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Scalable Differential Analysis of
Process Algebra Models
Mirco Tribastone, Stephen Gilmore, and Jane Hillston

Abstract—The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the
well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA,
presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy
of the approximation is assessed by means of a substantial case study of a distributed multi-threaded application.

Index Terms—Modeling and Prediction, Ordinary Differential Equations, Markov processes.

F

1 INTRODUCTION

CONTINUOUS-TIME Markov chains (CTMCs) are an
established tool for the quantitative analysis of sys-

tems, and a vast body of research in this area has resulted
in a wide variety of techniques for their evaluation,
such as efficient and numerically robust methods for
the computation of transient and steady-state probability
distributions [1], [2], fast simulation algorithms [3], and
stochastic model checking [4]. However, as with most
discrete-state analysis techniques, the major drawback
is the well-known problem of state-space explosion (i.e.,
the number of reachable states of the chain grows combi-
natorially with the number of individuals in the system),
which is only partially alleviated by ingenious research
devoted to exploiting symmetries in the model in order
to obtain a smaller (lumped) CTMC which still preserves
most of the information on the stochastic behaviour of
the original process (e.g., [5]).

An alternative technique for performance evaluation
may be offered by deterministic models, which use or-
dinary differential equations (ODEs) as the underlying
mathematical structure. Here the temporal evolution of
the population of inherently discrete entities is approxi-
mated in a continuous fashion. As a result, large-scale
models are much easier to handle because the actual
population size of the system under study does not im-
pact on the ODE representation. Despite their apparently
contrasting modelling approach, in many circumstances
it is possible to establish a very useful relationship of
convergence between the stochastic and deterministic
models, where the ODE is interpreted as the fluid limit-
ing behaviour of a family of CTMCs associated with the
model under evaluation and parametrised by a system
factor such as density or concentration [6], [7].

• The authors are with the Laboratory for Foundations of Computer Science,
School of Informatics, The University of Edinburgh, Edinburgh, UK.
E-mail:{mtribast,stg,jeh}@inf.ed.ac.uk

The main contribution of this paper is a novel oper-
ational semantics for the process calculus PEPA, which
allows us to demonstrate this deterministic convergence
for population models expressed in the language. The
semantics gives rise to a compact symbolic representa-
tion of the CTMC of the model, from which it is possible
to infer the corresponding ODE representing its fluid
limit. This semantics provides a formal account of earlier
approaches to deterministic interpretations of PEPA [8],
and substantially extends their scope of applicability by
incorporating all the operators of the language and re-
moving earlier assumptions on the syntactical structure
of the models amenable to analysis.

Population-based modelling is particularly suitable for
capturing the dynamics of large-scale distributed sys-
tems, because these usually consist of many independent
copies of components with the same behaviour, e.g.,
tens or hundreds of threads or processes which deal
with requests from potentially many customers. This
paper presents an example of a three-tier distributed
application modelled in PEPA, on which we conduct
a large numerical study to assess the accuracy of the
differential analysis.

Structure of this paper: Section 2 gives an overview
of PEPA, with focus on the main issues regarding large-
scale modelling. Section 3 discusses the population-
based operational semantics, and the result of determin-
istic convergence is presented in Section 4. Section 5
presents the case study and a validation study on the
accuracy of the approximation. Section 6 discusses re-
lated work and Section 7 gives concluding remarks.

2 BACKGROUND AND MOTIVATION

Using a running example, this section introduces the
notions of PEPA which will be used extensively through-
out the remainder of the paper. The reader is referred
to [9] for a formal definition. Then, the problem of state
space explosion in the context of PEPA is discussed and
the method of fluid-flow approximation is informally
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TABLE 1
Notation

Symbol Meaning
α, β, . . . ∈ A Action types of a PEPA model
P ,P ′,Q , . . . PEPA components

r , r1 , s, . . . ∈ R Rates of a PEPA activity
rα(P) Apparent rate of α in P (Markovian semantics)
ds(P) Derivative set of P
Ci,j j-th derivative of the i-th component in the

numerical vector form, 1 ≤ i ≤ NC , 1 ≤ j ≤ Ni

ξi,j Coordinate in ξ ∈ Nd
0 for population level Ci,j

r?
α (P , ξ) Parametric apparent rate of α in P
ds?(P) Parametric derivative set of P
ϕα(·, l) Generating function for action α

and jump l ∈ Zd

δ ∈ Nd
0 Density vector (initial state of the CTMC)

{Xn(t)} Family of CTMCs with initial state Xn(0) = nδ
x(t) Dependent variable of the ODE
F (·) Vector field of the underlying ODE

introduced. Table 1 summarises the main notation and
terminology used in this paper.

2.1 Overview of PEPA
PEPA is a CSP-like process algebra extended with the
notion of stochastically timed activities. It supports the
following operators.

Prefix: (α, r).P denotes a process which performs
an action of type α and behaves as P subsequently. The
activity is associated with an exponential distribution
with mean duration 1/r , r ∈ R>0. (This paper does not
deal directly with passive activities, however a discussion
on their use is given in Section 4.3.) The set of all the
activities (α, r) in a PEPA model is denoted by Act and
the set of all action types is denoted by A.

Choice: P +Q specifies a component which behaves
either as P or as Q . The activities of both operands are
enabled and the choice will behave as the component
which first completes. For instance, (α, r).P + (β, s).Q
behaves as P (resp., Q) with probability r/(r + s) (resp.,
s/(r+s)).

Constant: A
def
= P is used for recursion. Cyclic defini-

tions are central in the characterisation of the underlying
CTMC of a PEPA model.

Cooperation: P BC
L

Q is the compositional op-
erator of PEPA. Components P and Q synchro-
nise over the set of action types in set L; other
actions are performed independently. For example,
(α, r1 ).(β, s).P BC

{α}
(α, r2 ).(γ, t).Q is a composition of two

processes which execute α cooperatively. Then, they
perform actions β and γ independently and behave as
P and Q , respectively. Cooperating components need
not have a common view of the duration of shared
actions. The semantics of PEPA specifies that the rate
of a shared action is the slowest of the individual rates
of the synchronising components, e.g., min(r1, r2) in the
example above. This corresponds to the assumption of
unbounded capacity [10]. The operator ‖ is sometimes
used as shorthand notation for a cooperation over an
empty set, i.e., BC

∅
. The notation S [N ] indicates N

independent copies of a sequential component S and
will be extensively used in the reminder of this paper
as the abbreviated form of S ‖ S ‖ · · · ‖ S︸ ︷︷ ︸

N

.

Hiding: P/L relabels the activities of P with the
silent action τ for all types in L. Thus,

(
(α, r1 ) .P/

{α}
)
BC
{α}

(α, r2 ).Q does not cooperate over action α be-
cause the process in the left-hand side of the cooperation
performs a transition (τ, r1) to P .

An interesting class of PEPA models comprises those
which can be generated by the two-level grammar

S ::= (α, r).S | S + S

C ::= S | C BC
L

C | C/L

where the former production defines sequential compo-
nents and the latter produces model components. The
system equation designates the model component that
defines the environment which embraces all of the be-
haviour of the system under study. In the remainder of
this paper system equations are denoted with constants
such as System . Models from this grammar give rise to
a finite underlying CTMC. We consider these models
throughout the remainder of this paper.

Example 1 (PEPA model with cooperation).

P def= (α, p).P ′

P ′ def= (β, p′).P

Q def= (α, q).Q ′

Q ′ def= (γ, q′).Q

System1
def= P [NP ] BC

{α}
Q [NQ]

The model comprises two arrays of components, with initial
state P and Q , where each pair (P ,Q) can cooperate over
the action type α. There are NP instances of P and NQ

instances of Q . P and Q carry out independent actions β
and γ, respectively, before returning to the state in which α
may be performed.

Without loss of generality, we assume NP , NQ > 1. The
derivations that follow in this paper are also valid for
NP = NQ = 1, although this case leads to less insightful
and simpler derivation trees and recursion stacks.

