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A General Software Defect-Proneness
Prediction Framework

Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying and Jin Liu

Abstract—BACKGROUND – predicting defect-prone software components is an economically important activity and so has received
a good deal of attention. However, making sense of the many, and sometimes seemingly inconsistent, results is difficult.
OBJECTIVE – we propose and evaluate a general framework for software defect prediction that supports (i) unbiased and (ii)
comprehensive comparison between competing prediction systems.
METHOD – the framework comprises (i) scheme evaluation and (ii) defect prediction components. The scheme evaluation analyzes the
prediction performance of competing learning schemes for given historical data sets. The defect predictor builds models according to
the evaluated learning scheme and predicts software defects with new data according to the constructed model. In order to demonstrate
the performance of the proposed framework, we use both simulation and publicly available software defect data sets.
RESULTS – the results show that we should choose different learning schemes for different data sets (i.e. no scheme dominates), that
small details in conducting how evaluations are conducted can completely reverse findings and lastly that our proposed framework is
more effective, and less prone to bias than previous approaches.
CONCLUSIONS – failure to properly or fully evaluate a learning scheme can be misleading, however, these problems may be overcome
by our proposed framework.

Key Words—Software defect prediction, software defect-proneness prediction, machine learning, scheme evaluation.
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1 INTRODUCTION

Software defect prediction has been an important re-
search topic in the software engineering field for more
than 30 years. Current defect prediction work focuses
on (i) estimating the number of defects remaining in
software systems, (ii) discovering defect associations,
and (iii) classifying the defect-proneness of software
components, typically into two classes defect-prone and
not defect-prone. This paper is concerned with the third
approach.

The first type of work employs statistical approaches
[1], [2], [3], capture-recapture (CR) models [4], [5], [6], [7],
and detection profile methods (DPM) [8] to estimate the
number of defects remaining in software systems with
inspection data and process quality data. The prediction
result can be used as an important measure for the
software developer [9], and can be used to control the
software process (i.e. decide whether to schedule further
inspections or pass the software artifacts to the next
development step [10]) and gauge the likely delivered
quality of a software system [11].

The second type of work borrows association rule min-
ing algorithms from the data mining community to re-
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veal software defect associations [12], which can be used
for three purposes. First to find as many related defects
as possible to the detected defect(s) and consequently
make more effective corrections to the software. This
may be useful as it permits more directed testing and
more effective use of limited testing resources. Second,
to help evaluate reviewers’ results during an inspection.
Thus a recommendation might be that his/her work
should be reinspected for completeness. Third, to assist
managers in improving the software process through
analysis of the reasons why some defects frequently
occur together. If the analysis leads to the identification
of a process problem, managers can devise corrective
action.

The third type of work classifies software compo-
nents as defect-prone and non-defect-prone by means of
metric-based classification [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24]. Being able to predict which
components are more likely to be defect-prone supports
better targeted testing resources and therefore improved
efficiency.

Unfortunately, classification remains a largely un-
solved problem. In order to address this researchers have
been using increasingly sophisticated techniques drawn
from machine learning. This sophistication has led to
challenges in how such techniques are configured and
how they should be validated. Incomplete or inappro-
priate validation can result in unintentionally misleading
results and over-optimism on the part of the researchers.
For this reason we propose a new and more general
framework within which to conduct such validations.
To reiterate a comment made in an earlier paper by one
of the authors [MS] and also quoted by Lessmann et al.
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[24] “we need to develop more reliable research proce-
dures before we can have confidence in the conclusion
of comparative studies of software prediction models”
[25]. Thus we stress that the aim of this paper is to
consider how we evaluate different processes for finding
classification models, not any particular model itself. We
consider it most unlikely any useful, universal model
exists.

Much of this research activity has followed the path
of using software metrics extracted from the code as
candidate factors to reveal whether a software com-
ponent is defect-prone or not. To accomplish this a
variety of machine learning algorithms have been used
to inductively find patterns or rules within the data to
classify software components as either defect-prone or
not. Examples include [13], [26], [27], [28], [20], [23],
and [24]. In addition Wagner [29] and Runeson et al.
[30] provide useful overviews in the form of systematic
literature reviews.

In order to motivate the need for more systematic
and unbiased methods for comparing the performance
of machine learning based defect prediction we focus
on a recent paper published in this journal by Menzies,
Greenwald and Frank [23]. For brevity we will refer to
this as the MGF paper. We choose MGF for three reasons.
First, because it has been widely cited1 and is there-
fore influential. Second, because the approach might be
regarded as state of the art for this kind of research.
Third, because the MGF analysis is based upon datasets
in the public domain thus we are able to replicate the
work. We should stress we are not singling this work
out for being particularly outrageous. Instead we wish
to respond to their challenge “that numerous researchers
repeat our experiments and discover learning methods
that are superior to the one proposed here” (MGF).

In the study, publicly available datasets from different
organizations are used. This allows us to explore the
impact of data from different sources on different pro-
cesses for finding appropriate classification models apart
from evaluating these processes in a fair and reasonable
way. Additionally, 12 learning schemes2 resulted from
two data preprocessors, two feature selectors, and three
classification algorithms are designed to assess the effects
of different elements of a learning scheme on defect
prediction. Although balance is a uncommon measure in
classification, the results of MGF were reported with it,
thus it is still used whilst a general measure AUC of
predictive power is employed in the paper as well.

This paper makes the following contributions: (i) a
new and more general software defect-proneness pre-
diction framework within which appropriate validations
can be conducted is proposed; (ii) the impacts of different
elements of a learning scheme on the evaluation and
prediction are explored, and concluded that a learn-
ing scheme should be evaluated as holistically and no

1. Google scholar (accessed February 6, 2010) indicates an impressive
132 citations to MGF [23] within the space of three years.

2. Please see Section 2 for the details of a learning scheme.

learning scheme dominates, consequently the evaluation
and decision process is important; and (iii) the potential
bias and misleading results of the MGF framework is
explained and confirmed, and demonstrated that the
performance of the MGF framework is varying greatly
with data from different organizations.

The remainder of the paper is organized as follows.
Section 2 provides some further background on the
current state of the art for learning software defect pre-
diction systems with particular reference to MGF. Section
3 describes our framework in detail and analyzes differ-
ences between our approach and that of MGF. Section
4 is devoted to the extensive experiments to compare
our framework and that of MGF and to evaluate the
performance of the proposed framework. Conclusions
and consideration of the significance of this work are
given in the final section.

2 RELATED WORK

MGF [23] published a study in this journal in 2007 in
which they compared the performance of two machine
learning techniques (Rule Induction and Naı̈ve Bayes) to
predict software components containing defects. To do
this they use the NASA MDP repository which at the
time of their research contained 10 separate data sets.

Traditionally many researchers have explored issues
like the relative merits of McCabe’s cyclomatic com-
plexity, Halstead’s software science measures and lines
of code counts for building defect predictors. However,
MGF claim that “such debates are irrelevant since how
the attributes are used to build predictors is much more
important than which particular attributes are used” and
“the choice of learning method is far more important
than which subset of the available data is used for
learning”. Their analysis found that a Naı̈ve Bayes clas-
sifier, after log-filtering and attribute selection based on
InfoGain had a mean probability of detection of 71% and
mean false alarms rates of 25%. This significantly out-
performed the rule induction methods of J48 and OneR
(due to Quinlan [31]).

We argue that although how is more important than
which3, the choice of which attribute subset is used for
learning is not only circumscribed by the attribute subset
itself and available data, but also by attribute selectors,
learning algorithms and data preprocessors. It is well
known that there is an intrinsic relationship between
a learning method and an attribute selection method.
For example, Hall and Holmes [32] concluded that the
forward selection search was well suited to Naı̈ve Bayes
but the backward elimination search is more suitable for
C4.5. Cardie [33] found using a decision tree to select at-
tributes helped the nearest neighbor algorithm to reduce
its prediction error. Kubat et al. [34] used a decision tree

3. That is, which attribute subset is more useful for defect prediction
not only depends on the attribute subset itself but also on the specific
data set.
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filtering attributes for use with a Naı̈ve Bayesian classi-
fier and obtained a similar result. However, Kibler and
Aha [35] reported more mixed results on two medical
classification tasks. Therefore, before building prediction
models, we should choose the combination of all three
of learning algorithm, data pre-processing and attribute
selection method, not merely one or two of them.

