
1

Self-supervising BPEL Processes
Luciano Baresi and Sam Guinea

Politecnico di Milano – Dipartimento di Elettronica e Informazione
via Golgi 42 - I-20133, Milano, Italy

{baresi, guinea}@elet.polimi.it

Abstract— Service compositions suffer changes in their partner
services. Even if the composition does not change, its behavior
may evolve over time and become incorrect. Such changes cannot
be fully foreseen through pre-release validation, but impose a
shift in the quality assessment activities. Provided functionality
and quality of service must be continuously probed while the
application executes, and the application itself must be able
to take corrective actions to preserve its dependability and
robustness.

We propose the idea of self-supervising BPEL processes, that is,
special-purpose compositions that assess their behavior and react
through user-defined rules. Supervision consists of monitoring
and recovery. The former checks the system’s execution to
see whether everything is proceeding as planned, while the
latter attempts to fix any anomalies. The article introduces two
languages for defining monitoring and recovery and explains
how to use them to enrich BPEL processes with self-supervision
capabilities. Supervision is treated as a cross-cutting concern that
is only blended at runtime, allowing different stakeholders to
adopt different strategies with no impact on the actual business
logic. The paper also presents a supervision-aware run-time
framework for executing the enriched processes, and briefly
discusses the results of in-lab experiments and of a first evaluation
with industrial partners.

Index Terms— D.2.4.a [Software Engineer-
ing]:Software/Program Verification - Assertion checkers,
assertion languages, performance; D.2.2.c [Software
Engineering]: Design Tools and Techniques - Distributed/Internet
based software engineering tools and techniques

I. INTRODUCTION

The Oasis consortium defines Service Oriented Architectures
(SOAs) as [1]: “A paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover,
interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.” The
importance of this definition is twofold: it emphasizes the intrinsic
distributed ownership of these applications, and it highlights the
need for “desired effects consistent with measurable preconditions
and expectations”.

Many researchers have studied how to provide and regulate de-
sired effects [2], [3], [4] in software systems, but the peculiarities
of service-oriented applications make it difficult to understand
how they can be ensured through the entire life-cycle. Services
usually only provide a syntactical description of their interfaces,
loose coupling and distributed ownership allow individual services
to evolve separately, and late binding techniques support their run-
time selection. All these characteristics open the door to poten-
tially unexpected (and often undesired) changes in functionality
and QoS while the application is in operation. This ephemerality
requires the continuous assessment of system properties, and thus

conventional testing approaches must be complemented with run-
time validation techniques [5].

This article contributes to this last aspect and proposes a
technique, along with supporting tools, for deploying robust and
dependable Web services1 [6] compositions in the form of BPEL
(Business Process Execution Language, [7]) processes. BPEL
only supports the workflow-based composition (orchestration) of
external partner services: a centralized entity —usually called
engine— is in charge of the synchronization of the different
services, which provide the main computational capabilities. This
is why the proposal privileges the process-side supervision of
the interactions between the process and its partner services. The
points of the process we are interested in are those in which it
interacts with the outside world. This way we can check whether
partner services, which may have evolved independently, are still
appropriate for our needs. Supervision rules declaratively specify
both the monitoring directives, which synchronously check prede-
fined points of the process to see whether everything is proceeding
as planned, and the reaction strategies, which activate some
form of recovery when anomalies arise. Together, monitoring and
recovery allow us to speak of self-supervising BPEL processes.

Monitoring directives are similar to conventional design by
contract [2], but it is the client (and not the provider) that specifies
its own pre- and post-conditions. For example, a method clearly
states what it can offer and under what conditions. Web services
do not usually provide such information, and this is why we
decided to flip the perspective. Pre- and post-conditions must be
interpreted as expectations before and after the process interacts
with its partner services. Borrowing from well-known assertion
languages (e.g., Anna [8] and JML [9]), monitoring directives
are expressed in WSCoL (Web Service Constraint Language),
which is our special-purpose language that mixes typical propo-
sitional logic constructs with XML-based technology to provide
a level of abstraction BPEL designers are familiar with. WSCoL
concentrates on both functional and non-functional properties,
an is suitable to express general dependability properties such
as safety (i.e., absence of catastrophic events), integrity (i.e., no
improper state alterations), availability (i.e., readiness for service),
and reliability (i.e., continuity of correct service).

Recovery strategies follow the typical ECA (event-condition-
action) paradigm and are stated in our WSReL (Web Service
Recovery Language). The event is the discovery of a run-time
anomaly. This means recovery starts as soon as a monitoring
assertion signals an error. The condition is once again expressed
in WSCoL, and allows us to choose among alternative recovery
options, which are defined by picking and mixing atomic recovery
actions from an easily extensible library of predefined actions.

1Since our work concentrates on Web service technology, from now on,
we will use the terms service and Web service as synonyms.

2

Actual recovery capabilities heavily depend on the services
the process interacts with. Stateless partner services simplify
the problem. Things become more complex when the process
interacts with stateful or conversational services. The former
are services that have persistent side-effects when called (e.g.,
business data are stored on a persistent database). This means that
calling them more than once may not lead to repeated behavior,
and that they must provide a special operation if we want to
be able to undo their effects. The latter require that a special
conversation protocol be respected. In these cases, we need a way
to rollback the conversation itself. This is why the use of stateful
and conversational services can lead to situations in which only
partial recovery is possible.

BPEL itself would allow designers to mix defensive program-
ming techniques [10] and fault, event, and compensation handlers
with the actual business logic to embed supervision into the
process, but this solution would be complex (due to the limited
capabilities of the language), and inflexible (any change would
require modifying the BPEL process and redeploying it). In
contrast, our approach fosters separation of concerns since it
maintains the actual business logic and supervision directives
separate at design time. Designers define the process’ business
logic, without considering supervision; then they declaratively
specify their supervision rules. At runtime, the two elements
are intertwined by means of AOP (Aspect Oriented Program-
ming [11]). The weaving allows us to differentiate the supervision
directives we want to consider at runtime, based on who is running
the process, when it is being run, and in collaboration with what
partner services. This is achieved without modifying the process
and/or re-deploying it.

This article presents a comprehensive treatment of our proposal
for self-supervising BPEL processes. Some preliminary versions
of the work were presented in [12], [13], but this article provides
a uniform and comprehensive presentation of all the framework’s
capabilities, after extensive improvement. More specifically, we
have extended the semantics of meta-level information, that
is, of the information designers can use to clarify whether a
supervision rule must be considered or ignored at runtime. We
have reconsidered response times in WSCoL and implemented
a new data collector for gathering them. We have reworked
WSCoL and WSReL to improve their interplay. We have added
backward recovery to WSReL, that is the capability to restore
a previous point in the process’ execution. Finally, we have
conducted thorough evaluation of the approach, by investigating
in-lab performance issues, and by using it with both real-world
industrial partners and students.

The rest of the article is organized as follows. Section II
provides a brief introduction to the BPEL language and to the
case study we use throughout the article. Section III describes
our supervision approach, while Sections IV and V introduce
WSCoL and WSReL, respectively. Section VI concludes the
presentation of supervision rules with some significant examples.
Section VII illustrates the prototype execution environment and
the evaluation we carried out, and discusses the important lessons
learned. Section VIII surveys the state of the art and Section IX
concludes the article.

II. RUNNING EXAMPLE

This section introduces the main elements of BPEL, to make
the article self-contained, the running example used throughout

Activity Shape Activity Shape Activity Shape

receive terminate flow

invoke sequence forEach

reply if fault
handler

!

assign while event han-
dler

throw
!

repeatUntil comp. han-
dler

wait pick

Fig. 1. Graphical notation for BPEL.

the article, and some informal supervision requirements.

A. BPEL in a nutshell

BPEL 2.0 [7], Business Process Execution Language (for Web
Services), is a high-level XML-based language for the definition
and execution of business processes by means of Web service-
based workflows.

The definition of a process contains a set of global variables and
the workflow logic expressed as a composition of activities, where
implicit or explicit scopes help define variables and activities at
different visibility levels. BPEL does not come with a standard
graphical representation, but Figure 1 introduces the graphical
symbols used in this article to render its basic and structured
activities, and its fault, event, and compensation handlers.

Activities include primitives for communicating with other ser-
vices (receive, invoke, reply), for executing assignments (assign),
for signaling faults (throw), for pausing (wait), and for stopping
the execution of the process (terminate). All the primitives that
communicate with the outside world use BPEL’s supporting
notion of partnerlink to describe with whom they want to com-
municate. Late binding is supported by using assign activities to
change the endpoints associated with the partnerlinks at runtime.
The activities sequence, while, repeatUntil, and if provide stan-
dard control structures to order activities, and define loops and
branches. The pick is peculiar to the domain of concurrent and
distributed systems, and waits either for the first message (out of
several incoming ones) to occur or for a time-out alarm to go off,
to execute the activities associated with such an event.

The flow supports the concurrent execution of activities. Syn-
chronization among the activities of a flow may be expressed
using the supporting notion of links; a link can have a guard
called transitionCondition. Since an activity can be the target of
more than one link, it may define a joinCondition for evaluating
the transitionCondition of each incoming link. By default, if the
joinCondition of an activity evaluates to false, a fault is generated.
Alternatively, BPEL supports Dead Path Elimination (DPE), to
propagate a false condition rather than a fault over a path, thus
disabling the activities along that path. forEach supports the
concurrent or sequential execution of BPEL scopes: in the former
case, the execution of its internal activities is serialized; in the
latter case, they are executed as parallel flows.

Each scope (including the top-level one) may contain the
definition of the following handlers:

3

• An event handler reacts to an event by executing —
concurrently with the main activity of the scope— the
activity specified in its body. In BPEL, there are two types of
events: message events, associated with incoming messages,
and alarms based on timers.

• A fault handler catches faults in the local scope. If a suitable
fault handler is not defined, the fault is propagated to the
enclosing scope.

• A compensation handler restores the effects of a previously
completed transaction and is initiated programmatically by
using a compensate activity.

