
Efficiently Mining Crosscutting Concerns
through Random Walks ∗

Charles Zhang and Hans-Arno Jacobsen
Department of Electrical and Computer Engineering,

Department of Computer Science.
University of Toronto

{czhang, jacobsen}@eecg.toronto.edu

Abstract
Inspired by our past manual aspect mining experiences, this paper
describes a random walk model to approximate how crosscutting
concerns can be discovered in the absence of domain knowledge
of the investigated application. Random walks are performed on
the coupling graphs extracted from the program sources. The ideas
underlying the popular page-rank algorithm are adapted and ex-
tended to generate ranks reflecting the degrees of “popularity” and
“significance” for each of the program elements on the coupling
graphs. Filtering techniques, exploiting both types of ranks, are ap-
plied to produce a final list of candidates representing crosscutting
concerns. The resulting aspect mining algorithm is evaluated on nu-
merous Java applications ranging from a small-scale drawing appli-
cation, to a medium-sized middleware application, and to a large-
scale enterprise application server. In seconds, the aspect mining
algorithm is able to produce results comparable to our prior man-
ual mining efforts. The mining algorithm also proves effective in
helping domain experts identify latent crosscutting concerns.

Categories and Subject DescriptorsD.2.8 [Software Engineer-
ing]: Complexity measures

General Terms Design, Measurement

Keywords Aspect Mining, Aspect Discovery, Crosscutting Con-
cern Discovery

1. Introduction
The goal of aspect mining, or more precisely, the mining of cross-
cutting concerns (CC) is to detect program elements in legacy
applications pertaining to non-modularized coding concerns (for
brevity, we hereon refer to these program elements as “crosscutting
elements”). Aspect mining is a well defined and actively researched
problem far from having a satisfactory solution. An a priori require-
ment for tools to find crosscutting concerns with high precision is
the ability to accurately characterize the crosscutting concern’s syn-
tactic traits. Such kind of characterization, we argue, is difficult,

∗ In the Sixth International Conference on Aspect-Oriented Software De-
velopment, Vancouver, British Columbia March 12-16, 2007

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© 2007 ACM 1-59593-615-7/07/03. . . $5.00

if not completely impossible, to obtain. This is because the term
“crosscutting” is really a definition about the system’s program se-
mantics, something difficult for tools to interpret at the syntactic
level.

CCs can be broadly classified, according to their syntactic char-
acteristics, intohomogeneousconcerns, used uniformly in the code
space such as in the case of logging, andheterogeneousconcerns,
used non-uniformly, consisting of several different pieces of code
scattered throughout the code space [4]. Unfortunately, neither ho-
mogeneity nor heterogeneity is sufficient to determine the cross-
cutting nature of a particular program element. For instance, log-
ging is a typical homogeneous concern. However, the use ofjava-
.lang.String, a fundamental data type, exhibits the same level
of syntactic homogeneity. Domain knowledge is therefore neces-
sary to make the final judgment. As for heterogeneous concerns,
one would have to sheerly rely on semantic justifications since
these concerns have no syntactic difference compared to non-CC
elements. We therefore believe that a more effective solution to as-
pect mining is going to be probabilistic in nature instead of giving
definitive answers.

Our solution is based on modeling the manual process of CC in-
vestigation aiming at separating crosscutting elements from those
representing thecore functionalityof the system (referred to ascore
elementsin the rest of the paper.) In our model, we assume that the
human aspect miner has zero domain knowledge about the seman-
tics of the program at hand. His analysis has to be purely based
on the syntactic relationships between program elements. For Java
sources, such relationships exist in both the type definitions of a
class, such as extensions, containments, and associations through
method signatures. They also exist in the implementations of types,
such as parameter passings, field accesses, and message dispatch-
ing.

Our random-walk process is carried out as follows. To locate
CCs, the human aspect miner examines the source files and ran-
domly selects a program elementc, may it be either class or
method, to start. He then proceeds with two rounds of random
walks. During the first round, the miner gathers all the program
elements, such as class types or methods, that are “known by” the
randomly selected modulec. Each of the elements, therefore, form
an outgoing relation withc. He then observes the fact that the likeli-
hood of visiting the next elemente in an outgoing relation depends
on how likely the current element is visited and the total number
of outgoing relations the current element has. Consequently, the
likelihood of visiting the elemente, or the “popularity” ofe, can be
measured recursively considering the popularity of all the incom-
ing elements and the likelihood of visitinge from these elements.
The miner then continues his walk by randomly picking an element
on the outgoing link and repeats the same observations.



The second round of random walks is in the opposite direction
compared to the first. Our miner collects the elements that “know
about” the randomly selected modulec. He observes the fact that
each “know-about” relation shares the contribution ofc to the
“significance” of the other element,e, in that relation. Similar to
the definition of “popularity”, the “significance” of an elemente
is a function of the significance of all the elements thate knows
about and how likely the walk takes place from these elements
to e randomly following the “know-about” relations. The miner
then continues his walk picking an element randomly following
an incoming relation and repeats the same measurement. There is
also a small chance for the miner not to follow any relations and
randomly restart his investigation with a new module. If a module
c has no relations to choose from in the direction of the walk, the
miner randomly restarts his walk with any other module. In such
cases,c has equal contributions to every other module in terms of
either its significance or its popularity depending on the direction
of the walk.

The aspect miner repeats his walks for an infinite amount of
time. For every element in the graph, the miner updates his mea-
surements of popularity and significance. He then makes the fol-
lowing judgments:

1. Popularity – If an element is popular, i.e., frequently visited
from different elements, the aspect miner likely considers the
element to be either a crosscutting element, such as an excep-
tions, or a fundamental building block of the system, such as
figure elements in theJhotdraw application1.

2. Transitive popularity– Even if an element isnot frequently
visited, it can still be popular if it is mostly visited from popular
ones. For example, if aloggerclass is exclusively used as part
of the crosscutting exception handling feature, it should still
be considered as a crosscutting type despite that it does not
syntactically crosscut other parts of the system.

3. Significance– If an element references a large number of dis-
tinct elements, the aspect miner is likely to consider it more to-
wards a significant element and less likely a CC element. For in-
stance, the typeorg.jhotdraw.figures.PolyLineFigure
is significant since it references 43 other class types.

4. Transitive significance– Even if an element doesnot refer-
ence a large number of elements, it can still be very significant
when it mostly uses other significant elements. For example, the
class typeorg.jhotdraw.samples.nothing.NothingApp
is a core element in theJhotdraw source distribution because
it is a sample application built on top of theJhotdraw frame-
work. This type uses 15 distinct class types ofJhotdraw. It
is still more significant, or less likely to crosscut, compared
to the class types in theJhotdraw framework itself, such as
the typeorg.jhotdraw.figures.PolyLineFigure, which
references 43 types, almost 3 times as many.

This process of popularity and significance determination closely
resembles a probabilistic random walk process. The walk is per-
formed on the coupling graph obtained from the program sources.
The nodes on the coupling graph can represent different program
elements such as components, packages, classes, methods, or col-
lections of program elements subject to custom definitions. The
graph records the afferent (incoming) relations and the efferent
(outgoing) relations for each of the program elements. The walks
are performed in two directions: Theefferentdirection from roots
to leaves, and theafferentdirection from leaves to roots. The four
reasoning rules listed above can be modeled as a Markov-process

1 Jhotdraw is a well-known graphical editing package for investigating
crosscutting concerns. URL:http://www.jhotdraw.org

for the propagation of the probability of an element being visited
in the graph. From this Markov model, we can calculate precisely
the “popularity” measure for each element as the cumulative prob-
ability of it being visited in the outgoing direction, and the “sig-
nificance” measure of the probability of the element being visited
following the efferent direction. These probability values form the
basis of the popularity ranks and the significance ranks. Based on
the ranks, we can generate potential CC candidates in two ways:

Homogeneous crosscutting– To look for homogeneous CC can-
didates, we check if the popularity rank of an element is higher
compared to its significance rank by a certain confidence thresh-
old. Therefore, an element, despite of its high popularity, is un-
likely to be selected as a CC candidate if it is also very complex
or aggregates key functionalities of the system by referencing other
significant elements.