Lessmann et al. [24] have also conducted a follow-
up to MGF on defect predictions, providing additional
results as well as suggestions for a methodological
framework. However, they did not perform attribute
selection when building prediction models. Thus our
work has wider application.

We also argue that MGF’s attribute selection approach
is problematic and yielded a bias in the evaluation
results, despite the use of a M×N-way cross-evaluation
method. One reason is that they ranked attributes on
the entire data set including both the training and test
data, though the class labels of the test data should have
been unknown to the predictor. That is, they violated the
intention of the holdout strategy. The potential result is
that they overestimate the performance of their learning
model and thereby report a potentially misleading result.
Moreover, after ranking attributes, they evaluated each
individual attribute separately and chose those n features
with the highest scores. Unfortunately, this strategy can-
not consider features with complementary information,
and does not account for attribute dependence. It is
also incapable of removing redundant features because
redundant features are likely to have similar rankings.
As long as features are deemed relevant to the class,
they will all be selected even though many of them are
highly correlated to each other.

These seemingly minor issues motivate the develop-
ment of our general-purpose defect prediction frame-
work described in this paper. However, we will show
the large impact they can have and how researchers
may be completely misled. Our proposed framework
consists of two parts: scheme evaluation and defect
prediction. The scheme evaluation focuses on evaluating
the performance of a learning scheme, whilst the defect
prediction focuses on building a final predictor using
historical data according to the learning scheme and after
which the predictor is used to predict the defect-prone
components of a new (or unseen) software system.

A learning scheme comprises:
1) a data preprocessor,
2) an attribute selector,
3) a learning algorithm.
So to summarize, the main difference between our

framework and that of MGF lies in: (i) we choose the
entire learning scheme, not just one out of the learning
algorithm, attribute selector or data pre-processor; (ii) we
use the appropriate data to evaluate the performance of
a scheme. That is, we build a predictive model according
to a scheme with only ‘historical’ data and validate the
model on the independent ‘new’ data. We go on to
demonstrate why this has very practical implications.

3 PROPOSED SOFTWARE DEFECT PREDIC-
TION FRAMEWORK

3.1 Overview of the framework

Generally, before building defect prediction model(s)
and using them for prediction purposes, we first need
to decide which learning scheme should be used to
construct the model. Thus the predictive performance of
the learning scheme(s) should be determined, especially
for future data. However, this step is often neglected
and so the resultant prediction model may not be trust-
worthy. Consequently we propose a new software defect
prediction framework that provides guidance to address
these potential shortcomings. The framework consists of
two components: (i) scheme evaluation and (ii) defect
prediction. Fig. 1 contains the details.

Fig. 1. Proposed software defect prediction framework

At the scheme evaluation stage, the performances of
the different learning schemes are evaluated with histor-
ical data to determine whether a certain learning scheme
performs sufficiently well for prediction purposes or to
select the best from a set of competing schemes.

From Fig. 1 we can see that the historical data are
divided into two parts: a training set for building learn-
ers with the given learning schemes, and a test set for
evaluating the performances of the learners. It is very
important that the test data are not used in any way
to build the learners. This is a necessary condition to
assess the generalization ability of a learner that is built
according to a learning scheme, and further to determine
whether or not to apply the learning scheme, or select
one best scheme from the given schemes.

At the defect prediction stage, according to the per-
formance report of the first stage, a learning scheme
is selected and used to build a prediction model and
predict software defect. From Fig. 1 we observe that all
the historical data are used to build the predictor here.
This is very different from the first stage; it is very useful
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for improving the generalization ability of the predictor.
After the predictor is built, it can be used to predict the
defect-proneness of new software components.

MGF proposed a baseline experiment and reported the
performance of the Naı̈ve Bayes data miner with log-
filtering as well as attribute selection, which performed
the scheme evaluation but with inappropriate data. This
is because they used both the training (which can be
viewed as historical data) and test (which can be viewed
as new data) data to rank attributes, while the labels of
the new data are unavailable when choosing attributes
in practice.

3.2 Scheme evaluation
The scheme evaluation is a fundamental part of the
software defect prediction framework. At this stage,
different learning schemes are evaluated by building and
evaluating learners with them. Fig. 2 contains the details.

Fig. 2. Scheme evaluation of the proposed framework.

The first problem of scheme evaluation is how to
divide historical data into training and test data. As
mentioned above, the test data should be independent
of the learner construction. This is a necessary pre-
condition to evaluate the performance of a learner for
new data. Cross-validation is usually used to estimate
how accurately a predictive model will perform in prac-
tice. One round of cross-validation involves partitioning
a data set into complementary subsets, performing the
analysis on one subset, and validating the analysis on
the other subset. To reduce variability, multiple rounds of
cross-validation are performed using different partitions,
and the validation results are averaged over the rounds.

In our framework, a M×N-way cross-validation is used
for estimating the performance of each predictive model,
that is, each data set is first divided into N bins, and

after that a predictor is learned on (N-1) bins, and then
tested on the remaining bin. This is repeated for the N
folds so that each bin is used for training and testing
while minimizing the sampling bias. To overcome any
ordering effect and to achieve reliable statistics, each
holdout experiment is also repeated M times and in each
repetition the data sets are randomized. So overall, M×N
models are built in all during the period of evaluation,
thus M×N results are obtained on each data set about
the performance of the each learning scheme.

After the training-test splitting is done each round,
both the training data and learning scheme(s) are used to
build a learner. A learning scheme consists of a data pre-
processing method, an attribute selection method, and
a learning algorithm. The detailed learner construction
procedure is as follows:

1) Data preprocessing
This is an important part of building a practical
learner. In this step, the training data are prepro-
cessed, such as removing outliers, handling miss-
ing values, discretizing or transforming numeric
attributes. In our experiment, we use a log-filtering
preprocessor which replaces all numerics n with
their logarithms ln(n) such as used in MGF.

2) Attribute selection
The data sets may not have originally been in-
tended for defect prediction, thus even if all the
attributes are useful for its original task, not all may
be helpful for defect prediction. Therefore attribute
selection has to be performed on the training data.
Attribute selection methods can be categorized as
either filters or wrappers [36]. It should be noted
that both ‘filter’ and ‘wrapper’ methods only op-
erate on the training data. A ‘filter’ uses general
characteristics of the data to evaluate attributes
and operates independently of any learning algo-
rithm. In contrast, a ‘wrapper’ method, exists as a
wrapper around the learning algorithm searching
for a good subset using the learning algorithm
itself as part of the function evaluating attribute
subsets. Wrappers generally give better results than
filters but are more computationally intensive. In
our proposed framework, the ‘wrapper’ attribute
selection method is employed. To make most use
of the data, we use a M×N-way cross-validation
to evaluate the performance of different attribute
subsets.

3) Learner construction
Once attribute selection is finished, the prepro-
cessed training data are reduced to the best attribute
subset. Then the reduced training data and the
learning algorithm are used to build the learner.
Before the learner is tested, the original test data are
preprocessed in the same way and the dimension-
ality is reduced to the same best subset of attributes.
After comparing the predicted value and the actual
value of the test data, the performance of one pass
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of validation is obtained. As mentioned previously,
the final ‘evaluation’ performance can be obtained
as the mean and variance values across the M×N
passes of such validation.

The detailed scheme evaluation process is described
with pseudocode in the following Procedure Evaluation
which consists of Function Learning and Function AttrSe-
lect. The Function Learning is used to build a learner with
a given learning scheme, and the Function AttrSelect
performs attribute selection with a learning algorithm.

3.3 Defect prediction
The defect prediction part of our framework is straight-
forward, it consists of predictor construction and defect
prediction.

