Figure 5 shows algorithm RankCP, which analyzes a single
failing execution at a time, and ranks* nodes in the PPDG.
RankCP ranks nodes based on the conditional probabilities of
nodes given their parent nodes (i.e., p(X; = zj;|Pa(X;) =
paji)). RankCP uses the conditional probabilities of nodes
given their parent nodes because the conditional probabili-
ties measure how nodes are influenced by their parent nodes
in the PPDG. RankCP ranks the nodes with the lowest prob-
ability as highly suspicious. The conditional probability,
p(X; = zj;|Pa(X;) = paji), chosen as an inverse measure
of suspiciousness, is based on preliminary studies we con-
ducted that showed faults tend to be associated with low
probability nodes.

RankCP inputs, for a program, a node-state trace gener-
ated by a failing execution and the PPDG. RankCP returns
a list of nodes ranked from most suspicious to least suspi-

4Note that, RankCP can rank nodes in the PPDG using differ-
ent probability measures (e.g., marginal probabilities, con-
ditional probabilities, and joint probabilities). Studying the
effects and trade-offs of different probability measures is part
of our current research but not presented in this paper.

194

cious, where suspiciousness is inversely proportional to the
lowest conditional probability of any of the node’s states.
(Recall that a node can occur multiple times in a trace.)
Each node is also associated with a node-parent state con-
figuration. RankCP processes a trace from beginning to end.
As it processes the trace (line 1), it computes the conditional
probability of a node’s current state given the current states
of its parents (i.e., p(X; = z;;|Pa(X;) = paj;)) (line 2).
Then, RankCP records for each node, the lowest value low-
est_prob of this probability (lines 3 and 4). Note that RankCP
computes p(X; = z;;|Pa(X;) = paj;) using the probability
in the conditional probability table for node X ;. RankCP also
keeps track of the index of nodes in the trace in the index
variable (line 5). RankCP associates with each node a node-
parent state configuration using the configuration variable
(line 6). After RankCP has processed the trace, it ranks the
nodes by their lowest_prob values, and if two nodes have the
same lowest_prob values, the algorithm ranks the node with
the lower index value higher (line 9). The algorithm returns
the ranked nodes with their associated state configurations
(line 10). The ranked nodes with their associated state con-
figurations are retained for use in fault comprehension.
Sections 5.2 and 5.3 present studies that illustrate the po-
tential effectiveness of using the PPDG for fault localization.

4.2 Fault Comprehension

Another important aspect of debugging is fault compre-
hension—understanding the reason why a faulty statement
or set of statements causes failures. However, the fault com-
prehension problem has not received as much attention from
researchers as the fault-localization problem. Jiang and Su
[14] present a technique that constructs faulty control flow
paths from program predicates, which are intended to aid
fault comprehension. Cleve and Zeller [5] introduced a tech-
nique that provides contextual information, in the form of
cause-effect chains, that is useful for fault comprehension.

The fault-comprehension algorithm, FaultComp, generates
contextual information (i.e., explanations) from the PPDG
by analyzing the state configurations involving a node and
its parents. The contextual information is based on the state
configuration of a node and its parents because RankCP ranks
nodes based on the conditional probability of a node given
its parent nodes. The state configurations generated from
the PPDG that relates a node and its parents are called ex-
pected state configurations. An expected state configuration
is a state configuration generated from the PPDG whose
probability is greater than zero. The probabilities of the
expected state configurations indicate the likelihood of the
configurations. Note that a node may have several expected
state configurations.

Figure 6 shows algorithm FaultComp, which generates ex-
planations from the PPDG. FaultComp inputs, for a pro-
gram, a set of ranked nodes with their node-parent state con-
figurations obtained from the RankCP algorithm. FaultComp
also inputs the PPDG of the program. FaultComp outputs a
set of nodes, with each node having an expected configura-
tion set. FaultComp processes the set of ranked nodes (line
1) and, for each node Xj, it extracts the state of X; (i.e.,
z;;) from X;’s node-parent state configuration C; (line 2).
FaultComp uses this state to extract the state configurations
for X;’s parents from the PPDG (line 3)—FaultComp ex-
tracts all the conditional probabilities, p(X; = z;;|Pa(X})),
that are greater than zero. Thus, only parent state config-

