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Analyzing the Effect of Gain Time on Soft Task
Scheduling Policies in Real-Time Systems

Luis Búrdalo, Andrés Terrasa, Agustı́n Espinosa and Ana Garcı́a-Fornes

Abstract—In hard real-time systems, gain time is defined as the difference between the worst-case execution time of a hard task and its
actual processor consumption at run time. This paper presents the results of an empirical study about how the presence of a significant
amount of gain time in a hard real-time system questions the advantages of using the most representative scheduling algorithms or
policies for aperiodic or soft tasks in fixed-priority preemptive systems. The work presented here refines and complements many other
studies in this research area, in which such policies have been introduced and compared. This work has been performed by using the
authors’ testing framework for soft scheduling policies, which produces actual, synthetic, randomly-generated applications, executes
them in an instrumented real-time operating system, and finally processes this information to obtain several statistical outcomes. The
results show that, in general, the presence of a significant amount of gain time reduces the performance benefit of the scheduling
policies under study when compared to serving the soft tasks in background, which is considered the theoretical worst case. In some
cases, this performance benefit is so small that the use of a specific scheduling policy for soft tasks is questionable.

Index Terms—Real-Time systems, RT-Linux, scheduling policies.

✦

1 INTRODUCTION
In the field of hard real-time systems, the main goal is to
achieve that none of the so-called hard tasks in the system
ever fails to meet its temporal requirements, usually
defined in terms of deadlines. The current practice for
achieving this goal is to adopt a certain scheduling
paradigm in the development of the real-time system.
The paradigm imposes both a particular task model at
design time and a corresponding scheduling policy at
run time, and then provides the system designer with a
formal, off-line feasibility analysis by which it is possible
to prove whether all hard tasks will be able to meet
their deadlines before the system starts running. One
of the most sound and widespread paradigms is fixed-
priority preemptive scheduling. In this paradigm, the
task model requires each hard task to have some known
temporal attributes (release times, computation times,
deadlines, etc.) and a fixed priority. At run time, the
system always selects the ready task with the highest
priority for execution in a preemptive manner.

Hard real-time systems may also include some other
tasks without hard or strict deadlines, which are nor-
mally referred to as soft tasks. The scheduling paradigm
typically considers that the execution of a soft task
produces some utility value to the system if the task
can be completed before some point in time (related
to the task’s arrival time), after which this value pro-
gressively decreases; in contrast, the utility value of
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a hard task instantly drops to zero after reaching its
deadline. Soft tasks are by definition not included in
the off-line guarantee analysis, resulting in two main
consequences. First, the system is not a priori committed
to run them in a given time. And second, soft tasks
are less restricted by the task model; in particular, their
worst-case execution times or their exact arrival patterns
do not need to be determined at design time. Thus, the
general way to deal with soft tasks in hard real-time
systems is to try to run them as soon as possible when
they arrive to the system (thereby maximizing their
utility), without compromising the deadlines of hard
tasks. In systems following the fixed-priority preemptive
paradigm, the trivial solution for this is to assign soft
tasks a lower priority than any hard task, which relegates
them to running in the background. In order to improve
the poor quality of service obtained by this background
policy, many authors have proposed specific scheduling
algorithms or policies for soft tasks. These policies are
normally run-time algorithms that work in a compatible
way with the fixed-priority preemptive scheme by which
hard tasks are dispatched.

The off-line feasibility (or schedulability) analysis is
based on comparing the temporal requirements of each
hard task against its theoretical worst-case running sce-
nario. In order to do so, one of the input parameters of
the analysis is the worst-case execution time (WCET) of
each hard task. This is probably the most difficult issue
in the system design, since obtaining an accurate value of
a task’s WCET can be very complex, or even impossible,
depending on the characteristics of both the task’s code
and the hardware on which the code is to be executed.
An extensive study of different techniques and tools, as
well as existing trends and open issues in the field of
timing analysis in real-time systems can be found in [30].
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Since an underestimated value of a hard task’s WCET
can make an apparently safe system crash at run time,
the traditional approach has been to overestimate the
WCETs of hard tasks. On the other hand, even if an
accurate estimation of a task’s WCET can be assumed,
the worst-case behavior is actually very rare, since tasks
do not always take the exact worst-case path within their
code, and thus, it is often the case for tasks to consume
only a fraction of this maximum time, as pointed out
in [22]. Taking these two facts into account, it can be
concluded that the usual case for hard tasks is to con-
sume less processor time than their WCETs at run time,
and often very significantly less. In real-time systems,
the difference between a task’s WCET and its actual
processor consumption at run time is referred to as gain
time.

When related to WCET overestimation, gain time has
traditionally been considered as a design problem for
hard tasks, but also as a benefit for soft tasks. The
problem with WCET overestimation of hard tasks is that
it restricts the ability of the system to be schedulable
on a particular processor. This means that the system
may be wrongly rejected by the off-line analysis, thereby
forcing the system designer either to redesign the hard
task set or to run the system in a faster (and more
expensive) hardware than actually needed. However,
from the viewpoint of soft tasks, gain time is considered
an advantage, since it increases the expected amount
of processor time available to their execution. In fact,
some scheduling algorithms for soft tasks are designed
to make an effective use of gain time, in order to further
improve the running opportunities of soft tasks.