During the period of the predictor construction,
1) A learning scheme is chosen according to the Per-

formance Report.
2) A predictor is built with the selected learning

scheme and the whole historical data. While eval-
uating a learning scheme, a learner is built with
the training data and tested on the test data. Its
final performance is the mean over all rounds. This
reveals that the evaluation indeed covers all the
data. However, a single round of cross-validation
uses only one part of the data. Therefore, as we
use all the historical data to build the predictor,
it is expected that the constructed predictor has
stronger generalization ability.

3) After the predictor is built, new data are prepro-
cessed in same way as historical data, then the con-
structed predictor can be used to predict software
defect with preprocessed new data.

The detailed defect prediction process is described
with pseudocode in the following Procedure Prediction.

3.4 Difference between our proposed framework
and MGF
Although both MGF’s and our study have involved a
M×N-way cross-validation there is, however, a signifi-
cant difference. In their study, for each data set, the
attributes were ranked by InfoGain which was calculated
on the whole data set, then the M×N-way validation was
wrapped inside scripts that explored different subset of
attributes in the order suggested by the InfoGain. In our
study, there is an M×N-way cross-validation for perfor-
mance estimation of the learner with attribute selection,
which is out of the attribute selection procedure. We
only performed attribute selection on the training data.
When a ‘wrapper’ selection method is performed, an-
other cross-validation can be performed to evaluate the
performance of different attribute subsets. This should
be performed only on the training data.

To recap, the essential problem in MGF’s study is that
the test data were used for attribute selection, which
actually violated the intention of holdout strategy. In

their study, the M×N-way cross-validation actually imple-
mented a holdout strategy to just select the ‘best’ subset
among the subsets recommended by InfoGain for each
data set. However, as the ”test data” is unknown at
that period of time, so the result obtained in that way
potentially overfits the current data set itself and cannot
be used to assess the future performance of the learner
built with such ‘best’ subset.

Our framework focuses on the attribute selection
method itself instead of certain ‘best’ subset, as dif-
ferent training data may produce different best sub-
sets. We treat the attribute selection method as a part
of the learning scheme. The ‘inner’ cross-validation is
performed on the training data, which actually selects
the ‘best’ attribute set on the training data with the
basic learning algorithm. After that, the ‘outer’ cross-
validation assesses how well the learner built with such
‘best’ attributes performs on the test data, which is really
new to the learner. Thus our framework can properly
assess the future performance of the learning scheme as
a whole.

4 EMPIRICAL STUDY

4.1 Data sets
We used the data taken from the public NASA MDP
repository [37], which was also used by MGF and many
others e.g. [24], [38], [39], and [22]. What’s more, the AR
data from the PROMISE repository4 was also used. Thus
there are 17 data sets in total, 13 from NASA and the
remaining 4 from the PROMISE repository.

Table 1 provides some basic summary information.
Each data set comprises a number of software modules
(cases), each containing the corresponding number of
defects and various software static code attributes. After
preprocessing, modules that contain one or more defects
were labeled as defective. Besides LOC counts, the data
sets include Halstead attributes as well as McCabe com-
plexity measures5. A more detailed description of code
attributes or the origin of the MDP data sets can be
obtained from [23].

4.2 Performance measures
The receiver operating characteristic (ROC) curve is often
used to evaluate the performance of binary predictors.
A typical ROC curve is shown in Fig. 3. The y-axis
shows probability of detection (pd) and the x-axis shows
probability of false alarms (pf ).

Formal definitions for pd and pf are given in Equations
1 and 2 respectively. Obviously higher pds and lower
pf s are desired. The point (pf = 0, pd = 1) is the ideal

4. http://promise.site.uottowa.ca/SERepository
5. Whilst there is some disquiet concerning the value of such code

metrics recall that the purpose of this paper is to examine frameworks
for learning defect classifiers and not to find the ‘best’ classifier per
se. Moreover, since attribute selection is part of the framework we can
reasonably expect irrelevant or redundant attributes to be eliminated
from any final classifier.
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Procedure Evaluation(historicalData, scheme)
input : historicalData - the historical data;

scheme - the learning scheme.
output: AvgResult - the mean performance over the M×N-way cross-validation.

M = 10 ; /*number of repetitions */1

N = 10 ; /*number of folds */2

repeat3

D = Randomize (historicalData); /*randomize the order of instances */4

Generate N bins from D ;5

for i = 1 to N do6

test = bin[i];7

train = D − test ;8

[learner, bestAttrs ] = Learning (train, scheme);9

test’ = select bestAttrs from test ;10

Result = TestClassifier (test’, learner);11

/*Compute the performance measures of the learner on data test’ */
end12

until M times ;13

AvgResult = 1
M×N

∑
Result ;14

Function Learning(data, scheme)
input : data - the data on which the learner is built;

scheme - the learning scheme.
output: learner - the final learner built on data with scheme;

bestAttrs - the best attribute subset selected by the attribute selector of scheme

m = 10 ; /*number of repetitions for attribute selection */1

n = 10 ; /*number of folds for attribute selection */2

d = Preprocessing (data, scheme.preprocessor);3

bestAttrs = AttrSelect (d, scheme.algorithm, scheme.attrSelector, m, n);4

d’ = select bestAttrs from d ;5

learner = BuildClassifier (d’, scheme.algorithm);6

/*build a classifier on d’ with the learning algorithm of scheme */

Procedure Prediction(historicalData, newData, scheme)
input : historicalData - the historical data; newData - the new data;

scheme - the learning scheme.
output: Result - the predicted result for the newData

[predictor, bestAttrs ] = Learning (historicalData, scheme);1

d = select bestAttrs from newData;2

Result = Predict (d, predictor);3

/*predict the class label of d with predictor */

position where we recognize all defective modules and
never make mistakes.

pd = tpr =
TP

TP + FN
(1)

]pf = fpr =
FP

FP + TN
(2)

balance = 1−
√

(1− pd)2 + (0− pf)2√
2

(3)

MGF introduced a performance measure called balance
which is used to choose the optimal (pd, pf ) pairs. The
definition is shown in Equation 3, from which we can see
that it is equivalent to the normalized Euclidean distance
from the desired point (0,1) to (pf, pd) in a ROC curve
[40]. In order to more directly and fairly compare our
results with that of MGF, balance is used as a performance
measure.

Zhang and Zhang [41] argue that using (pd, pf ) per-
formance measures in the classification of imbalanced
data is not practical due to low precisions. By contrast,
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TABLE 1
Code Attributes within NASA MDP and AR Data Sets

NASA MDP Dataset AR Dataset
cm1 jm1 kc1 kc3 kc4 mw1 mc1 mc2 pc1 pc2 pc3 pc4 pc5 ar1 ar3 ar4 ar6

LOC total x x x x x x x x x x x x x x x x x
LOC blank x x x x x x x x x x x x x x x x x
LOC code and comment x x x x x x x x x x x x x x x x x
LOC comments x x x x x x x x x x x x x x x x x
LOC executable x x x x x x x x x x x x x x x x x
Number of lines x x x x x x x x x x
num operators x x x x x x x x x x x x x x x x x
num operands x x x x x x x x x x x x x x x x x
num unique operators x x x x x x x x x x x x x x x x x
num unique operands x x x x x x x x x x x x x x x x x
Halstead Length x x x x x x x x x x x x x x x x x
Halstead Volume x x x x x x x x x x x x x x x x x
Halstead Level x x x x x x x x x x x x x x x x x
Halstead Difficulty x x x x x x x x x x x x x x x x x
Halstead Content x x x x x x x x x x x x x
Halstead Effort x x x x x x x x x x x x x x x x x
Halstead Error Est x x x x x x x x x x x x x x x x x
Halstead Prog Time x x x x x x x x x x x x x x x x x
Halstead vocabulary x x x x
cyclomatic complexity x x x x x x x x x x x x x x x x x
cyclomatic density x x x x x x x
design complexity x x x x x x x x x x x x x x x x x
essntial complexity x x x x x x x x x x x x x
essential density x x x
branch count x x x x x x x x x x x x x x x x x
call pairs x x x x x x x x x x x x x x x
condition count x x x x x x x x x x x x x x x
decision count x x x x x x x x x x x x x x x
decision density x x x x x x x x x x x x x
design density x x x x x x x x x x x x x x x
edge count x x x x x x x x x x x
global data complexity x x x x x x x x x x x
global data density x x x x x x x x x x x
maintenance severity x x x x x x x x x x x
modified condition count x x x x x x x x x x x
multiple condition count x x x x x x x x x x x x x x x
node count x x x x x x x x x x x
normalized cylomatic compl x x x x x x x x x x x x x x x
parameter count x x x x x x x x x x x
formal parameters x x x x
pathological complexity x x x x x x x x x x x
percent comment x x x x x x x x x x x