Algorithm: FaultComp

Input: ranked nodes with faulty state
configurations:{ X; : C;}*_y; PPDG

Output: nodes with ranked expected-configuration sets

foreach X; € Ranked nodes do

[ary

2 get state of X; from Cj

3 get parent state-configurations associated with state
of X; with probabilities greater than zero from X;’s
conditional probability table

4 add parent state-configurations of X; with

probabilities to expected configuration set
end
rank state-configurations in the expected configuration
set of each node from highest probability to lowest
return nodes with ranked expected-configuration sets

Figure 6: FaultComp algorithm.

urations with probabilities greater than zero are extracted.
FaultComp stores the parent state configurations and their
probabilities in an expected configuration set (line 4). Af-
ter processing all the nodes, FaultComp ranks the configura-
tions in decreasing order of their probabilities (line 6), and
returns the ranked expected configurations (line 7). The
parent state configuration with the highest probability of-
fers the best explanation of what the expected behavior of
the node and its parents should be.

Section 5.4 presents a case study that shows the potential
utility of using PPDGs to facilitate understanding of faults.

4.3 Example

To illustrate the application of the PPDG, we provide an
example of how RankCP and FaultComp are used to local-
ize and generate contextual information related to faults in
a given failing execution. Suppose that variables a and m
in Prog in Figure 1 receive the values 3 and 4, respectively,
and that Prog behaves correctly under this input. The node-
state trace generated is {(1:T), (2:T), (D3:(d1(m),d2(a))),
(3:<), (4:dz2(a)), (L4:T), (D3:(d1(m), da(a))), (3:==),
(6:(d1(m),ds(a))}. Suppose further that the parameters of
the PPDG are estimated using this node-state trace. Now,
suppose that a and m receive the inputs 5 and 1, respec-
tively, and this input causes Prog to fail. The failing node-
state trace generated is {(1:T), (2:T), (D3:(d1(m),d2(a))),
(3:>), (6:(d1(m),d2(a))}. Given this failing execution, RankCP
will flag nodes 3 and 6 as suspicious because, according
to the PPDG, p(3 => |D3 = (di(m),d2(a))) = 0.0 and
p(6 = (di(m),d2(a))|l = T,2 =T,4 = 1) = 0.0, respec-
tively. Because nodes 3 and 6 have the same probability,
RankCP will use the index of the nodes in the failing node-
state trace to order the ranking. Node 3 is ranked higher
than node 6 because the index of nodes 3 and 6 are 4 and 5,
respectively. Suppose node 3 is faulty, then RankCP will as-
sociate the state configuration (3 :> U(D3 = (d1(m), d2(a)))
with node 3. FaultComp will use the state of node 3, >, to
generate the expected state configurations. However, there
are no state configurations associated with the state of node
3 (i.e., >) in the PPDG. Hence, FaultComp does not asso-
ciate any expected state configuration with node 3, which
implies that the parent of node 3 (i.e., D3) never caused
node 3 to get into the state > during learning. Therefore,
that is the reason RankCP ranks node 3 higher.

195

S. EMPIRICAL EVALUATION

To evaluate the effectiveness of the RankCP algorithm when
applied to the fault-localization problem, we compared it to
existing fault-localization techniques: RankCP to SOBER [19],
Tarantula [16], and Cause Transitions (CT) [5]. We per-
formed both experiments and case studies on fault localiza-
tion. We also performed a case study on fault comprehen-
sion.

5.1 Experiment Setup

We used the Siemens suite [13] as our subjects in our
studies; it is the most common set of subjects used to deter-
mine the effectiveness of fault-localization techniques. Ta-
ble 2 shows the characteristics of the seven Siemens pro-
grams: the name of the program, the number of faulty ver-
sions, the number of lines of code, the number of nodes in
PPDG, the number of test cases, and a description of the
program. There are 132 faulty versions in total and each
program is associated with a matrix that indicates which
test cases pass and which test cases fail. Each faulty version
has exactly one fault. For our experiments, we omitted eight
versions: versions 8, 14, and 32 of replace, versions 4 and 6 of
print_tokens2, version 9 of schedule, version 9 of schedule2,
and version 38 of tcas. We omitted these versions because
(1) there were no syntactic differences between the C file of
the correct version of the program and the faulty version
(e.g., change in header file), (2) no traces could be gathered
because the faulty versions had segmentation faults when
executed on their test suite, or (3) none of the test cases
failed when executed on the faulty version of the program.
The other experiments also eliminated some versions: SOBER
used a total of 130 versions, Tarantula used 122 versions,
and CT used 129 versions.