On the contrary, this paper presents the results of an
empirical study about how the presence of a signifi-
cant amount of gain time in a real-time system con-
siderably reduces the advantages of using some of the
most representative scheduling policies for soft tasks
in fixed-priority preemptive systems. This work refines
and complements many other previous studies in this
research area, in which these scheduling policies have
been introduced and compared, usually in a theoretical
way or by means of simulations. For this reason, the
study has considered some of the usual assumptions
in the previous work regarding the specification of the
experiment load and the evaluation of the scheduling
algorithms. In particular, the most important assump-
tions are the following: soft tasks are assumed to have
no deadlines, soft tasks are dispatched in FIFO order,
and the performance of the algorithms is measured by
means of the average response time of soft tasks.

The study presented here has been carried out by
using the authors’ testing framework for soft scheduling
policies. The framework first generates synthetic test
programs and then runs each program on an instru-
mented operating system (a modified version of Open
Real-Time Linux) that implements the scheduling poli-
cies under study. As a result of each execution, the frame-
work automatically produces a complete set of statistical

data about the performance of the scheduling policy. The
framework has been carefully designed in order to make
the results of the different scheduling policies compa-
rable, which basically involves two main aspects. First,
the policies themselves have been implemented in order
to run the applications on equal terms; in particular,
all policies have a compatible interface of system calls,
which allow application tasks to have exactly the same
code regardless of the policy running the application.
And second, the results of each execution are processed
in order to make all experiments comparable with each
other. Furthermore, the combination of experiments with
different factors (such as amount of hard tasks, hard task
utilization, soft task utilization, etc.) can be used to de-
termine to what extent each of these factors individually
affects the behavior of the different scheduling policies.

The main results of this paper show that, in general,
the fact that hard tasks consume less execution time
than their estimated WCETs (which in turn produces
the availability of gain time) negatively affects the per-
formance benefit of using any of the policies under study
with respect to scheduling soft tasks in background. This
is also true even for those policies that are specifically
designed to efficiently reclaim and use gain time. In
nearly all cases, this performance benefit is significantly
reduced as the amount of gain time increases in the
system. Under some conditions, this performance benefit
is so small, or even negative, that the use of a specific
scheduling policy for soft tasks becomes questionable.
The final purpose of this work is for it to be used as
a guide to determine which scheduling policies for soft
tasks are more appropriate depending on the running
conditions of the system and, specifically, the amount of
gain time that is available at run time.

This paper is structured as follows: First, Section 2
describes the scheduling policies that take part in this
work and some of the results obtained in previous
comparative studies. Section 3 introduces the framework
used to generate and run the experiments designed for
this study, which are described in Section 4. The results
of the experiments are presented in Section 5. Finally,
Section 6 discusses the conclusions of the study.

2 PREVIOUS WORK
2.1 Scheduling Policies
This study includes five of the most representative
scheduling policies for aperiodic or soft tasks in
fixed-priority preemptive real-time systems: Deferrable
Server [21] (DS), Sporadic Server [2] (SS), Extended Priority
Exchange [25] (EPE), Dynamic Approximate Slack Steal-
ing [1], [13] (DASS), and Dual Priorities [11], [13] (DP).
The execution of soft tasks in background, or Background
scheduling (BG), is also included in the study as a lower
bound in the performance of soft task scheduling.

Server-based scheduling policies are founded on the
idea of reserving some execution bandwidth for soft
tasks by means of adding a special task called “server”
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to the hard task set which in turn runs the soft tasks. The
priority and temporal parameters of the server (period
and computation time, also called budget or capacity) are
adjusted to off-line guarantee the entire task set. Both the
Deferrable Server and the Sporadic Server work in a very
similar way at run time. The main difference between
them is the run-time strategy they use to replenish their
budgets as soft tasks use them. This, in turn, limits
the particular off-line equations that can be applied to
analyze their schedulability. These conditions are more
pessimistic for DS than for SS.

The Extended Priority Exchange algorithm uses a
more complicated run-time strategy than the two pre-
vious algorithms. This strategy is based on the fact that
there may be some available capacity for running soft
tasks at each priority level as well as producing dynamic
priority exchanges among tasks in order to preserve and
use this capacity in an advantageous way for soft tasks.
The initial capacity available at each priority level is
computed off line in order to guarantee the schedula-
bility of hard tasks, but it can be increased at run time
if hard tasks consume less than their WCET.

Slack-based algorithms are based on delaying the exe-
cution of hard tasks in order to run soft tasks as soon as
possible without missing any hard deadline. The family
of slack scheduling algorithms includes some exact [20],
[12], [23], [24] and approximate [13] versions. Among
these algorithms, the Dynamic Approximate Slack Steal-
ing algorithm is the only one that is feasible in practice,
since the others present an excessive temporal or spatial
overhead. The DASS is based on a fine-grained run-
time supervision of the application tasks’ execution, in
order to keep track of the available slack time at each
(hard task’s) priority level. Then, soft tasks can safely
run before hard tasks while there is slack time available
in the system (that is, at all active hard priority levels)
without compromising any hard deadline.

The Dual Priorities algorithm is based on assigning
two priorities to each hard task, an upper band and a
lower band, while soft tasks run in a middle band. The
middle and lower bands have to be below the upper
band of any hard task. At run time, every hard task
starts its periodic activations in its lower band until a
promotion time is reached; then, it runs the rest of the
activation in its upper band. The system may assign any
priority ranges to the middle and lower bands, as long
as the hard task set is schedulable in the upper band.
Compared to DASS, the main benefit of the DP algorithm
is that it needs very little run-time supervision by the
system, since promotion times can be calculated off-line.