number of attributes 38 21 21 38 38 38 39 40 38 38 38 38 39 29 29 29 29
number of modules 505 10878 2107 458 125 403 9466 161 1107 5589 1563 1458 17186 121 63 107 101
number of fp modules 48 2102 325 43 61 31 68 52 76 23 160 178 516 9 8 20 15
percentage of fp modules 9.50 19.32 15.42 9.39 48.80 7.69 0.72 32.30 6.87 0.41 10.24 12.21 3.00 7.44 12.70 18.69 14.85

MGF argue that precision has an unstable nature and
can be misleading to determine the better predictor. We
also think that predictors with high pd have practical
usage even when their pf is also high. Nevertheless such
a predictor could still be helpful for software testing,

Fig. 3. The ROC curves.

especially in mission critical and safety critical systems,
where the cost of many false positives (wrongly iden-
tifying a software component as fault-prone) is far less
than that of false negatives [42], [43], [44].

However, we would like to note that balance should
be used carefully for determining the best among a set
of predictors. Since it is a distance measure, predictors
with different (pf, pd) values can have the same balance
value. Nevertheless, this doesn’t necessarily show that
all predictors with the same balance value have the same
practical usage. Usually, domain specific requirement
may lead us to choose a predictor with a high pd
rank although it may also have a high pf rank. For an
extensive discussion of different approaches to model
performance indicators see [40].

Moreover, balance is based on the assumption that
there is no difference between the cost of false positives
(FP) and false negatives (FN). That means the module x
is seen as defect-prone when p(y = Defective|x) > p(y =
Nondefective|x) provided by the predictor. However,
when different costs of FP and FN are considered, the
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condition for judging module x as such becomes

p(y = Defective|x)
p(y = Nondefective|x)

>
CFP

CFN
, (4)

where CFP denotes the cost of an FP error (classifying a
nondefective module incorrectly as defective), and CFN

denotes the cost of an FN error (misclassifying a defec-
tive module). As is known that p(y = Defective|x) +
p(y = Nondefective|x) = 1, the condition is equivalent
to

p(y = Defective|x) >
CFP

CFN + CFP
. (5)

Thus it can seen that different results can be obtained
for the same predictor when different discrimination
thresholds are used. Each point on the ROC curve is
mapped to a discrimination threshold. The point (0,0)
means the predictor treats all modules as nondefective,
namely the corresponding threshold is 1. And the point
(1,1) means the predictor treats all as defective, namely
the corresponding threshold is 0. Thus the ROC curve
characterizes the performance of a binary predictor
among varied threshold. As shown in Fig. 3, “desired
curves” bend up towards this ideal point (0,1) and
“undesired curves” bend away from the ideal point.

The AUC (Area Under ROC Curve) is often calculated
to compare different ROC curves. Higher AUC values
indicate the classifier is on average more to the upper
left region of the graph. AUC represents the most infor-
mative and commonly used, thus it is used as another
performance measure in this paper.

Next, in order to more clearly compare the evaluation
performance of the two frameworks, we use diff which
is defined as follows.

diff =
EvaPerf− PredPerf

PredPerf
× 100% (6)

where EvaPerf represents the mean evaluation perfor-
mance and PredPerf denotes the mean prediction perfor-
mance. The performance measure can be either balance
or AUC.

From the definition we can know that (i) a positive diff
means that the mean evaluation performance is higher
than the mean prediction performance, so the evaluation
is optimistic; (ii) a negative diff means a lower mean
evaluation performance than corresponding mean pre-
diction performance, thus the evaluation is conservative.
No matter whether the diff is positive or negative, it is
clear that the smaller the absolute value of diff is, the
more accurate the evaluation is. And this is our main
goal, to have a framework that minimizes this gap.

4.3 Experiment Design
Two experiments are designed in the experiment. One is
to compare our framework with that of MGF, the second
is intended to demonstrate our framework in practice
and explore whether we should choose a particular
learning scheme or not.

4.3.1 Framework comparison

This experiment was used to compare our framework
with that of MGF who reported that a Naı̈ve Bayes
data miner with a log-filtering preprocessor achieved a
mean (pd, pf )= (71, 25). As discussed in Section 2, their
study might potentially overfit the historical data and the
results reported could be misleading. This suggests that
the actual performance of the predictor might not be so
good when used to predict using new data.

In our experiment, we simulated the whole process of
defect prediction to explore whether MGF’s evaluation
result is misleading or not. The experimental process is
described as follows:

1) We divided each data set into two parts: one is used
as historical data and the other is viewed as new
data. To make most use of the data, we performed
10-pass simulation. In each pass, we took 90% of
the data as historical data, the remaining 10% as
new data.

2) We replicated MGF’s work with the historical data.
Firstly, all the historical data was preprocessed in
the same way by a log-filtering preprocessor. Then
an iterative attribute subset selection as used in
MGF’s study was performed. In the subset selec-
tion method, the i = 1, 2, ..., N -th top-ranked at-
tribute(s) were evaluated step by step. Each subset
was evaluated by a 10×10-way cross-validation with
the Naı̈ve Bayes algorithm, the averaged balance
after 100 holdout experiments was used to estimate
the performance. The process of attribute subset se-
lection was terminated when the first i+1 attributes
performed no better than the first i. So the first
i top-ranked attributes were selected as the best
subset, with the averaged balance as the evaluation
performance.
The historical data was processed by the log-filtering
method and reduced by the selected best attribute
subset and the resultant data were used to build
a Naı̈ve Bayes predictor. Then the predictor was
used to predict defect with the new data that was
processed by same way as that of the historical data.

3) We also simulated the whole defect prediction pro-
cess presented in our framework.
In order to be comparable with MGF, we restricted
our learning scheme to the same preprocessing
method, attribute selection method and the same
learning algorithm. A 10×10-way cross-validation
was used to evaluate the learning scheme. The
learning scheme was wrapped in each validation
of the 10×10-way cross-validation, which is different
from MGF’s study. Specifically, as described in
the scheme evaluation procedure, we applied the
learning scheme only to the training data, after
which the final Naı̈ve Bayes learner was built and
the test data were used to evaluate the perfor-
mance of the learner. One hundred such holdout
experiments were performed for each pass of the
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evaluation and the mean of 100 balance measures
was reported as the evaluation performance.
The historical data was processed according to the
learning scheme, and a Naı̈ve Bayes predictor was
built with the processed data. Then the predictor
was used to predict defect with the new data that
was processed by the same way as that of the
historical data.

4.3.2 Defect prediction with different learning schemes
This experiment is intended to demonstrate our frame-
work and to illustrate that different elements of a learn-
ing scheme have different impacts on the predictions and
to confirm that we should choose the combination of a
data preprocessor, an attribute selector and a learning
algorithm, instead of any one of them separately.

For this purpose, twelve different learning schemes
were designed according to the following data prepro-
cessors, attribute selectors and learning algorithms.