B. Tele-radiology case study

The running example considers tele-radiology as a means to
overcome the lack of specialized radiologists in certain geograph-
ical areas2. Instead of moving patients to private clinics every time
bio-imaging is needed, technicians perform the imaging, and then
send them to a remote specialized center for analysis (TMC). The
result is a general improvement both in the average waiting time
for patients and in costs.

Figure 2 shows the BPEL process that manages the interactions
among patients, hospitals, and the telecare system. It exemplifies
most of BPEL’s modeling features, making it is a good compro-
mise between generality and complexity. Its merits go beyond
the particular problem it addresses and can be considered a good
example of an average BPEL process.

A blocking pick allows the process to perform three main
activities. In the first branch (called makeReservation), a
patient can request a visit for a magnetic resonance. The pro-
cess receives the patient’s ID and checks to see if the re-
quest has also been advanced by a recognized doctor (invoke
activity checkMedicalRequest). If this is not the case the
process issues a reply with a negative answer (reply activity
negativeResult). If the request can proceed, the process
obtains a set of time slots (invoke activity getCalendarDates)
and sends them to the patient so that he/she can choose one
(invoke activity sendDates). When the patient responds (receive
activity receiveDate), the process stores the reservation (invoke
activity storeDate) and gives the patient a positive result (reply
activity positiveResult).

In the second branch (called performVisit), a technician
accesses the system to check whether the reservation is cor-
rect (invoke activity checkReservation). If it is not (e.g.,
the current time slot is not reserved for that patient) the pro-
cess issues a negative answer and terminates (reply activity
negativeResult). If the visit can proceed, the technician
produces the magnetic resonance image, and passes it to the
process (receive activity receiveMRI), which stores the image
(invoke activity storeMRI) and replies positively (reply activity
positiveResult).

In the third branch (called getAnalyses), a technician can
proceed to forward magnetic resonance images to the telecare
service. The process retrieves a batch of images from a storage
component (invoke activity getImages), then sends them to

2The example is loosely inspired by an important case study presented
in the eHEALTHIMPACT project, supported by the European Commission
Information Society and Media DG. We have adapted the case study by
dropping most of the medical details. In no way do we presume it to have
medical merit, but our revision was aimed at identifying a sufficiently complex
case study to demonstrate the main features of our approach.

the TMC (invoke activity sendImagesToTMC). The process
waits for the analyses to become available through event handler
receiveAnalyses. The analyses are checked to see if the
specialists have uncovered any problems. If everything is fine, an
analysis contain a “green code”, if not a “red code”. In the first
case the patient is notified to go to the hospital and pick up the
original scan (invoke activity notifyPatient). In the second
case, the patient is notified and a digital copy is sent immediately
to the his/her doctor (invoke activity notifyPersonalDoctor).

The process also provides a second event handler called
changeBinding. This is used to dynamically modify the bind-
ing the process has with the telecare service. It receives the URI
of the telecare service the process should use from that point on.
This is achieved using assign activities that modify the telecare’s
endpoint references.

C. Supervision requirements

So far, we only considered the business logic, but this process
needs careful supervision to turn it into a robust and dependable
application. There is no single way to design and implement its
supervision. The following supervision requirements are aimed
at demonstrating what the proposed approach offers, and do
not provide a complete supervision solution. For the sake of
simplicity, from here on, we will refer to each requirement with
a unique name.

CheckReservation requires that the reservation number, re-
turned by receive activity receiveDate, be correctly encoded.
If the code is wrong we may restore the process to before per-
forming activity getCalendarDates, and switch to a backup
appointment manager service. This way the process will refresh
the possible dates by invoking activity getCalendarDates on
the new service, and ask the user to choose a new one by re-
invoking activity sendDates.

CheckCenter imposes that the reliability of method send-
ImagesToTMC, calculated over the last two hours, be at least
95%. Reliability is calculated as the number of times the method
responded within 2 minutes, over the total number of invocations.
If the reliability is too low the process must react by changing
its binding to a backup service. However, we only change the
telecenter’s endpoint reference if it still points to the original
telecenter service. If the endpoint has already been modified, for
example through event handler changeBinding, the supervision
rule is no longer relevant and we switch it off.

CheckResolution says that any image inserted in the system
(through receive activity receiveMRI) must have a resolution
that is between 800 × 600 and 1024 × 768 pixels. If this is not
the case, we can decide among different strategies. In case the
resolution is too high we can use an external service to lower the
images’ resolutions. If the resolution is not ideal, but not “too”
low (within a 10% of our desired resolutions), we simply ignore
the problem and let the process continue. If, on the other hand,
the error is noticeable, there is nothing we can do, so we notify
the head doctor and halt the process.

III. OUR SUPERVISION APPROACH

Our approach augments BPEL processes with self-supervising
capabilities. This is achieved by defining appropriate supervision
rules. Each rule must indicate the precise point in the process
in which it is considered. This is done by specifying the rule’s

4

notifyPatient notifyPatient

notify
PersonalDoctor

green code red code

receiveAnalyses

makeReservation

OnMessage

check
MedicalRequest

negative
Result

getCalendar
Dates

sendDates

receiveDate

storeDate

positiveResult

check
Reservation

negative
Result

positive
Result

receiveMRI

storeMRI

positiveResult

performVisit getAnalyses

getImages

send
ImagesToTMC

change
Binding

changeBinding

OnMessage OnMessage

Fig. 2. The tele-radiology process.

location, that is an XPath expression that uniquely identifies
a BPEL invoke, receive, reply, or pick activity within the process
definition. This means that any BPEL activity that interacts with
the outside world is a valid location. When defining the location
we also specify if the rule is to be considered before or after the
activity’s execution (i.e., if it is a pre- or a post-condition).

Each rule also contains a set of supervision parameters.
This meta-level information is used at runtime to decide whether a
rule needs to be considered or not. The reason is that supervision
necessarily introduces a performance overhead, and we want to
be able to tailor the exact amount of supervision depending on
the needs at hand without changing or redeploying the process.

Finally, a rule is made up of a monitoring expression, specified
in WSCoL, and a set of alternative recovery strategies, specified
in WSReL. Although these two key aspects cannot be treated
entirely separately, since they influence each other, Section IV
introduces WSCoL, while Section V presents WSReL and clari-
fies how the two work together.

A. Supervision Parameters

Supervision parameters allow the designer to tailor the degree
of supervision that will be achieved by specifying when a rule
can be “switched off”. Our supervision parameters are priority,
validity, delay, and trusted providers. All four are optional, and
for each there is a default meaning.

Priority allows us to create layered sets of supervision rules
by providing each rule with a numeric priority value. When a
supervision rule is about to be checked, we compare its priority
with a global process threshold value. All rules that have a priority
equal to or less than the threshold are considered for supervision;
those that do not are ignored. It is like having a knob that can be
turned to increment or decrement the supervision activities being
performed. If the priority is not given, it defaults to the lowest
possible value, meaning the rule is always considered.

A validity defines a time window in which, if the process is run,
the rule is checked. On the other hand, every time the process is
run outside this window the rule is ignored. A validity parameter
is defined by using two optional values: from and to. If both are
specified, the time window has both a lower and an upper bound.
If only the from value is specified, the supervision rule will be

checked from that point in time on, and if only the to value is
specified, the rule is checked up to that point. We also support
a second interpretation of validity. In this case we use another
keyword: times with a positive integer that states the maximum
number of times a rule should be checked. If no validity window
is given the rule is always checked.

Delay is supported through the use of keyword wait for
followed by the definition of a temporal unit. After evaluating the
rule once, the framework will wait for the delay to elapse before
considering the rule again. Since we do not know exactly when
a rule will be evaluated, this parameter specifies the minimum
delay between subsequent evaluations. We also provide a second
interpretation of delay. In this case we state the number of times
we will wait for the rule to be considered before checking it again.
If no delay value is given the rule is always checked.

Trusted providers is a list of service providers. If we interact
with one of these providers, that interaction can go unsupervised.
This is useful when we consider systems that adopt late-binding
techniques. Again, if no trusted providers are defined the rule is
verified for all providers.

IV. MONITORING

WSCoL (Web Service Constraint Language) is the assertion
language we defined to specify what the process expects from
partner services. It is evocative of assertion languages, such as
ANNA (Annotated Ada [8]), and JML (Java Modeling Lan-
guage [9]), but given the syntax of BPEL and Web services, WS-
CoL also takes inspiration from XML technology (e.g., XPath).

WSCoL is holistic. We do not limit ourselves to making
assertions on the process’ internals; we also consider aspects
regarding the environment the process is run in. Our definition
of environment is very broad, and comprises whatever data we
can collect at runtime through external probes. For example,
we can also predicate on data belonging to previous process
executions. This is reflected in the three kinds of variables handled
by WSCoL.

A. Variables

WSCoL variables can be either anonymous, and only available
in the expression in which they are declared, or named locally

5

within the rule in which they are defined. Aliasing (let) allows
one to identify variables with simple names, and greatly simplifies
expressions, which become less verbose. It allows a particular
value to be collected only once, and be referenced any number
of times in the rest of the supervision rule. Aliases can also be
used to identify entire WSCoL assertions to allow for simpler
definitions, identify analyses to be performed only once, and
simplify recovery strategies.

The simplest variables managed by WSCoL are called inter-
nal variables and hold values that exist within the process in
execution. They can be values passed by the process’ client as
input parameters, values received from the outside world through
receives, picks, or invokes, or values calculated by the process
itself by using assign activities. Internal variables contain simple
XSD values (i.e., String, Number, or Boolean), and should not
be confused with BPEL internal variables, which typically match
complex XSD types defined in WSDL interfaces. Indeed, a WS-
CoL internal variable provides a way of extracting simple XSD
values from complex BPEL variables. This is done by specifying
the name of a BPEL variable and an XPath expression. The result
is either a single-valued variable or a container for multi-valued
variables. For example, our running example suggests an internal
variable for holding a reservation number:

let $res = $StoreReservationResponse/code

The expression defines alias $res: the BPEL variable Store-
ReservationResponse, introduced by the use of the $ sign,
contains the reservation code we want.