Because of the purpose of this study, it is important
to note that for both the DASS and DP algorithms, some
extensions have been developed in order to reclaim gain
time as it becomes available at run time, and then to use
this gain time to run soft tasks. These extensions, orig-
inally defined in [20], [13] (for slack-based algorithms)
and [13], [11] (for DP), are referred to as Propagated Gain
Time and Self Gain Time in this paper:

• Propagated Gain Time. Both DASS and DP admit an
extension by which the available gain time of any
hard task i (gi) is computed every time it ends an
activation (gi is calculated by subtracting the actual
computation time spent by the task in the activation
from the task’s WCET). By definition, this time may
be used to run soft tasks at task i’s or any lower
priority level (hence the name propagated).
The implementation of the propagated gain time
extension is different for each algorithm. In par-
ticular, DASS with this extension adds gi to the
slack time available at task i’s and lower priority
levels, thereby increasing the amount of time that
all (active) hard tasks may be safely delayed to run
soft tasks. On the other hand, DP with this extension
may delay for gi time units the promotion times
of hard tasks with priorities lower than i, thereby
increasing the opportunities for running soft tasks
(in their middle band).

• Self Gain Time. This extension is exclusive for the DP
algorithm. In DP, the promotion time of each hard
task is computed off-line in such a way that the task
can safely run (for its entire WCET) after reaching
this promotion time. Thus, if at the beginning of
an activation, the task is allowed to run for some
time in its lower band, then it is safe to delay its
promotion for that amount of time in the current
activation, potentially increasing the amount of time
soft tasks may be run in their middle-band priority.

2.2 Previous Comparative Studies
This section first presents the main conclusions of the
simulation studies made by other authors. It must be
noted that results from different simulation studies are
difficult to compare because not all of them consider
the same policies and they do not present comparable
testing strategies. However, it is commonly accepted that
the performance of the soft task scheduling policies is
measured by means of the average response time of soft
tasks, which are usually considered to have no deadlines
and are served in FIFO order. The final part of the section
concisely presents some general results derived from the
authors’ empirical testing framework, where all policies
have been tested on equal terms.

In general, server-based policies improve the results
obtained by scheduling soft tasks in background when
the system’s total utilization (including hard and soft
tasks) is not too high; however, as the utilization of
hard tasks grows, these policies tend to perform like
background scheduling. When comparing the DS and
SS policies, different studies do not come to the same
conclusions. Studies in [17], [21], [2], [27] conclude that
SS is better than DS because it allows for larger capacities
and gets higher utilization values, while [18] shows
larger response times for SS than for DS and. Finally,
[5] concludes that both policies have similar response
times and can get similar utilization values. Compared
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to servers, [25] shows that EPE obtains better results than
DS when the hard utilization is high.

Slack-based policies are taken into account in several
studies. When compared with the server-based and EPE
policies [18], [15], [13], [10], [11], the main conclusion
is that slack-based algorithms outperform all of them.
However, some of these studies also state that the main
drawback of slack-based algorithms is that most of
them are not practicable due to their high overhead.
In particular, the Dynamic Slack Stealing (DSS) policy is
commonly used as a reference to compare other policies
since it has been proved to be optimal (see [12]) in the
sense that it minimizes the response times of soft tasks
without missing any hard deadlines (however, Tia et al.
[29] showed some situations in which it is better not to
use spare capacity immediately and therefore, optimality
cannot be achieved). When compared with this optimal
or exact version, the DASS exhibits a close performance
with much less overhead. In particular, the study in [13]
shows that the DASS presents a performance that is
very near to DSS until the total load in the system
(hard+soft+overhead) gets to 90%, at which point the
system performance starts to degrade. The results in [15]
show that DASS is very near to DSS in all cases, although
in this study overhead is considered to be negligible.

The Dual Priorities scheduling policy (DP) is compared
to other scheduling policies in [10], [11], [15], [16]. The
results are very similar in all the studies: DP gets lower
response times than BG, EPE and server-based policies.
In fact, DP performs in a similar way to DASS when the
system utilization is less than 90%, although response
times are better for slack-stealing-based policies. [16] also
shows that DP performs better than BG if and only if soft
load is served in FIFO order.

Nearly all these studies do not consider the run-time
overhead produced by the specific scheduling policies.
Some studies do consider overhead, but in terms of
theoretical worst-case costs (in orders of magnitude). The
only studies in which run-time overhead is included
are [18], which uses the number of context switches
in the different simulations to approximate the total
overhead produced by the scheduling policies, and [13],
which includes extra CPU cycles in the simulations to
approximate the cost of calculating the available amount
of slack in the system. This study also includes the
implementation of BG, DSS and DP in a real operating
system and some overhead results, which show that DP
presents a moderately higher amount of overhead than
BG, while DSS incurs in such a great overhead penalty
that makes it unfeasible in practice in systems with large
numbers of hard tasks.

In contrast with these simulation studies, a general
empirical study running real applications in a Real Time
Operating System (RTOS) was presented in [8]. This
study presented three general results: (1) in general, all
the algorithms perform better than BG, even considering
overhead; (2) all policies improve their performances
compared to background as the hard task utilization

grows; and (3), these performance improvements of all
policies with respect to BG tend to disappear as the
number of hard tasks increases, and the same happens
as the soft task utilization grows. In addition, the study
also presented some conclusions for each policy. The two
server-based policies (DS and SS) perform much worse
than DASS or DP, in spite of producing less overhead. In
particular, differences in performance range from 15% in
systems with low utilization up to 40% or more in heavy
loaded systems. When compared, SS always performs
better than DS, although the difference between the two
policies is not very significant unless the system presents
a high hard task utilization. This confirms the theoretical
disadvantage of DS respect to SS about having a more
restrictive feasibility test, which leads to lower server
capacity and poorer performance. However, SS is more
difficult to implement and produces more overhead than
DS. Due to the overhead, the performance of the DASS
policy is worse than expected (in the simulation studies)
and most of the times it is outperformed by DP. This
confirms the conclusions of [11]. However, DASS gets
slightly better results than DP in heavy loaded systems,
especially when the total utilization gets close to 100%.