We implemented the algorithm to build the PPDG in
the Objective Caml language. Our technique uses the CIL
framework [22] to analyze and instrument the source files
of C programs. CIL transforms all conditions with com-
pound predicates (i.e., conjunctions and/or disjunctions of
simple predicates) into conditions with simple predicates.®
Our technique automatically performs the predicate trans-
formations discussed in Section 3.1.1 and builds the PDG
for each faulty version.

5.2 Fault Localization

For fault localization, our technique builds a PPDG for
each faulty version of the program. Our technique used the
traces of passing test cases to estimate the parameters of the
PPDG. Using passing test cases to estimate the parameters
of the PPDG enables the PPDG to capture the correct be-
haviors of the program exposed by passing test cases. After
building the PPDG, we ran the RankCP algorithm on the
trace of each failing test case. (Recall that RankCP analyzes
a single trace at a time.)

5.2.1 Study I: Effectiveness

The goal of this study is to compare RankCP to other fault
localization techniques in terms of effectiveness. We ob-
tained the fault localization results for Tarantula, CT, and
SOBER from published results [5, 15, 19].

5Note that if a predicate in a condition consists of a function
call, CIL evaluates the function separately and stores the
return value in a temporary variable, which is then used in
the predicate.

Program Faulty Versions | LOC | PPDG Size | Test cases Description
print_tokens 7 472 930 4130 lexical analyzer
print_tokens2 10 399 290 4115 lexical analyzer

replace 32 512 397 5542 | pattern replacement
schedule 9 292 201 2710 priority scheduler
schedule2 10 301 212 2650 priority scheduler
tcas 41 141 130 1608 altitude separation

tot-info 23 440 252 1052 | information measure

Table 2: Subjects used for experiments.

To evaluate the effectiveness of RankCP to the other fault-
localization techniques, we use the metric, score, which was
used by References [5, 15, 25]. Score represents the per-
centage of nodes that must be examined by the developer to
find the fault, assuming the developer starts from the high-
est ranked suspicious node and examines nodes in decreasing
order of suspiciousness until the faulty node is found. For
example, a score range of 0% — 1% implies the developer
needs to examine less than 1% of the code to find the fault.
The score is computed as

IN]

B
pppa) < 1

3)

Score =

where |N| is the number of nodes examined to find faulty
node and |[PPDG] is the number of nodes in the PPDG.

Because RankCP analyzes a single failing trace at a time,
we show its best case and worst case performances on the
set of failing test cases for each faulty version. For example,
for version 31 of replace, there are 210 failing test cases. For
95.3% (i.e., approximately 200) of the failing test cases, less
than 1% of the code must be examined to find the faulty
statement. For the remaining 4.7% (i.e., approximately 10)
of the failing test cases, between 1% and 10% (exclusive)
of the code must be examined. This implies the best score
range for RankCP for the faulty version is 0% — 1% and the
worst is 1% — 10%.

Table 3 shows the percentage of faults found at each score
range for each of the techniques. RankCP-best and RankCP-
worst represents the best and worst performance of RankCP,
respectively. Under RankCP-best, for 41.94% of the faulty
versions, less than 1% of the program must be examined to
locate the faulty statement. Under RankCP-worst, for 17.74%
of the faulty versions, less than 1% of the program must
be examined to find the faulty statement. When less than
1% of the code must be examined under RankCP-best, our
technique is approximately 9, 5, and 3 times more effective
than CT, SOBER, and Tarantula, respectively. Under RankCP-
worst, our technique is approximately 4 and 2 times more
effective than CT and SOBER, respectively.

Figure 7 shows the cumulative results of Table 3. The hor-
izontal axis represents the percentage of a program’s state-
ments that must be examined to find the fault it contains
and the vertical axis represents the percentage of faulty ver-
sions that are found given a score on the horizontal axis.
Note that the vertical axis can also be interpreted as the
percentage of faults found if no more than a given percent-
age of the program is examined. The legend lists the fault-
localization techniques. Figure 7 shows that RankCP-best
and RankCP-worst are more effective than CT. This is signif-
icant because RankCP and CT both analyze a single failing
execution at a time.