External Variables hold values that do not exist within the
process and that must be obtained through the environment. This
is achieved by interacting with any external probe that provides a
WSDL interface. This choice eases the deployment of new probes
and also fosters the re-use of third party entities.

An external variable is defined by means of the URI associated
with the WSDL interface of the probe, the input message to be
sent, and the XPath expression to be used to extract the value of
interest from the message returned by the method. For example,
in our case study we can assume an external variable to hold an
image’s resolution. This is not known by the process, nor can the
process calculate it. What the process knows is where the image
can be retrieved and how to store it in the system. The external
variable is written as:

let $imageURL = $submitImageRequest/imageURL;
let $hRes = return(‘WSDL_URI’,‘<imageRes>’+

$imageURL+‘< /imageRes>’,
/getResResponse/horizontalRes)

The alias uses an internal variable ($submitImageRequest/
imageURL) to build the message to be sent to the external probe.
The XPath expression extracts the image’s horizontal resolution
from the message returned by the web method.

External probes open the door to quality of service metrics.
For example, we often use a special probe in our post-conditions
to obtain the response times of service invocations. Notice that,
since we place the probe at the process’ side, the response time is
the sum of the service’s execution time and the extra time due to
the request and response messages transiting through the web. By
definition, if a service does not respond it is impossible for us to
calculate a response time (and thus evaluate the post-condition).
Usually, this case is captured by the execution engine, which

launches a special timeout exception3 that is translated into a fault
and propagated through the process. To avoid the engine taking
over as the recovery manager, we catch the exception before it is
propagated to the process, assume the post-condition is violated,
and proceed directly to our own WSReL recovery strategies.

Historical Variables hold values related to previous process
executions. WSCoL provides two functions for managing his-
torical variables: store is used to store any kind of WSCoL
variable to a persistent storage, and also implicitly define an alias,
while retrieve is used to fetch a variable previously stored.
For example, every time invoke activity sendImagesToTMC is
executed, we could store its response time (a value obtained using
an external variable):

store $rt = return(...);

$rt is a new name by which the value will be known and stored.
When a variable is stored it is implicitly tied, through the engine,
to the user that executed the process. The first time we execute a
store, we create the alias and store its first value, while further
executions simply add new values. The consistency and coherence
of used names is up to the designer.

Function retrieve takes as input a variable name, but we
can also supply an optional user identifier, and an optional time
interval. The user identifier allows us to only retrieve the variables
stored by a given user. The default is to fetch all the variables
stored with that name, regardless of who stored them. The interval
can be used in two ways: we can either indicate the maximum
number of results that should be returned, or the maximum
amount of time the function should consider when going back
into the past to collect its values. In our example we can retrieve
the values of variable $rt stored in our previous example.

retrieve(’rt’, null, 24h);

In this case we do not specify any particular user identifier, but
use keyword null to specify that we are interested in all the
values of $rt stored in the last 24 hours.

B. Constructs

The syntax for WSCoL assertions is defined as:

〈asrtn〉 ::= ¬〈asrtn〉 | 〈asrtn〉&&〈asrtn〉 | 〈asrtn〉‖〈asrtn〉 |
(〈quant〉 〈alias〉 in 〈values〉, 〈asrt〉) |
〈term〉〈rop〉〈term〉

〈term〉 ::= 〈var〉 | 〈term〉〈aop〉〈term〉 | 〈const〉 |
〈var〉.〈sfun〉(〈term〉*) |
(〈afun〉〈alias〉 in 〈var〉, 〈term〉)

〈rop〉 ::= < | ≤ | == | ≥ | >
〈quant〉 ::= forall | exists | numOf
〈aop〉 ::= + | − | × | ÷ | %
〈sfun〉 ::= abs | replace | substring | . . .
〈afun〉 ::= sum | avg | min | max | product

where var is a variable, a variable alias, or a special purpose
alias called $instanceID which returns the ID of the process
currently being run, sfun are simple functions that mimic those
commonly used in XPath, and afun are aggregate functions meant
to be used with variables that have multiple values (containers).
Boolean, relational (relop), and arithmetic operators (arop) follow
their usual definitions.

3The length of this timeout can be configured.

6

Designers can use universal and existential quantifiers to ex-
press constraints over finite sets of values4. Their meanings are
straightforward. When using a quantifier, the designer must define
three parts. The alias names a variable that will be used as
parameter in the upcoming assertion, values uses the syntax
shown previously for variables to define the range of values that
the alias can assume, and assertion defines the predicate we want
to check.

V. RECOVERY

WSReL (Web Service Recovery Language) extends upon the
legacy of WSCoL to provide a programmable, flexible, and
extensible solution for both local and backward recovery. Local
recovery tries to fix the anomaly in the current state of error, in a
way that is similar to compensation. Indeed, once the corrective
actions are performed, the system tries to continue its normal
execution from the same state. Backward recovery, on the other
hand, tries to restore the system to a previous state in which the
anomaly was not present.

BPEL supplies compensation handlers, associated with scopes,
to indicate that the activities within the scope are to be considered
reversible in an application-defined way. There are however
limitations, since a compensation handler only becomes active
once its scope has completed successfully. It can be called either
programmatically or from a handler associated with a further
enclosing scope. Such limitations, together with the decision to
associate compensation with scopes, denies a clear separation of
concerns, causing business logic and recovery to be intertwined,
and greatly complicates the definition of the recovery and of the
process itself.

In the realm of database technologies [14], [15], and in more
classical workflow-based systems [4] rollback is more common.
Even though we have had distributed databases and workflow
systems for quite some time, these systems have always lived in
a world of well-defined rules and interactions. On the contrary, in
BPEL we must cope with a new notion of distributed ownership.
Different parts of the system are owned by different institutions,
making it harder to perform true rollback.

WSReL provides a general solution by means of a series of
atomic recovery actions, which are treated as building blocks,
and language constructs to mix them to create more complex
strategies. A WSReL expression is tightly related to the moni-
toring expression that allowed us to catch the run-time anomaly.
From a monitoring expression given in WSCoL, we bring over
any aliases we deem useful, whose values are collected during the
monitoring phase. This means that recovery automatically knows
and can use all the data that were collected during monitoring.
Notice, however, that recovery can always define new aliases5 if
needed.

Currently, all recovery strategies are limited to instance validity.
Designers can always modify and re-deploy their processes, but
we do not provide any automatic solution for this step.

A. Atomic Recovery Actions

The atomic actions we provide can be organized in four main
groups. The first group is made up of simple actions that do not

4Since we deal with finite sets of data these constructs do not actually add
expressive power to the language, but have been included for convenience.

5Whose values would be collected while executing the recovery directives.

modify how the process is executing. ignore allows the process
to continue its execution as if nothing wrong had happened.
notify(message, address) is used to inform a stakeholder
that something has gone wrong6. halt simply stops the process in
execution. retry(times) declares that the system should retry
to invoke the web service up to a given number of times. store,
the same as in WSCoL, takes a value and stores it to the persistent
storage, making the datum available to future monitoring and
recovery activities.

The second group comprises recovery actions that alter the
amount of supervision being performed either by modifying
the supervision parameters or the supervision rules themselves.
changeSupPar(params) modifies the supervision parameters
associated with the supervision rule being considered. If the
supervision rule ever needs to be re-considered in the process
instance, the new supervision parameters will be taken into
account (for example, when the rule is expressed within a loop).
changeProcessPriority(val) modifies the global priority
level. This allows us to dynamically modify the amount of
supervision activities to be considered during execution from that
point of the process on. Indeed, through this recovery action
we can decide to disable or enable entire groups of rules.
changeSupRules(monitoring, recovery) modifies how
supervision (for the operation at hand) is achieved, and therefore
relaxes or tightens the constraints. The compulsory monitoring
parameter replaces the old monitoring expression with a new one.
The definition of a new recovery strategy is optional.

The third group changes the services with which the process
does business. rebind(wsdl, operation, xslt) indicates
that the service being invoked is to be substituted with another
service. The only required parameter is wsdl, which indicates
where the new service can be found. If the new service presents
a different interface, the designer must also pass parameters
operation and xslt. The first indicates the name of the
remote method to be called, and the second explains how to
resolve the differences between the message types used by
the service being substituted and the new one. Currently, this
action does not consider automatically the intrinsic discovery
problem that must be resolved to provide a substitute URI.
rebindPartnerlink(name, wsdl, xslt) is similar to the
rebind action, except its effects are not limited to the operation
being called, but are extended to the entire process in execution.
Indeed, we change the endpoint associated with a particular BPEL
partnerlink (indicated by parameter name) with address wsdl. If
we are changing to a service with a different interface, we use
parameter xslt to resolve the differences.

The fourth group contains general actions that do not fit
into the first three groups. call(wsdl, operation, ins,
xslt) consists of a call to an external web service. The first
two parameters are used to identify the service (through a WSDL
URI) and the name of the operation that we want to call. The
third parameter (ins) represents the data that are to be sent to
the service. The external service being called does not share the
same data space as the process, and therefore we use a copy-by-
value technique to pass it relevant parameters. The final parameter
(xslt) is optional and is used to map the service’s return
message onto the message expected by the business process.
callback(eventHandler, input) is, potentially, the most

6We currently implement email notification, but other methods could easily
be added (e.g., SMS notification).

7

disruptive of the recovery actions, since it allows direct access
to the internal state of the process. This action allows complex
logic, embedded in the process by means of an event handler
(eventHandler), to be used as recovery. When we send it an
event, the handler executes in an independent thread with respect
to the main business logic, which meanwhile continues to remain
synchronously blocked, since it is waiting for an answer from the
supervision framework. Once the event handler thread completes,
the supervision framework is warned to unblock the main business
process. The disadvantage is that event handlers must be statically
embedded into the process prior to deployment, meaning that the
recovery logic is defined once and for all, and that it can only
be personalized through the parameterization of the event handler
itself. This is somewhat similar to the current approach held by the
BPEL specification, which requires that compensation be defined
statically at design time. restore(destLocation) takes the
process back in time, to the point of execution immediately prior
to the destLocation (indicated with an XPath expression), and
resumes the process execution from there. This is a powerful
option, but as we shall see, its actual applicability is constrained
by many different factors (e.g., the actual process location, the
nature of partner services, and their Web methods.)