Some of these scheduling policies have been subject to
more recent studies in the field of multi-processor sys-
tems. For example, SS has been adapted and optimized
to be effectively used in multi-processor systems [14]; DS
has been shown to improve the performance of soft tasks
when compared to BG in asymmetric multi-processor
systems [9]; and both an optimal slack-based policy and
DP have been used in order to globally allocate soft tasks
among processors [3], [4], with DP outperforming the
slack policy in heavy loaded systems.

3 THE TESTING FRAMEWORK
This section summarizes the framework used to generate
and run the experiments described later in the paper. As
depicted in Figure 1, the framework is basically com-
posed by four modules: Load Generator, Code Genera-
tor, the instrumented RTOS, and Result Extractor. These
modules are now described, placing special emphasis on
the main design ideas that support the validity of the
results presented in the paper.

3.1 The Load Generator Module
The framework can be configured to generate tests for
many different scenarios, depending on the particular
goals of the experiment. This configuration is mainly
carried out in the input file of the Load Generator mod-
ule, or load specification file. According to the specification
included in this file, the module generates the experi-
ment’s set of task set specification (TSS) files as an output.
The load specification file contains the desired values
of the parameters that the load generator will combine
in order to create the task sets, as well as the number
of task sets to generate for each parameter combination
(or number of replicas). The main parameters that can
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Fig. 1. The Testing Framework

be specified in the file include the number of hard and
soft tasks, hard tasks utilization, soft tasks utilization, the
priority levels for soft tasks, maximum hyperperiod, and
hard tasks gain time. The Load Generator considers all
possible combinations of the input parameters and then,
for each combination, it generates as many task sets (TSS
files) as the number of specified replicas. As a result, each
TSS file contains a complete specification of a task set,
including the number of tasks, their types (hard or soft)
and their attributes (execution times, budgets, deadlines,
periods, priority bands, etc.).

Each task set is randomly generated within the limits
of its corresponding combination of input parameters,
with two main restrictions: the set of hard tasks has to
be schedulable, and the budgets assigned to soft tasks in
server-based policies are maximized (while keeping the
hard tasks schedulable). In particular, for each task set
to generate, the Load Generator follows this procedure:

1) The period of each task (Ti) is randomly generated,
according to three input parameters: the maximum
hyperperiod of the task set, the type of random
distribution to use (uniform or exponential) and the
range of this distribution (maximum and minimum
values). The set of generated periods is accepted if
the resulting hyperperiod is not greater than the
maximum specified value; otherwise, the process
starts again.

2) According to the input specification, tasks are sepa-
rated into two groups: hard and soft. Then, in each
group, the individual utilization of each task (Ui)
is computed by using the Uunifast algorithm [6]
(which has been shown to produce unbiased ran-
dom task sets) according to two input parameters
per group: the number of tasks and the utilization.

3) The WCET of each task (Ci) is calculated as follows:
Ci = TiUi. The input specification may establish a
minimum WCET; if so, the task set is discarded if
any Ci is below this value (and then the procedure
returns to the first step).

4) The deadline for each task (Di) is generated be-
tween Ci and Ti by using a uniform distribution.

5) The group of hard tasks is reordered by deadline
(lowest deadline first). Then, hard tasks are as-
signed priorities following a deadline monotonic
policy (the lower the deadline, the higher the pri-
ority). At run time, the actual priority of each task
will depend on the particular scheduling policy, but
in any case, the relative priority among hard tasks
is maintained according to this initial assignment.

6) For each hard task i, its computation time (Compi)
is calculated as a function of its WCET and the gain
time percentage (G) specified in the input file:

Compi =
(100−G) ∗ Ci

100
(1)

7) The budgets for the servers in DS and SS policies
are calculated as the maximum values that keep
the hard task set schedulable according to the
exact schedulability test (based on the maximum
response time of each task) required by each server
policy. If the hard task set is not schedulable for any
of the two tests, then the task set is discarded and
the procedure returns to the first step.

8) The initial parameters of some policies, such as the
promotion times of hard tasks in the dual-related
policies or the initial aperiodic time available for
hard tasks in the EPE algorithm, are calculated.

9) In order to better approach the usual run-time
behavior of tasks, and also to ensure that different
policies running the same task set will face exactly
the same load, the framework also generates a list
of activations per task. In the list, each activation
corresponds to a task’s release and it stores the run-
time parameters that may vary in different releases
of the same task. In particular, for each activation
k of any task i, two values are calculated:

a) The actual computation time of the release
(Compi[k]). This value is computed by using
a normal distribution with a mean equal to
Compi and a standard deviation value defined
by the input specification.

b) The time of the next release (Ti[k]). If task
i is periodic, this value is always set to Ti.
Otherwise, if task i is aperiodic, this value
is randomly generated by using a uniform
distribution with a range centered on Ti plus-
minus some percentage value defined by the
input specification.