1) Two data preprocessors
a) None: data unchanged;
b) Log: all the numeric values are replaced by

their logarithmic values, as used by MGF.
2) Two attribute selectors

The standard wrapper method is employed to
choose attributes. This means the performances of
the learning algorithms are used to evaluate the
selected attributes. Two different search strategies
(based on greedy algorithms) are used as follows.

a) Forward selection (FS): starts from an empty
set and evaluates each attribute individually
to find the best single attribute. It then tries
each of the remaining attributes in conjunction
with the best to find the best pair of attributes.
In the next iteration each of the remaining
attributes are tried in conjunction with the best
pair to find the best group of three attributes.
This process continues until no single attribute
addition improves the evaluation of the sub-
set.

b) Backward elimination (BE): starts with the
whole set of attributes, and eliminates one
attribute in each iteration until no single at-
tribute elimination improves the evaluation of
the subset.

3) Three learning algorithms
Naı̈ve Bayes (NB), J486 and OneR.

4) Twelve learning schemes
The combination of two data preprocessors, two
attribute selectors and three learning algorithms,
yields total twelve different learning schemes:
a) NB+Log+FS; b) J48+Log+FS; c) OneR+Log+FS;
d) NB+Log+BE; e) J48+Log+BE; f) OneR+Log+BE;
g) NB+None+FS; h) J48+None+FS;

6. J48 is a JAVA implementation of Quinlan’s C4.5 (version 8) algo-
rithm [31].

TABLE 2
Framework comparison for all the data sets

Data set
MGF Framework Our Framework

Eval Pred Eval Pred

CM1 72.7 69.5 68.3 69.5
KC3 74.1 69.7 69.4 70.8
KC4 71.9 68.1 66.1 69.1

MW1 70.5 66.5 64.8 66.1
PC1 64.6 62.7 66.0 66.8
PC2 81.8 76.2 78.1 79.7
PC3 71.4 71.0 70.3 71.1
PC4 82.6 82.2 82.0 82.1
JM1 44.0 43.9 58.5 58.5
KC1 70.5 70.7 70.2 70.7
MC1 82.8 79.7 80.1 79.3
MC2 61.0 59.6 57.7 61.4
PC5 89.7 88.8 90.4 90.4
AR1 53.8 42.8 39.8 41.1
AR3 80.7 66.1 60.0 66.1
AR4 71.7 66.4 64.1 68.3
AR6 53.1 47.0 51.9 49.2

i) OneR+None+FS; j) NB+None+BE;
k) J48+None+BE; and l) OneR+None+BE.

In this experiment, each data set was still divided into
two parts: one is used as historical data and the other
viewed as new data. To make the most use of the data,
we performed 10-pass simulation. For each pass, we took
90% of the data as historical data, and the remainder as
new data. We performed the whole process twice, with
balance and AUC respectively.

4.4 Experimental results and analysis

4.4.1 Framework comparison
The framework comparison results are summarized in
Table 2 7 which shows the results in terms of balance.
From it we find that our framework outperformed that
of MGF for 10 out of 17 data sets with a further 3 ties
(each ‘winner’ is denoted in bold).

The mean prediction balance of the MGF framework
over the 17 data sets is 66.5%, and the mean prediction
balance of the proposed framework is 68.2%, with an
improvement of 2.6%. We confirm this formally by the
Wilcoxon signed-rank test of medians (a non-parametric
alternative of the t-test) which yields p = 0.0040 for a
1-tailed hypothesis that the new framework is superior
to the MGF framework.

However, the point we wish to make is more subtle
than merely which technique is ‘best’, we want to show
that it is how one answers this question that really
matters. As we have previously indicated the MGF
approach contains a bias to over-optimism, thus if we
restrict our comparison to the ‘Eval’ columns of Table
2 we would see a different (and misleading) picture.
First, using the balance performance indicator, we find
that MGF outperforms our approach for 14 out of 17

7. The ‘Eval’ columns show the evaluation performance on each data
set, while the ‘Pred’ columns show the prediction performance.
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Fig. 4. The balance diffs of the two frameworks.

data sets. In this case the same Wilcoxon signed-rank
test would have been rejected at p = 1.0 and indeed
the opposite hypothesis, that the MGF framework is
superior to our framework at p < 0.0001. Thus we see
what a dramatic impact a seemingly small difference in
a validation procedure can have.

Finally we note the considerable variation in the per-
formances across the data sets. This yet again suggests
that a simple search for the ‘best’ predictor is likely to
be a pointless endeavour.

Fig. 4 shows the balance diff s of the two frameworks
on the 17 data sets. From Fig. 4 we observe that

1) For MGF framework, the balance diff values are al-
ways positive except for the KC1 data. This means
the evaluation performance of MGF framework is
always higher than the prediction performance.
This reveals they overestimated the performance
and the result they reported in [23] may be mis-
leading.

2) For the proposed framework, the balance diff values
are always negative except for the JM1 and PC5
data are zero, and MC1 and AR6 data are positive.
This reveals that our evaluation is a little conserva-
tive. The potential reason is that the training data
used for learner building in the evaluation is just
90% of the ‘historical’ data, while the final predictor
is built on the whole ‘historical’ data. That is, the
final predictor is built with more sufficiency data
than the learner built in the evaluation, hence has
a higher balance on average.

3) The largest absolute value of balance diff in MGF
framework is 25.7% on AR1 data, on which the
corresponding absolute value of balance diff in the
proposed framework is just 3.16%. Moreover, the
largest absolute value of balance diff in the proposed
framework is 9.23% on AR3 data, on which the
corresponding absolute value of balance diff in MGF
framework is over 22%. Also, the mean absolute
balance diff value of the proposed framework over
the 17 data sets is 2.72%, which is much smaller
than MGF’s 6.52%. Finally a Wilcoxon signed-rank
test of medians yields p = 0.0028 for a 1-tailed
hypothesis that the absolute balance diff of the new
framework is significantly less than that of the

MGF framework.
On the other hand, comparing the balance diff on

the datasets from the two different organizations, we
observe that for the MGF framework, the mean absolute
value of the balance diff on the NASA data is 3.13%,
which is much smaller than the 17.54% on the AR
data, the difference is 14.41%; while in our framework,
the mean absolute value of balance diff on the NASA
data is 1.89%, which is smaller than the 5.88% on the
AR data, the difference is only 3.99% which is much
smaller than that of the MGF framework. This reveals
that the predictions of Menzies et al. on the AR data are
much more biased than that on the NASA data and the
performance of the MGF framework is varying greatly
with data from different organizations.

To summarize, the above experiment results show that
the performance evaluation of MGF is too optimistic,
this means the real prediction performance is unlikely
to be so good as the evaluation performance. The pro-
posed framework is a little conservative. However, the
evaluation of the latter is closer to the real performance
than the former. On the other hand, the mean prediction
performance of the proposed framework is higher than
that of MGF. This indicates that the proposed framework
performed better in both evaluation and prediction.
Moreover, the performance of the MGF framework is
easily affected by data from different organizations.

4.4.2 Defect prediction with different learning schemes

In this next experiment, the twelve different learning
schemes were evaluated and then used to predict defect
prone-modules across the same 17 data sets. For each
data set, 10 simulations of the evaluation and prediction
process were performed. In each simulation, 90% of the
data set was taken as historical data, with the remaining
10% used as new or unseen data.

Tables 3, 4, 5 and 6 show the evaluation and prediction
performances for the 12 different learning schemes with
the 17 data sets in terms of balance and AUC. Both the
balance and AUC are the means across the 10 simulations
for each learning scheme on each data set. For each data
set, the best Evaluation and Prediction scores are shown
in bold.

From Tables 3 and 4 we observe that
1) All learning schemes that performed best in eval-

uation also obtained best balances in prediction
except for the MC2 and AR1 data set. However,
even for these two exceptions (NB+Log+FS and
NB+Log+BE) resulted in the second-best in predic-
tion. This suggests that the proposed framework
worked well.

2) No learning scheme dominates, i.e. always out-
performed the others for all the 17 data sets.
This means we should choose different learning
schemes for different data sets.