B. Recovery Strategies

Designers can create multiple recovery strategies by mixing
atomic actions. WSReL is reminiscent of rule-based approaches,
and allows us to choose the more suitable course of action, de-
pending on what is going on in the process and in the surrounding
environment. The syntax for defining strategies is defined as:

〈strategy〉 ::= try {〈step〉} (elsetry{〈step〉})* (else{step})?
〈strategy〉 ::= if (〈condition〉) {〈strategy〉}

(elseif (〈condition 〉) {〈strategy〉})*
(else{〈strategy〉})?

〈step〉 ::= (〈action〉)+

where condition is a WSCoL expression or a special keyword
NoResp, and action is an atomic action taken from those pre-
sented in the previous section. The special keyword NoResp is
true if a service invocation did not answer before the timeout was
reached.

A strategy is a sequence of steps. Each step is wrapped in a
try block, and contains an ordered list of atomic actions chosen
from those presented previously. The semantics of the sequence
is that first we try to fix the anomaly by executing the atomic
actions contained within the first step. If at least one of these
actions requires monitoring to be re-enacted, we do so to verify
if the anomaly persists. If we are not successful we try with the
second block, and so on. To facilitate the definition of these steps,
each is executed by considering the original state of anomaly, as
if no other block execution had been attempted until then.

We also allow designers to define more than one sequence
so that the system can choose the most appropriate one at
runtime. The syntax allows us to specify alternative branches
that are chosen by checking WSCoL expressions. The order of
the if-elseif-else branches determines the order in which
conditions are evaluated, and how the overall recovery will play
out.

Amongst the various alternative branches, designers should
remember to treat the case in which the system captures an
invocation timeout. Note that, in this case, all post-condition

monitoring activities are skipped entirely, and the same is true
for any associated data collection. This means that the recovery
the designer defines cannot assume that certain data be available.
If no explicit recovery for the timeout is provided, the default
behavior is to terminate the process.

C. Some constraints

Although WSReL is built for maximum flexibility, there are
some constraints we must keep in mind when building a recovery
strategy. We must consider:

• Whether the recovery is associated with a pre- or a post-
condition. Some actions only make sense in post-conditions
(e.g., action retry).

• Whether the recovery is dealing with stateful or conver-
sational services. In these cases, certain atomic recov-
ery actions (retry, rebind and changePartnerlink)
should not be used light-heartedly. In fact, re-calling a
service might not even be an option, while actions rebind
and changePartnerlink could cause problems if used
when the process is in the middle of a conversation.

• Which actions require that monitoring be re-enacted to
discover if they were successful in fixing the anomaly. Note
that some actions ignore, notify, halt, and call
can always be considered successful.

In general, we have decided for as much freedom as possible, but
also for the designer being responsible for the consistency of the
different recovery activities.

Backward recovery is an issue all in itself. A restore does not
require monitoring to be re-performed to see if it was successful,
but unless the anomaly is transient we need a way to prevent it
from re-occurring. The simple re-execution of a past fragment
of the process does not guarantee that the anomaly be avoided.
We might need to combine the restore with some other actions
(e.g., a rebindPartnerlink). A restore used in conjunction
with other atomic actions requires that all actions placed before
it be executed in the state in which the anomaly occurred, and
all actions afterwards be executed in the destination state7. The
process is only allowed to restore its execution once the entire
recovery step has been completed.

Stateful and conversational services constrain the set of activ-
ities that can be considered acceptable destinations: re-invoking
a stateful service might not be a pursuable option, and partner
services might not allow us to restore a conversation to an
intermediate point. We must consider what the process defines
between the source and the destination locations. If all the
interactions of the fragment are with stateless services, we can
perform a restore. If partner services are stateful, we must
know whether they can be freely re-invoked (e.g., it might not
be a good idea to re-invoke a bank payment service!). If there
are conversational services, we must be sure not to break the
conversation. Finally, if there are BPEL activities that are waiting
for an asynchronous message (i.e., a receive), we must be sure
that the restore does not cause them to wait forever. In fact, if
the asynchronous message has already been received once (in the
first execution of the fragment being restored), it is not obvious
that the partner service will send it again.

7We define the source location as the point in which the anomaly was
detected, and the destination location as the point from which the process
will resume execution after the recovery is completed).

8

B C

D

A

E

B

C

A

D

(a) (b)

A

Q

B D

EC

F

(c)

Fig. 3. Scopes for (a) if, (b) while, and (c) flow constructs.

We must also consider what happens when we want to restore
a BPEL process with parallel or alternative execution paths
(constructs pick, if, foreach, flow, while, or repeatUntil). To do
this, we must recall the hierarchical definition of BPEL processes,
where every activity in a process has an enclosing scope, be
it explicit or implicit. Restores require that a destination be
always in the past with respect to its source location (as to
execution flow), and be either in the same scope as the source or
in a recursively enclosing one. This guarantees that we choose a
destination activity executed in the past.

For example, Figure 3(a) shows the implicit scopes associated
with a BPEL if. If we choose E as our source location, the only
valid destination is A. All other destinations would require us to
descend into other scopes. If we choose D, C is a valid destination
since it is in the same scope as the source, but also A is acceptable
since it is part of a parent scope. On the other hand, B is not valid
since we would need to exit the scope enclosing D and re-descend
into a different one. Similarly Figure 3(b) shows the scopes of a
while. If we choose D as our source, the only valid destination
is A. We cannot choose to restore C since we would need to
descend two scopes to reach it. On the other hand, if we choose
C, both B and A are valid destinations. When dealing with loops,
the execution of a restore does not allow us to change loop
iteration. It always takes us back to before the most recent past
execution of the destination activity. Therefore, if we choose B
as our destination, the process is restored to before the execution
of B in the same iteration as the execution of the activity starting
the reaction.

BPEL supports concurrent paths through its flow control struc-
ture, and activity synchronization through links. Figure 3(c)
shows an example in which there are two concurrent sequences.
Synchronization links (shown as dotted lines) indicate that E
cannot run before B. Again, a destination must always be in the
past, and either in the same scope as the source or in a recursively
enclosing one, but now we also need to consider the activities
that need to be re-executed because of synchronization links. The
optimal case —no synchronization links— imposes that we only
re-execute the activities that are in the sequence that leads from
the destination up to the source. We do not need to re-execute the
other threads since nothing has changed. For example, if there
were no synchronization links in Figure 3(c), and our source
and destination were E and A respectively, we would re-execute
activities A, D, and E; the other thread is independent.

If we need to re-execute an activity with an outgoing link, we
need to consider the semantics of BPEL links. Indeed, its re-

execution (e.g., B in Figure 3(c)) causes a re-evaluation of the
transitionCondition at B, and therefore of the joinCondition at
E. This impacts the executability of E and following activities.
Therefore, our re-execution follows the synchronization links as
well.

The case of incoming links is slightly different. A transition-
Condition’s value is set after the activity it originates from has
completed. Apart from what we can learn from synchronization
links, there is no way to know the order in which the activities
in the various flow branches execute. Therefore, if we are not
re-executing the activity from which the link originates, there is
no reason to believe that the activities we are re-executing will
impact its transitionCondition. It continues to contribute to the
joinCondition as it did in the previous execution. This means
that incoming links do not, by themselves, impact the amount of
activities we need to re-execute. For example, if we perform a
restore, and our source and destination are F and E respectively,
the contribution of B’s outgoing link to E’s joinCondition remains
the same, so the incoming link is not followed and no extra
activities need to be re-executed.

The final comment concerns forEach structures. If source and
destination activities are both within the structure body, and we
assume the serialized execution of internal activities, it is as if
we were in a loop. In the case of parallel executions, since the
standard does not consider synchronization links, there is no way
to distinguish among the different threads, so we simply restore
the statement as if it were atomic.

VI. EXAMPLES

Now that supervision rules are fully defined, we can turn the
supervision requirements introduced in Section II into proper
rules. The first example gives a complete supervision rule, then
we avoid expressing the location and the supervision parameters
since they are straightforward.

CheckReservation is rendered as a post-condition for invoke
activity storeDate, and we state that the reservation number
be a 7-character code, of which the first character is “N” and
the last six are digits. To express this assertion we need to use
data type-specific functions. The length function gives us the
number of characters in the code, while the substring function
allows us to extract the six characters that need to be digits. Alias
$length has to be 7, the internal variable has to start with N ,
and $sub has to be between 0 and 999999. If an anomaly arises,
we restore the execution to before activity getCalendarDates
(getDatesXPath is the XPath expression that uniquely identi-
fies invoke activity getCalendarDates), and we change the
partner service. The effect will be to try to get a reservation
through a backup appointment manager service.