Heterogeneous crosscutting– To look for heterogeneous CC
candidates, we first define acore setconsisting of elements hav-
ing much higher significance ranks compared to their popularity
ranks. Elements in the core set are unlikely to be CC elements. We
then list all elements known to this core set as the candidates of
heterogeneous crosscutting. Locating core elements prior to find-
ing heterogeneous crosscutting concerns is an effective manual ap-
proach we proposed and verified in [21]. In the manual approach,
both core and CC elements are identified through source code read-
ing without exploiting the automated ranking method developed in
this paper.

To evaluate the ranking-based approach, we have implemented
thePrism Aspect Miner (PAM), leveraging a Java code query en-
gine, thePrism Query Language (PQL) that we previously devel-
oped [22]. We have usedPAM extensively on various kinds of
Java projects ranging from small applications such asJhotdraw
and medium-sized middleware to large-scale systems such as the
WebSphere Application Server. Our quantifications show that, on
the medium-sized middleware application,PAM is capable of pro-
ducing hundreds of CC candidates which comprise 70% of what
we had manually identified during the course of a few months.

The afore-mentioned random walks resemble that of a random
web crawler model in the page-rank algorithm [10]. We modify and
extend the page-rank algorithm to the context of aspect mining and
make the following contributions in this paper:

1. We first describe the Markov model for computing popularity
and significance values of elements in the coupling graphs. This
model is inspired by the page-rank algorithm with important
modifications to reflect the nature of program sources.

2. We present the detailed design of thePAM aspect mining al-
gorithm including the construction of the coupling graph, the
natural and differentiated ranking methods, and different modes
for CC selection.

3. We provide a thorough evaluation of the properties ofPAM.
The evaluation includes the quantification of conventional in-
formation retrieval metrics as well as qualitative assessments
from domain experts. A runtime profile, characterizingPAM’s
performance is also presented.

The rest of the paper is organized as follows: Section 2 describes
the background information necessary for the understanding of the
rest of the paper; Section 3 describes our algorithm in detail; the
evaluation of the algorithm is described in Section 4 including
both quantitative and qualitative measures; Section 5 introduces the
current aspect mining approaches and compares our work to the
related work.



2. Background
2.1 Coupling graphs

In this section we define the efferent and the afferent coupling
graph, as well as the efferent and the afferent relations for program
elements.

We define an efferent coupling graphGε =< V, E > where
V is a set of program elements:V = {c1, c2, · · · , cn}. A directed
edgeepq denotes that the elementcp syntactically “knows about”
the elementcq. With respect to a specific program elementc, the
afferentrelation captures the elements that know aboutc, and the
efferentrelation captures the elements that are known toc. Suppose
we construct a coupling graph as illustrated in Figure 1(A) based on
the directions of method invocations among 7 modules. Figure 1(B)
and (C) represent the afferent and efferent relations for module 4,
respectively. Intuitively, in the efferent coupling graph, crosscutting
concerns have high afferent values, and core elements have high
efferent values. For the convenience of computation, we define the
afferent coupling graphGα as changing the direction of all the
edges in the efferent coupling graphGε.

Figure 1. Relations of modules

2.2 The Page-rank algorithm

In this section we review the popular page rank algorithm [10] and
provide an interpretation for its use in the context of doing random
walks on the coupling graph. A vertex receives higher probability
of representing a CC element if it is referenced by a large number
of vertices or by vertices with high probability of representing CC
elements. Conversely, a vertex is likely to represent a core element
if it references a large number of vertices or vertices having good
chances to also represent core elements. In the conventional page-
rank algorithm, the probability of visiting vertexvj is expressed
formally as:

P (vj) =

n∑
i6=j

P (i to j) ∗ P (vi)

whereP(i to j) is defined as:

P(i to j) =


λ ∗ 1/Outdegree(vi) + (1− λ) ∗ 1/|V |

(if Outdegree(vi) 6= 0)

1/|V | (if Outdegree(vi) = 0)

(1)

The factorλ is called thedamping factorfor representing a random
transition from nodei to nodej even ifeij /∈ E. Google uses 0.85
as the damping factor.

The equations above define a Markov process for calculating the
probability vector,~P (v), for all vertices, as the result of the matrix
multiplication:

~P ′(v) = M × ~P (v)

whereM is the transition matrix defined as:mji = P(i to j). It is
a well-known mathematical fact2 that the probability vector~P (v)
converges with the repeated application of multiplication. That is,
the vector~P (v) exists such that~P (v) = M × ~P (v). In this case,
~P (v) is the eigenvector ofM when the eigenvalue ofM is 1.

We use the notationsMe and Ma to denote the transition
matrices for the efferent and the afferent graphs, respectively. In
our algorithm, the converged probability vector of all elements are
computed for both the efferent coupling graph and the afferent
coupling graph. We denote these vectors as the efferent vector:~ε
and the afferent vector:~α. The vectors~ε and~α form the basis for
generating a total order, or ranks, for all elements reflecting their
degrees of popularity and significance.

For ease of presentation in later sections, we define a procedure:
RANDOM WALK to encode the operations described above as follows:

PROCEDURE: RANDOM WALK(M)
INPUT:M, the transition matrix of the relation graph,G
OUTPUT: The crosscutting rank,Rankcc, or the non-CC rank,
Rankcore.

2.3 Prism query language

Central toPAM is the Prism Query Language (PQL) [22], a declar-
ative query language we developed for Java systems. PQL lever-
ages the AspectJ type patterns with scope operators to simultane-
ously express searching criteria for Java elements in both their defi-
nition patterns and usage patterns. Detailed information and the ex-
ecutable ofPQL are publicly available3. In Table 1 we give a few
examples of the typicalPQL statements applied in the mining algo-
rithm. A set of APIs inPQL allows the embedding of these state-
ments within Java programs for the dynamic definition of queries.
PQL uses memory-based indices to process queries against large
code bases with good response time. Section 5 presents the detailed
quantifications of this property.

3. Algorithm
3.1 Overview

As a duality, the presence of crosscutting concerns systematically
increases the afferent complexity of the CC elements and the ef-
ferent complexity of the core elements. The ramifications of this
kind of systematic effect can be exploited by tools to track the foot-
prints of CCs. Conventional aspect mining analysis primarily fo-
cuses on capturing the afferent complexity of CCs through metrics
or properties such as ”fan-in degree” [9], clones [3], and ”degree
of scattering”‘[19]. We believe that the efferent complexity of core
modules are also important to study because they can lead us to
measure the “unlikelihood” of a module getting classified as a CC
element.

We propose an aspect mining algorithm that exploits both the
efferent and the afferent information of a system. We use the ran-
dom walk algorithm to compute both the popularity ranking and
the significance ranking for all nodes in the coupling graphs. Our
computation model is derived from the page-rank algorithm [10] to

2 For more mathematical insights, please refer toThe World’s Largest
Matrix Computation: http://www.mathworks.com/company/
newsletters/news notes/clevescorner/oct02 cleve.html
3 Prism Query Language.http:\\www.eecg.utoronto.ca\∼czhang\
pql



Retrieve component names match component:"∧.*$";
Compute a call map for component “X” callrootmap(match type:"*.*" within component:"X");
Retrieve types of which the methods arepick type:"*.*" outof totype(match call:"*.*.*(..)" within type:"Y");
invoked by type “Y”
Retrieve subtypes of type “Z” match type:"Z+".

Table 1. PQL Examples

reflect the nature of program source investigations. In the follow-
ing sections, we first present a detailed description of this deriva-
tion. We then explain how afferent and efferent coupling maps are
constructed, followed by the complete description of the algorithm.

3.2 The computation model

We observe some important differences in traversing program
sources compared to traversing hyperlinks in web documents. First,
the number of elements in a coupling graph of program sources can
be significantly smaller compared to billions for web pages. Sec-
ond, relations between program elements are usually well defined
compared to the uncontrolled structure of the links in web pages.
Lastly, good ranking decisions have to be made on all elements
in the source code, while the computation for ranking web pages
favors the ones referred by others. In reaction to these differences,
we have made a few modifications to the canonical page-rank al-
gorithm. These modifications are based on our observations and
practices. We believe a theoretical analysis of these differences is
also possible but defer this to future work.