3) The mean evaluation balances of the learning
schemes NB+None+FS and NB+None+BE have
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TABLE 3
Evaluation balance comparison of the 12 different learning schemes

Data
Naı̈ve Bayes J48 OneR

Log None Log None Log None
FS BE FS BE FS BE FS BE FS BE FS BE

CM1 67.9 66.4 50.2 50.6 31.2 38.4 30.6 38.9 33.3 33.7 33.3 33.7
KC3 67.9 73.3 60.6 55.8 39.3 47.7 39.3 46.3 37.4 38.4 37.5 38.4
KC4 65.7 68.9 64.8 55.8 76.5 76.6 76.7 76.5 68.0 68.5 68.0 68.6

MW1 61.8 64.4 66.4 62.8 39.1 43.6 39.1 43.1 38.7 35.2 35.8 34.6
PC1 66.0 67.2 50.2 49.0 41.5 47.1 41.1 47.1 37.7 35.0 36.7 35.0
PC2 75.4 74.0 46.9 50.8 29.3 29.3 29.3 29.6 29.3 29.3 29.3 29.3
PC3 73.5 72.3 72.2 73.0 30.1 43.0 30.1 43.1 33.9 34.1 33.9 34.1
PC4 81.7 81.0 77.0 75.9 58.3 64.3 59.1 62.8 48.2 48.3 48.2 48.3
KC1 69.9 70.7 62.4 57.0 47.5 48.6 47.6 48.9 42.4 42.8 42.4 42.8
MC1 80.8 82.0 72.9 71.4 48.2 49.1 48.5 49.5 47.9 46.5 47.9 46.5
MC2 61.0 59.3 57.3 53.0 56.1 53.4 55.8 53.3 48.9 46.8 49.6 47.7
JM1 59.3 59.6 46.4 46.3 43.5 45.6 43.3 45.8 37.7 37.5 37.7 37.5
PC5 89.1 89.4 85.8 79.6 60.3 62.2 60.0 61.7 47.7 48.4 47.7 48.5
AR1 31.4 43.8 37.6 43.6 30.4 34.4 30.4 33.9 31.5 31.5 31.5 31.5
AR3 53.7 59.7 56.4 55.3 54.8 53.2 54.8 53.2 52.6 53.7 52.8 54.0
AR4 66.7 64.1 57.2 58.3 70.9 58.3 71.0 58.2 57.0 53.7 57.1 53.7
AR6 40.4 52.0 48.5 45.2 35.1 38.5 35.0 38.4 38.0 35.9 38.0 35.9

TABLE 4
Prediction balance comparison of the 12 different learning schemes

Data
Naı̈ve Bayes J48 OneR

Log None Log None Log None
FS BE FS BE FS BE FS BE FS BE FS BE

CM1 67.8 66.9 53.3 52.7 29.3 42.2 29.3 37.9 32.1 30.7 32.1 30.7
KC3 71.3 71.6 57.5 52.4 44.8 47.2 48.3 52.1 37.4 39.1 37.4 39.1
KC4 73.7 69.3 68.9 58.0 80.7 80.7 80.7 80.7 69.1 70.2 69.1 70.2

MW1 61.6 61.3 64.0 64.0 42.8 42.8 42.8 38.1 38.6 41.0 38.6 41.0
PC1 67.5 69.1 50.7 49.8 44.5 45.4 44.6 45.4 40.4 37.0 40.4 37.0
PC2 76.9 69.8 49.3 52.7 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
PC3 74.8 74.2 71.5 73.4 33.2 44.2 31.0 46.0 35.9 35.9 35.9 35.9
PC4 83.0 81.3 76.7 74.6 60.5 62.3 58.7 63.9 49.5 48.8 49.5 48.8
KC1 70.1 70.8 61.6 57.3 47.6 51.6 47.9 49.9 45.5 46.1 45.5 46.1
MC1 80.4 82.8 72.4 69.5 47.1 48.1 47.1 48.1 49.2 47.1 49.2 47.1
MC2 64.5 61.4 65.4 53.2 53.8 60.6 53.8 54.5 44.1 42.7 44.1 42.7
JM1 59.3 59.6 46.2 46.4 43.5 45.5 43.9 45.9 37.3 37.6 37.3 37.6
PC5 89.4 89.7 86.3 81.2 58.1 62.1 58.1 61.4 46.6 47.0 46.7 47.0
AR1 36.5 45.7 40.6 54.9 29.2 29.2 29.2 29.2 29.2 29.1 29.2 29.1
AR3 60.3 68.9 57.5 63.2 57.3 50.3 57.3 50.3 49.1 49.1 49.1 49.1
AR4 63.1 66.6 53.1 62.9 73.6 57.3 73.6 57.3 68.1 52.5 68.1 52.5
AR6 39.2 49.8 43.1 36.1 28.9 36.2 28.9 36.2 32.6 32.6 32.6 32.6

been improved by schemes NB+Log+FS and
NB+Log+BE by 9.73% and 16.78%, respectively.
The mean prediction balances of the learning
schemes NB+None+FS and NB+None+BE have
been improved by schemes NB+Log+FS and
NB+Log+BE by 11.85% and 15.59%, respectively.
It means that the Log data preprocessor indeed
improved the balances of the Naı̈ve Bayes learning
algorithm with both FS and BE. However, The
mean evaluation balances of the learning schemes
J48+None+FS and J48+None+BE have been im-
proved by schemes J48+Log+FS and J48+Log+BE
by 0% and 0.41%, respectively. The mean prediction
balances of the learning schemes J48+None+FS and
J48+None+BE have been improved by schemes
J48+Log+FS and J48+Log+BE by 0% and 1.03%,

respectively. It suggest that the Log data pre-
processor added little to the J48 learner. Fur-
thermore, the mean evaluation balance of the
learning scheme OneR+None+FS has been im-
proved by the scheme OneR+Log+FS by just 0.23%,
while the mean evaluation balance of the learn-
ing scheme OneR+None+BE has been reduced by
the scheme OneR+Log+BE by 0.24%. And the
mean prediction balances of the learning schemes
OneR+None+FS and OneR+None+BE are the same
as OneR+Log+FS and OneR+Log+BE, showing that
the Log data preprocessor added nothing to the
OneR learner.
This reveals that a data preprocessor can play
different roles with different learning algorithms.
Thus we can’t judge whether a data preprocessor
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improves performance or not separately.
4) For both the evaluation and prediction, the

balances of NB+Log+FS are comparable with
those of NB+Log+BE. On the other hand, the
mean evaluation and prediction balances of
NB+None+FS are higher than those of scheme
NB+None+BE, respectively. Moreover, for both the
evaluation and prediction, the mean balances of
schemes OneR+Log+FS and OneR+None+FS are
higher than those of schemes OneR+Log+BE and
OneR+None+BE, respectively. On the contrary,
for both the evaluation and prediction, the mean
balances of schemes J48+Log+FS and J48+None+FS
are lower than those of schemes J48+Log+BE and
J48+None+BE, respectively.
This reveals that different attribute selectors can
be suitable for different learning algorithms. Thus
we cannot separately determine which attribute
selectors performed better, as there is intrinsic re-
lationship between a learning algorithm and an
attribute selector.

5) For both the evaluation and prediction, the
balances of schemes NB+Log+FS, NB+Log+BE,
NB+None+FS and NB+None+BE are much
better than those of schemes J48+Log+FS,
J48+Log+BE, J48+None+FS and J48+None+BE,
respectively. And for both the evaluation
and prediction, the mean balances of schemes
J48+Log+FS, J48+Log+BE, J48+None+FS and
J48+None+BE are much better than that of schemes
OneR+Log+FS, OneR+Log+BE, OneR+None+FS
and OneR+None+BE, respectively.

From Tables 5 and 6 we observe that

1) The learning schemes that performed best in eval-
uation also obtained best AUCs in prediction on
10 of the 17 data sets. However, even for the 7
exceptions, the schemes which performed best in
prediction also obtained the second-best in evalu-
ation. This indicates that the proposed framework
worked well.

2) No learning scheme dominates, i.e. always out-
performed the others for all the 17 data sets.
This means we should choose different learning
schemes for different data sets.