Location:
/process/pick/onMessage[1]/invoke[4]

Priority: 3

Expression:
let $res = $StoreReservationResponse/code;
let $length = ($res).length();
let $sub = ($res).substring(1,6);
$length ==7 && ($res).startsWith(’N’) &&
$sub > 0 && $sub < 999999;

Reaction:
try {

restore(getDatesXPath);

9

rebindPartnerLink(’appointmentPL’,
’http://AppointmentManager2’,null);

}

CheckCenter becomes a pre-condition for invoke activity
sendImagesToTMC. To calculate the service’s reliability we
need to keep track of its behavior over time. This can be achieved
by using an additional post-condition to store certain values for
future use. In our case we store the service’s response time:

Expression:
let $rt = return(‘RT_URI’,

‘<getResponseTime><processID>TeleRadiology
</processID><instanceID>’ + $instanceID +
’</instanceID><activity>//invoke[@name =
’sendImagesToTMC’]</activity><iteration>0
</iteration></getResponseTime>’,
/getRTResponse/ms);

store $rt;

Reaction:
let $rt = -1;
if (NoResp) {try {store $rt;}}

The service’s response time is obtained using a special-purpose
external probe. We call the probe stating that we are inter-
ested in the response time of the last iteration of activity
sendImagesToTMC (the same activity can be executed more
than once in a process). Notice that we use special alias
$instanceID to obtain the ID of the process instance being run.
Regardless of its value, $rt is stored to the persistent storage.
We also add special reaction code for coping with cases in which
invoke sendImagesToTMC fails to respond. In this case, there
is no response time so we manually set the value of $rt to −1

before storing it.
The values stored in the post-condition can then be used in a

pre-condition to calculate an up-to-date reliability value. This can
be expressed as:

Expression:
let $times = retreive(’rt’, null, 2h);
let $trues = numOf($t in $times, $t>0 &&

$t<12E4);
let $total = numOf($t in $times, true);
$total == 0 || $trues/$total < 0.95);

Reaction:
let $URI = $telecenterEndpointReference;
let $now = return(‘Clock_URI’,‘<getCurrentTime>

</getCurrentTime>’,
/getTimeResponse/ISO8601);

if ($URI==’http://firstCenter/Center/
CenterBean?wsdl’) {

try {rebind(‘http://secondCenter/Center/
CenterBean?wsdl’),null}}

else {
try {changeSupParams(’<newValidity><from>null

</from><to>’ + $now + ’</to>
</newValidity>’)}}

First we retrieve the $rt values stored in the last 2 hours
($times). Then we use function numOf twice to calculate how
many values are lower than 2 minutes ($trues), and the total
number of retrieved values ($total). Finally, the up-to-date
reliability is given as trues over $total.

Since the assertion is a pre-condition, we react by changing the
binding with a backup service, before performing the invocation.
However, we only do this if the process is still bound to the
original telecenter service. If the binding has already changed
(for example through event handler changeBinding) we switch

this supervision rule off by changing its validity parameter. This
is done by setting the validity’s to value to the moment in time
in which the recovery takes place ($now).

The difference between performing the rebind explicitly and
using the process’ event handler (as in CheckTimelyAnalyses) is
that the former only has a temporary effect while the latter is
permanent. In fact, in the former we change the binding solely
for the monitored invocation. This is transparent to the rest of the
process. On the other hand, if we change the binding through the
event handler, it remains modified until we change it again.

CheckResolution is seen as a post-condition for Receive activity
receiveMRI, where we use an external service to calculate the
image’s horizontal and vertical resolutions. We use two variable
aliases to simplify the overall condition, which states that the
image’s resolution must be between 800 × 600 and 1024 × 768

pixels. If there is an anomaly, we have different strategies amongst
which to choose. If the resolution is too high we can filter it down
by calling an external component that offers image modification
services. The result is then mapped back onto the message
received from receiveMRI using an XSLT, and is transparent
to the business process. If the resolution is too low, but not too
bad, we simply ignore the problem and let the process continue.
Finally, if it is truly too low, we notify the head doctor and halt
the execution. This can be expressed as:

Expression:
let $imageURL = $submitImageRequest/imageURL;
let $hRes = return(‘WSDL_URI’,‘<getInfo>

<imageRes>’+$imageURL+‘</imageRes>
</getInfo>’,
/getResResponse/horizontalRes);

let $vRes = return(‘WSDL_URI’,‘<getInfo>
<imageRes>’+$imageURL+‘</imageRes>
</getInfo>’,
/getResResponse/verticalRes);

$hRes >= 800 && $hRes <= 1024 &&
$vRes >= 600 && $vRes <= 768;

Reaction:
let $high = $hres >1024 || $vRes > 768;
let $low = $hRes >= 800 * 0.9 &&

$vRes >= 600 * 0.9;

if ($high == true) {
try {call(‘http://imageModifier:8080/

imageTools?wsdl’,
‘<changeRes>
<desiredResolution><hRes>1024</hres>
<vRes>768</vRes></desiredResolution>
</changeRes>’, XSLT)}

}
elseif ($low == true) {

try {
notify(’Resolution too low - low error’,

headPhysician@radiology.com’);
ignore();}

}
else {

try {
notify(’Resolution too low - high error’,

headPhysician@radiology.com’);
halt();}

}
}

VII. SUPERVISION FRAMEWORK

Supervision rules are supported by a dedicated framework built
on top of ActiveBPEL [16], a well-known open-source BPEL

10

BPEL
Execution

Engine

ActiveBPEL Supervision
Manager

AspectJ

WSCoL
AnalyzerInvokerWSReL

Recoverer

Rules
Repository

Supervision
Log

Historical
Variables

Respoitory

Rules Editor Supervision
Cockpit

Designer Support

Fig. 4. The Supervision Framework.

execution engine, to keep the compatibility with standard tech-
nologies and to complement them with supervision capabilities.

Typically, supervision requirements depend on the needs of
different stakeholders, on the process’ life-cycle, and on the
environment in which the process is run. This means that we
cannot statically associate a single set of supervision rules with a
process, and that the supporting framework needs to continuously
obtain run-time information to choose the exact set of rules to
consider as the process executes. The context evolves, supervision
parameters can dynamically modify the amount of supervision
being performed, and also the rules themselves can change at
runtime.

These requirements led us to choose aspect oriented program-
ming (AOP [11]) as the principal enabling technology8. We
use AOP to treat supervision as a true cross-cutting concern
and to centralize its management. Differently from other ap-
proaches [17], we decided to apply AOP to the executor, and not
to the BPEL process itself, to only deploy the business logic once
and be able to blend supervision capabilities as late as possible.
Appropriate join points in the ActiveBPEL engine let us intercept
the process’ execution, and perform the entire supervision loop.
Roughly, the advice code gathers run-time information, chooses
the appropriate rules to consider, evaluates their supervision
parameters, and if required checks them and reacts as needed.

Figure 4 shows the architecture of the our supervision frame-
work. It consists of two sets of components: those dedicated to
designers, to define supervision rules and visualize the results
of their evaluation, and those dedicated to evaluating monitoring

8AOP is a programming paradigm that helps increase a program’s modu-
larity by improving separation of concerns, especially when they “cut across”
different abstractions in the code (e.g., modules, classes, or methods). Logging
is an example one of these concerns: its management requires dedicated
code usually tangled with the actual business logic. AOP provides means
to encapsulate this code, centralize its management, and mix it with the
business logic seamlessly. Typical AOP jargon refers to advice, join points,
and pointcuts. An advice is a portion of code that implements the behavior
we want to add to our application. Join points represent the locations in our
application at which the advice code is activated. Pointcuts are used to define
the patterns that detect whether a join point has been reached or not.

statements and executing recovery actions. The former consist of
the Rules Editor and the Supervision Cockpit. The Rules Editor
is a web-based tool that reads the definition of a BPEL process,
designed using ActiveBPEL’s own designer tool, and helps the
user assemble supervision rules by providing all the locations
where rules can be added, all the BPEL variables that can be
converted into WSCoL variables, all the external probes already
deployed and available for external variables, and all the WSCoL
and WSReL constructs that can be used in the different parts
of a rule. The result is stored in the Rules Repository. The
Supervision Cockpit, on the other hand, provides different means
to visualize the Supervision Log, which contains the history of
all the supervision activities that have taken place, to let the
designer get a summary of how the different process instances
execute. It can also be used to modify the actual priority with
which the different instances are supervised, and to change the
rules themselves on-the-fly.

In the latter set, the ActiveBPEL execution engine is the key
component. Since it is written in Java, we used AspectJ [18]
to add supervision capabilities through aspects. The Supervision
Manager, which is our true AspectJ advice, is responsible for
managing the enactment of supervision rules, which are extracted
from the Rules Repository. In particular, it gathers the values
of internal variables from the engine, those of external variables
from deployed probes, and those of historical variables from the
Historical Variables Repository. External variables are obtained
through the Invoker, which is a general-purpose dynamic Web
service invocation tool.

An interesting example of external probe is the one we devel-
oped to gather service execution times. The probe is embedded
in ActiveBPEL, using the same AOP mechanisms described for
activating supervision, and exploits the process engine’s clock
to store a timestamp before and after any invocation. We can
also use probes to transform data we already have, or to obtain
further data that depend on what we already know. For example,
in Section VI, we used a probe to get image resolutions. This is
achieved by implementing a special purpose service, a practice
that can be repeated every time no appropriate probes are already
available.

The actual monitoring and recovery activities are then delegated
to the WSCoL Analyzer and to the WSReL Recoverer, respectively.
All the activities are logged onto the Supervision Log both for
feeding the Supervision Cockpit and for off-line analysis.

To understand how the Supervision Manager works, we need to
introduce ActiveBPEL’s internals. The engine creates a Definition
Tree for each deployed process (regardless of the number of
instances running concurrently), and an Implementation Tree9,
which extends the previous one, for each new instance. To execute
a process instance, the engine traverses the Implementation Tree
and calls the execute methods defined for each node type. For
example, an invoke node uses the engine’s AXIS infrastructure
to call a partner service. This is to explain that the Supervision
Manager intercepts all the calls to the execute methods on
nodes representing invoke, receive, reply, and pick activities, that
is, all the BPEL activities that interact with external services.
Note that we also intercept the process every time it launches a
service invocation timeout exception. This way we can stop the

9These two terms, Definition and Implementation trees, do not exist in
the standard ActiveBPEL terminology, but are introduced here for a clearer
presentation.

11

exception from propagating under the form of a BPEL fault, set
the NoResp flag, and properly activate recovery.

A. Performance evaluation

Our approach is time consuming by nature, and a performance
hit is to be expected. In fact, every time we reach an invoke,
receive, reply, or a pick, we stop the process momentarily and
check whether there is a supervision rule that needs to be
considered. This operation is time consuming, even if we end
with no rule to check. Although supervision consists of both
monitoring and recovery, the former undoubtedly represents the
key factor when we consider performance. Monitoring is always
performed, while recovery is only activated when the process
presents an anomaly, and the overhead can be seen as the price
to pay to fix the problem.