After this procedure successfully generates a schedu-
lable task set, all its relevant temporal parameters are
written in the corresponding TSS file.
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3.2 The Code Generator Module
The Code Generator module is responsible for producing
actual test programs for each TSS file (task set), specif-
ically, one test program per soft scheduling policy to
be tested. Test programs are C source files that contain
synthetic code generated for a particular TSS file and
scheduling policy, in a compatible way to the system
interface of the instrumented RTOS on which tests will
be run, which is compatible with the POSIX standard.
Each task set requires the generation of a different test
program per policy because in POSIX, the selection of
the scheduling parameters (priority and policy) for each
task is performed by the application at run time.

The generation of test programs has been designed to
make the running conditions of each test program both
as close to its specification (TSS file) as possible, and as
similar for all policies as possible, so that results are not
biased for any particular policy. In order to achieve these
goals, the test programs in the group corresponding to
the same TSS file (one program per policy) are generated
to meet the following four requirements:

• In every program in the group, execution starts at a
critical instant, in which all tasks are simultaneously
released. This is the worst scenario for soft tasks,
but it is also a straightforward way of making all
scheduling policies start on equal terms.

• In every program in the group, any given task i is
generated in order to follow the sequence of release
times (Ti[k]) specified in the TSS file. This ensures
that the release pattern of each task will be the same
for every policy.

• In every program in the group, any given task i

is generated to have exactly the same code. This is
possible because the policies under study have been
designed with a compatible set of system calls, and
the selection of the particular policy is performed at
run time.
For each task i, the code is generated in order to
spend a computation time equal to Compi[k] for
each release k, as specified in the TSS file. In order
to do so, the framework incorporates a calibration
mechanism that adjusts the generation of code to the
expected computation time for a particular proces-
sor. In practice, this calibration mechanism achieves
actual execution times to be between 90% and 100%
of the expected ones.

• In every program in the group, hard tasks are
released for two consecutive hyperperiods, while
soft tasks are released during the first hyperperiod
only. This is further discussed below.

In the simulation studies mentioned in Section 2, each
experiment is carried out by executing the simulated
workload for a given period of time, which is normally
the hyperperiod of the experiment’s hard task set. The
rationale for this is that the release pattern of the hard
task set is repeated after each hyperperiod, and the same
is true for the running conditions for the soft workload.

However, with this approach, it may happen that some
soft workload is pending (i.e., awaiting execution) at the
end of the first hyperperiod, especially in heavily loaded
systems. Furthermore, for any given task set, the amount
of pending soft workload at the first hyperperiod may be
notably different from one scheduling policy to another.
The problem with this is that the measurements corre-
sponding to pending soft workload are not included in
the experiment’s results.

In the framework described in this paper, the solution
for this is to generate the soft workload during the
first hyperperiod, in such a way that the specified soft
utilization is met, but to run the experiment until there
is no pending soft workload, even if this happens after
reaching the first hyperperiod. In this way, for any
given task set, the running conditions are equal to all
the scheduling policies, and the results of each policy
always include the entire soft workload. However, if
any two policies running the same task set finish at
different times, the results related to the system overhead
are not directly comparable. Taking both restrictions into
account, the strategy adopted by the framework is to
generate the soft workload during the first hyperperiod
of each experiment, but to run the experiment until
exactly its second hyperperiod, in order to guarantee
that both the performance results are complete for all
policies and that their overhead results are comparable.
This solution is valid as long as the experiment design
(in particular, the sum of hard and soft utilizations,
plus the overhead) allows the entire soft workload to
be completed before the second hyperperiod.

3.3 The Instrumented RTOS
The instrumented Real-Time Operating System (RTOS)
on which test programs are run is a modified ver-
sion of Open Real-Time Linux [31], which is a small,
hard real-time executive running under Linux. From
the application’s perspective, Open RT-Linux provides
a programming interface that is compatible with the
POSIX standard [19]. Internally, this RTOS has a sim-
ple run-time behavior, in which the system deals with
each hardware interruption or system call invocation
by means of a specific function and then, in all cases,
the same scheduling function is called; this function is
the one that is responsible for selecting the new task
to be run, and then dispatching it, which provokes a
context switch if the selected task is different from the
running one. The original scheduling policy that Open
RT-Linux applies by default for all tasks is fixed-priority
preemptive (that is, POSIX’s ”SCHED FIFO”), which has
been used by the framework as the background (BG)
policy. Because of its simple design and small size, Open
RT-Linux produces very low and predictable overhead at
run time. According to the experiments presented in this
paper, carried out on a Pentium III 700Mhz computer, the
average cost of the aforementioned scheduling function
in RT-Linux ranges from 4.5μs (4 tasks) to 12μs (16 tasks),
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while the maximum cost ranges from 12μs (4 tasks) to
30μs (16 tasks).

The framework has extended Open RT-Linux in two
main ways: the implementation of the soft scheduling
policies under study and the incorporation of a tracing
mechanism by which it is possible to collect run-time
information as applications are executed.

The soft scheduling policies under study have been
implemented and provided as new scheduling choices
for soft tasks at run time. To do this, some of these
policies had to be redesigned in order to be provided
with POSIX-like interfaces (as presented in [7]). The
framework provides a specialized version of the system
scheduler module for each policy, in order to avoid the
implementation of any given policy to affect any other
(in terms of overhead).