196

Score | RankCP- | RankCP- | Tarantula CT | SOBER
best worst
0-1% 41.94 17.74 13.93 4.65 8.46
1-10% 31.45 27.42 41.80 | 21.71 43.84
10-20% 13.71 25.81 5.74 | 11.63 21.54
20-30% 2.42 4.84 9.84 | 13.18 3.85
30-40% 2.42 4.84 8.20 1.55 4.62
40-50% 5.65 8.06 7.38 6.98 0.77
50-60% 1.61 2.42 0.82 3.10 0.77
60-70% 0.0 5.65 0.82 7.75 2.31
70-80% 0.8 2.42 4.10 4.65 2.31
80-90% 0.0 0.81 7.38 6.98 2.31
90-100% 0.0 0.0 0.00 | 17.83 9.23

Table 3: Percentage of located faults w.r.t percent-
age of code examined.

5.2.2 Study 2: Efficiency

The goal of this study is to determine the efficiency of
our technique and to compare it to the efficiency of other
fault-localization techniques. We conducted our efficiency
experiments on a 3.2 GHz Intel Pentium-4 PC with 2 GB
of memory. We obtained timings for Tarantula and CT from
published results [5, 15].

Table 4 summarizes the results of the study. The columns
show the programs, the average time taken to process all
traces and build the PPDG, the average computation time
taken by RankCP to analyze a single failing execution, the
computation time of Tarantula, and the average computa-
tion time of CT, respectively. All the timings are in seconds.
As the results show, the time required to process all traces
and build the PPDG, in addition to the computation time
required by RankCP to localize the fault in a given failing
execution, is less than the computation time of CT. For ex-
ample, for replace, our technique requires, on average, less
than 6 minutes to process all traces and build the PPDG.
The computation time for CT for replace is approximately
1 hour. However, the computation time for RankCP is, on
average, 0.0327 seconds. The timings are signficant because
both CT and RankCP analyze a single failing execution at a
time. Of all the techniques, Tarantula is the most efficient;
Tarantula takes milliseconds to finish its fault-localization
analysis. Note that none of our implementations have been
optimized. Furthermore, differences in computing environ-
ments (e.g., operating systems and programming languages)
might affect the results. Therefore, the efficiency results
should not be viewed as definitive.

5.3 Fault Localization: Case Study

The goal of this study is to further determine the effec-
tiveness and scalability of our technique. To do this, we per-
formed a case study using the Sed program. Sed is a stream
editing utility for the Unix Operating System platform that

Cumulative comparison to other techniques

123 = ~ Y © =)
3 3 S 3 = 3

~
8

8
‘
—
S

——RankCP-best
——RankCP-worst
2 / / —e—Tarantula]
i/ / ——SOBER

1ol / —-CT]

Percentage of faulty versions

0 I I I I I I I I I

0 10 20 30 40 50 60 70 . 80 90 100
Percentage of code to examine

Figure 7: Cumulative comparison with other tech-
niques on the Siemens subjects

Program PPDG RankCP | Tarantula CT
(Process | (Compu- | (Compu- | (Compu-
traces & | tation tation tation
build) time) time) time)

print_tokens 846.5 0.2176 0.0040 2590.1
print_tokens2 243.6 0.0574 0.0037 6556.5
replace 335.3 0.0327 0.0063 3588.9
schedule 77.3 0.0082 0.0032 1909.3
schedule2 199.5 0.0217 0.0030 7741.2
tcas 1.7 0.0003 0.0025 184.8
tot_info 97.6 0.0605 0.0031 521.4

Table 4: Efficiency of technique in seconds.

contains 14K lines of code. We obtained the software from
the Software-artifact Infrastructure Repository [6]. Sed has
seven versions, each with a number of seeded faults that
can be activated individually. For our study, we randomly
chose versions 4, 5, and 6. We activated all faults in the
versions individually, which resulted in 14 faulty versions of
Sed. Each faulty version had a single fault. Out of the 14
faulty versions, we omitted three versions because none of
the test cases failed on them. The number of test cases is
between 360 and 370 for each of the versions. The subject
also comes with a matrix that indicates the test cases that
pass and the test cases that fail.

Table 5 shows the results of the study. The faulty-version
column shows which version of the Sed program was used
and which fault was activated. For example, V6-F1 means
version 6 of Sed was used with the first fault activated.
MBT (model building time) gives the time it took to build
the PPDG, RankCP-best, RankCP-worst, and RankCP-median
give the best, worst, and median fault-localization results,
respectively, for the faulty versions. For Sed, to measure the
effectiveness of RankCP, we use the number of nodes in the
PPDG that must be examined to find the faulty statement
instead of the percentage of the program that must be ex-
amined. Using the number-of-nodes metric gives us a better
view of the effectiveness of RankCP.