To evaluate the actual impact the approach has on the execution
of a standard BPEL process, we set an in-lab experiment. The
test process mimics the eHealth example of Section II-B and
uses special-purpose services developed by us. External (real)
services were not needed (and too complex) to address the worst
case scenario, that is, the situation in which the supervision
infrastructure has the highest impact on the overall execution: a
controlled environment, in which there were no network problems
or delays since all services were run on-site. We did not want to
measure the response time of the partner services, but the impact
our framework has on the process’ execution.

The framework was run on a 1.83 GHz Intel Core Duo with
2 GB of RAM. We considered some 1000 process executions,
for a grand total of 6984 BPEL activities. We analyzed the time
our system takes to perform the supervision rules presented in
the previous sections. First we evaluated the time the Supervision
Manager takes to stop the process and check for a supervision
rule. This amounts for the time lost, regardless of the presence
of supervision rules. The average time spent on this activity was
30ms. We tried executing the process without any supervision
rules, and calculated an average execution time of 300ms for each
activity. Therefore, if all services are run locally, our modification
can be accounted for 1/10 of the time. If services were to be run
on a network, and were real services, the actual impact would be
proportionately less since we would need to take into account the
delays introduced by the network when the process interacts with
its partner services. Besides this, there are two main aspects that
drive monitoring execution time: the nature of the collected data,
and the complexity of the expressions that need to be checked.

Table I summarizes the data collection times (given in millisec-
onds) of our experiments. Internal variables are by far the ones
that cost less. The reason is that they are the only kind of data
that can be collected without invoking external components. On
average, the extraction of a historical variable will cost six times
as much, while external variables represent a completely different

TABLE I
COLLECTION TIMES FOR WSCOL VARIABLES.

Variable type NUM Collection time
avg min max

Internal 576 18 13 33
External 480 80 52 491

Historical 40 110 82 612

issue. External variable are subject to network issues, and to the
actual amount of work the probe has to achieve before returning
the results we need. In our experiments the remote services were
kept simple and placed within a controlled environment, keeping
their response times low. However, caution must be used when
choosing external probes, to avoid high performance hits when
performing supervision.

Table II gives a breakdown of the execution times for each rule.
For each we have extracted the number of executions (NUM),
the monitoring time, the recovery time, the global time, which
includes both supervision and the execution of the actual BPEL
activity, and the average slowdown due to supervision. The num-
ber of executions for each supervision rule varies due to the fact
that they were run using different supervision parameters, and that
as the experiments proceeded some activities were dynamically
switched off by recovery. CheckReservation is the fastest rule
to monitor, since it only considers a single internal variable,
and a property that uses simple functions. CheckResolution is
much higher since it introduces the use of two external variables.
Finally, we have CheckCenter’s pre-condition, which uses a
historical variable, as well as two aggregate functions.

As for recovery, CheckCenter and CheckResolution both
present more than one possible strategy. To present more consis-
tent and interesting performance times, we have decided to only
consider CheckCenter’s second strategy, and CheckResolution’s
first strategy .

In our experiments we noticed that actions retry, call,
and callback can be taxing since they all require an
external service to be invoked. In this sense they contribute
to the recovery time much like external data collection does
to monitoring time, meaning the same caution should be
adopted when using them. Activities changeSupParams,
changeProcessPriority changeSupRules), and
store interact directly with the Rules Repository or the
Historical Variables Repository, and the order of magnitude of
their contribution is similar to that of historical data collection.
Actions rebind, rebindPartnerlink, and restore are
faster since they are resolved locally to the process execution.
Indeed, their contribution is in the order of magnitude of internal
data collection. Finally, activities notify, ignore, and
halt cause negligible overhead (i.e., less than 15 milliseconds).

Amongst our examples, CheckReservation is the fastest since
it is resolved locally. It is followed by CheckResolution, which
requires further service invocations while performing recovery.
Finally, we have CheckCenter. It’s recovery time is driven up by
the extra data collection it performs (one internal and one external
variable) before changing the rule’s supervision parameters.

Note that although these data were collected on a particular
process and in a very constrained environment, they can be
considered good representatives to assess the impact the different
parts of the framework, and the languages’ constructs, have on
running processes. These figures do not consider the usual delay
introduced by the network, neither do they take into account the
execution time of partner services. They provide a significant set
of unbiased measures of the delays.

B. Lessons Learned

Besides our in-lab experiments, the supervision framework
has been used and evaluated by industrial and academic part-

12

TABLE II
EXPERIMENTAL RESULTS.

Rule NUM Monitoring Recovery Global Slowdown
avg min max avg min max avg min max

CheckReservation 120 32 27 43 39 25 58 332 320 350 1.27
CheckCenter 26 164 149 177 110 104 122 528 508 546 2.07
CheckResolution 240 134 94 722 47 40 94 438 386 1014 1.77

All values are given in milliseconds, except for column slowdown. It shows the ratio between the time required to execute the supervised
BPEL activity and the time taken to execute the same BPEL activity without supervision.

ners, both in EU-funded and national projects, (e.g., SeCSE10

and Discorso11). For example, in the SeCSE project [19] the
framework was evaluated by more than twenty users throughout
a three-step process. At the end of each step, the users were
required to fill out a questionnaire. During the first evaluation,
the users were assisted in the use of the framework, given the
relative immaturity of the prototype implementations. The second
and third evaluations were conducted using progressively refined
versions of the framework, and were performed by the users
without direct assistance. Industrial partners tried the framework
on their demonstrators, while colleagues and students applied it
onto example processes like ours.

During these evaluations the following benefits and limitations
emerged. The first benefit is that we provide a complete and
coherent supervision framework. Monitoring and recovery are not
two separate issues, but can be planned together. The designer’s
job is made easier by the fact that the same abstraction level
is maintained across WSCoL and WSReL. A second important
benefit is that the framework adopts a holistic approach to
data collection. WSCoL’s distinction between internal, external,
and historical variables gives us great flexibility when designing
supervision. In particular, external and historical variables allow
us to consider context in a very broad sense. The designer can
indeed extend the analysis to whatever notion of context, provided
that the necessary probes have been deployed. A third important
benefit consists in the broadness of our languages. On the one
hand, WSCoL provides all the basic elements needed to express
a wide variety of properties (e.g., temporal and stochastic proper-
ties, or key performance indicators). On the other hand, WSReL
provides an easily extensible set of small and simple atomic
recovery actions. In both cases we have chosen to support small
building blocks. The result is that the languages provide a high
degree of programmability since blocks are easy to aggregate.
However, particularly in WSReL, there is the risk that the number
of blocks can become too high, making it hard for the designer
to decide which blocks to use in a particular supervision. A
fourth benefit is that the framework supports standardization and
separation of concerns. In our approach supervision is not integral
to the overall design of a process’ business logic. The actual
BPEL code and the supervision rules are kept separate at design
time, and only inter-weaved at runtime. Although supervision
requirements may evolve over time, what is actually deployed

10SeCSE (Service Centric Service Engineering) is a EU integrated project
on the specification, discovery, design, and management of services. More
information is available at: www.secse-project.eu.

11Discorso (Distributed Information Systems for COoRdinated Service
Oriented interoperability) is in Italian project on the use of service-based
infrastructures to foster and support the creation of virtual districts and
enterprises. More information is available at: www.discorso.eng.it.

to the execution framework is a 100% BPEL compliant process,
and there is no need to remove, modify, and redeploy it just to
change how supervision is performed. Finally, the framework can
easily be used, as we have already experimented, as a backend for
frameworks for probing business-level key performance indica-
tors, for SLA and policy management [20], or even for high-level
business rules [21].

None of our users complained about the performance degra-
dation introduced by supervision. Even if in our experiments
the impact was not negligible, the actual execution times of the
partner services usually hide the delay and the end-to-end (user-
process) response times are only slightly touched.

Regarding the limitations of our approach, and in particular
of our languages, we found that supervision parameters were
used only partially. Although it is possible to combine different
supervision parameters to act as a “virtual knob” for selecting
the amount of supervision activities to perform, our partners
concentrated on parameter Priority, since it is the easiest to
understand. Many of the users said that they do not need to switch
rules on and off according to time constraints and that since they
do not use dynamic binding strategies, the idea of having trusted
providers is good and interesting, but currently useless for them.

Our subjects also preferred WSCoL to WSReL. Since the
two languages are similar, we interpret this as them being more
interested in monitoring than in sophisticated recovery solutions.
Some of our users found it difficult to combine atomic recovery
actions to obtain the results they wanted, especially when dealing
with the additional complexity introduced by backward recovery.

All our users tended to concentrated on subsets of the proposed
notations. Different needs call for different aspects of the lan-
guages, but the feeling (lesson) is that average users are interested
in particular problems and as soon as they solve them they are
not interested in many of the details. This finding can also be
read as the need for more detailed guidelines, and high-level
abstractions to guide users while defining their supervision rules.
Currently, our languages call for users who are good at BPEL and
XML technologies, but suitable supervision patterns a-la [22], or
a simple graphical language for combining building blocks to
create complex rules, while enforcing their consistency, would
widen the target audience and improve the proposal’s usability.
Some of the users asked for predefined solutions for common
QoS dimensions, others for statistical macros, that is, WSCoL
expressions/extensions for modeling statistical functions. This
would also allow us to improve the Rules Editor, to help designers
reach their goals more easily.

VIII. RELATED WORK

Many of the problems we tackle in this article have also been
confronted in other research communities. Possible examples are

13

TABLE III
COMPARISON OF MONITORING APPROACHES.