The tracing mechanism introduced to the RTOS in-
cludes a general, POSIX-like tracing system, and a par-
ticular instrumentation of the RTOS code which traces
some system events (e.g., scheduling decisions, context
switches, costs of the scheduler’s functions, etc.) in order
to analyze the behavior of the different scheduling poli-
cies. As a result, the execution of any real-time program
on the instrumented RTOS can automatically produce
a log file containing the events traced inside the RTOS
during this execution. Both the instrumentation and the
collection of events have been designed to make the
overhead related to event tracing predictable and equiva-
lent for all policies (the average cost of tracing each event
is under 500 ns in a 700Mhz Pentium III processor, as
shown in [28]). In particular, the set of system events and
their instrumentation points are the same for all policies;
at run time, events are traced to memory during the
program execution, being dumped to the log file only
after the application tasks have stopped running.

3.4 The Result Extractor Module
The Result Extractor module is responsible for extract-
ing useful information from the logs generated by the
instrumented RTOS when it runs the test programs. In
particular, the extractor module works in three steps,
which are presented below.

In the first step, the extractor module opens the log
corresponding to an individual test program execution
and then traverses it in order to calculate some pre-
defined metrics. A metric is defined as a property of
a program’s execution. Examples of metrics are some
temporal properties of application tasks (response times,
execution times), costs of RTOS functions, number of
context switches, etc. The output of this step is a basic
statistical analysis of each metric (average, maximum,
minimum and standard deviation). Among all the met-
rics, some of them are selected to be the relevant results
of the tests (for example, the average response time of
soft tasks), and then they are further processed by the
module.

In the second step, the module combines the relevant
results of all the executions corresponding to the same

task set (one per policy). For each result, the module
calculates the result ratio for each policy as the division
of the policy’s result value and the corresponding value
obtained by the reference policy, which is BG. This
ratio thus represents the result difference of using this
scheduling policy with respect to using the BG policy
for this particular task set.

In the third step, after the relevant result ratios have
been computed for each task set, the extractor module
combines the result ratios corresponding to different task
sets in the experiment. The corresponding result ratios
of different task sets are directly comparable with each
other because ratios express the relative differences of
results between a particular policy and the BG policy
in each task set. For each relevant result, this third and
final step obtains two types of outcomes: a global value
per policy, expressing the average ratio for all the task
sets in the experiment, and the variation of the result
ratio for each policy as a function of the different input
parameters of the experiment (or factors), such as the soft
load utilization or the amount of gain time, for example.
This variation is computed by grouping the result ratios
of all tests according to the different values of this factor,
and then calculating the average ratio value for each
group. For example, if an experiment comprised task sets
with four different values of gain time (0%, 25%, 50% and
75%), one possible outcome would be the variation of the
soft task response time of each policy as a function of
gain time. For each policy, the module would obtain four
values: it would first classify all the experiment results
according to the gain time (in four groups), and then,
for each group, it would compute the average of the soft
task response time ratios obtained by this policy in all
the experiments in the group. These four values would
show the variation (or evolution) of the result ratio for
this policy as the factor varies.

4 EXPERIMENT DESIGN
The main goal of this study is to determine to what
extent the presence of gain time in real-time systems
with hard and soft tasks influences the performance of
the most representative scheduling algorithms for soft
tasks in fixed-priority preemptive real-time systems. In
order to better describe the experiments and their results,
the following two concepts related to the hard task set
in the system are defined: the nominal hard utilization,
or nominal hard load, is the theoretical utilization of the
hard task set, derived from the WCET values established
at the schedulability analysis. On the other hand, the real
hard utilization is the actual utilization of the hard task
set at run time, derived from the real execution time
consumed by hard tasks as the system runs. Thus, the
difference between the nominal and the real utilization
in a given task set will determine the amount of gain
time that will be available for soft tasks at run time.
Please note that according to the framework described
above, the experiment sets as input parameters both the
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TABLE 1
Parameter summary of the experiments

Experiment 1: 40% Nominal hard load
# hard tasks 4, 8, 12, 16

Policies
BG, DS, SS, EPE, DASS,

DASS-GAIN, DP, DP-GSELF,
DP-GPROP, DP-GBOTH

% Gain time Soft task utilization
0 10% to 60% (in steps of 10%)
25 10% to 70% (in steps of 10%)
50 10% to 80% (in steps of 10%)
75 10% to 90% (in steps of 10%)

# replicas 50

Experiment 2: 80% Nominal hard load
# hard tasks 4, 8, 12, 16

Policies
BG, DS, SS, EPE, DASS,

DASS-GAIN, DP, DP-GSELF,
DP-GPROP, DP-GBOTH

% Gain time Soft task utilization
0 10% to 20% (in steps of 10%)
25 10% to 40% (in steps of 10%)
50 10% to 60% (in steps of 10%)
75 10% to 80% (in steps of 10%)

# replicas 50

percentages of nominal hard load and gain time, and
then the real hard utilization is derived from them.

The main decision about the experiment design was
to determine the number of experiments to be carried
out and to select the amount of nominal and real hard
utilization in each experiment. Some preliminary experi-
ments with the same framework proved that differences
in performance between systems with and without gain
time increased along with the nominal hard utilization
for all the scheduling policies. For this reason, a total
of four experiments were designed, with each of them
fixing a particular value of nominal hard utilization:
20%, 40%, 60%, and 80%. Then, for each experiment,
the framework generated four series of task sets with
different percentage values of gain time (0%, 25%, 50%,
and 75%), thereby producing different values of real
hard utilization. Because of size limitations, this paper
presents the results of the two experiments that ren-
dered the most significant results: the ones with 40%
and 80% of nominal hard utilization1. The rest of this
section presents the parameter configuration of both
experiments in full detail (summarized in Table 1).