Definition 1. The apparent rate of action α in process P ,
denoted by rα (P), indicates the overall rate at which α can
be performed by P . It is recursively defined as follows:

rα ((β, r) .P)=
{

r if β = α
0 if β 6= α

rα (P + Q)=rα (P) + rα (Q)

rα

(
P BC

L
Q

)
=

{
min (rα (P) , rα (Q)) if α ∈ L
rα (P) + rα (Q) if α 6∈ L

rα (P/L)=
{

rα (P) if α 6∈ L
0 if α ∈ L
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According to this definition, for the array of sequential
components P [NP ] the apparent rate of α is

rα (P [NP ]) = NP rα (P) , (1)

and this holds for any α ∈ A and any NP because all the
cooperation sets amongst such components are empty.
Similarly, this additivity holds in general for parallel
compositions of distinct arrays,

rα (P1 [N1]‖P2 [N2]‖· · ·‖PK [NK ]) =
K∑

i=1

Nirα (Pi) (2)

The semantics of PEPA is shown in Table 2. Given a
PEPA component P , the operational semantics induces
the derivative set1, denoted by ds(P), which is the set
of the possible states reachable from P . We use the
term local derivative to indicate a state reachable from
a sequential component (which is itself a sequential
component, as can be seen from the two-level grammar).
A derivation graph whose nodes are in ds(P) and arcs in
ds(P)×Act×ds(P) indicates all the transitions between
each pair of derivatives of P . Arcs are taken with multi-
plicity, corresponding to the number of distinct inference
trees which give the same transition. Ultimately, the
derivation graph can be directly mapped onto a CTMC
for performance analysis.

Using Example 1, we now consider how the presence
of arrays of sequential components affects the derivation
tree for a transition and the derivative set of a model
component. By rules S0 and S1 the following two tran-
sitions can be inferred for P and Q :

P
(α,p)−−−→ P ′ (3)

Q
(α,q)−−−→ Q ′ (4)

The dynamic behaviour of the leftmost component P of
the array can be collected by NP − 1 applications of rule
C0. The first application has the form:

P
(α,p)−−−→ P ′

P ‖ P
(α,p)−−−→ P ′ ‖ P

Then, for 1 ≤ i ≤ NP − 2, the other NP − 2 applications
are of type

P ‖ P [i]
(α,p)−−−→ P ′ ‖ P [i]

P ‖ P [i] ‖ P
(α,p)−−−→ P ′ ‖ P [i] ‖ P

For i = NP−2, the conclusion of this rule may be written
as

P [NP ]
(α,p)−−−→ P ′ ‖ P [NP − 1] (5)

The behaviour of the leftmost component Q can be
collected in a similar way, leading to a transition in the
form

Q [NQ]
(α,q)−−−→ Q ′ ‖ Q [NQ − 1] (6)

1. The term derivative is used in PEPA to denote a reachable state of
a component. It is not to be confused with the notion of derivative in
calculus, which will be used later in this paper for the deterministic
interpretation of the stochastic process underlying a PEPA model.

TABLE 2
Markovian semantics of PEPA (from [9]).

Prefix

S0 :

(α, r).P
(α,r)
−−−→ P

Choice

S1 :
P

(α,r)
−−−→ P ′

P + Q
(α,r)
−−−→ P ′ + Q

S2 :
Q

(α,r)
−−−→ Q ′

P + Q
(α,r)
−−−→ P + Q ′

Cooperation

C0 :
P

(α,r)
−−−→ P ′

P BC
L

Q
(α,r)
−−−→ P ′ BC

L
Q

, α 6∈ L

C1 :
Q

(α,r)
−−−→ Q ′

P BC
L

Q
(α,r)
−−−→ P BC

L
Q ′

, α 6∈ L

C2 :
P

(α,r1)
−−−−→ P ′ Q

(α,r2)
−−−−→ Q ′

P BC
L

Q
(α,R)
−−−−→ P ′ BC

L
Q ′

, α ∈ L

R =
r1

rα(P)

r2

rα(Q)
min (rα(P), rα(Q))

Hiding

H0 :
P

(α,r)
−−−→ P ′

P/L
(α,r)
−−−→ P ′/L

, α 6∈ L H1 :
P

(α,r)
−−−→ P ′

P/L
(τ,r)
−−−→ P ′/L

, α ∈ L

Constant

A0 :
P

(α,r)
−−−→ P ′

A
(α,r)
−−−→ P ′

, A
def
= P

Finally, by applying rule C2 to (5) and (6) we obtain

P [NP ] BC
{α}

Q [NQ]
(α,R)−−−→

P ′ ‖ P [NP − 1] BC
{α}

Q ′ ‖ Q [NQ − 1] (7)

where, by rule C2,

R =
p

rα (P [NP ])
q

rα (Q [NQ])
min (rα (P [NP ]) , rα (Q [NQ]))

=
p

NP rα (P)
q

NQ rα (Q)
min (NP rα (P) , NQrα (Q))

=
p

NP p

q

NQ q
min (NP p, NQ q) =

min (NP p, NQ q)
NP NQ

(8)

The conclusion of (7) is not the only transition enabled
by the initial state, because each individual component
P can be paired with each component Q to carry out the
shared activity. Hence, P [NP ] BC

{α}
Q [NQ] enables NP ·NQ

transitions to distinct states of type

P ‖ · · · ‖ P ‖ P ′ ‖ P ‖ · · · ‖ P︸ ︷︷ ︸
NP sequential components

BC
{α}

Q ‖ · · · ‖ Q ‖ Q ′ ‖ Q ‖ · · · ‖ Q︸ ︷︷ ︸
NQ sequential components
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which only differ in the locations of the components
P ′ and Q ′. Since each transition occurs at rate R,
the exit rate from P [NP ] BC

{α}
Q [NQ] is NP · NQ · R =

min (NP p, NQq), and the factor 1/(NP ·NQ) is the proba-
bility that one pair of components makes the transition.

2.2 Aggregation and State Representation
If we consider a representative state for all the pos-
sible configurations in which there is one component
P ′ and NP − 1 components P , this state is isomorphic
to each configuration [9]. Isomorphism was exploited
in [11] for exact aggregation of the underlying CTMC
using a state representation (called canonical) in which
the local derivatives within an array are arranged in
lexicographical order. In this aggregated CTMC the state
P [NP ] BC

{α}
Q [NQ] has one transition to the representative

state P ′ ‖ P [NP − 1] BC
{α}

Q ′ ‖ Q [NQ − 1] with rate
min (NP p, NQq).

Further refinement on state-space representation aims
at reducing storage requirements by relying upon two
properties. First, models defined according to the two-
level grammar described above have a static structure
of the compositional operators. As such, this structure
needs not be recorded in the state descriptor. Second,
if the number of copies of an array is larger than the
size of the derivative set of the replicated component,
then a state representation with counter variables, called
the numerical vector form (NVF) [8], leads to a more
parsimonious data structure for storage. In the NVF,
the state is represented as a vector of integers; each
coordinate is associated with a distinct local derivative of
the sequential components in the system and it records
the number of components exhibiting that derivative.
The state descriptor in the NVF is denoted by ξ ∈ Nd

0,
where d is the total number of local derivatives in the
system. For instance, a possible NVF-representation for
the transition in (7) is

(NP , 0, NQ, 0)
(α,min(NP p,NQq))−−−−−−−−−−−−→ (NP −1, 1, NQ−1, 1) (9)

where, from left to right, the coordinates are assigned to
the local derivatives P , P ′, Q , and Q ′.

It is important to point out that a CTMC in the NVF
is not aggregated any more than the CTMC from the
same PEPA model in the canonical form is, as the NVF
only operates at the level of a single state descriptor.
In addition, aggregation via isomorphism only reduces
the problem of state-space explosion—although in most
cases it can achieve dramatic reductions in size; with
increasing population levels the derivation of the tran-
sition system and the solution of the underlying CTMC
will eventually become impractical.

2.3 Deterministic Approximation
State-space explosion may be tackled more effectively by
shifting the focus to an approximate representation in
which the dynamics of inherently discrete components

is given in a continuous fashion. The underlying mathe-
matics used here is that of ODEs, in which the dependent
function x(t) has values in vectors of reals and each of its
coordinates corresponds to the (continuous) population
level of a sequential component in the system (hence, it
is the deterministic counterpart of ξ in the NVF).

Clearly, a fundamental requisite for such an approx-
imation is that the ODE be inferred from the PEPA
model statically, i.e. without the explicit enumeration of
the entire state space of the underlying CTMC. Most
important, the deterministic interpretation must be made
compatible with the original stochastic treatment, so
as to justify the approximation and reason about its
accuracy. The former condition is satisfied by the earlier
work on this topic [8], as the ODE is derived only by
inspection of the model description via the construction
of the activity graph, a structure which records the rates
of change of the population levels when an activity is
carried out. In contrast, the relationship between the
ODE and the CTMC is not investigated, but numerical
evidence showing good agreement is given.