Small restarting probability
The restarting probability is the probability of the random walker
choosing, with equal chances, any other disconnected nodes instead
of following an relation link. It is defined usingλ in Equation 1 as
1 − λ. λ has a significant impact on the ranking results of the
underlying graph. For instance, it has been shown [23] thatλ is
a useful tool for detecting link-spams in ranking web pages. For
program sources, we chooseλ = 0.95, a bigger value than the
one commonly used, to reflect the reasoning that it is unlikely for
a code reviewer to jump from one module to a random one that it
has no relation with in the type space. This counts for the kind of
out-of-band dependencies between program elements such as inter-
process communications, reflective invocations, or other accidental
dependencies that are difficult for the type-based analysis to detect.

Biased transitions
The probability assignment in Equation 1 is an unbiased probabil-
ity assignment where each node has equal chance of transitioning
to a connected node regardless of the number of actual links be-
tween two nodes. This idempotent setup is necessary for resisting
malicious manipulations of ranking computations in uncontrolled
settings such as the Web. As an aspect miner reading the source
code, more references to a particular program element will likely
bring that element under his attention, hence, increase its chance
of being visited. For instance, when examining thedrawFrame
method of the typeTextFigure in the Jhotdraw application in
Figure 2 (Left), an unbiased probability assignment states that the
miner is equally likely to visit 5 other class types (underscored in
the code snippet) due to either method calls or field accesses. Real-
istically, the miner would be more biased towards visiting the type
Graphics compared to other types as the most number of calls
(three) are made to it.

To better model the manual process, we introduce the biased
transition where we associate each edgeeij with a weightωij .
Currently, we define the weightωij as the number of method
invocations made by modulei to modulej. The biased transition

probability is then defined as:

P(i to j) =

{
ωij/

∑n

k 6=i
(ωik) if eij ∈ E

1/|V | if eij /∈ E
(2)

Treatments of roots
In Equation 1, the rank of root vertices is computed as:P (vroot) =
1/|V | ×

∑
P (vleaf ). When |V | is large, root vertices typically

receive lower ranks compared to other nodes in the coupling graph.
Consequently, on the efferent graph, the root vertices almost always
get classified as non-CC elements for receiving smaller efferent
rank compared to its afferent value, and the root vertices of the
afferent coupling graph are classified as CC elements for the same
reason.

It is acceptable for the root vertices of the afferent graph to re-
ceive low significance ranks since these vertices represent mod-
ules that are simplistic, i.e., not coupled with any other modules
in the system. The same conclusion cannot be drawn about the
root vertices of the efferent coupling graph. In Figure 2 (Right),
we show the Java code for the exceptionUnknownException in
a middleware implementation chosen for our experiments. The
UnknownException is not referenced by any type in the code
space, and all other types (underscored) coupled with it receive
very high popularity ranks. A human miner would consider this
type also as a popular type since its functionality is built purely on
popular concerns.

To generalize this observation, we think that the popularity
value of a root vertex should be decided by the popularity val-
ues of the elements it “knows about”. Therefore, we re-compute
the efferent probability for a root vertex,vr, by multiplying the
popularity measures, represented by the afferent vector~α, with the
r − th column vector of the efferent transition matrix,Me. The
updated~α is used in producing the final ranks.

Rectifying ranking inversions
Compared to web pages, the elements in program sources are much
smaller in number. This is problematic for the treatment of leaf ver-
tices in the original page-rank algorithm. In the original algorithm,
the leaf vertices are fixed with artificial transition links to all other
nodes in the graph. This can cause inversion of ranks for certain
graph structures when|V | is small andP (vleaf ) is large, i.e., many
leaf nodes also receiving high ranks. For illustration, in Figure 3,
we depicted a hypothetical call graph of 10 vertices. Vertex 8 and
9 behave “crosscuttingly”. But vertex 10 should receive the highest
ranking since it crosscuts vertex 8 and 9. Our ranking computation
confirms this observation. However, suppose that we start adding
new vertices to the call graph and connect every vertex in the origi-
nal graph with the new vertices to represent the use of certain cross-
cutting functionalities. When we add a third such vertex, vertex 13,
to the call graph, vertex 8 is ranked higher than vertex 10 due to the
propagation ofP (vleaf ) along the afore-mentioned artificial links.

Ranking inversion is important to rectify since, from our ob-
servations, many classic crosscutting concerns such as logging and
exception handling are often leaf vertices in the call graph and, at
the same time, used quite frequently in the program. Since these
vertices typically receive large ranks, it is important to lower the



Figure 2. A. Biased transition (Left) B. Classification of root (Right)

Figure 3. Ranking Inversion. (The red nodes represents new ver-
tices being added. Node 12 and 13 connect to other nodes in the
same way as Node 11)

possibility of skewing the true ranking result caused by the artificial
links established in the canonical page rank algorithm. To minimize
ranking inversion, both~ε and~α are computed in|V | iterations. Be-
fore each iteration starts, the top ranked vertex from the previous it-
eration is excluded for the ranking computation. The iterations also
stop if excluding the previous top-ranked vertex causes the entire
call graph to disconnect.

3.3 The construction of the coupling graph

The vertex in the coupling graph (Section 2) can can be mapped to
an arbitrary definition of the grouping of program instructions. In
our experiments, we map the vertices to collections of the modules
defined by the Java programming language including packages,
types, and methods. In the coupling graph,G, an edge between
verticesA andB represents the following basic relations between
the two corresponding program elements:

1. Type extension:A extendsB in the type hierarchy. For instance,
eitherA or a type contained inA is a subclass or an interface
implementation of eitherB or a type contained inB.

2. Message sending:A sends a message and the message signature
is declared inB. This is to account for polymorphic method in-
vocations. For instance, in theObserverdesign pattern, a call to
addObserver is not attributed to the specific type implement-
ing theSubject interface but to the actualSubject interface
itself.

3. Reference:A hasB as a field or method parameter or A ac-
cesses the static members ofB.

In addition to basic relations, we also support the qualified re-
lations. Qualification rules can be applied to filter out the basic
relations within the same type, the same package, or the same com-
ponent. The qualification levels can be set as an external parameter.

For instance, for software systems consisting of hundreds of com-
ponents, our graph needs to only capture inter-component relations,
e.g., messages sent to types belonging to a different component, if
we are to produce component-level rankings. Other kinds of rela-
tions are disqualified. Through these relations, we can construct the
”knows-about” graph, i.e., the afferent coupling graph, for different
levels of source groups such as components, packages, types, and
methods. The “known-by” graph, i.e., the efferent coupling graph,
can be obtained by changing the direction of all edges in the ef-
ferent graph. We use the procedureMAKE GRAPH to generate the
transition matrices for the coupling graphs just described.

PROCEDURE: MAKE GRAPH(C, flag)
INPUT: (1) C, the collection of concerns being mined; (2)flag , a
boolean value
OUTPUT: The efferent transition matrix,Mε, if flag = true; the
afferent transition matrix,Mα, if flag = false.

3.4 Selection of CC candidates

In our algorithm, the nature of a program element can be deter-
mined with a straightforward comparison between an element’s
popularity rank and its significance rank. The implementation of
this general classification rule requires us to address two technical-
ities: 1. what is considered more significant or popular? 2. what is
the threshold used in the comparison for making the classification?

The computation of ranks
CC candidates are selected based on both the efferent and the af-
ferent ranks computed from the coupling graphs. The ranks of pro-
gram elements can be either mapped directly to the natural order
of the numerical values in vectors~ε and~α or based on the differ-
ences between their natural orders in these two vectors. We refer to
the first type of ranks asnatural ranksand the latterdifferentiated
ranks. The natural ranksreflect the physical uses of elements in
the program sources, anddifferentiated ranksfavor large differ-
ences between the values in the vectors~ε and ~α. For instance, a
popular element can receive a high rank in the natural popularity
rank but not necessarily so in the differentiated popularity rank if
its significance rank is also high. The selection between these two
ranking methods is defined as an external parameter,TYPE, to our
previous definition of the procedureRANDOM WALK.