As Table 5 shows, our technique was effective at localizing
the faults in some faulty versions of Sed that we examined.

Faulty MBT PPDG | RankCP- | RankCP- | RankCP-
Version | (seconds) Size best worst median

V4 - F2 1779.91 7049 2 2 2
V5-F1 713.40 9137 10 429 20
V5 - F2 723.02 9138 2 15 4
V5-F3 745.71 9137 264 1370 429
V5 - F4 750.13 9138 317 318 317
V6 - F1 614.14 9142 1 143 4
V6 - F2 330.81 9138 7 2941 2015
V6 - F3 334.24 9143 7 2940 2015
V6 - F4 735.62 9142 7 7 7
V6 - F5 569.43 9142 1983 2702 2237
V6 - F6 798.47 9137 2093 2483 2247

Table 5: Fault localization case study.

For example, for V5-F2 under RankCP-best, only the top
two nodes must be examined to find the faulty node, and
under RankCP-worst and RankCP-median, only 15 and 4 nodes
must be examined, respectively, to find the fault. However,
for some versions RankCP was not effective—a large number
of nodes must be examined. For example, for V6-F6, the
developer must examine 2093 and 2483 nodes under RankCP-
best and RankCP-worst, respectively.

Table 5 also shows that our technique can be made to scale
to large programs—the technique required less than an hour
to build the PPDG for each faulty version of Sed.

5.4 Fault Comprehension: Case Study

The goal of this study is to determine the potential use-
fulness of PPDGs for fault comprehension. To do this, we
selected V6-F5 of Sed. Figure 8 shows a graph of the ex-
planation generated by FaultComp from the PPDG, relating
nodes 2964 and 2965 to their parents. The labels on the
nodes correspond to the line numbers of the statements in
V6-F5 of Sed. The fault in V6-F5, which is an off-by-one er-
ror, is located at node 2950. The result of the computation
that occurs at node 2950 is used at nodes 2964 and 2965.
Table 5 shows that for V6-F5, RankCP-best and RankCP-worst
will require the developer to examine 1983 and 2702 nodes,
repectively, to find the fault. However, RankCP ranks nodes
2964 and 2965 as the first and second suspicious nodes, re-
spectively, but if the developer examines the explanation
generated by FaultComp for node 2964, only nodes 2964,
2950, and 2833 must be examined to find the fault, The use
of the explanation significantly reduces the time required to
find the fault.

On closer examination of the explanation generated by
FaultComp for node 2964, we would see that the parent states
of node 2964 never caused the node to be in state <. Also
on closer examination of the explanation generated for node
2965, the node gets into an unknown state (i.e., the state
was never encountered during building of the PPDG). The
unknown state occurs because the result of the computation
at node 2950 is also used at node 2965, which is control
dependent on node 2964. These explanations generated by
FaultComp provide reasons why nodes 2964 and 2965 are
ranked higher by RankCP.

6. RELATED WORK

There are a number of techniques, that have used prob-
abilistic graphical models to address software engineering
tasks. Burnell and Horvitz [4] use belief networks (Bayesian
networks [21]) for debugging of mainframe assembler pro-
grams. Their technique is similar to ours in that they gen-

Figure 8: Graph of explanation generated by Fault-
Comp from PPDG.

erate explanations from the belief networks. However, the
main difference between their belief network and the PPDG
is that their belief network does not capture the statisti-
cal dependences among the elements in a program. Also
their technique focuses on mainframe assembler programs
but PPDGs is applicable to any program whose PDG can
be obtained.

There are a number of techniques (e.g., [3, 10, 24]) that
build models of program behaviors. Bowring and colleagues
[3] build models of program behaviors using Markov mod-
els. The models are constructed from program entities such
as branches and method calls. Haran and colleagues [10]
build models of program behaviors using tree-based classi-
fiers. Podgurski and colleagues [24] build models of pro-
gram behaviors using automated clustering techniques. The
classifiers built from their models are later used to classify
software executions. The PPDG differs from their models
because it models statistical dependencies between program
elements, which potentially makes the PPDG more accurate
because of the semantic information obtained by capturing
statistical dependencies between program elements.