The next design decision was to determine which
input specification parameters to fix and which others to
vary in order to generate the task sets for each experi-
ment. In particular, periods of hard tasks were generated
by following a uniform distribution between 50 and
2000 milliseconds, with a maximum hyperperiod of 10

1. Gain time had little effect on the performances of the scheduling
algorithms in the experiment of 20% of nominal hard load, since the
absolute amount of gain time was very small in this case, while the
effect in the experiment of 60% of nominal hard load was intermediate
between the results of the two experiments presented in the paper.

seconds. This distribution, along with its limits, were
chosen in order to produce task sets that are comparable
with previous studies in the literature, such as [13], [18],
[15] (some of these studies concluded that choosing a
uniform or exponential distribution did not affect the
results). On the other hand, the rest of the parameters
in the specification were varied within certain limits
in each experiment, in order to be able to study the
influence of these parameters on the performances of the
policies under study. In particular, for each experiment,
the framework generated task sets for all the combina-
tions of the following varying parameters: number of
hard tasks (4, 8, 12, and 16), percentage of gain time
(0%, 25%, 50%, and 75%) and soft load utilization (from
10% up to achieving 100% of total real utilization, in
increments of 10%). For each possible combination of all
input parameters, 50 replicas (different task sets) were
generated. In the generation of each task set, the run-
time variability parameters of hard and soft tasks were
set in the following manner: the computation time of
each (hard or soft) task was varied in an interval of
[−10%, 10%] of the task’s real computation time (using
a normal distribution), while the arrival pattern of each
soft task was varied within an interval of [−10%, 10%] of
the task’s period (using a uniform distribution). Please
note that, as explained in Section 3, the framework
always generates task sets in such a way that (1) hard
task are schedulable according to the feasibility analysis,
and (2) the budgets for the server (soft) tasks in server-
based policies are as large as possible.

By combining all these different specification param-
eters, the total number of task sets for the experi-
ments of 40% and 80% of nominal hard utilization
were 6000 and 4000, respectively. For each task set,
the framework generated a series of test programs, one
for each of the ten scheduling policies considered in
this study: Background (BG), Deferrable Server (DS),
Sporadic Server (SS), Extended Priority Exchange (EPE),
Dynamic Approximate Slack Scheduling (DASS), DASS
with the propagated gain time extension (DASS-GAIN),
Dual Priorities (DP), DP with the propagated gain time
extension (DP-GPROP), DP with the self gain time ex-
tension (DP-GSELF) and DP with both types of gain time
extensions (DP-GBOTH). As a result, the total number of
test programs generated, compiled and executed for the
two experiments were 60000 and 40000, respectively. All
programs were run on a Pentium III 700Mhz computer,
with 384Mb of RAM.

In every task set, the soft load was modeled (and gen-
erated) as a single aperiodic task configured to have the
best running opportunities according to each scheduling
policy under study: in BG, the soft task is always sched-
uled at the lowest priority. In SS and DS, the soft task is
scheduled at the highest priority as long as there is some
budget left, and it is otherwise relegated to running in
the background. In EPE, the DASS-related and the DP-
related policies, the soft task is always scheduled in a
middle-band priority, while hard tasks start their activa-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



9

tions in their lower-band priorities (where the soft task
can preempt them) and then they may change to their
upper-band priorities if certain running conditions are
reached (in particular, the available capacity is exhausted
in EPE, or the available slack is exhausted in DASS, or
the tasks’ promotion times are reached in DP). According
to some studies, this configuration may not be optimal
in the case of DS and SS (in [5] it is shown that, by
assigning the soft task the highest priority, the budget
adjustment in server-based policies may not be optimal
if task deadlines are lower than their periods). However,
the selection of the optimal server parameters (budget,
period and priority) is still an open research issue. For
this reason, the experiments were set to schedule servers
at the maximum priority, which is the most common
approach in the literature.

In order to be able to compare the results with pre-
vious studies, the performances of the scheduling po-
lices were measured by means of the average response
time of soft tasks. In addition, the experiments also
measured the overhead of the scheduling algorithms,
in order to globally quantify the extra cost incurred by
each algorithm and to relate it to its performance, if
possible. In particular, the experiments measured two
overhead indicators in each test: the number of context
switches and the total scheduling time spent by the
RTOS (the cumulated cost of the scheduling function
inside the RTOS for the duration of each test). In this
context, it has to be noted that the potential effect of
the overhead on the performance of a scheduling policy
depends on the proportion between the overhead values
and the computation times of the application tasks (the
effect increases as task computation times get closer
to the scheduling costs). Taking this into account, the
experiments were configured in order to generate task
sets with task computation times in a reasonable range
when compared to the average scheduling overhead
of the reference policy (BG) measured on the same
testing hardware. In particular, the experiments were
configured for this base overhead to be around 10% of the
total execution time, which is considered to be enough
to influence the policy performance, but still within a
reasonable range when compared to the overhead in real
systems.

5 RESULTS
The experiments considered three relevant results for each
scheduling policy in each test: the soft task response
time, the number of context switches, and the total
scheduling cost, with the first one measuring the perfor-
mance and the last two measuring the overhead of the
scheduling algorithms. As explained in Section 3.4, these
relevant results are expressed in relative terms (ratio
values) with respect to the respective results obtained
by BG, which is the reference policy. Thus, a ratio value
of 1.0 expresses a result that is equal to the one obtained
by BG, a ratio value of 0.9 expresses a result that is 10%
lower than the result obtained by BG, and so on.