Confidence level
We use the termconfidence levell to denote the threshold for the
difference between afferent ranks and efferent ranks for the algo-
rithm to make a classification decision. It is defined as the ratio
between an element’s popularity rank and its significance rank.
Confidence levels can be used to control the number of candidates
output by the algorithm and is left as a parameter of the algorithm.



PROCEDURE: I SELECTION
INPUT: Rankε, Rankα

OUTPUT: A set, Shetero, of heterogeneous CC candidates, com-
puted in the following algorithm.
IMPLEMENTATION:

Let S = {c|Rankε(c)/Rankα(c) > l} { Generate the non-
crosscutting set as described previously.}
S = GETCHILDREN(S) { GETCHILDREN is a trivial procedure for
retrieving the subtypes of types inS}
Let S′ = ∅
while |S′| < n do

if ejk ∈ E and cj ∈ S and ci /∈ S then
S′ = S′ ∪ ck {Include concernck if it is not in S but
referenced by a concern inS}

end if
end while
ReturnS′

Figure 4. Indirect selection

Modes of selection
Based on the afferent ranks (Rankα) and the efferent ranks
(Rankε), CC candidates can be selected in three modes: the di-
rect mode, focusing on homogeneous crosscutting, the indirect
method, focusing on heterogeneous crosscutting, and the hybrid
mode, combining the results of the previous two modes. The modes
are defined as an input parameter of the algorithm.

In the direct selectionmode, we classify elementc as a CC
candidate ifRankα(c)/Rankε(c) > l. Since the direct selection
is decided based on an element’s popularity in the coupling graph,
it favors elements that crosscut the system homogeneously. This
action is encoded in the procedure:D SELECTION.

In the indirect selectionmode, we classify elementc as a CC
candidate in two steps: we first sort all elements on the ratiorc =
Rankε(c)/Rankα(c); we form the set of the non-CC elements by
sequentially selecting elementc starting from the highest value of
rc in the sorted set, ifrc > l; we then output a set of filtered ele-
ments known to the non-CC element set. A heuristic is applied as
we restrict the number of non-CC candidates to be at most half of
the total number of ranked elements. The design ofindirect selec-
tion follows the general insight from our previous experience [21]
that heterogeneous crosscutting concerns are relative to the core
ones. This action is encoded in the procedure:I SELECTION(n)
in Figure 4. In thehybrid selectionmode, we output a mixture of
candidates employing both kinds of selection methods. Both direct
and indirect modes are active for the hybrid selections, and we re-
turn an aggregation of results from these two modes. The procedure
HYBRID is defined as:
D SELECTION ∪ I SELECTION.

3.5 ThePrism aspect mining algorithm

Having introduced the fundamental elements of the mining algo-
rithm, we now present the complete procedure for finding CC can-
didates. To improve the quality of the ranking, we first introduce
the procedurePARTITION for separating modules that are unre-
lated in the type space so that elements in the same ranking are
truly relevant to each other. This procedure is implemented by a
simple recursive traversal of the original graph, we omit the details
here.

PROCEDURE: PARTITION(G, threshold)
INPUT: (1) G, the coupling graph constructed for all concerns in
the system; (2)threshold, the degree of knowledge between two
concerns for them to be considered unrelated. For instance, in our
current implementation, this value represents the number of class

PROCEDURE: MINING(source, confidencelevel(l), mode)
INPUT: (1) source, the source code of the target system; (2)l,
a float denoting the confidence threshold; (3)mode, one of three
modes: direct, indirect, and hybrid.
OUTPUT: A set, CC, of concerns selected as crosscutting candi-
dates for each partition.
IMPLEMENTATION:

G = INITGRAPH(source)
P = PARTITION(G, 1)
for eachPk ∈ P do

Rankα = RANDOM WALK(MAKE GRAPH(Pk, true), mode)
Rankε = RANDOM WALK(MAKE GRAPH(Pk, false),mode)
if mode = DIRECT or INDIRECT or HYBRID then

CC = DIRECT or INDIRECT or HYBRID
(Rankα, Rankε, l)

end if
CC = GETCHILDREN(CC)

end for

Figure 5. The Prism Mining Algorithm

types known across either components or packages, and it is set to
’1’.
OUTPUT: A set,P = {P1, P2, · · · , Pn}, of n subgraphs ofG.

For completeness, we introduce a trivial procedure:INIT-
GRAPH(source) that returnsG, the initial coupling graph for all
concerns of the system through thePQL query engine. The com-
plete algorithm is presented in Figure 5:

3.6 Example

We now use a simple example to illustrate the afore-introduced
mining process. Our example4 is an adapted version of the “tele-
com” illustration in the source distribution of theAspectJ com-
piler. “Billing” and “Timing” are two features originally written as
aspects. In the adapted version, we inject these two features in plain
Java so they become the target of the mining effort. At the same
time, we inject two additional features representing two different
kinds of crosscutting. For theLogging feature, we converted the
original “print” statements to calls to aLogger object. TheLogger
class uses theStorableOutput to write persistent logs. This is a
typical case of a homogeneous crosscutting concern. For thePer-
sistencefeature, we injected persistence capabilities into classes
Call, Connection, andCustomer by having them implement the
Storable interface. This is also a typical homogeneous crosscut-
ting concern in the type space.

Figure 6 (A) gives the UML diagram of our simple telecom
application. Figure 6 (B) shows the coupling graph after super-
imposing the type relationships onto the invocation map. With-
out much analysis, the CC candidates in our simple example
should ideally includeBilling, Timer, Storable, Logger, and
StorableOutput. StorableOutput is also a CC type because it
is part of the “logging” functionality in spite of being only used
exclusively byLogger. A contrary scenario is that the types such
asCustomer andConnection have high degree of fan-ins. How-
ever, they carry out the basic logic of the system, hence, cannot be
classified as CC candidates. We illustrate how these scenarios are
correctly treated in our ranking analysis.

Table 2 lists the actual probability values and the respective
rankings (the larger the rank value the higher the rank) for all the
types in both the afferent and the efferent coupling graph. We can
observe that the algorithm ranks the typeStorableOutput as the

4 This example is publicly available athttp://www.eecg.utoronto.ca/
∼czhang/mining/tele.zip



Figure 6. A: UML class diagram. B: Concern graph

highest crosscutting type even though it is only known by one other
type. The main types:Call, Connection, andCustomer, as ex-
pected, have high crosscutting rankings. However, they have even
higher afferent rankings which prevent them from being considered
as CC candidate. For illustration, we generate the candidate set us-
ing the differentiated ranks and the hybrid selection mode with a
confidence level of 1. That is, our classification decision is simply
based on which of the two ranks for a particular type has a larger
value. We use unbiased walks due to the small size of our example.

The D SELECT procedure picks the typesStorableOutput,
Logger, Timer, and Storable since they have higher affer-
ent ranks. TheI SELECT procedure first picks the typesCall,
Customer, Connection, LongDistance, andLocal as non-CC
candidates. The typeBilling is not selected due to our capac-
ity control heuristic mentioned previously. By following outgo-
ing edges from the non-CC candidates, theI SELECT procedure
generates a CC-candidate set consisting ofTimer, Billing, and
Logger. We then have our final result set consisting of the desired
CC candidates.

4. Implementation
4.1 The Prism aspect miner

ThePrism aspect mining algorithm is implemented in Java as the
Prism Aspect Miner (PAM) and publicly available5. PAM requires
the Prism query language package, –PQL, which provides both
the compiler extension toAspectJ for the extraction of coupling

5 The Prism Aspect Miner.http://www.eecg.utoronto.ca/∼czhang/
mining

Type Prob Rank Prob Rank
Afferent Efferent

Local 0.05227 1 0.0943 6
LongDistance 0.05227 2 0.0943 7

Billing 0.0550 3 0.0920 5
Timer 0.0550 4 0.0073 3
Call 0.09690 5 0.2727 10

Connection 0.1115 6 0.1537 8
Customer 0.1327 7 0.2657 9
Storable 0.1365 8 0.0050 2
Logger 0.1404 9 0.0098 4

StorableOutput 0.1673 10 0.0050 1

Table 2. Ranking scores

graphs and the underlying querying capabilities. A large number of
commandline options are available for setting various parameters
of the algorithms presented in Section 3. These options include
confidence levels, selection modes, qualification levels, types of
ranks, and others. The detailed listing of options and instructions
of how to use them are published online.