There are also temporal specification-mining techniques
(e.g., [1, 2, 27]) that extract models from programs. These
techniques mine specifications from programs and use them
to detect errors in programs. The kind of errors the tech-
niques can detect are the errors that violate the specifica-
tions. The PPDG is similar to their models in that it en-
codes a probabilistic specification of a program thus making
PPDGs useful for fault diagnosis. The difference is that the
specification miners are limited in the kind of errors they can
detect. The PPDG, however, has the potential to detect a
wide variety of errors because it captures the statistical de-
pendencies between program elements.

7. CONCLUSION AND FUTURE WORK

In this paper, we present the PPDG, a probabilistic graph-
ical model based on the PDG that captures the statisti-
cal dependences among program elements and enables the
use of probabilistic reasoning to analyze program behaviors.
We also presented algorithms for two applications of the
PPDG: RankCP, which uses the PPDG to rank statements
to assist in fault localization and FaultComp, which uses the
PPDG to generate explanations to aid in fault comprehen-
sion. To evaluate the PPDG, we implemented its construc-
tion, RankCP, and FaultComp, and performed several studies.
The results of the studies show the potential usefulness of
the PPDG for these two software engineering tasks.

Our studies show that, in many cases, RankCP is effec-
tive for fault localization. However, the algorithm is not
effective in localizing faults in some failing executions—in
these cases, a large number of statements must be exam-

198

ined to find the fault. One reason for this ineffectiveness
is that RankCP ranks nodes in the PPDG using the condi-
tional probabilities of nodes and their parents. Thus, the
algorithm may not localize faults whose effects transcend
node-parent state configurations. We are currently working
on new algorithms that consider local and global effects of
faults.

Our studies also show that the PPDG can be an effective
model for representing the behaviors of a program for fault
diagnosis. However, the efficacy of the PPDG depends on
the abstract states used by nodes to capture the semantics
of computations. For example, for memory-related faults,
RankCP’s was not effective during fault localization because
the states of nodes in the PPDG did not capture memory
related behaviors. Because the state information directly
affects the efficacy of the PPDG, we are investigating other
types of states (e.g., object states and predicate abstrac-
tions) to identify those that might better represent the se-
mantics of the computations.

One critical part of our PPDG construction is the execu-
tion information, which is used to estimate the paramters of
the PPDG. This execution information is dependent on the
test suite that is executed by the instrumented program. In
our experiments, we used large test suites that had been used
for many previous testing and debugging experiments, and
thus, provided good coverage of program behaviors. How-
ever, in general, we have not determined criteria for selecting
appropriate test-suites for used with our technique. We are
currently investigating such criteria.

Our efficiency experiment, although limited, suggests that
our technique is more efficient than existing techniques that
consider single failing executions. However, the overhead
imposed by source-code instrumentation limits the appli-
cation of PPDGs to large software systems and to deployed
software. We are currently developing fault-diagnosing algo-
rithms that require only partial information (e.g., coverage
data as opposed to traces) that could make our technique
applicable to these systems.

The PPDG we used in this paper was based on intrapro-
cedural PDGs, and thus the PPDGs used for our studies
do not capture statistical dependences across functions. In
the future, we will base the PPDG on the interprocedural
PDG, enabling the PPDG to capture the statistical depen-
dences among program elements (e.g., pointers and refer-
ences) whose behaviors are not confined to a single function.

We have shown the potential utility of applying the PPDG
to the problem of fault diagnosis but we believe that it has
other applications. We therefore plan to investigate the po-
tential application of the PPDG to other software engineer-
ing tasks.

Acknowledgements

This work was supported in part by NSF awards CCF-
0429117, CCF-0541049, and CCF-0725202 to Georgia Tech.
The anonymous reviewers provided many comments that
helped improved the presentation of this paper.

8. REFERENCES

[1] R. Alur, P. Cerny, P. Madhusudan, and W. Nam.
Synthesis of Interface Specifications for Java classes.
In Proceedings of the Symposium on Principles of
Programming Languages, pages 98-109, January 2005.

2]

3]

[5]

[12]

[15]

G. Ammons, R. Bodik, and J. R. Larus. Mining
Specifications. In Symposium on Principles of
Programming Languages, pages 4-16, January 2002.
J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active
Learning for Automatic Classification of Software
Behavior. In Proceedings of the International
Symposium on Software Testing and Analysis, pages
195-205, July 2004.

L. Burnell and E. Horvitz. Structure and Chance:
Melding Logic and Probability for Software
Debugging. Communications of the ACM,
38(3):31-41., 1995.