3) The mean evaluation AUCs of the learning
schemes NB+None+FS and NB+None+BE have
been improved by schemes NB+Log+FS and
NB+Log+BE by 0.89% and 0.25%, respectively. The
mean prediction AUCs of the learning schemes
NB+None+FS and NB+None+BE have been im-
proved by schemes NB+Log+FS and NB+Log+BE
by 0.51% and 0.13%, respectively. It means that the
data preprocessor Log indeed improved the AUCs
of the Naı̈ve Bayes learning algorithm with both
FS and BE, although it is not so much. Moreover,
the mean evaluation AUCs of the learning schemes
J48+None+FS and J48+None+BE have been im-

proved by schemes J48+Log+FS and J48+Log+BE
by 0.43% and 0%, respectively. The mean predic-
tion AUC of the learning scheme J48+None+FS
has been reduced by the scheme J48+Log+FS by
0.71%, and the mean prediction AUC of the scheme
J48+None+BE have been improved by the scheme
J48+Log+BE by 1.33%. It means that the data pre-
processor Log contributed less to the J48 learner.
Also the mean evaluation AUC of the learning
scheme OneR+None+FS is the same with that of
the scheme OneR+Log+FS, while the mean evalua-
tion AUC of the learning scheme OneR+None+BE
has been reduced by the scheme OneR+Log+BE by
0.17%. And the mean prediction AUCs of the learn-
ing schemes OneR+None+FS and OneR+None+BE
are the same with that of OneR+Log+FS and
OneR+Log+BE respectively. That is to say, the data
preprocessor Log also contributed nothing to the
OneR learner.
This reveals that a data preprocessor can play
different roles with different learning algorithms.
Thus we cannot independently judge whether a
data preprocessor improves performance or not.

4) The mean evaluation AUCs of the learning
schemes NB+Log+FS and NB+None+FS are
lower than those of schemes NB+Log+BE and
NB+None+BE. The mean prediction AUC of
the scheme NB+Log+FS is higher than that of
NB+Log+BE. And the mean prediction AUCs of
NB+None+FS and NB+None+BE are the same.
However, for both the evaluation and prediction,
the mean AUCs of schemes J48+Log+FS and
J48+None+FS are higher than those of schemes
J48+Log+BE and J48+None+BE, respectively. For
both the evaluation and prediction, the mean AUCs
of schemes OneR+Log+FS and OneR+None+FS
are higher than those of schemes OneR+Log+BE
and OneR+None+BE, respectively.
This reveals that different attribute selectors can
be suitable to different learning algorithms. Thus
we cannot separately determine which attribute
selectors performed better, as there is intrinsic re-
lationship between a learning algorithm and an
attribute selector.

5) For both the evaluation and prediction, the
AUCs of schemes NB+Log+FS, NB+Log+BE,
NB+None+FS and NB+None+BE are much
better than those of schemes J48+Log+FS,
J48+Log+BE, J48+None+FS and J48+None+BE,
respectively. And for both the evaluation
and prediction, the mean AUCs of schemes
J48+Log+FS, J48+Log+BE, J48+None+FS and
J48+None+BE are much better than that of schemes
OneR+Log+FS, OneR+Log+BE, OneR+None+FS
and OneR+None+BE, respectively.

This indicates that Naı̈ve Bayes performs much better
than J48 and J48 is better than OneR in the given
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TABLE 5
Evaluation AUC comparison of the 12 different learning schemes

Data
Naı̈ve Bayes J48 OneR

Log None Log None Log None
FS BE FS BE FS BE FS BE FS BE FS BE

CM1 0.781 0.777 0.770 0.788 0.653 0.615 0.650 0.615 0.514 0.524 0.514 0.524
KC3 0.830 0.830 0.810 0.813 0.669 0.580 0.674 0.606 0.547 0.559 0.547 0.559
KC4 0.812 0.811 0.787 0.792 0.787 0.764 0.790 0.765 0.719 0.713 0.720 0.717

MW1 0.802 0.787 0.775 0.769 0.598 0.629 0.597 0.621 0.551 0.529 0.551 0.529
PC1 0.784 0.784 0.764 0.768 0.762 0.716 0.759 0.720 0.555 0.536 0.555 0.536
PC2 0.870 0.875 0.849 0.868 0.555 0.572 0.552 0.565 0.500 0.500 0.500 0.500
PC3 0.807 0.810 0.814 0.792 0.753 0.690 0.741 0.688 0.527 0.528 0.527 0.528
PC4 0.900 0.900 0.875 0.873 0.851 0.802 0.853 0.799 0.624 0.625 0.624 0.625
KC1 0.788 0.790 0.796 0.789 0.759 0.716 0.760 0.710 0.569 0.575 0.570 0.575
MC1 0.944 0.942 0.927 0.933 0.878 0.843 0.871 0.842 0.628 0.627 0.628 0.627
MC2 0.671 0.687 0.700 0.718 0.617 0.624 0.599 0.620 0.586 0.585 0.589 0.585
JM1 0.717 0.717 0.694 0.695 0.716 0.704 0.716 0.704 0.545 0.538 0.545 0.538
PC5 0.963 0.963 0.948 0.944 0.942 0.791 0.943 0.790 0.626 0.631 0.626 0.631
AR1 0.636 0.605 0.627 0.630 0.580 0.583 0.580 0.585 0.501 0.506 0.501 0.506
AR3 0.687 0.705 0.684 0.738 0.676 0.656 0.676 0.656 0.644 0.673 0.649 0.673
AR4 0.772 0.785 0.769 0.781 0.649 0.654 0.631 0.668 0.691 0.640 0.691 0.640
AR6 0.674 0.700 0.724 0.746 0.517 0.547 0.519 0.546 0.530 0.528 0.530 0.528

TABLE 6
Prediction AUC comparison of the 12 different learning schemes

Data
Naı̈ve Bayes J48 OneR

Log None Log None Log None
FS BE FS BE FS BE FS BE FS BE FS BE

CM1 0.781 0.767 0.765 0.786 0.638 0.630 0.671 0.599 0.509 0.500 0.509 0.500
KC3 0.827 0.835 0.813 0.811 0.693 0.536 0.716 0.600 0.545 0.559 0.545 0.559
KC4 0.804 0.815 0.800 0.789 0.813 0.807 0.809 0.807 0.719 0.711 0.719 0.711

MW1 0.766 0.771 0.774 0.768 0.586 0.616 0.584 0.561 0.552 0.569 0.552 0.569
PC1 0.782 0.797 0.765 0.786 0.782 0.679 0.789 0.695 0.574 0.551 0.574 0.551
PC2 0.887 0.880 0.863 0.876 0.543 0.664 0.543 0.664 0.500 0.500 0.500 0.500
PC3 0.814 0.814 0.809 0.791 0.698 0.702 0.719 0.679 0.542 0.542 0.542 0.542
PC4 0.905 0.903 0.871 0.870 0.847 0.818 0.848 0.774 0.633 0.628 0.633 0.628
KC1 0.793 0.794 0.800 0.790 0.734 0.695 0.734 0.691 0.572 0.584 0.572 0.584
MC1 0.943 0.941 0.933 0.936 0.911 0.805 0.906 0.799 0.640 0.626 0.640 0.626
MC2 0.685 0.687 0.693 0.714 0.576 0.711 0.579 0.705 0.550 0.556 0.550 0.556
JM1 0.716 0.717 0.694 0.694 0.718 0.708 0.712 0.712 0.544 0.537 0.544 0.537
PC5 0.962 0.965 0.950 0.945 0.937 0.828 0.937 0.815 0.617 0.621 0.618 0.621
AR1 0.782 0.653 0.686 0.658 0.587 0.618 0.587 0.623 0.491 0.491 0.491 0.491
AR3 0.672 0.697 0.720 0.750 0.682 0.632 0.682 0.632 0.623 0.623 0.623 0.623
AR4 0.757 0.781 0.794 0.799 0.622 0.680 0.622 0.630 0.759 0.635 0.759 0.635
AR6 0.647 0.646 0.715 0.676 0.494 0.492 0.510 0.482 0.503 0.503 0.503 0.503

context. However, from above analysis, we know that
its performance is still affected by the data preprocessor
and attribute selector.