4.2 Domain knowledge injection

PAM also provides a few options that allow the users to influence
the default behaviors ofPAM by injecting the domain knowledge
about the investigated system. Domain knowledge injections are
in the forms of declarativePQL queries and can leverage the full
descriptive capabilities ofPQL. PAM supports the following ways
of knowledge injections.

1. Exclusion– For large applications, a human miner is often only
interested in investigating parts of the code space. For instance,
software packages such as the graphic editor,JHotdraw, often
include a large number of sample applications which, albeit not
useful in understanding the internals of theJHotdraw frame-
work itself, can skew the mining results significantly, as con-
firmed by our observations (Section 5.6). The optionignore,
taking aPQL query as its value, excludes non-interested pro-
gram elements for a particular run ofPAM. For example, the
querymatch type:"org..samples.*" filters out all sample
code shipped withJHotdraw version 6.

2. Specialization– Similar to exclusion, theselect option can
be used to narrow the scope of processed elements. This is
analogous to search engines combining ranks with a certain
type of context such as keywords or locality. For instance, the
PAM user can produce rankings only for subtypes ofFigure
by using thePQL query:match type:"*..Figure+".

3. Customization – The default concern types understood by
PAM are module types defined in the Java language such as
method, class, or package. However, concerns do not always
have to align with the boundaries of modules. Instead, they can
be mapped to patterns in the type space. For example, the con-
cept offigure elementcovers all subtypes of the typeFigure.
In theJHotdraw 6 distribution, these types span four different
Java packages. Concerns can also be mapped to composition
patterns. For example, the concept ofnetworking layercan be
defined as all types having fields of typeSocket. Concerns can
also be mapped to interaction patterns such as defining the con-
cept ofEvent generatorto be types invoking thefireEvent
method.PAM is capable of provisioning these three kinds of
user-defined conceptsby reading a user-defined concept file
through thegroup commandline option. The file contains key-
value pairs associating an unique concept name with aPQL



Rank Plain Customized

1 Figure CollectionsFactory
2 DrawingView JHotDraw-

RuntimeException
3 Storable persistence
4 TextHolder Figure
5 FigureEnumeration DrawingView
6 Undoable undo
7 UndoManager FigureEnumeration
8 DrawingEditor DrawingEditor
9 Handle Handle
10 JHotDraw- Locator

RuntimeException
11 StorableInput Tool
12 StorableOutput Command
13 Tool ConnectionFigure
14 CollectionsFactory HandleEnumeration
15 Command Drawing

Table 3. Effects of using customized concept definitions

query. This name, representing the user-defined set, is used by
PAM in the ranking evaluations on behalf of the actual data
types contained in the set. Let us use a simple example to il-
lustrate how customization could improve the mining results in
the case ofJHotdraw.

In Table 3, we compare the top-15 ranked elements computed
using plain Java types (2nd column) to using concept cus-
tomizations (3rd column). The reason for using the customized
concepts is based on the observation that the types representing
the features “persistence” and “undo” are repeatedly reported
in the plain ranks. ForPAM users wishing to treat “persis-
tence” or “undo” uniformly, this could introduce inconvenience
or “noise” when inspecting the top-ranked elements.

To produce more compact rankings, we define two customized
conceptspersistenceandundoasPQL query statements in a
property file as follows:6:

persistence = match type:"Stora*"
undo = match type:"org..Undoable" or type:
"org..UndoManager";

The featurespersistence andundo are evaluated directly by
PAM and ranked as highly crosscutting concepts (placed 3rd
and 6th in the 3rd column). In addition, the customized com-
putation gives much more diverse results for the top-ranked
elements as it brings more distinct elements under the attention
of thePAM user.

5. Evaluation
Aspect mining algorithms can be evaluated effectively if there exist
commonly recognized benchmarks for measuring the quality of the
mining results. Unfortunately, such benchmarks are not known to
us. We therefore leverage, for the bulk of the evaluation presented
in this paper, our extensive domain knowledge about CCs in mid-
dleware implementations [19, 21]. We use the typical information
retrieval metricsprecisionandrecall to measure the quality of our

6 The full options used for generating the rankings in this exam-
ple are: -xbinary all -qualify package -ignore "match
type:\"org..samples..*\";" -group jhotdraw.properties
-ranktype natural -confidence 1

algorithm against results obtained from manual mining efforts. We
also offer a qualitative validation of our mining results, obtained
with PAM onJHotdraw, against the mining results reported in the
literature. We then report on mining experiments using the AspectJ
compiler and IBM’s WebSphere application server (WAS) as min-
ing target. We also report on the runtime characteristics ofPAM.

5.1 Quantifying the mining of ORBacus

ORBacus is IONA’s CORBA7 product. It is distributed as Java
sources. We have thoroughly studied the crosscutting concerns in
the architecture ofORBacus [19] and refactored a large number of
them. The remnants of the removal of CCs fromORBacus consist
of 855 classes (i.e., the core functionality ofORBacus.) There are
about 960 class types belonging to crosscutting concerns in the full
ORBacus distribution, not counting newly created aspect modules.
We use these two groups of types as the reference data sets, and our
experiment studies the effect of the algorithm’s confidence levels,
selection modes, and types of ranks on the measures of precision
and recall. This experiments serve to calibrate the algorithm for
latter experiments, where no reference sets are available. However,
note that the precision and recall in our experiments can not be in-
terpreted as the absolute quality measures of the algorithm since
our manual classification is subjective and partial. There exist ad-
ditional previously unknown CCs. We use these measures to reflect
how close the automated mining is to our manual effort. It is a rel-
ative measure.

Figure 7 shows the relationship between confidence levels and
the precision and recall values for all three modes of CC selections
labeled as:D (Direct), I (Indirect), andH (Hybrid). The top
chart reports measures for thenatural ranking, and the bottom for
the differentiated ranking. The X-axis represents 20 incremental
steps of confidence levels: the first 10 points represent the micro-
intervals in increments of 0.1 between 1 and 2, and the last 10
points represent the interval in increments of 1 between 2 and
11. The highest precision of both ranking methods are between
50% to 60%, and the recall measures are between 20-30% in the
micro-interval for both methods. Thedirect selection produces
higher precision using the natural ranking but generates more false
positives using the differentiated ranking. The hybrid mode shows
the reconciliation effect for the direct and the indirect modes in the
precision measure. It has the highest recall rate due to combining
the results of both modes. The recall rates decline asl increases.
This effect is even more pronounced for the natural rankings.

We have noticed some problems with our initial applications
of PAM (see Figure 7.) The accuracies of the classification is not
sufficiently high and the recall rate is generally low. A closer in-
vestigation reveals that the classification errors are of the following
nature:

1. Support code: The ORBacus sources include a large amount
of IDL compiler-generated support code. This code is not part
of the functional implementations ofORBacus itself. These
types include “stubs”, “helpers”, and “holders” comprising 905
classes out of a total of 1815 classes inORBacus. The large
pieces of support code can seriously promote the CC rankings
of the core functionalities due to their widely scattered uses in
the support code. To better assess the ranking qualities ofPAM,
the support code should be excluded from the reference sets.

2. Interface types: It is common to define the object behavior as
interfaces for conforming classes to implement. Such kind of
interfaces, post-fixed by the string “Operations” inORBacus,
can be treated as a form of crosscutting concerns [15]. However,

7 Common Object Request Broker Architecture. URL:http://www.omg.
org/corba



Figure 7. Precision and recall (initial)

we have not exercised this treatment in our previous manual
identifications. For the improved evaluation ofPAM, we move
the classes of which the names end with “Operations” from the
non-CC reference set to the CC reference set.