Approach Language Abstraction Properties Directives Timeliness

L
og

ic

H
L

/V
H

L

D
om

ai
n

Im
pl

em
en

ta
tio

n

Sa
fe

ty

Te
m

po
ra

l

Pr
oc

es
s

A
ct

iv
ity

E
ve

nt

Sy
nc

hr
on

ou
s

A
sy

nc
hr

on
ou

s

Sahai et al. x x x x x
Keller and Ludwig x x x x x

Skene et al. x x x x x
Erradi et al. ? x x x x x x x
Pistore et al. x x x x x x x

Mahbub and Spanoudakis x x x x x x
Moser et al. x x x x x

WSCoL x x x x x

Language indicates the type of specification used by the approach (logic or HL/VHL), abstraction indicates the abstraction level at which
properties are defined (domain or implementation), properties is used to indicate the kind of properties definable by the language (safety or
temporal), directives indicates the level at which a property can be evaluated (process, statement, or activity), timeliness indicates when the
monitoring activity is performed (synchronous or asynchronous).

transactions in database systems [14], [15] and workflows [4].
Further examples can be found in the communities that study
the context-aware engineering of web applications [23], the run-
time verification of component based systems [3], [24], [25], the
modeling and deployment of dynamic and self-adaptive software
architectures [26], [27], and the coordination of critical grid-based
systems [28]. Given the scope of the article, in the following
we concentrate on service oriented solutions, and give an insight
to the ones we believe to be more promising or interesting.
There are not many approaches that offer integrated solutions to
both monitoring and recovery, and this already sets our proposal
apart from most of the work in the literature. For ease of
presentation we first tackle work that mainly concentrates on run-
time monitoring; then, we consider recovery approaches, or more
in general solutions for the run-time steering of service-based
applications.

A. Monitoring

Table III gives a detailed comparison among our main com-
petitors as for monitoring. The classification of the approaches
follows the taxonomy presented by Delgado et al. in [29], with
some modifications/extensions of the metrics to adapt them to the
service-oriented context.

In the field of service monitoring, many of the first works
concentrated on the notion of Service Level Agreement (SLA).
Sahai et al. [30] described an automated and distributed SLA
monitoring engine. Keller and Ludwig [31] proposed a framework
to define and monitor SLAs that focus on QoS properties such
as performance and costs. Skene et al. [32] proposed the SLAng
language for SLAs, described using meta-modeling techniques.
The three approaches differ greatly in scope from our own.
They establish high-level abstract specifications and concentrate
on QoS, so that specific agreements can be negotiated between
the service provider and the consumer. Our approach works at a
lower-level of abstraction, nearer to the actual implementation
and to the designer’s needs. As stated in Section VII-B, our
approach could easily be adapted to provide the backend for a
SLA-based framework. A second big difference lies in the nature

of the data considered during the monitoring activities, since we
go beyond simple QoS and stress the need for a holistic approach
that considers functionality, QoS, and environmental data. Context
and situational aware applications are becoming more present in
real-day life, and we believe that our decision to consider context
information is an important one.

A second line of research revolves around WS-Policy [33],
which allows providers to specify their provisioning policies, and
clients to specify their requirements. The standard itself does
not suggest any general-purpose language for defining policies.
However, Erradi et al. [34] have proposed an extension called
WS-Policy4MASC, allowing designers to define the source of
the monitoring data (they support both internal and context data),
the modality of the monitoring (synchronous or asynchronous),
meta-level information similar to our supervision parameters,
and the actual properties. The authors provide a .NET based
implementation that requires the processes be run using the
Microsoft Workflow Foundation. Their work is in many ways
similar to ours, but they do not clearly define, nor give examples,
of the language they use for specifying the properties, making it
hard to understand its expressive power and its actual details, and
to provide a deep comparison with our work.

Mahbub and Spanoudakis [35] propose a framework for the
validation of behavioral properties. These properties are ex-
pressed using event calculus. Their monitoring is performed asyn-
chronously, and event calculus is used to define their monitoring
properties. A first comparison with our approach can be made by
looking at the actual languages proposed. Event calculus, with
its explicit temporal operators, make it easier to specify certain
QoS-oriented monitoring activities. Although these properties can
be expressed in WSCoL, they require special-purpose external
probes that can introduce further performance loss. This ties
into our desire, as stated in Section VII-B, to study high-
level abstractions, or monitoring patterns, for dealing with the
monitoring of common QoS properties. Another important factor
in the comparison between the two approaches is that we provide
a synchronous approach while they provide an asynchronous
one. On the one hand this gives them an advantage in terms

14

TABLE IV
COMPARISON OF RECOVERY APPROACHES.

Approach Language Location Actions Data Source

Pr
og

ra
m

m
in

g

L
og

ic

H
L

/V
H

L

In
st

an
ce

Pr
ox

y

R
et

ry

Su
bs

tit
ut

e

C
om

pe
ns

at
e

R
es

to
re

O
th

er
s

Pr
oc

es
s

E
xt

er
na

l

Ardagna et al. x x x x x x
Colombo et al. x x x x x

Moser et al. x x x x
Charfi et al. x x x x x

WSReL x x x x x x x x x

Language indicates the abstraction level at which the designer must define the recovery (Programming, Logic, or HL/VHL), Location indicates
“where” the recovery is achieved (within the process Instance or within a Proxy), Actions defines the types of recovery supported by the
approach (Retry, Substitute, Compensate, Restore and Others), while Data Source defines the nature of data used to guide the recovery (taken
from the Process or External Data).

of performance overhead since they are less invasive. However,
the decision to perform monitoring synchronously allows us to
be much more timely in discovering errors, and to provide an
integrated framework that also considers recovery. Indeed, their
asynchronous approach would need re-synchronization mecha-
nisms to activate corrective measures. But re-synchronization with
the process is a difficult issue to solve, and is not even feasible in
certain cases. Backward recovery could become a means to fix the
errors “where” they occur, but there would always be a mismatch
between the current state and the one in which the problem
manifested. Indeed, there are currently no integrated supervision
approaches that make use of asynchronous monitoring.

Moser et al. [36] present VieDAME, a non-intrusive approach
to monitoring. Interestingly, their architecture is based on AOP
techniques, and is pluggable with respect to different engines.
The approach accumulates data as the process instances are
run, aggregating previous data to calculate QoS values such
as response time, accuracy, or availability, while intrusiveness
is minimized. Comparing it to our approach, the performance
overhead is obviously less. However, an important aspect to
consider is the limited flexibility they provide in defining what
should be monitored. First of all they concentrate on QoS, and do
not consider a holistic approach as we do. There is no notion of
context, which is important given the current trend in situational
and context-aware applications. Our decision was to empower the
designer, and to allow him/her to define more complex properties.
Performance should then be managed by exploiting our notion
of supervision parameters, which allow to dynamically set how
invasive the supervision activities truly are.

B. Recovery

Less work has been achieved in the context of complex process
recovery. Most of the process recovery approaches, or steering
solutions, present in the literature limit themselves to the more
simple notion of dynamic binding. These approaches try to update
the set of services with which they do business, and provide
optimized experiences. As we shall see, some limit themselves
to substituting services that offer the same interface, while others
provide mediation mechanisms. Once again, as stated in Section
VII-B, a main difference with respect to our approach is that
we consider flexibility a key aspect. This is why we present an

extensible range of very different recovery actions. Table IV gives
a detailed comparison of the competing recovery approaches.

Ardagna et al. [37], [38] propose the PAWS (Processes and
Adaptive Web Services) framework. Their proxy-based frame-
work optimizes a BPEL process’ QoS by selecting the most
appropriate partner services at runtime, and by providing a set of
simple recovery actions. First, designers define global and local
QoS constraints. Second, these requirements are analyzed and
used to produce a set of candidate services, retrieved from an
extended UDDI repository. Third, the system provides a series of
mediations that allows it to deal with retrieved services. If a QoS
requirement cannot be met, the framework can choose among a set
of recovery actions: retry, substitute, and compensate. Comparing
it to our approach we can state that they have a similar attention
to separation of concerns. Indeed there is no notion of monitoring,
discovery, or mediation to be found in their processes, but these
issues are treated externally in proxies that are placed between
the process and the partner services. Unfortunately the extensive
use of proxies brings a high performance overhead. Moreover,
their recovery strategies are defined statically at design-time. The
way they implement separation of concerns does not allow them
to add, or modify, recovery strategies at runtime, nor does it
allow them to select strategies at runtime depending on the actual
context of execution.

Colombo et al. [39] offer a composition language that allows
designers to declare policy (re)binding rules. Policies are defined
using an extended version of the Drools language [40] (a language
for defining Event-Condition-Action rules), and can be either
global or local. The approach is proxy-based. Every time the
process invokes a service, the proxy interacts with the rule
engine to see whether (re)binding is necessary. The authors also
added mediation capabilities through a special-purpose mediation
scripting language and an interpreter that behaves as a proxy [41].
The only recovery action provided is dynamic re-binding, while
we empower the designer with a wider set of options. Once
again there is a clear separation of concerns between business
logic and supervision that is enforced by the use of proxies.
However, the definition of recovery strategies is given statically.
Moreover, the approach requires that the designer be comfortable
with the Drools language, which has a completely different level
of abstraction with respect to the business logic.

Moser et al. [36], in their VIeDAME approach, also provide

15

a dynamic adaptation and message mediation service for partner
links. Using the data collected during the monitoring step, the
system chooses the most appropriate service, while XSLT or
regular expressions are used to transform messages accordingly.
VIeDAME excels in maximizing simplicity, at the cost of pro-
viding a very limited set of possible recoveries. In practice it is
limited to dynamic re-binding with negotiation.

Something similar to our backward recovery has been at-
tempted in the context of transactional BPEL processes. Charfi
et al. [17] propose an AOP-based solution for enforcing the
interaction with the Apache Kandula WS-TX middleware. If a
transaction cannot be closed, special purpose fault handlers are
used to rollback the process. This means that any notion of
recovery strategy needs to be statically coded by the designer in
terms of BPEL code. The approach favors separation of concerns
for enforcement, but not for recovery. A final note is that the
implementation is based on the AO4BPEL engine, and requires
that the partner services be WS-TX aware.