Here we establish this relationship by developing a
structured operational semantics of PEPA by which the
ODE is inferred from a symbolic representation of an
aggregated CTMC in the NVF. The operational seman-
tics leads to the derivation of generating functions of the
CTMC, i.e., functions of the state descriptor which give
the transition rates to all the reachable states of the
system. These functions are parametrised by action types
to keep track of the additional information about which
action type is associated with a transition. Let l ∈ Zd

be the transition jump, i.e., the transition moves from
state ξ to ξ + l. The generating functions are denoted
by ϕα(ξ, l) : Rd → R and give the transition rate for a
jump l and an activity of type α ∈ A. Thus, the entry
in the generator matrix corresponding to the transition
from ξ to ξ + l, denoted by qξ,ξ+l, can be written as

qξ,ξ+l =
∑
α∈A

ϕα(ξ, l).

The summation across A captures the fact that distinct
action types may contribute to a transition to the same
target state, e.g., (α, p).P + (β, s).P . These transitions
are kept distinct in the labelled transition system of
PEPA, because it records the action type as well as the
transition rate, but they collapse onto the same entry in
the underlying generator matrix. We use the notation

ϕ(ξ, l) ≡
∑
α∈A

ϕα(ξ, l)

to indicate the overall contribution to the transition.
The extraction of the generating functions from the
PEPA model usually presents very little computational
challenge because the environment collected via the
inference rules in our operational semantics abstracts
away from the (potentially very large) actual population
levels of the system under study. Using terminology and
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notation from Kurtz (cfr. [6]), from ϕ(ξ, l) it is possible
to construct a vector field F : Rd → Rd defined as

F (x) =
∑
l∈Zd

lϕ(x, l) (10)

and an associated ODE
dx(t)

dt
= F (x(t)). (11)

This formulation makes it possible to establish a prop-
erty of asymptotic convergence for PEPA models. The
result used here states that the solution to a properly
defined initial value problem with (11) is the fluid limit-
ing behaviour of a family of CTMCs in the sense of the
following theorem.

Theorem 1 (cfr. [6], Theorem 3.1). Let {Xn(t)} be a family
of density dependent CTMCs, i.e., a sequence of chains
with parameter n ∈ N taking values in Zd such that the
infinitesimal generator entries for Xn(t), denoted by qξ,ξ+l,
can be described as

qξ,ξ+l = n ϕ(ξ/n, l). (12)

Suppose that:
1) The functions ϕ(x, l) are continuous.
2) There exists an open set E ⊂ Rd and a constant LE ∈ R

such that:
a) ‖F (x)− F (y)‖ < LE ‖x− y‖ , x, y ∈ E
b) supx∈E

∑
l∈Zd ‖l‖ϕ(x, l) < ∞

c) limk→∞ supx∈E

∑
‖l‖>k ‖l‖ϕ(x, l) = 0

Then, for every solution to the initial value problem of (11)
subject to

x(0) = δ and x(t) ∈ E, 0 ≤ t ≤ T

the family {Xn(t)} converges to x(t) in the sense that

lim
n→∞

Xn(0)/n = δ =⇒

∀ε > 0 lim
n→∞

P
(

sup
t≤T

‖Xn(t)/n− x(t)‖ > ε

)
= 0. (13)

2.4 Motivating Example

Let us now use Example 1 to illustrate the rationale
behind the approach and give an intuitive interpretation
of the result of convergence. The parametric rates are
obtained by reducing System1 to a much smaller model
component System ′

1 which disregards the information
about the multiplicities of the replicated components:

System ′
1

def
= P BC

{α}
Q

The sequential components P and Q in this equation are
not interpreted as single entities, but as representatives
of classes of behaviour. The state descriptor in the NVF
is formed by computing the local derivatives of each
sequential component in System ′

1 — this procedure is of
negligible computational cost because the behaviour of
such components is usually simple, and the state space

growth arises from the interleaving of their concurrent
behaviours.

The symbolic population-dependent transitions are
inferred from the individual transition rates of a single
component. The operational semantics gives the follow-
ing generating function for α:

ϕα (ξ, (−1, 1,−1, 1)) = min (pξ1, qξ3) (14)

which intuitively means: if there are ξ1 components P
and ξ3 components Q , each being able to perform the
shared action at rate p and q, respectively, then the
overall rate of execution for a shared activity is the
minimum (by the cooperation rule) of the two rates at
which the action can be performed by the populations of
the synchronising components (by additivity of apparent
rate calculation). This generating function can be used to
derive the transition in (9) for ξ = (NP , 0, NQ, 0). Simi-
larly, since P ′ and Q ′ are independent, their behaviour
is described by the generating functions

ϕβ (ξ, (1,−1, 0, 0)) = p′ξ2 (15)

and
ϕγ (ξ, (0, 0, 1,−1)) = q′ξ4. (16)

The non-zero elements of the jump vector indicate which
classes are involved in the transition. With regard to the
shared actions, all sequential components are subjected
to change in their population levels, because of the
transitions of the single components (3) and (4) which
record a decrease of P and Q and a corresponding
increase of P ′ and Q ′.

The generating functions (14), (15) and (16) are used
to compute the vector field

F (x) =
∑
l∈Zd

lϕ(x, l) = (−1, 1− 1, 1) min (p x1, q x3)

+ (1,−1, 0, 0)p′x2 + (0, 0, 1,−1)q′x4

The associated ODE model (11), in components, is

dx1(t)
dt

= −min
(
p x1(t), q x3(t)

)
+ p′x2(t)

dx2(t)
dt

= min
(
p x1(t), q x3(t)

)
− p′ x2(t)

dx3(t)
dt

= −min
(
p x1(t), q x3(t)

)
+ q′ x4(t)

dx4(t)
dt

= min
(
p x1(t), q x3(t)

)
− q′x4(t)

(17)

The intuition behind this approach can be built by
comparing, for example, the generating function (14) and
the summands of (17) of kind min

(
p x1(t), q x3(t)

)
. Eq.

(14) states that, in any given state of the chain, there is a
unitary decrease in the population levels of components
P and Q every 1/ min

(
p ξ1, q ξ3

)
time units on average.

It is possible to approximate such a discrete change in a
continuous fashion. Letting x(t) be the state descriptor in
this continuous state-space, the change in the population
count of P over a finite time interval ∆t is

x1(t + ∆t) = x1(t)−min
(
p x1(t), q x3(t)

)
∆t.
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Rearranging this equation and taking the limit ∆t → 0
gives the ODE

dx1

dt
= −min

(
p x1(t), q x3(t)

)
.

This equation gives only a partial account of the system
dynamics (and it corresponds to the first summand of
dx1(t)/dt in (17)). A similar equation may be written for
x3(t), corresponding to the first summand of dx3(t)/dt in
(17). The increase in the population counts of P ′ and Q ′

by the same value is expressed with the same rate being
present in dx2(t)/dt and dx4(t)/dt, but with opposite
sign. The other summands in (17) may be obtained from
analogous interpretations of the generating functions
(15) and (16).

A family of CTMCs {Xn(t)} can be systematically
associated with a PEPA model by taking a density vector,
denoted by δ ∈ Nd

0, which is interpreted as giving
the relative proportions between the distinct sequential
components. By letting δ = (NP , 0, NQ, 0), the sequence
of CTMCs is such that the initial population levels are
multiples of δ, i.e.,

Xn(0) = nδ, for all n.

This corresponds to increasingly large initial population
levels as a function of n. For instance, X1(t) represents
the original aggregated CTMC, X2(t) is the CTMC un-
derlying the model with initial state P [2NP ] BC

{α}
Q [2NQ],

and so on. Since by construction limn→∞Xn(0)/n = δ,
the result of convergence (13) intuitively states that,
asymptotically, a sample path of the CTMC Xn(t) may
be well approximated by n x(t), over any finite time
interval, where x(t) is the solution to the initial value
problem of the ODE (17) with x(0) = δ. A pictorial
representation of this result is given in Fig. 1, which
shows that the ODE is a closer approximation to sample
paths of Xn(t)/n for increasingly large n, with excellent
accuracy at n = 1000.

3 POPULATION-BASED SEMANTICS

3.1 Preliminary Definitions

The interpretation of a PEPA model against the
population-based structured operational semantics be-
gins with considering a system equation which does
not record the multiplicities of independent replicated
sequential components. Any PEPA component may be
compacted in such a way. Here we use isomorphism
to establish whether two distinct sequential components
are equivalent — this notion requires that the derivation
graphs of the two components be equal.