The new reference data sets contain 480 CC classes and 332
non-CC classes. The precision and recall measures for the new
reference data is shown in Figure 8. For the more accurate reference
data, we observe significant improvements in both precision and
recall measures. The highest precision is 88.7% with 10% recall
using the direct selection mode whenl = 20. The highest recall is
54% with a precision of 72% using the hybrid mode atl = 1.9.
We believe this level of accuracy is capable of giving good results
compared to our manual method.

From these experiments, we draw two conclusions: 1. The hy-
brid mode is generally more stable asl varies, and it also has good
precision and the highest recall values; 2. the differentiated ranking
is less sensitive to the changes ofl compared to the natural ranking
in the micro interval. Therefore, the default mode ofPAM is set to
use the hybrid mode and the differentiated ranking.

5.2 The mining of JHotdraw

JHotdraw8, since its original adoption for the illustration of cross-
cutting concerns, has been an application for many aspect mining
studies [9, 16, 14, 20]. It is not yet known if there exists a com-
monly accepted list of CCs inJHotdraw. To compare and validate
our mining results onJHotdraw, we collect CCs discovered by pre-
vious efforts and examine whether we can produce the same results.

PAM produces 95 crosscutting candidates forJHotdraw ver-
sion 6 which contains 279 classes using a confidence value of 1.9
with the hybrid mode9. From the afore-mentioned prior research on
JHotdraw, the following types are considered as crosscutting con-

8 JHotdraw.http:\\www.jhotdraw.org
9 The detailedJHotdraw result is published at :http://www.eecg.
utoronto.ca/∼czhang/mining/j6.txt

Figure 8. Precision and recall (fixed)

cerns: figure selections (FigureSelection, FigureSelection-
Listener), persistence (Storable, StorableOutput, Storable-
Input), and undoUndoable, UndoManager. These classes are
ranked as 25th, 30th, 2nd, 5th, 6th, 35th,and 36, respectively. Thus,
PAM confirms existing results and locates other additional aspect
candidates.

5.3 The mining of the AspectJ compiler

The AspectJ compiler, largely implemented in Java, could inher-
ently incur a certain degree of crosscutting. We have usedPAM
to mine the source code of the AspectJ 5.0 compiler, consisting of
close to 1000 classes. We did not include a small portion of code
written in Java 5 and the entire AspectJ Eclipse plug-in (AJDT).
ThePAM parameters are the same as in the previous experiment,
and the mining result is publicly available10. To assess the quality of
the mining results, we consulted with the AspectJ developers. Our
first attempt processes every inter-class relation. This led to a large
number of top-ranked elements to be identified as noise. These ele-
ments are well-localized in two packages:bcel andweaver, which
occupy 30% of the total number of class types of the mined AspectJ
sources. In a second attempt, to look for “compiler-wide” cross-
cutting candidates, we only record relations if both classes are not
defined within the same package. We confirmed with the domain
expert that the quality of the ranks has improved. A few unexpected
but correct CC candidates were also identified. We list some exam-
ples of the resulting CC candidates specific to the AspectJ compiler
discovered byPAM:

Structural model: The structural model maintains the informa-
tion about the structure of both aspects and classes as well as the
relations between aspects and advised classes. The support for the
structural model are implemented in the AspectJ compiler in var-
ious places such as building component, UI support, and JavaDoc
functionality.

10AspectJ mining results. URL:http://www.eecg.utoronto.ca/
∼czhang/mining/aj.txt



Backwards compatibility of the weaver: AspectJ aims to support
backwards compatibility so that a newer version of AspectJ can
load aspects compiled with an older version. To enable this, the
version information is stored as standard Java class file attributes.
The support of these attributes is scattered across the weaving
component

Compile and weaving context: The compile-and-weave context
“ is responsible for tracking progress through the various phases
of compilation and weaving”. It is used to create a ”stack trace”
that “gives information about what the compiler was doing at the
time”11 when unanticipated events occur during the compilation
and the weaving process.

5.4 Large scale aspect mining

System software such as middleware is an active area where as-
pect orientation is being experimented with to make architectural
improvements. Colyer and Clement [4] have shown that aspect ori-
ented development can be carried out even on very large scale mid-
dleware systems such as IBM’sWebsphere Application Server.
For such large systems, aspect mining is especially beneficial for
gaining insights about crosscutting concerns that are hard to obtain
manually. We usePAM to mine the source code of theWebsphere
Application Server with two objectives: 1. To confirm the results
of the manual investigations in [4]; 2. to reveal new insights about
the crosscutting phenomena of the software components within the
Websphere Application Server. These mining results could serve
as key directives for the continued product-line engineering of the
Websphere Application Server through aspect oriented refactor-
ing.

Our mining target is theWebsphere Application Server 5.0
source code. The whole of theWebsphere Application Server
5.0 code base consists of around 15K classes, 3 millions lines
of code, and more than 125 independently built components. Not
all of the sources are compiled for a particular build instance.
In our instance, PQL has indexed over 8000 classes comprising
approximately 2.1 million lines of code. The version built with PQL
indices passes the relevant build verification tests. The partitioning
procedure divides 125 components of theWebsphere Application
Server bulid into 36 unrelated partitions. And one of the partitions
contains 89 connected components and, hence, is the focus of our
discussion.

The crosscutting functionalities in theWebsphere Application
Server reported by Colyer and Clement from their manual in-
vestigations include theWebsphere diagnostics and serviceability
components, theWebsphere performance monitoring infrastruc-
ture, and theWebSphere EJB containercomponent. These compo-
nents are also captured by our algorithm (ranked 2nd, 3rd, 12th, and
15th). TheWebsphere security public interfacecomponent (ranked
9th) andtransaction service public interfacecomponent (ranked
21th) contain interfaces for accessing the security and the trans-
action support, hence, represent typical crosscutting concerns for
enterprise systems. The functional implementations of these two
components (ranked 4th and 8th in non-CC ranking), which pro-
vides the logic for the interfaces, are not categorized as CC can-
didates. In addition, we selectively discuss some of the new CC
concerns for theWebsphere Application Server architecture:

1. Object Request Broker: the WebSphere IPC component im-
plements the CORBA interfaces which are heavily used for
inter-process communications within WebSphere internal com-
ponents [12]. This is an example of the object distribution con-
cern crosscutting with the operational logic of individual com-
ponents.

11See comments of the classCompilationAndWeavingContext of the
AspectJ 5.0 source. URL:http://www.eclipse.org/aspectj

2. National Language Support (NLS): the componentnls carries
the responsibility of translating genericWebsphere Applica-
tion Server messages to appropriate messages in the configured
encoding of the system. This is a pervasive concern spanning
over 10 components.

3. Java Messaging Server: the Websphere Java messaging compo-
nent, only directly referenced by a few other components, can
be very easily classified as having little crosscutting impact. Its
high ranking on the CC-rank is due to the subtypes of its types
defined in both the WebSphere component framework and ser-
viceability functionality. These two functionalities are widely
used in theWebsphere Application Server architecture, hence,
contribute significantly to the rank of the Java messaging com-
ponent via the transitivity property of the random walk algo-
rithm.

Misclassification’s:As expected, our top-20 ranking produces
false positives for pivotal building blocks of the system. For in-
stance, theWebsphere user interfacecomponent implements the
base functionalities of the browser-based administration console
for Websphere. This is misclassified as it is an essential compo-
nent for more specific console applications. These specific consoles
include distribution management, environment configuration, per-
formance tuning, and others. Same misclassification happens to the
Websphere component frameworkwhich provides runtime support
for about 26 other components. TheWebSphere shared utilitycom-
ponent, comprising many utility functions, is also a misclassifica-
tion. Utilities are often general and yet fundamental computations
of the application logic. They are often essential to the functional-
ity of the application and cannot always be classified as crosscutting
concerns.