IX. CONCLUSIONS AND FUTURE WORK

Service compositions provide unprecedented levels of dy-
namism and flexibility. Using services exposed by third parties,
we construct systems whose ownerships are intrinsically dis-
tributed, making it hard to reason about the actual functionality
and quality of service we can ensure at runtime. The challenge lies
in providing composite systems that are robust and dependable.
To this end we blur the lines between design-time and run-
time validation, and provide self-supervision to identify and
autonomously react to anomalous situations that may occur during
execution.

The article has presented one of the few integrated frameworks
for both the monitoring and recovery of BPEL processes. WSCoL
and WSReL, along with the prototype framework, provide a
complete and coherent solution able to address many diverse
business domains and user needs. The actual support offered to
design supervision rules must be improved and some advanced
capabilities (like patterns and predefined templates) would allow
us to attract also those users that have a limited technical
background, but deep knowledge of the business domain. These
issues are part of our future work, in which we will address the
feedback we received during the evaluation.

REFERENCES

[1] Oasis Consortium. [Online]. Available: http://www.oasis-open.org/
committees/tc home.php?wg abbrev=soa-rm

[2] B. Meyer, “Applying Design by Contract,” Computer, vol. 25, no. 10,
pp. 40–51, Oct. 1992.

[3] F. Chen, M. d’Amorim, and G. Rosu, “Checking and Correcting Behav-
iors of Java Programs at Runtime with Java-MOP,” Electr. Notes Theor.
Comput. Sci., vol. 144, no. 4, pp. 3–20, 2006.

[4] G. Alonso and C. Mohan, “WFMS: The Next Generation of Distributed
Processing Tools,” in Advanced Transaction Models and Architectures,
1997.

[5] L. Baresi, E. D. Nitto, and C. Ghezzi, “Towards Open-World Software:
Issue and Challenges,” in SEW. IEEE Computer Society, 2006, pp.
249–252.

[6] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson,
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging and More. Prentice
Hall PTR Upper Saddle River, NJ, USA, 2005.

[7] Jordan, Evdemon, Alves, Arkin, Askary, Barreto, Bloch, Curbera, Ford,
Goland, Guizar, Kartha, Liu, Khalaf, Konig, Marin, Mehta, Thatte,
van der Rijn, and Y. Yiu, “Web Services Business Process Execution
Language Version 2.0,” 2007, bPEL4WS specification.

[8] D. C. Luckham, F. W. von Henke, B. Krieg-Brueckner, and O. Owe,
ANNA: a Language for Annotating Ada Programs. New York, NY,
USA: Springer-Verlag New York, Inc., 1987.

[9] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An Overview of JML Tools and
Applications.” International Journal on Software Tools for Technology
Transfer, vol. 7, no. 3, pp. 212–232, 2005.

[10] B. Meyer, “Applying Design by Contract.” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Lo-
ingtier, and J. Irwin, “Aspect-Oriented Programming.” in ECOOP’97 -
Object-Oriented Programming, 11th European Conference, Proceedings,
ser. Lecture Notes in Computer Science, vol. 1241. Springer, 1997, pp.
220–242.

[12] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL
Processes.” in ICSOC 2005: 3rd International Conference on Service
Oriented Computing, ser. Lecture Notes in Computer Science, vol. 3826.
Springer, 2005, pp. 269–282.

[13] ——, “A Dynamic and Reactive Approach to the Supervision of BPEL
Processes,” in ISEC 2008: 1st Indian Software Engineering Conference,
2008, pp. 39–48.

[14] C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. S. Subrahmanian,
and R. Zicari, Advanced Database Systems. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1997.

[15] J. Widom and S. Ceri, Active Database Systems: Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann, 1996.

[16] ActiveBPEL Engine Architecture. [Online]. Available: http://www.
activebpel.org/docs/architecture.html

[17] A. Charfi and M. Mezini, “AO4BPEL: An Aspect-oriented Extension to
BPEL,” in World Wide Web, 2007, pp. 309–344.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An Overview of AspectJ,” in ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Proceedings, ser. Lecture
Notes in Computer Science, vol. 2072. Springer, 2001, pp. 327–353.

[19] SeCSE Consortium. A4.D18 Third Evaluation Report. EU IP
Project Deliverable. [Online]. Available: http://www.secse-project.eu/
wp-content/uploads/a4d18-third-evaluation-report.pdf

[20] L. Baresi, S. Guinea, and P. Plebani, “Policies and Aspects for the
Supervision of BPEL Processes,” in CAiSE, ser. Lecture Notes in
Computer Science, J. Krogstie, A. L. Opdahl, and G. Sindre, Eds., vol.
4495. Springer, 2007, pp. 340–354.

[21] L. Baresi, S. Guinea, and M. Plebani, “Business Process Monitoring
for Dependability,” in WADS, ser. Lecture Notes in Computer Science,
R. de Lemos, C. Gacek, and A. B. Romanovsky, Eds., vol. 4615.
Springer, 2006, pp. 337–361.

[22] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in Property
Specifications for Finite-State Verification,” in ICSE, 1999, pp. 411–420.

[23] F. Daniel, “A Portable Approach to Exception Handling in Workflow
Management Systems,” Politecnico di Milano - Dipartimento di Elet-
tronica e Informazione, Tech. Rep., 2006.

[24] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, “Java-
MaC: A Run-Time Assurance Approach for Java Programs,” Formal
Methods in System Design, vol. 24, no. 2, pp. 129–155, 2004.

[25] K. Havelund and G. Rosu, “An Overview of the Runtime Verification
Tool Java PathExplorer,” Formal Methods in System Design, vol. 24,
no. 2, pp. 189–215, 2004.

[26] J. Dowling and V. Cahill, “The K-Component Architecture Meta-
model for Self-Adaptive Software,” in Reflection, ser. Lecture Notes
in Computer Science, A. Yonezawa and S. Matsuoka, Eds., vol. 2192.
Springer, 2001, pp. 81–88.

[27] I. Gorton, Y. Liu, and N. Trivedi, “An Extensible, Lightweight Archi-
tecture for Adaptive J2EE Applications,” in SEM, E. Wohlstadter, Ed.
ACM, 2006, pp. 47–54.

[28] B. Törnqvist and R. Gustavsson, “On Adaptive Aspect-oriented Co-
ordination for Critical Infrastructures,” Issues on Coordination and
Adaptation Techniques, p. 63.

[29] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and Catalog
of Runtime Software-Fault Monitoring Tools,” IEEE Transactions on
Software Engineering, vol. 30, no. 12, pp. 859–872, 2004.

[30] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casati, “Auto-
mated SLA Monitoring for Web Services,” in Proceedings of the 13th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management - Management Technologies for E-Commerce and E-
Business Applications, ser. Lecture Notes in Computer Science, vol.
2506. Springer, 2002, pp. 28–41.

16

[31] A. Keller and H. Ludwig, “Defining and Monitoring Service-level
Agreements for Dynamic e-business,” in Proceedings of the 16th Con-
ference on Systems Administration. Berkeley, CA, USA: USENIX
Association, 2002, pp. 189–204.

[32] J. Skene, D. D. Lamanna, and W. Emmerich, “Precise Service Level
Agreements,” in ICSE ’04: Proceedings of the 26th International Confer-
ence on Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 179–188.

[33] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker,
M. Hondo, C. Kaler, D. Langworthy, A. Malhotra et al., “Web Services
Policy Framework (WS-Policy),” Version, vol. 1, no. 2, pp. 2006–03,
2006.

[34] A. Erradi, P. Maheshwari, and V. Tosic, “WS-Policy based Monitoring
of Composite Web Services,” in ECOWS. IEEE Computer Society,
2007, pp. 99–108.

[35] K. Mahbub and G. Spanoudakis, “A Framework for Requirements
Monitoring of Service based Systems,” in ICSOC ’04: Proceedings of
the 2nd International Conference on Service Oriented Computing. New
York, NY, USA: ACM Press, 2004, pp. 84–93.

[36] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive Monitoring and
Service Adaptation for WS-BPEL,” in WWW, J. Huai, R. Chen, H.-W.
Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and X. Zhang, Eds. ACM, 2008,
pp. 815–824.

[37] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani, “PAWS:
A Framework for Executing Adaptive Web-Service Processes,” IEEE
Softw., vol. 24, no. 6, pp. 39–46, 2007.

[38] D. Ardagna and B. Pernici, “Adaptive Service Composition in Flexible
Processes,” IEEE Trans. Software Eng., vol. 33, no. 6, pp. 369–384,
2007.

[39] M. Colombo, E. D. Nitto, and M. Mauri, “SCENE: A Service Composi-
tion Execution Environment Supporting Dynamic Changes Disciplined
Through Rules,” in ICSOC, ser. Lecture Notes in Computer Science,
A. Dan and W. Lamersdorf, Eds., vol. 4294. Springer, 2006, pp. 191–
202.

[40] M. Proctor, M. Neale, P. Lin, and M. Frandsen, “Drools
Documentation,” Available on: http://labs. jboss. com/file-
access/default/members/jbossrules/freezone/docs/3.0, vol. 1, 2006.

[41] L. Cavallaro and E. D. Nitto, “An Approach to Adapt Service Requests
to Actual Service Interfaces.” in SEAMS ’08: Proceedings of the 2008
international workshop on Software engineering for adaptive and self-
managing systems. New York, NY, USA: ACM, 2008, pp. 129–136.

Luciano Baresi Luciano Baresi is an associate
professor in the Dipartimento di Elettronica e In-
formazione at Politecnico di Milano. His research
interests are in software engineering, particularly in
dynamic software systems, service-oriented applica-
tions, and software architectures. Baresi has a PhD
in computer science from Politecnico di Milano.

Sam Guinea Sam Guinea is a researcher in the
Dipartimento di Elettronica e Informazione at Po-
litecnico di Milano. His research interests include
software and service engineering of dynamic sys-
tems. Guinea has a PhD in computer science from
Politecnico di Milano.