Definition 2 (Reduced Context). The reduced context of a
PEPA component P , denoted by red(P), is recursively defined

0 0.5 1 1.5 2 2.5 3
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Fig. 1. x1(t), i.e., the solution to the ODE (17) giving the
time-course evolution of the density of component P in
Example 1. One realisation of the scaled Markov chain
Xn(t)/n over the first three time units becomes closer to
the deterministic estimate as n increases. Parameter set:
p = 1.0, p′ = 0.5, q = 2.0, q′ = 4.0, δ = (2, 0, 1, 0).

as follows:

red ((α, r) .P) = (α, r) .P
red (P + Q) = P + Q
red(A def= P) = red(P)

red(P BC
L

P ′) =


red(P),

if L = ∅ ∧ P = P ′

∧P ,P ′ are sequential components
red(P) BC

L
red(P ′), otherwise

red(P/L) = red(P)/L

The reduced context considers one representative sin-
gle sequential component P in place of the cooperation
P ‖ P ′ if the two cooperating processes are isomorphic
sequential components. Thus, because of this equiva-
lence relation between these components, the first case
for the cooperation operator in Definition 2 could also
read red(P ′). Clearly, the two arrays P [NP ] and Q [NQ]
in Example 1 are recursively reduced to single sequential
components P and Q , respectively and

red(System1 ) = P BC
{α}

Q , (18)

as illustrated above. Notice that the same context reduc-
tion (18) would be obtained if the system equation was
replaced with(

P [NP−KP ]‖P ′[KP ]
)
BC
{α}

(
Q [NQ−KQ ]‖Q ′[KQ ]

)
, (19)

for any 1 ≤ KP ≤ NP and 1 ≤ KQ ≤ NQ. Indeed the
(NP − KP ) P components would be reduced to P as
before. Furthermore, the cooperation P ‖ P ′ would be
reduced to P as well, since P and P ′ are isomorphic
because they are two local derivatives of the same
sequential component. Similar arguments hold for the
isomorphism between Q and Q ′. Therefore, the two
model equations will give rise to the same underlying
ODE although with two different initial value problems,
as determined by the population levels specified in the
equations.
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It is worthwhile pointing out that Definition 2 also
allows for two or more instances of a sequential compo-
nent to appear in the reduced context of a PEPA model.
For example, we have that

red
(
P [NP ] BC

{α}
Q [NQ] ‖ P [N ′

P ]
)

= P BC
{α}

Q ‖ P

This supports the intuitive observation that the leftmost
array of P components will behave differently from the
rightmost array. In this instance, the action α of the
former array is executed in cooperation with a Q com-
ponent, whereas it is an independent action with regard
to the latter array because of the empty cooperation set.

In the remainder of this paper we consider a PEPA
model for which the reduced context, hereinafter de-
noted by M, is already known. This minimal form
contains the necessary information to determine the
state descriptor in NVF, and is analogous to a Petri net
without any marking.

Definition 3 (Numerical Vector Form). Let NC be the
number of distinct sequential components in M. Let Ci be
the derivative set of the i-th component, i = 1, 2, . . . , NC and
let Ni be its size, i.e., Ni = |Ci|. Let Ci,j denote the j-th
derivative of the i-th component, j = 1, 2, . . . , Ni. The state
descriptor in the NVF, denoted by ξ ∈ Nd

0, d =
∑NC

i=1 Ni,
assigns a coordinate, denoted by ξi,j , to each local derivative
Ci,j and indicates the number of copies in the system which
exhibit that derivative.

Definition 4 (Initial State of the CTMC). The initial
state of the CTMC is denoted by δ ∈ Nd

0 and gives an
initial population level δi,j ≥ 0 to each local derivative Ci,j .
Without loss of generality we exclude the case in which all
the derivatives of a sequential component are set to 0, by
subjecting δ to the condition

∑Ni

k=1 δi,k > 0, for all i.

Sometimes the element ξi,j is conveniently referred
to by a single subscript ξk, i.e., we assume an im-
plicit mapping of each sequential component Ci,j to a
coordinate 1 ≤ k ≤ d in the population vector. For
instance, with regard to Example 1, NC = 2, C1 =
{P ,P ′}, and C2 = {Q ,Q ′}. Furthermore, we use the
following mappings: C1,1 7→ P , C1,2 7→ P ′, C2,1 7→ Q ,
C2,2 7→ Q ′. Assuming the same ordering as in (9), the
initial state in Example 1 is (NP , 0, NQ, 0) whereas it is
(NP −KP ,KP , NQ −KQ ,KQ) in (19).

As with the Markovian interpretation, at the core of
this semantics is the notion of apparent rate. Here this
concept is modified to take into account the interpreta-
tion of the reduced context described above.

Definition 5 (Parametric Apparent Rate). Consider a
process P composed of sequential components Ci,j . The para-
metric apparent rate of action type α in component P ,
denoted by r?

α (P , ξ), defines the overall rate at which the
action type α can be performed by component P as a function
of the population sizes ξ of the sequential components of the

system:

r?
α

(
P BC

L
Q , ξ

)
=

{
min (r?

α (P , ξ) , r?
α (Q , ξ)) if α ∈ L

r?
α (P , ξ) + r?

α (Q , ξ) if α 6∈ L

r?
α (P/L, ξ) =

{
r?
α (P , ξ) if α 6∈ L

0 if α ∈ L

r?
α (Ci,j , ξ) =

∑Ni

k=1 rα(Ci,k)ξi,k

The first two cases are structurally and syntactically
similar to their counterparts in the Markovian semantics,
rα(P BC

L
Q) and rα(P/L). For a sequential component

of the reduced context, the definition of parametric
apparent rate exploits the property in (1) that it can
be expressed as the product of the population size and
the apparent rate of a single sequential component. In
addition, the behaviour of the other derivatives in the
same derivative set of Ci,j is taken into account because
of the interpretation of M. As already discussed, each
sequential component in M represents an array of iden-
tical components, evolving through the local derivatives
Ci,k, 1 ≤ k ≤ Ni. In any state of the CTMC there may be
one or more components exhibiting each such derivative.
These components will compete to participate in a shared
action α, and the probability that the action is completed
by each derivative will be proportional to the population
level of that derivative and the individual rate of execu-
tion. Thus, the apparent rate calculated in this manner
reflects the potential contribution to the action by any
concurrent sequential component. As observed in (2) the
summation is legitimate due to the property of additivity
which holds for the apparent rates for non-cooperating
components.

The set of functions generated by r?
α (·, ξ) is denoted

by F = [Rd −→ R≥0], a function space with values in
the non-negative reals because passive actions are not
allowed.

3.2 Structured Operational Semantics

The population-based parametric structured operational
semantics for PEPA is shown in Table 3. Let C be the
set of PEPA processes composed by Ci,j . Let L be the
labelling alphabet, i.e., L = A × F . The rules induce a
parametric multi-transition system, (C,L,−→?) ,−→?⊆ C×L×
C, which records the multiplicity of a transition between
two components. As with the Markovian semantics of
PEPA, this requirement is necessary in order to calculate
the transition rates correctly.

The rule for sequential components S?
0 constructs the

relationship between the two semantics. The premise
is a transition of the Markovian semantics for a single
sequential component. By construction of C the right
hand side of the transition is in the same derivative
set, i.e., Ci,j

(α,r)−−−→ Ci′,j ′ ⇒ i = i′. Such a transition is
said to be promoted to an inference for the population-
based semantics — the premise describes the behaviour
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TABLE 3
Population-based parametric structured operational
semantics of PEPA. Transitions are denoted by the
symbol −→? to distinguish them from the Markovian

transitions in PEPA which carry reals instead of
functions.

Sequential Component (Promotion Rule)

S?
0 :

Ci,j
(α,r)
−−−→ Ci,j ′ Ci,j ∈ Ci

Ci,j

(α,rξi,j)
−−−−−−→? Ci,j ′

Cooperation

C?
0 :

P
(α,r(ξ))
−−−−−→? P ′

P BC
L

Q
(α,r(ξ))
−−−−−→? P ′ BC

L
Q

, α 6∈ L

C?
1 :

Q
(α,r(ξ))
−−−−−→? Q ′

P BC
L

Q
(α,r(ξ))
−−−−−→? P BC

L
Q ′

, α 6∈ L

C?
2 :

P
(α,r1(ξ))
−−−−−−→? P ′ Q

(α,r2(ξ))
−−−−−−→? Q ′

P BC
L

Q
(α,r(ξ))
−−−−−→? P ′ BC

L
Q ′

, α ∈ L

and r(ξ) =
r1(ξ)

r?
α (P , ξ)

r2(ξ)

r?
α (Q , ξ)

min (r?
α (P , ξ) , r?

α (Q , ξ))

Hiding

H?
0 :

P
(α,r(ξ))
−−−−−→? P ′

P/L
(α,r(ξ))
−−−−−→? P ′/L

, α 6∈ L

H?
1 :

P
(α,r(ξ))
−−−−−→? P ′

P/L
(τ,r(ξ))
−−−−−→? P ′/L

, α ∈ L

Constant

A?
0 :

P
(α,r(ξ))
−−−−−→? P ′

A
(α,r(ξ))
−−−−−→? P ′

, A
def
= P

of a single sequential component, whereas the conclu-
sion gives the collective dynamics of the population of
components Ci,j . This population evolves at an overall
rate which is the product of the individual rate and the
number of components exhibiting this local derivative.