H. Cleve and A. Zeller. Locating Causes of Program
Failures. In Proceedings of the International
Symposium on the Foundations of Software
Engineering, pages pages 342-351, May 2005.

H. Do, S. Elbaum, and G. Rothermel. Supporting
Controlled Experimentation with Testing Techniques:
An Infrastructure and its Potential Impact. Empirical
Software Engineering, 10(4):405-435, 2005.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
Program Dependence Graph and its Use in
Optimization. ACM Trans. on Programming
Languages and Systems, 9(3):319-349, July 1987.

S. Galan, F. Aguado, F.J.Diez, and J. Mira. NasoNet,
Joining Bayesian Networks, and Time to Model
Nasopharyngeal Cancer Spread. Artificial Intelligence
in Medicine, 2101,/2001:207-216, 2001.

K. Gallagher. Using Program Slicing in Software
Maintenance. PhD thesis, University of Maryland,
1989.

M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil.
Applying Classification Techniques to
Remotely-Collected Program Execution Data. In
Proceedings of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE
2005), pages 146-155, September 2005.

M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, and S. Spoon. Regression Test
Selection for Java Software. In Proceedings of the
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA
2001), pages 312-326, October 2001.

D. Heckerman, D. M. Chickering, C. Meek,

R. Rounthwaite, and C. M. Kadie. Dependency
Networks for Inference, Collaborative Filtering, and
Data Visualization. Journal of Machine Learning
Research, 1:49-75, 2000.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the Effectiveness of Dataflow and
Controlflow-Based Test Adequacy Criteria. In
International Conference on Software Engineering,
pages 191-200, May 1994.

L. Jiang and Z. Su. Context-Aware Statistical
Debugging: From Bug Predictors to Faulty Control
Flow Paths. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software
Engineering, pages 184-193, November 2007.

J. Jones and M. J. Harrold. Empirical Evaluation of
the Tarantula Automatic Fault-Localization
Technique. In Proceedings of the 20th IEEE/ACM

199

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

25]

[26]

27]

(28]

29]

International Conference on Automated Software
Engineering, pages 273-282, November 2005.

J. Jones, M. J. Harrold, and J. Stasko. Visualization
of Test Information to Assist Fault Localization. In
Proceedings of the 24th International Conference on
Software Engineering, pages 467-477, May 2002.

J. W. Laski and B. Korel. A Data Flow Oriented
Program Testing Strategy. IEEE Transactions on
Software Engineering, 9:347-354, 1983.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable Statistical Bug Isolation. In
Proceedings of the Conference on Programming
Language Design and Implementation, pages 1526,
June 2005.

C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff.
SOBER:Statistical Model-based Bug Localization. In
Proceedings of the 5th Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, pages 286—295, September 2005.

K. Murphy. Dynamic Bayesian Networks:
Representation, Inference and Learning. PhD thesis,
UC Berkeley, Computer Science Division, 2002.

R. E. Neapolitan. Learning Bayesian Networks.
Prentice Hall, 2003.

G. C. Necula, S. McPeak, S. P. Rahul, and

W. Weimer. CIL: Intermediate Language and Tools for
Analysis and Transformation of C Programs. In CC
’02: Proceedings of the 11th International Conference
on Compiler Construction, pages 213-228, April 2002.
A. Podgurski and L. A. Clarke. A Formal Model of
Program Dependences and its Implications for
Software Testing, Debugging, and Maintenance. I[EEFE
Transactions on Software Engineering, 16(9):965-979,
September 1990.

A. Podgurski, D. Leon, P. Francis, W. Masri, M. M.
Sun, and B. Wang. Automated Support for Classifying
Software Failure Reports. In Proceedings of the 25th
International Conference on Software Engineering,
pages 465-475, May 2003.

M. Renieris and S. Reiss. Fault Localization With
Nearest Neighbor Queries. In International Conference
on Automated Software Engineering, pages 30—-39,
November 2003.

S. Thrun. Robotic Mapping: A Survey. In Ezploring
Artificial Intelligence in the New Millennium, pages
1-35, 2002.

W. Weimer and G. Necula. Mining Temporal
Specifications for Error Detection. In 11th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages
461-476, April 2005.

M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering,
pages 439-449, March 1981.

X. Zhang, N. Gupta, and R. Gupta. Pruning Dynamic
Slices With Confidence. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 169-180, June 2006.