Surprises:Caching and logging are typically referred to as as-
pects. One would expect to find them in an application server. In the
Websphere Application Server, the WebSphere cachingcompo-
nent is responsible for improving the response time ofServlets by
caching their results. However, this component is strongly classi-
fied as a non-crosscutting component (receiving the lowest ranking
in the CC ranks and 10th in the non-CC ranks). Upon examination
of the source code, this caching functionality is indeed well modu-
larized as an interceptor to intercept “calls to cacheable objects, for
example, through a servlet’sservice() method or a command’s
execute() method” [12]. TheWebsphere commons loggingcom-
ponent, which can easily be mistaken as a classic crosscutting con-
cern, is also reported as non-crosscutting by our algorithm. This
component is not responsible for the actual logging functionality
in the Websphere Application Server. It is an adaptation of the
Apache logging interface with the nativeWebsphere Application
Server logging functionality in the Websphere servicability com-
ponent.

5.5 Runtime characteristics

To quantify the efficiency ofPAM, we have chosen 7 Java appli-
cations of various types and sizes: graphical editing (i.e.,JHot-
draw), databases (Prevayler12, hSQL13, Derby14), middleware im-
plementations (ORBacus, Websphere Application Server, and
PADRES15) and the AspectJ compiler version 516.

We measure the size of the application, both in terms of number
of class types and lines of code (LOC), as well as the time forPAM
to generate the mining results. ThePQL indexer incurs negligible

12Prevayler. URL:http://www.prevayler.org
13HSQL Database Engine. URL:http://www.hsqldb.org/
14Apache Derby. URL:http://db.apache.org/derby/
15http://padres.msrg.toronto.edu/
16http://www.eclipse.org/aspectj



No. of Types Duration(sec) LOC
Prevayler 38 0.15 2396

Padres 203 1.04 17124
HSQL 310 1.77 48300

JHotdraw6 398 1.59 15541
Derby 1261 15.9 153000
aj1.5 1353 11.67 89634

ORBacus 1815 24.1 64704
WAS 8800 1085 2000000

Table 4. Mining performance

runtime overhead for the normal compilation process. All experi-
ments are performed on an IBM ThinkCentre workstation running
the Linux 2.6 kernel on a Pentium 4 CPU at 3.2G Hz with 1.5G of
physical memory. The maximum heap memory used byPAM is set
at 512M for all experiments except for the WebSphere application
server, where it is set to be 1.5G. Table 4 shows that for most mid-
sized applications,PAM is able to produce the results in less than
30 seconds. Scaling up to large scale applications such as theWeb-
sphere Application Server, PAM requires 18 minutes to complete
on our workstation (a conventional desktop PC17.)

5.6 Lessons learned

From our experiments and observations, we summarize some typ-
ical misclassifications to serve as guidelines for interpretingPAM-
computed results. We attribute most of these misclassifications to
the accidental crosscutting phenomenon. That is, core concerns
syntacticallycrosscut the code base for the following reasons:

1. Fundamental building blocks: Certain types are widely refer-
enced, serving as fundamental building blocks of the system.
These types themselves are simplistic in terms of collaborat-
ing with other types. Examples of such types includeFigure
in JHotdraw andBuffer in ORBacus. It is not difficult to fil-
ter out these false positives with the domain knowledge of the
application at hand.

2. Support code: The presence of significant pieces of support
code, including both added functionalities and samples of
demonstrations, can cause key components of the system to
syntactically scatter. Examples of such types include sample
applications included in theJHotdraw distribution and the
skeleton code inORBacus. Additional treatment is needed to
exclude these program elements from skewing the ranking re-
sults. Our experience is that this is easy to do since these types
of program elements usually follow a certain naming conven-
tion. The context-sensitive ranking capability ofPAM can be
leveraged to achieve this.

3. Utilities: It is common practice to group general computa-
tion logic into so-called ”utility” types such as in theorg.-
jhotdraw.util package ofJHotdraw. Utility types are dif-
ficult to even manually classify because their functionalities,
such as bit flipping or searching, are often fairly independent
of the application itself. These types typically receive high CC
rankings and can be easily identified by the miner.

In addition to misclassifications, the ranking results can be
skewed due to local crosscutting in large packages as in the case
of our AspectJ experiment. Qualifying the package level crosscut-
ting in our algorithm can effectively reduce local noise. However,

17On the same workstation, the build process for a Java application com-
prised of about 10,000 classes and 2.4 million lines of code takes about 1
hour.

the useful information might be lost and lower qualification levels
are still necessary if the natural modular boundaries are not fine-
grained, i.e., in applications containing super packages or so-called
“God” classes.

6. Related work
Research in the area of aspect mining and CC discovery can be
roughly classified into three categories: static analysis, runtime
analysis, and multi-modal analysis. The first two categories are
based on the program itself, and the last category relies on other
artifacts related to the program inspected. Due to the absence of
benchmarks, it is difficult to offer a quantitative comparison of
the quality of all approaches. Our comparison is thus from the
methodological perspective.

Early approaches for CC discovery aim at facilitating the de-
scription and the specification of CC to aid the human aspect
miner in his concern discovery-by-query task over large code bases.
AMT [5] and AMTex [18] enable the specification of crosscutting
concerns using both type and lexical patterns. JQuery [7], CME18,
and PQL [22] provide language-based approaches to improve the
expressiveness of this specification. FEAT [11] is based on record-
ing the code browsing and code manipulation process to track and
map concerns. All these approaches are more manual, query-based,
and assistive in nature, they do not fully automate the actual discov-
ery of crosscutting concerns. The strive for more automation in CC
discovery is the main objective driving the algorithm developed in
this paper.

Early automations of CC discovery are based on analyzing pro-
gram element frequencies and exploiting the syntactic homogeneity
of crosscutting concerns. Marin, Deursen, and Moonen [9] carried
out a fan-in analysis on various systems to account for the “popu-
larity” of crosscutting types. Bruntinket al. [3] presented the de-
tecting of scattered code clones for locating crosscutting concerns.
Our earlier work has introduced the notion of “degree of scatter-
ing” [19] to produce ranks of frequently used types and methods
in Java systems. Compared to this class of approaches, our random
walk based algorithm presented in this paper is able to reflect the
transitive nature of the “popularity” of program elements. Our si-
multaneous use of “popularity” and “significance” values provides
additional rationals for classifying mining targets. In addition, com-
pared to earlier approaches, we also address the discovery of het-
erogeneous crosscutting concerns.

Numerous approaches have been dedicated to the runtime anal-
ysis of programs. Tonellaet al. [14] demonstrated the effectiveness
of using formal concept analysis over execution traces of a pro-
gram. Breuet al.[1] also exploits execution traces in the DynAMiT
framework to discover crosscutting concerns. Execution traces are
effective in overcoming the semantic barrier often encountered in
syntactic analysis. Compared to these approaches, our approach is
syntax-based operating directly on the program sources.

Muli-model analysis means incorporating artifacts other than
the program source for the purpose of locating crosscutting con-
cerns. Shepherdet al.[13] leverage natural language processing ca-
pabilities together with the keywords and comments of the source
for clues about crosscutting concerns. Breu and Zimmermann [2]
have developed a scheme for exploiting CVS histories in tracking
crosscutting updates. Yu and Mylopoulos [17] have shown that cer-
tain structures in the goal model underlying the requirements of
an application can lead to the discovery of crosscutting concerns.
These approaches complement existing mining approaches.

Inoueet al. [6] presented an application of the page-rank algo-
rithm for ranking components in Java program sources. The ranks,

18Concern Manipulation Environment. URL:http://www.research.
ibm.com/cme/cme



interpreted as weights, are equivalent to our popularity ranks used
to identify “fundamental and standard” [6] types. Aside from solv-
ing a different problem, – the problem of CC discovery,– our algo-
rithm has many significant technical differences. For example, we
adjust the page-rank algorithm to reduce the randomness of ana-
lyzing program sources having controlled structures. In addition to
popularity ranks, we simultaneously use significance ranks to re-
flect the properties of components in another dimension.

7. Conclusion
We have proposed the use of random walks to approximate the pro-
cess of how a human aspect miner distinguishes between core el-
ements and crosscutting concerns without knowing about the ap-
plication semantics. We first construct both the efferent and the
afferent coupling graph for elements from the program sources.
The random walk on the efferent graph determines the degree of
“popularity” for each element, and the walk on the afferent graph
computes the degree of “significance”. Our computation model for
obtaining the numerical values of “popularity” and “significance”
derives from the page-rank algorithm with important modifications
and extensions to readily apply it to the context of program source
analysis. Based on these two kinds of numerical values, we gen-
erate the “popularity” ranks for all concerned program elements
as indicators of their “scatteredness”, and we generate the “signif-
icance” ranks to reflect the degree of their syntactic complexity.
These two rankings are used in concert to make the classification
decision.