The other rules are syntactically similar to their coun-
terparts in the Markovian semantics. However, in all
cases the derivations carry as rates functions of F instead
of reals. The following derivation tree gives a transition
for the shared activity with regard to the reduced context
of Example 1.

P
(α,p)−−−→ P ′

P
(α,pξ1,1)
−−−−−−→? P ′

S?
0

Q
(α,q)−−−→ Q ′

Q
(α,qξ2,1)
−−−−−−→? Q ′

S?
0

P BC
{α}

Q
(α,min(pξ1,1,qξ2,1))
−−−−−−−−−−−−−→? P ′ BC

{α}
Q ′

C?
2 (20)

The following two examples present cases which could
not be handled by the deterministic interpretation of
[8]. The rules for cooperation can be used to derive
the rate for shared actions which can be performed by

two distinct local derivatives of the same sequential
component, as shown by P in the following

Example 2 (Distinct local states enabling the same activ-
ity type).

ξ1,1 P def= (α, p).P ′

ξ1,2 P ′ def= (β, p′).P ′′

ξ1,3 P ′′ def= (α, p′′).P
ξ2,1 Q def= (α, q).Q ′

ξ2,2 Q ′ def= (γ, q′).Q
System2

def= P [NP ] BC
{α}

Q [NQ]

(Alongside the process definitions are the corresponding co-
ordinates in the population vector.) The local derivatives P
and P ′′ perform the shared action at parametric rate ξ1,1p
and ξ1,3p

′′, respectively. Similarly, the parametric rate for Q
is ξ2,1q. Rule C?

2 says that each local state evolves at a rate
which is weighted by their relative probabilities of execution,
i.e., ξ1,1p/(ξ1,1p + ξ1,3p

′′) and ξ1,3p
′′/(ξ1,1p + ξ1,3p

′′).

Rules C?
0 and C?

1 allow two distinct sequential com-
ponents not to cooperate over the set of shared action
types, as illustrated by the following example.

Example 3 (Implicit Choice).

ξ1,1 P def= (α, p).P ′

ξ1,2 P ′ def= (β, p′).P
ξ2,1 R def= (α, r).R′

ξ2,2 R′ def= (δ, r′).R
ξ3,1 Q def= (α, q).Q ′

ξ3,2 Q ′ def= (γ, q′).Q
System3

def=
(
P [NP ] ‖ R[NR]

)
BC
{α}

Q [NQ]

Components P and R may both perform an activity of
type α, although the system equation does not enforce
synchronisation between them because their cooperation
set is empty. In our semantics, two deduction trees for α
can be inferred which represent the interactions between
components P and Q , and R and Q . The deduction tree
for the interaction between P and Q is:

P
(α,p)
−−−→ P ′

P
(α,pξ1,1)−−−−−−→? P ′

S?
0

P ‖ R
(α,pξ1,1)−−−−−−→? P ′ ‖ R

C?
0

Q
(α,q)
−−−→ Q ′

Q
(α,qξ3,1)−−−−−−→? Q ′

S?
0

(P ‖ R) BC
{α}

Q
(α,r′(ξ))
−−−−−→? (P ′ ‖ R) BC

{α}
Q ′

C?
2,

where

r′(ξ) =
pξ1,1

r?
α (P ‖R, ξ)

qξ3,1

r?
α (Q , ξ)

min (r?
α (P ‖R, ξ) , r?

α (Q , ξ))

=
pξ1,1

pξ1,1 + rξ2,1
min (pξ1,1 + rξ2,1, qξ3,1)

The deduction tree for the transition

(P ‖ R) BC
{α}

Q
(α,r′′(ξ))−−−−−−→? (P ‖ R′) BC

{α}
Q ′
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can be similarly inferred in the obvious way, where

r′′(ξ) =
pξ2,1

pξ1,1 + rξ2,1
min (pξ1,1 + rξ2,1, qξ3,1)

Notice that r′(ξ)+r′′(ξ) = min (pξ1,1 + rξ2,1, qξ3,1), which
represents the total activity rate for α.

3.3 Parametric Derivation Graph
All the inference trees presented in the previous section
are concerned with the derivation of transitions from
the initial state M. However, this information is not
sufficient to obtain the behaviour of the entire system
under consideration, because the derivatives of the initial
state under the Markovian semantics only give the first-
step behaviour of the process. The collective behaviour
of the system is represented by the notions of derivative
set and derivation graph of M in the population-based
semantics, which are defined in a similar way to their
counterparts in the Markovian semantics.

Definition 6 (Parametric Derivative Set). The parametric
derivative set of M, denoted by ds?(M), is the smallest set
of PEPA components which satisfies the following conditions:
• M∈ ds?(M)

• If P ∈ ds?(M) and there exists P
(α,r(ξ))−−−−−→? P ′ then

P ′ ∈ ds?(M)

Notice that the indicator function can be applied to
each P ∈ ds?(M) because it is a composition through
the combinators of PEPA of sequential components Ci,j ,
each of which has the coordinate (i, j) in the NVF by
Definition 3. We use the following notion of indicator
function to obtain the local states exhibited by a deriva-
tive in ds?(M).

Definition 7 (Indicator Function). Let 1i,j ∈ Nd
0 denote a

vector whose elements are all zero except for the coordinate
corresponding to the derivative Ci,j , which is set to one. Let
P ∈ ds?(M). The indicator of P , denoted by ind(P), returns
a vector whose non-zero elements correspond to the indices in
the population vector of the sequential components in P . It is
defined as follows:

ind(Ci,j) = 1i,j

ind(A def= P) = ind(P)
ind(P BC

L
Q) = ind(P) + ind(Q)

ind(P/L) = ind(P)

For instance, in Example 1 we have that
ind(P BC

{α}
Q) = (1, 0, 1, 0).

The derivative set ds?(M) is of crucial importance
for the development of the population-based semantics.
Each derivative P ∈ ds?(M) identifies a specific kind of
behaviour, i.e., the interactions amongst the sequential
components when they exhibit the local states indicated
by ind(P). For instance, in Example 1 the semantics will
give transitions for the generic state(

P [ξ1,1] ‖ P ′[ξ1,2]
)
BC
{α}

(
Q [ξ2,1] ‖ Q ′[ξ2,2]

)
(21)

although the component P BC
{α}

Q subsumes information
only about the transitions between the ξ1,1 components
in state P and the ξ2,1 components in state Q . As
observed above (cfr. (8)), the transition between each
such pair of sequential components can be expressed
parametrically as a function of their population levels
and the behaviour of the individual sequential compo-
nents involved. The other kinds of behaviour which are
simultaneously enabled by (21) are obtained by the other
elements of ds?(M).

In Example 1, the inference tree in (20) implies
P ′ BC

{α}
Q ′ ∈ ds?(M). The transitions from this component

are concerned with the interactions between the ξ1,2

components exhibiting state P ′ and the ξ2,2 components
in state Q ′. These can be obtained from the following
two inference trees:

P ′
(β,p′)−−−−→ P

P ′
(β,p′ξ1,2)−−−−−−→? P

P ′BC
{α}

Q ′ (β,p′ξ1,2)−−−−−−→? P BC
{α}

Q ′
(22)

Q ′ (γ,q′)−−−→ Q

Q ′ (γ,q′ξ2,2)−−−−−−→? Q

P ′BC
{α}

Q ′ (γ,q′ξ2,2)−−−−−−→? P ′BC
{α}

Q
(23)

The construction of the parametric derivative set is com-
pleted by the inference of the transitions for P BC

{α}
Q ′ and

P ′ BC
{α}

Q :

Q ′ (γ,q′)−−−→ Q

Q ′ (γ,q′ξ2,2)−−−−−−→? Q

P BC
{α}

Q ′ (γ,q′ξ2,2)−−−−−−→? P BC
{α}

Q
(24)

P ′
(β,p′)−−−−→ P

P ′
(β,p′ξ1,2)−−−−−−→? P

P ′BC
{α}

Q
(β,p′ξ1,2)−−−−−−→? P BC

{α}
Q

(25)

Finally, the notion of parametric derivation graph encom-
passes the complete behaviour of the system.

Definition 8 (Parametric Derivation Graph). Given a
parametric derivative set ds?(M), the parametric deriva-
tion graph of M, denoted by D?(M) is a labelled directed
multi-graph (V,A) with vertices V ∈ ds?(M) and arcs
A ∈ ds?(M)×L×ds?(M) where the number of occurrences
of an arc, denoted by m, is equal to the number of distinct
inference trees for a transition.