For the purpose of more formally confirming whether
the impacts of the data preprocessor, attribute selector
and learning algorithm on the performances of both
evaluation and prediction are statistically significant or
not, we performed a Wilcoxon signed-rank test of medi-
ans. For all the tests, the null hypotheses are that there
is no difference with (α = 0.05). Tables 7, 8, 9, 10 and 11
show the results.

Table 7 shows the p-values of Wilcoxon signed-rank
test on data preprocessors Log vs. None over the 17
data sets. From the balance column we can observe that
for the learning algorithm Naı̈ve Bayes with attribute
selectors FS or BE, the data preprocessor Log is superior

TABLE 7
p-value for the data preprocessors Log vs. None

Ha balance AUC

NB+FS+Log > NB+FS+None 0.0015 0.0001
NB+BE+Log > NB+BE+None 0.0001 0.0001
J48+FS+Log > J48+FS+None 0.6855 0.0740
J48+BE+Log > J48+BE+None 0.2706 0.1722

OneR+FS+Log > OneR+FS+None 0.9375 0.9102
OneR+BE+Log > OneR+BE+None 0.8125 0.6224

to None significantly. This means that data preprocessor
Log is more suitable for Naı̈ve Bayes. However, for the
J48 and OneR learners with attribute selectors FS or BE,
the preprocessor Log doesn’t have significant difference
with None. That means the preprocessor Log contributes
little to J48 and OneR learners.
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As for the performance measure of AUC, the case is
similar. The preprocessor Log is more suitable for Naı̈ve
Bayes and doesn’t help J48 and OneR significantly. This
reveals that a data preprocessor can play different roles
with different learning algorithms. Thus we can’t judge
whether a data preprocessor improves performance or
not separately.

TABLE 8
p-value for the attribute selectors FS vs. BE

Ha balance AUC

NB+Log+FS > NB+Log+BE 0.9393 0.9626
NB+None+FS > NB+None+BE 0.0401 0.1633

J48+Log+FS > J48+Log+BE 0.9999 0.0001
J48+None+FS > J48+None+BE 0.9996 0.0001

OneR+Log+FS > OneR+Log+BE 0.5747 0.1610
OneR+None+FS > OneR+None+BE 0.5747 0.1531

Table 8 shows the p-values of Wilcoxon signed-rank
test on attribute selectors FS vs. BE over the 17 data
sets. Taking the balance column into account first, it can
be seen that for the learning algorithm Naı̈ve Bayes
with data preprocessors None, Forward Selection is
significantly superior to Backward Elimination; and for
Naı̈ve Bayes with data preprocessor Log, the difference
is not significant. This means Forward Selection is more
suitable for Naı̈ve Bayes with the data preprocessor
None. However, for the learning algorithm J48 with data
preprocessors None or Log, Forward Selection is signif-
icantly worse than Backward Elimination. This means
that Backward Elimination is more suitable for J48. Also,
for the OneR learners with preprocessors None or Log,
there is no significant difference between Forward Selec-
tion and Backward Elimination.

Taking the AUC column into account instead, the
case is different. For the learning algorithm Naı̈ve Bayes
with data preprocessors Log, Forward Selection is sig-
nificantly worse than Backward Elimination; and for
Naı̈ve Bayes with data preprocessor None, the difference
is not significant. This means Backward Elimination is
more suitable for Naı̈ve Bayes with data preprocessors
Log. However, for the learning algorithm J48 with data
preprocessors None or Log, Forward Selection is signif-
icantly superior to Backward Elimination. This means
that Backward Elimination is more suitable for J48. Also,
for the OneR learners with preprocessors None or Log,
there is no significant difference between Forward Selec-
tion and Backward Elimination.

This reveals that different attribute selectors can be
suitable to different learning algorithms. Thus we can-
not separately determine which attribute selectors per-
formed better, as there is intrinsic relationship between
a learning algorithm and an attribute selector.

Table 9 shows the p-values of Wilcoxon signed-rank
test on learning algorithms Naı̈ve Bayes vs. J48 over the
17 data sets. From it we observe that Naı̈ve Bayes is
superior to J48 significantly in all the cases. This means
Naı̈ve Bayes is much better than J48 on the given data

TABLE 9
p-value for the algorithms Naı̈ve Bayes vs. J48

Ha balance AUC

Log+FS+NB > Log+FS+J48 0.0001 0.0001
Log+BE+NB > Log+BE+J48 0.0001 0.0001

None+FS+NB > None+FS+J48 0.0001 0.0001
None+BE+NB > None+BE+J48 0.0001 0.0001

sets.

TABLE 10
p-value for the algorithms Naı̈ve Bayes vs. OneR

Ha balance AUC

Log+FS+NB > Log+FS+OneR 0.0001 0.0001
Log+BE+NB > Log+BE+OneR 0.0001 0.0001

None+FS+NB > None+FS+OneR 0.0001 0.0001
None+BE+NB > None+BE+OneR 0.0001 0.0001

Table 10 shows the p-values of Wilcoxon signed-rank
test on learning algorithms Naı̈ve Bayes vs. OneR over
the 17 data sets. From it we observe that Naı̈ve Bayes
is superior to OneR significantly in all the cases. This
means Naı̈ve Bayes is much better than OneR on the
given data sets.

TABLE 11
p-value for the algorithms J48 vs. OneR

Ha balance AUC

Log+FS+J48 > Log+FS+OneR 0.0053 0.0001
Log+BE+J48 > Log+BE+OneR 0.0001 0.0001

None+FS+J48 > None+FS+OneR 0.0053 0.0001
None+BE+J48 > None+BE+OneR 0.0001 0.0001

Table 11 shows the p-values of Wilcoxon signed-rank
test on learning algorithms J48 vs. OneR over the 17 data
sets. From it we observe that J48 is superior to OneR
significantly in all the cases. This means J48 is much
better than OneR on the given data sets.

To summarize, since no learning scheme dominates,
we should choose different learning schemes for differ-
ent data sets. Moreover, different elements of a learning
scheme play different roles. Each of data preprocessor,
learning algorithm, or attribute selector is just one el-
ement of the learning scheme, which should not be
evaluated separately. On the contrary, a learning scheme
should be evaluated as holistically.

5 CONCLUSION

In this paper, we have presented a novel benchmark
framework for software defect prediction. The frame-
work involves evaluation and prediction. In the evalua-
tion stage, different learning schemes are evaluated and
the best one is selected. Then in the prediction stage, the
best learning scheme is used to build a predictor with all
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historical data and the predictor is finally used to predict
defect on the new data.

We have compared the proposed framework with
MGF’s study [23], and pointed out the potential bias
in their baseline experiment. We have also performed a
baseline experiment to simulate the whole process of de-
fect prediction in both MGF’s study and our framework.
From our experimental results we observe that there is
a bigger difference between the evaluation performance
and the actual prediction performance in MGF’s study
than with our framework. This means that the results
that they report are over optimistic. Whilst this might
seem like some small technicality the impact is profound.
When we perform statistical significance testing we find
dramatically different findings and that are highly sta-
tistically significant but in opposite directions. The real
point is not which learning scheme does ‘better’ but how
should one set about answering this question. From our
experimental results we also observe that the predictions
of Menzies et al. on the AR data are much more biased
than that on the NASA data and the performance of
the MGF framework is varying greatly with data from
different resources. Thus, we contend our framework is
less biased and more capable of yielding results closer
to the ‘true’ answer. Moreover, our framework is more
stable.

We have also performed experiments to explore the
impacts of different elements of a learning scheme on the
evaluation and prediction. From these results we see that
a data preprocessor/attribute selector can play different
roles with different learning algorithms for different data
sets, and that no learning scheme dominates, i.e. always
outperforms the others for all data sets. This means we
should choose different learning schemes for different
data sets and consequently the evaluation and decision
process is important.
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