This random-walk based aspect mining algorithm is imple-
mented in thePrism Aspect Miner (PAM) and publicly available
for evaluation.PAM automatically partitions the type space to in-
crease the mutual relevance of the ranked elements. Leveraging
the flexibility and the efficiency of thePrism Query Language,
users ofPAM can also produce context-sensitive ranks for selected
program elements only. We have evaluatedPAM extensively, start-
ing out and calibrating the algorithm, on a legacy middleware im-
plementation that we have previously manually refactored using
aspects. Our quantifications show the relationships between the
effectiveness ofPAM and different parameters in identifying the
final CC candidates. We also conducted comparative studies be-
tween our mining approaches and results from existing research
efforts. Moreover, in evaluating our results, we consulted with do-
main experts to provide qualitative assessments on applications that
aspect mining has never been attempted on. We show the capabil-
ity of PAM in mining very large-scale code bases such as IBM’s
WebSphere Application Server. The runtime study illustrates that
mining applications can be done very efficiently.

In our future work, we first seek more ways of allowingPAM
users to inject domain-specific knowledge into the mining process.
Domain specific knowledge can be used to influence all aspects of
the algorithm including the graph construction and the parameters
in the random walk model such as the damping factor and the
transition probability assignments. We also want to integratePAM
with our Eclipse19-based aspect-oriented refactoring framework
CRAFT20.

Acknowledgments
The authors wish to express deep appreciations to Andrew Clement,
Matt Chapman, and Matthew Webster of IBM UK for supporting
this research. Special thanks to Andrew Clement for the technical
help and insights and to Julie Waterhouse of IBM Canada for pro-
visioning the project and reviewing an early draft of this paper. We

19Eclipse. URL:http://www.eclipse.org
20CRAFT. URL:http://www.eecg.utoronto.ca/∼czhang/craft

also thank Subbarao Meduri of IBM US for the technical verifi-
cation of the paper. Thanks to Adrian Colyer who has played the
crucial role of initiating and provisioning the project. The authors
are also extremely grateful for many insightful comments from
Prem Devanbu that helped improve this manuscript significantly.

IBM, AIX, DB2, DB2 Universal Database, and WebSphere
are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.
Java is a trademark of Sun Microsystems, Inc. in the United States,
other countries, or both. Linux is a registered trademark of Linus
Torvalds in the United States, other countries, or both. UNIX is a
registered trademark of The Open Group in the United States and
other countries. Other company, product, and service names may
be trademarks or service marks of others.

This research has been supported in part by an NSERC grant
and in part by an IBM CAS fellowship for the first author. The
authors are very grateful for this support.

References
[1] Silvia Breu. Extending dynamic aspect mining with static informa-

tion. Fifth IEEE International Workshop on Source Code Analysis
and Manipulation, 0:57–65, 2005.

[2] Silvia Breu and Thomas Zimmermann. Mining aspects from history.
In Sebastian Uchitel and Steve Easterbrook, editors,21st IEEE/ACM
International Conference on Automated Software Engineering (ASE
2006). ACM Press, September 2006.

[3] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom
Tourw. On the use of clone detection for identifying crosscutting
concern code. IEEE Transactions on Software Engineering,
31(10):804–818, 2005.

[4] Adrian Colyer and Andrew Clement. Large-scale AOSD for
middleware. In3rd International Conference on Aspect-oriented
Software Development (AOSD’04), pages 56 – 65, Lancaster, UK,
2004.

[5] Jan Hannemann and Gregor Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. InWorkshop on Advanced
Separation of Concerns at the International Conference on Software
Engineering (ICSE), Toronto, Ontario, Canada, 2001. URL:
http://www.cs.ubc.ca/∼jan/amt/.

[6] Katsuro Inoue, Reishi Yokomori, Hikaru Fujiwara, Tetsuo Yamamoto,
Makoto Matsushita, and Shinji Kusumoto. Component rank: relative
significance rank for software component search. InICSE ’03:
Proceedings of the 25th International Conference on Software
Engineering, pages 14–24, Washington, DC, USA, 2003. IEEE
Computer Society.

[7] Doug Janzen and Kris De Volder. Navigating and querying
code without getting lost. InAOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development,
pages 178–187, New York, NY, USA, 2003. ACM Press.

[8] Uira Kulesza, Claudio Sant’Anna, Alessandro Garcia, Roberta
Coelho, Arndt von Staa, and Carlos Lucena. Quantifying the
effects of aspect-oriented programming: A maintenance study.
In 9th International Conference on Software Reuse (ICSM’06),
Philadelphia, USA, 2006.

[9] Marius Marin, Arie van Deursen, and Leon Moonen. Identifying
aspects using fan-in analysis. InWCRE ’04: Proceedings of the
11th Working Conference on Reverse Engineering (WCRE’04), pages
132–141, Washington, DC, USA, 2004. IEEE Computer Society.

[10] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, Stanford
University, Stanford, CA.

[11] Martin P. Robillard and Gail C. Murphy. Concern graphs: Finding
and describing concerns using structural program dependencies. In
International Conference on Software Engineering, Orlando, Florida,



USA, May 19-25, 2002 2002.

[12] Carla Sadtler. Websphere application server v5 architecture. URL:
http://www.redbooks.ibm.com/abstracts/redp3721.html?
Open.

[13] David Shepherd, Lori Pollock, and Tom Tourw&#233;. Using
language clues to discover crosscutting concerns. InMACS ’05:
Proceedings of the 2005 workshop on Modeling and analysis of
concerns in software, pages 1–6, New York, NY, USA, 2005. ACM
Press.

[14] Paolo Tonella and Mariano Ceccato. Aspect mining through
the formal concept analysis of execution traces. InWCRE ’04:
Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), pages 112–121, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] Paolo Tonella and Mariano Ceccato. Refactoring the aspectizable
interfaces: An empirical assessment.IEEE Transactions on Software
Engineering, 31(10):819–832, 2005.

[16] A. van Deursen, M. Marin, and L. Moonen. Ajhotdraw: A showcase
for refactoring to aspects. InWorkshop on Linking Aspects and
Evolution (LATE05). 4th International Conference on Aspect-
Oriented Programming, 2005.

[17] Yijun Yu, Julio Cesar Sampaio do Prado Leite, and John Mylopoulos.
From goals to aspects: Discovering aspects from requirements goal
models. InRE ’04: Proceedings of the Requirements Engineering
Conference, 12th IEEE International (RE’04), pages 38–47. IEEE
Computer Society, 2004.

[18] Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Extended
Aspect Mining Tool. CASCON 2003 Poster. URL:http://www.
eecg.utoronto.ca/∼czhang/amtex, October 2002.

[19] Charles Zhang and Hans-Arno Jacobsen. Refactoring Middleware
with Aspects. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1058–1073, November 2003.

[20] Charles Zhang and Hans-Arno Jacobsen. Prism is research in
aspect mining. InCompanion of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications. ACM Press, 2004.

[21] Charles Zhang and Hans-Arno Jacobsen. Resolving Feature
Convolution in Middleware Systems. InProceedings of the 19th ACM
SIGPLAN conference on Object-oriented Programming, Systems,
Languages, and Applications, September 2004.

[22] Charles Zhang and Hans-Arno Jacobsen. Prism Query Language:A
Crosscutting Concern Investigation Language. Software Demonstra-
tion, in 5th International Conference of Aspect Oriented Software
Development, March 2005.

[23] Hui Zhang, Ashish Goel, Ramesh Govindan, Kahn Mason, and
Benjamin Van Roy. Making Eigenvector-Based Reputation Systems
Robust to Collusion. InThird International Workshop on Algorithms
and Models for the Web-Graph, volume 3233 ofLecture Notes in
Computer Science, 2004.