The inference trees (20), (22), (23), (24), and (25) give
rise to the parametric derivation graph depicted in Fig. 2
(each arc has multiplicity one).

3.4 Extraction of the Generating Functions
The arcs of the parametric derivation graph can be used
to construct the generating functions of the underlying
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Fig. 2. Parametric derivation graph of Example 1.

population-based CTMC, as straightforwardly as the
derivation graph in the original semantics gives rise

to the underlying Markov process. An arc P
(α,r(ξ))−−−−−→?

P ′ ∈ A implies a generating function in the form
ϕα(ξ, l) = m · r(ξ), where m is the multiplicity of
the arc and the jump vector l indicates the sequential
components whose population levels change due to the
transition. The jump vector is taken from the inspection
of the source and target components of the transition.
The population levels of sequential components in the
source component are subjected to a decrease by one (cfr.
(9)). Correspondingly, the population levels in the target
component are increased by the same quantity. This is
captured by the following definition.

Definition 9 (Extraction of the Generating Functions).
Let M be a PEPA model with parametric derivative
graph D?(M). The generating functions of the underlying
population-based CTMC are as follows:

ϕα(ξ, l) =


m · r(ξ) if ∃ P

(α,r(ξ))−−−−−→? P ′ ∈ A and
l = 0d − ind(P ) + ind(P ′)

0 otherwise

where 0d is the zero-vector in Zd.

It is possible to verify that the generating functions
derived according to this definition coincide with those
formulated in (14–16) for Example 1. Notice that two
distinct transitions in the parametric derivation graph
may give rise to the same generating functions. For
instance, (22) and (25) imply the generating function
(15). However, both transitions express the same kind
of behaviour, i.e., the possibility for components of kind
P ′ to perform action β, regardless of the states of the
components in the right hand side of the cooperation.
As discussed in Section 2 the fact that the components
exhibiting states Q and Q ′ are not involved in this
transition is reflected by their corresponding elements
in the jump vector being equal to zero. This property
emerges from the calculation of the jump vector in Def-
inition 9, as any sequential component which is present
in both sides of a transition is such that the negative
entry −1 (due to the presence in the lhs) cancels out
the positive entry +1 (due to the presence in the rhs)
in the component’s corresponding coordinate. (A similar

remark can be applied to the symmetric case of (23) and
(24), which define the same function (16).)

4 FLUID LIMIT OF THE CTMC
This section is concerned with verifying that the
population-based semantics satisfies the conditions of
Theorem 1.

4.1 Density Dependency

In order to prove (12) we begin by proving the following
property for parametric apparent rates.

Lemma 1. Let r?
α (P , ξ) be the parametric apparent rate of

action type α in process P . For any n ∈ N and α ∈ A,

r?
α (P , ξ) = n · r?

α (P , ξ/n)

Proof: We proceed by structural induction over Def-
inition 5. For the base case, we have that

r?
α (Ci,j , ξ) =

Ni∑
k=1

rα(Ci,k)ξi,k = n

Ni∑
k=1

rα(Ci,k)ξi,k/n =

= n · r?
α (P , ξ/n)

The inductive step follows by observing that density
dependency is preserved by the functions min and sum-
mation.

This lemma is used to prove that the same property
is enjoyed by the parametric rates which label the tran-
sitions in the new semantics.

Lemma 2. If P
(α,r(ξ))−−−−−→? Q then, for any n ∈ N, r(ξ) =

n · r(ξ/n)

Proof: We prove this by structural induction over
the structured operational semantics in Table 3. The base
case S?

0 is obvious. The less straightforward case is that
of rule C?

2 where the rate function does not carry over
to the conclusion. Combining the induction hypothesis
on r1(ξ) and r2(ξ) and the previous lemma for r?

α (P , ξ)
and r?

α (Q , ξ),

r(ξ) =
r1(ξ)

r?
α (P , ξ)

r2(ξ)
r?
α (Q , ξ)

min (r?
α (P , ξ) , r?

α (Q , ξ))

=
n · r1(ξ/n)

n · r?
α (P , ξ/n)

n · r2(ξ/n)
n · r?

α (Q , ξ/n)
·min (n · r?

α (P , ξ/n) , n · r?
α (P , ξ/n))

=
r1(ξ/n)

r?
α (P , ξ/n)

r2(ξ/n)
r?
α (Q , ξ/n)

· n ·min (r?
α (P , ξ/n) , r?

α (P , ξ/n)) = nr(ξ/n)

Observing that ϕ(x, l) is a summation of functions
which satisfy the previous lemma, the following propo-
sition holds.

Proposition 1. Let M be a PEPA model with generating
functions ϕ(x, l) derived according to Definition 9. The ele-
ments of the generator matrix are such that they verify (12).
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4.2 Lipschitz Continuity

Observing that Lipschitz continuity is preserved by sum-
mation, in order to verify that the vector field (10) is
Lipschitz it suffices to prove that any parametric rate
generated by the semantics is Lipschitz. This property
will be used to satisfy condition 2a) of Theorem 1. As
with density dependence, we check that the property
holds for apparent rates.

Lemma 3. Let r?
α (P , ξ) be the parametric apparent rate of

action type α in process P . There exists a constant L ∈ R
such that for all x, y ∈ Rd, x 6= y,

‖r?
α (P , x)− r?

α (P , y)‖
‖x− y‖

≤ L

Proof: This is proven by using the supremum
norm ‖x‖ = maxi |xi| and structural induction over the
Definition 5.
Base case

‖r?
α (Ci,j , x)− r?

α (Ci,j , y)‖ =

∥∥∥∥∥
Ni∑

k=1

rα(Ci,k)(xi,k − yi,k)

∥∥∥∥∥
≤

Ni∑
k=1

rα(Ci,k) ‖x− y‖

Inductive Step
Case r?

α

(
P BC

L
Q , ·

)
= min (r?

α (P , ·) , r?
α (Q , ·)), α ∈ L

follows because the minimum of two Lipschitz functions
(by the induction hypothesis) is also Lipschitz.
Case r?

α

(
P BC

L
Q , ·

)
= r?

α (P , ·) + r?
α (Q , ·) , α 6∈ L. This

is Lipschitz with constant L = LP + LQ, where LP and
LQ are the Lipschitz constants of P and Q , respectively,
which exist by the induction hypothesis.
Case r?

α (P/L, ·). The function 0 is Lipschitz. The other
case follows by the induction hypothesis.

Lemma 4. If P
(α,r(x))−−−−−→? P ′ then r(x) ≤ r?

α (P , x)

Proof: We prove this by structural induction. The
most interesting case is that of cooperation.
Rule C?

0 (Rule C?
1 is symmetric)

r(x) =r1 ≤ r?
α (P , x)

≤ r?
α (P , x) + r?

α (Q , x) ≡ r?
α

(
P BC

L
Q , x

)
Rule C?

2

r(x) =
r1(x)

r?
α (P , x)

r2(x)
r?
α (Q , x)

min (r?
α (P , x) , r?

α (Q , x))

≤ 1 · 1 ·min (r?
α (P , x) , r?

α (Q , x)) ≡ r?
α

(
P BC

L
Q , x

)
By combining Lemma 3 and 4, by structural induction

over the semantic rules,

Proposition 2. If P
(α,r(x))−−−−−→? P ′ then r(x) is Lipschitz

continuous.

These results establish that the parametric rates are
globally Lipschitz in Rd. Thus, in Theorem 1, Condition
(1) is satisfied and (2a) holds for any open E ⊂ Rd.

Theorem 2. Let x(t), 0 ≤ t ≤ T satisfy the initial value
problem ẋ = F (x(t)), x(0) = δ, specified from a PEPA model
according to (10) and Definition 4. Let {Xn(t)} be a family
of CTMCs with parameter n ∈ N generated according to
Definition 9 and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P
(

sup
t≤T

‖Xn(t)/n− x(t)‖ > ε

)
= 0.

Proof: This proof is only sketched here because it
relies heavily on the theory developed in [6], which
is not fully reported here due to space limitations.
This proof is based on verifying that the conditions
of Theorem 1 are satisfied for any PEPA model. The
main technical difficulty consists in finding an open set
E ⊂ Rd such that the hypotheses of the theorem are
verified, in particular that it holds x(t) ∈ E, 0 ≤ t ≤ T .
However, according to the proof of Theorem 1 provided
in [6], this is a sufficient condition to prove that there
exists η > 0 such that for every n

En ∩
{

y ∈ Rd : inf
t≤T

‖y − x(t)‖ ≤ η

}
∈ E, (26)

where En = {ξ/n : ξ is a state of Xn(t)} (cfr. [6], The-
orem 2.11, of which Theorem 1 is a specialisation for
density-dependent chains). However, observe that for
any PEPA model the trajectory of Xn(t) is bounded
because, for all n, the sum of the population levels of
all components in all states is constant, in particular, it
is equal to the sum of the initial population levels, i.e.,

d∑
k=1

ξk = n

d∑
k=1

δk

Letting ∆ =
∑d

k=1 δk and recalling that ξi ≥ 0, 1 ≤ i ≤ d,
we have that

0 ≤ ξi

n
≤

∑d
k=1 ξk

n
≡ ∆

Thus, for any PEPA model, (26) is verified for any
η if E is the smallest open set which contains{
y ∈ Rd : 0 ≤ yi ≤ ∆, 0 ≤ i ≤ d

}
4.3 Discussion

The result of convergence discussed above only holds
for models with active synchronisation. The original
semantics of PEPA also allows passive activities, whose
rate is denoted by the symbol >. Informally, the meaning
of a passive component is that the rate is determined by
some other (active) cooperating component. For instance,
replacing the definition of Q with Q

def
= (α,>).Q ′ in

Example 1 yields a model in which the rate of α is
determined by P only. According to the arithmetic of
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passive rates presented in [9], the analogue of (8) in this
case is

Rpas =
p

NPp

>
NQ>

min(NPp, NQ>) =
p

NQ
,

which would suggest a similar transition to (9) in the
NVF of type

(NP , 0, NQ, 0)
(α,NP p)−−−−−→ (NP − 1, 1, NQ − 1, 1) (27)

However, unlike (9), this transition is enabled if NQ = 0,
which leads to a meaningless state of the chain because
one component is negative. Instead, the presence of
passive components can be correctly captured by the
following generating function (see also [12] for a similar
treatment):

ϕα (ξ, (−1, 1,−1, 1)) =
{

ξ1p if ξ2 6= 0
0 if ξ2 = 0

However, such a function is clearly discontinuous, hence
it does not satisfy one condition for the applicability of
Kurtz’s theorem (in fact, the existence and uniqueness of
the solution is not even guaranteed by the condition of
Lipschitz continuity on the vector field).

Our semantics can be extended in order to accom-
modate passive rates. With respect to this example,
the strategy consists in using a continuous generating
function ϕα (ξ, (−1, 1,−1, 1)) = ξ1p and defining an exit
time for the ODE, i.e. by setting T of Theorem 2 as
T = inf{t : x1(t) > 0 ∧ x3(t) = 0}. Thus, solutions
to the ODE are accepted until the deterministic process
is in such a state that there are active components
capable of carrying out the shared actions but there
are no cooperating passive components (notice that if
x1(t) = 0 the shared activity is not enabled regardless of
the population level x3(t)).

Our approach can also incorporate the alternative
treatment presented in [13], in which a model with
passive cooperation is translated into an equivalent one
with active synchronisation, yielding better results with
regard to the agreement with the underlying Markov
process. Thus, a model with passive synchronisation
may be subjected to this transformation process before
our deterministic semantics is applied.

5 CASE STUDY

In this section we apply the population-based semantics
of PEPA to a more complex PEPA model. We carry
out numerical tests to assess the agreement between the
deterministic approximation and the stochastic process.

5.1 Three-Tier Distributed Application

The model, shown in Fig. 3, describes a three-tier dis-
tributed application. The process definitions prefixed
with Cl : indicate the client behaviour, which performs
a synchronous request to the system and interposes
some thinking time between successive requests. Clients

Cl :Request
def
= (request , rc:request).Cl :Wait

Cl :Wait
def
= (reply , rc:reply).Cl :Think

Cl :Think
def
= (think , rc:think ).Cl :Request

Sr :Wait
def
= (request , pfreshrs:request).Sr :Fresh

+ (request , (1− pfresh)rs:request).Sr :Reply

+ (fail , rs:fail).Sr :Repair

Sr :Fresh
def
= (read , pokrs:read).Sr :Reply

+ (read , (1− pok )rs:read).Sr :Force

Sr :Force
def
= (force, rs:force).Sr :Write

Sr :Write
def
= (write, rs:write).Sr :Reply

Sr :Reply
def
= (reply , rs:reply).Sr :Wait

Sr :Repair
def
= (read , rs:read).Sr :Wait

Db :Wait
def
= (read , rd:read).Db :Update

+ (write, rd:write).Db :Update

Db :Update
def
= (update, rd:update).Db :Wait

Rb :Gather
def
= (crawl , rr:crawl).Rb :Write

Rb :Write
def
= (write, rr:write).Rb :Gather

SystemApp
def
= Cl :Request [Nc] BC

{request,reply}((
Sr :Wait [Ns] ‖ Rb :Gather [Nr]

)
BC

{read,write}

Db :Wait [Nd]
)
/{read ,write}

Fig. 3. PEPA model of a three-tier distributed application.

communicate with server components, denoted by the
prefix Sr : , over the shared action types request and
reply . The component Sr : Wait illustrates two classes
of request. Upon receiving a request, the information is
retrieved via a database query with probability pfresh ;
conversely, the server uses some cached data with prob-
ability 1 − pfresh , modelled as a reply without access to
the database. A server may also incur some recoverable
error, which requires retrieving information from the
database in order to be able to accept further requests.
When a database query is executed, the server checks
whether the information is up-to-date. With probability
1−pok this check fails and the server forces an update of
the dataset, by performing the action write . A database
server thread, denoted by the prefix Db : , is modelled
as a two-state component. The state Db : Wait exposes
the two operations provided to the clients, while the
state Db : Update models some internal action which
needs to be taken after every operation. The system
also comprises a robot component, denoted by the prefix
Rb : , describing the behaviour of a program which
routinely writes to the database after gathering some
data (modelled via the state Rb :Gather ).
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This model employs all of the operators of the lan-
guage and features forms of interactions which were not
allowed in earlier approaches to deterministic approx-
imation. In particular, the following features were not
supported in [8]:
• Sequential components participating in shared ac-

tivities may specify distinct local rates (e.g., rc:request

and pfreshrs:request ).
• Two distinct local derivatives of the same sequential

component may perform the same action type (e.g.,
Sr :Fresh and Sr :Repair ).

• Two distinct sequential component may compete for
the same shared activitiy (e.g., Sr : Write and Rb :
Write).

• Support for hiding (e.g., here, read and write need
not be seen by the client components).

The use of large population levels in models of this
kind is justified by interpreting each distinct sequential
component as a distinct process or thread of execution.
Thus, Cl :Request [Nc] indicates the total workload on the
system, and the use of parallel composition expresses
independence amongst the clients. Sr : Wait [Ns] is
the thread pool instantiated for the application server.
Similarly, Db : Wait [Nd] is the thread pool provided by
the database. Note that this model of concurrency is
in agreement with actual policies implemented by most
web and database servers.

In practice, it is not unusual to have applications
with hundreds of clients or multi-threaded servers with
large pool sizes. However, such large-scale systems are
difficult to analyse due to usually rapid state space
growth. For instance, Table 4 shows the state space
sizes in the NVF up to a maximum population size of
ten. Clearly, explicit state-space enumeration makes the
analysis intractable for scenarios with larger population
sizes. An alternative approach in order to avoid onerous
storage requirements consists of employing stochastic
simulation. However, if on the one hand this reduces
memory complexity dramatically, on the other it usually
involves long execution times to compute a statistically
significant number of samples.

5.2 Numerical Results
The validation tests were conducted on the following
reduced model MApp obtained from SystemApp :

MApp =Cl :Request BC
{request,reply}

((
Sr :Wait ‖ Rb :Gather

)
BC

{read,write}
Db :Wait

)
/{read ,write}

A set of 200 randomly generated instances was con-
structed by drawing the values of the rate parameters

TABLE 4
State-space sizes for the three-tier application model.

Nc, Ns, Nr, Nd 1 2 4 8 9 10
State-space size 32 315 7350 382239 800800 1574573

from uniform distributions in ]0, 50] and the values of the
probabilities pfresh and pok from uniform distributions in
]0, 1[. The initial densities of the local derivatives which
do not appear in MApp were set to zero. The remain-
ing densities were chosen at random between one and
eight. Each model instance implies a family of CTMCs
{Xn(t)} and the corresponding ODE. The dynamics of
the Markov processes at n = 1, n = 10, n = 50 and
n = 100 were compared against the solution to the
ODE. As an indicative measure of the quality of the
approximation, the percentage relative errors between
the expected value of the scaled Markov process Xn(t)/n
and the deterministic trajectory x(t) were calculated for
each coordinate i of the NVF at any given time point,
according to the following equation:

%Errori
n(t) =

∣∣∣∣∣E
[
Xi

n(t)/n
]
− xi(t)

E [Xi
n(t)/n]

∣∣∣∣∣× 100 (28)

The results discussed in this section are provided for t =
20.0, arbitrarily chosen as a representative time point of
the process since similar behaviour can also be observed
for other time points. The analyses were conducted using
the Pepato library, available from the PEPA Eclipse Plug-
in software package [14]. For the sake of consistency,
Gillespie’s stochastic simulation algorithm (cfr. [3]) was
employed for all values of n, although in principle the
CTMCs for n = 1 could be solved numerically given
their relatively small state space sizes. The simulations
were terminated when the 95% confidence intervals were
within 10% of the statistical averages. The ODEs were
numerically integrated using a fifth-order Runge-Kutta
solver.

The validation results are reported in Table 5. Each co-
ordinate of the population vector behaves quantitatively
differently. For instance, the deterministic estimates of
the database and robot components are significantly
more precise than the other sequential components. Nev-
ertheless, in general the average approximation errors as
well as their variance across the validation set decrease
with n. These results also indicate that the deterministic
approximation is sufficiently accurate for most practi-
cal purposes even at relatively low population levels.
In particular, the scale factors n ≥ 10 correspond to
model instances with realistically sized pool sizes, i.e.,
hundreds of clients and server threads. In these cases
the ODE solutions behave very well on average, with
worst-case situations which give acceptable errors. Fur-
thermore, as already observed in [8], ODE analysis is
much less expensive than CTMC analysis—in this study
the numerical integration of the ODE was found to be
about four orders of magnitude faster, executing in tens
of milliseconds on average.

As with any empirical assessment of this kind, the
accuracy and the execution runtimes are specific to the
validation data set under consideration. The ranges of
the model parameters were arbitrarily chosen in this
study. Different ranges (or different model structures)
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TABLE 5
Comparison between the expected value of the Markov process and the ODE solution at time t = 20.0. For each
value of n and each coordinate in the NVF are listed the average percentage relative errors and the 5% and 95%

percentiles across the validation set of 200 randomly generated model instances.

n = 1 n = 10 n = 50 n = 100
Component 5% Avg. 95% 5% Avg. 95% 5% Avg. 95% 5% Avg. 95%

Cl :Request 0.09% 19.62% 74.20% 0.01% 5.15% 29.09% 0.01% 1.87% 8.73% 0.01% 1.16% 4.85%
Cl :Wait 0.22% 17.09% 59.36% 0.03% 1.97% 7.57% 0.02% 0.76% 2.60% 0.02% 0.55% 1.70%

Cl :Think 0.70% 31.13% 87.57% 0.09% 2.96% 9.92% 0.06% 1.71% 6.00% 0.07% 1.62% 5.16%
Sr :Wait 0.31% 13.02% 50.49% 0.06% 2.46% 9.66% 0.05% 1.24% 4.56% 0.05% 1.23% 4.14%
Sr :Fresh 0.56% 20.21% 60.54% 0.09% 3.74% 12.81% 0.03% 2.09% 7.03% 0.06% 1.82% 5.68%
Sr :Force 1.20% 31.02% 85.57% 0.29% 4.39% 11.49% 0.22% 3.63% 9.17% 0.21% 3.27% 7.80%
Sr :Write 0.95% 27.68% 80.39% 0.21% 4.14% 12.38% 0.12% 2.91% 9.26% 0.10% 2.64% 8.91%
Sr :Reply 0.26% 24.69% 71.60% 0.07% 3.70% 13.10% 0.04% 1.69% 4.70% 0.05% 1.48% 5.44%

Sr :Repair 0.16% 13.19% 50.63% 0.01% 2.77% 11.37% 0.01% 1.32% 5.32% 0.02% 0.90% 3.92%
Db :Wait 0.01% 3.64% 20.21% 0.01% 0.77% 3.66% 0.01% 0.43% 1.70% 0.01% 0.38% 1.33%

Db :Update 0.04% 4.04% 17.08% 0.03% 1.07% 4.33% 0.01% 0.79% 2.93% 0.01% 0.81% 2.76%
Rb :Gather 0.05% 4.00% 16.56% 0.02% 1.09% 3.54% 0.02% 0.95% 3.23% 0.02% 0.89% 3.52%
Rb :Write 0.03% 2.82% 15.60% 0.02% 1.03% 3.12% 0.02% 0.91% 3.01% 0.01% 0.89% 3.00%

may lead to particularly problematic (or particularly
good) cases. Moreover, some parameter sets may give
rise to stiff differential equations which are difficult to
integrate with explicit numerical solvers. Future work
shall be concerned with these issues. A promising line
of research seems to be, in the context of PEPA, the
use of theoretical error probability bounds of density-
dependent chains [15]. For a numerical investigation
into the quality of the approximation of stiff large-scale
models, the interested reader is referred to [16].

6 RELATED WORK

The earlier work on the deterministic approximation of
Markovian PEPA is due to Hillston [8]. In addition to
the syntactical restrictions to the language discussed in
Section 5.1, another major difference between our work
and [8] concerns methodological aspects. Instead of an
operational semantics for the language, [8] presents an
algorithm for automatic generation of the ODE based on
static inspection of the PEPA description which is not
related to a corresponding CTMC. An alternative deter-
ministic interpretation of PEPA in the style of [8] has
been proposed in [17] for applications to epidemiology,
albeit still with the aforementioned restrictions. The use
of differential equations as the underlying mathematics
of PEPA first appeared in the context of computational
system biology in [18], where the authors present a
methodology for the extraction of differential equations
using a semantics called the reagent-centric view. This
approach deviates significantly from the original inter-
pretation of PEPA—most notably, the semantics of syn-
chronisation captures the biologically interesting mass
action kinetics as opposed to the standard notion of
bounded capacity. Furthermore, unlike our approach, a
sequential component does not represent a single entity
of the system; rather, it is the abstraction of a concentra-
tion level of a species. This accomplishes an orthogonal
goal with respect to ours, as the semantics associates a
sequential component with an entire population instead

of a single entity. Bounded capacity and mass action
kinetics semantics for fluid models are merged in [19],
in which a slight extension to the cooperation operation
is provided to model signalling pathways which exhibit
both kinds of reaction laws. An important contribution
of this work is that the Markov process generated from
the pathway-centric style of [20] is shown to converge
in the limit to the underlying ODE by using Kurtz’s
results [6]. Density dependency and the interpretation
of the ODE as the fluid limit of Markov process is
also investigated in [21], in which some assumptions
on the syntactical structure of the PEPA models are
not removed and the generation of ODE is described
algorithmically.

Apart from the context of PEPA, Cardelli has inves-
tigated the relationship between the deterministic and
the discrete-state representation of the Chemical Ground
Form, a process algebra designed for the modelling of
chemical reactions [22]. In [23], Bortolussi and Policriti
investigate the differential approximation of models of
biochemical models using the stochastic Concurrent Con-
straint Programming process algebra.

A general modelling framework which exploits results
of asymptotic convergence of stochastic processes to a
differential-equation model is that of mean-field anal-
ysis (cfr. [24] and the bibliography therein). Similarly
to our approach, it infers the collective (continuous)
dynamics of a system from the description of a single
participating object, which evolves through a (discrete)
set of states. Mean-field analysis lends itself well to
situations in which all objects have the same behaviour—
indeed, it has been employed in performance studies of
peer-to-peer protocols [25], [26]—and it easily allows for
the modelling of communication between components of
the same kind. Such a form of interaction is not available
within the fluid-flow framework of PEPA because at its
core is the notion of independence among components
of an array. However, the semantics of our approach can
be more readily used in cases where distinct kinds of
interacting objects are to be considered.
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7 CONCLUSIONS

This paper has presented a formal semantic account of
the deterministic approximation of the stochastic process
algebra PEPA, encompassing previous work on this topic
and substantially extending the applicability to models
with arbitrary structure. The modelling paradigm of
PEPA is suited to capturing the behaviour of software
systems consisting of interactions between replicated
components, as may be the case in multi-process applica-
tions serving many customers. The result of asymptotic
convergence relates the (computationally easy) solution
of an underlying ODE to the Markov process obtained
from the same process algebraic description, guarantee-
ing that the differential trajectory is an exact approxi-
mation. Furthermore, numerical tests on a model of a
large three-tier distributed application gave confidence
on the applicability of this analysis in realistically-sized
large-scale models.
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