The following subsections analyze the results obtained
in the two experiments: 40% and 80% of nominal hard
utilization, named Experiment 1 and Experiment 2.

5.1 Experiment 1: 40% of Nominal Hard Utilization
The global performance results of the experiment for
each scheduling policy are presented in Table 2. This
table shows the performance difference between each
policy and the BG policy by means of a set of percentile
values of the soft task response time ratios for all the
6000 task sets in the experiment (hence including all
combinations of the varying parameters in the experi-
ment: number of hard tasks, gain time, and soft load).

TABLE 2
Soft task response time ratios in Experiment 1

(percentile values)

Percentiles
Policy 5% 25% 50% 75% 95%
DS 0,8850 1,0007 1,0026 1,0058 1,0135
SS 0,8590 1,0011 1,0030 1,0061 1,0126
EPE 0,6721 0,9035 0,9692 0,9957 1,0073
DASS 0,5149 0,7568 0,8876 0,9594 0,9967
DASS-GAIN 0,5129 0,7403 0,8661 0,9384 0,9867
DP 0,5575 0,7837 0,8947 0,9551 0,9920
DP-GSELF 0,5416 0,7822 0,8928 0,9545 0,9919
DP-GPROP 0,5570 0,7845 0,8931 0,9552 0,9924
DP-GBOTH 0,5429 0,7822 0,8924 0,9540 0,9919

According to the values in the table, both DS and
SS get better results than BG in a very low number
of task sets only (the 5th percentile values are 0.88 in
DS and 0.85 in SS, meaning that in 5% of the task
sets, these algorithms get 12% and 15% of improvement
in the soft task response time over BG). However, all
values from the 25th percentile on are higher than 1.0
for both policies, which means that in at least 75% of
the cases, they present slightly negative benefits when
compared to BG, due to their extra overhead. DASS-
related and DP-related policies perform better than BG
in all cases, but only significantly better in a reduced
number of task sets (their improvement over BG is
around 25% in their 25th percentile, but this figure is
reduced to 5% of improvement in their 75th percentile).
In addition, the ratio values show almost no difference
among these six policies, which implies that the gain
time reclaiming extensions of DASS or DP do not im-
prove the results obtained by these two algorithms in the
experiment. Finally, the ratios of EPE show intermediate
results between DS/SS and DASS/DP-related policies.
The improvement of EPE over BG is 10% or higher in
25% of cases, it is negligible in at least 50% of the cases,
and it is negative in at least 5% of cases, again due to its
extra overhead.

The performance difference between each specific pol-
icy and BG can be further analyzed by considering the
effect of gain time. In Figure 2, the average ratio of the
soft task response time of each policy is represented as a
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Fig. 2. Soft task response time ratios as a function of gain
time in Experiment 1

function of the available gain time. For each policy, the
graph presents the average of the ratio values obtained
by the policy in all the task sets with a particular amount
of gain time. As can be observed, the ratio values for all
policies become closer to 1 as the amount of gain time
grows, meaning that the performance difference between
each policy and BG is reduced as the amount of available
gain time increases. This effect is more acute in DASS-
related and DP-related policies, since they obtain much
better results (between 30% to 35% of benefit) in systems
with no gain time than in systems with 75% of gain time
(where the benefit is only around 5%).

Finally, Figure 3 shows the combined effect of gain
time with the increase of the amount of soft load in the
system. This is done by showing four graphs, each one
depicting the average values of the soft task response
time ratios as a function of the amount of soft load, in
task sets with a specific amount of gain time (starting
from the top left, graphs correspond to tests where
hard tasks had 0%, 25%, 50%, and 75% of gain time,
respectively). Please note that the number of points for
every policy in each graph is different because task
sets were produced in such a way that the soft task
utilization was generated in increments of 10% until a
100% of total (hard plus soft) real utilization was reached.
There are three relevant aspects to be pointed out about
these graphs. First, in the four graphs, the results classify
policies in three groups (the two server-based policies,
EPE, and the DASS-related and DP-related policies) with
little difference among the policies in each group. This
is consistent with the conclusions derived from both
Table 2 and Figure 2. Second, considering each graph
separately, the performance benefits of all policies with
respect to BG are reduced as the amount of soft load
increases in the system (this confirms the conclusions
of [8], independently of the amount of gain time avail-
able in the system). And third, considering the four
graphs together, the performance benefits of all policies
with respect to BG are reduced, some of them severely,
as the amount of gain time increases in the system. In

the last graph (75% of gain time), there is practically no
benefit in using any of the policies, especially for a high
amount of soft load.

TABLE 3
Average overhead ratios (and std. dev.) in Experiment 1

(values in % of increment with respect to BG)

Policy # C. Switch Total sched. Cost
DS +0,90 (3,24) +14,36 (13,25)
SS +1,42 (4,42) +18,58 (15,23)
EPE +8,35 (6,04) +53,36 (25,76)
DASS -0,79 (3,06) +43,15 (23,42)
DASS-GAIN +2,74 (4,99) +43,99 (24,35)
DP +2,37 (3,95) +24,82 (17,04)
DP-GSELF +2,34 (3,92) +22,06 (16,45)
DP-GPROP +2,38 (3,97) +25,96 (17,41)
DP-GBOTH +2,34 (3,94) +24,98 (17,19)

Regarding the overhead results of the experiment,
Table 3 displays the global values, in terms of the in-
crement percentage with respect to BG of two average
ratios: the total number of context switches (second
column) and the total scheduling cost of each execution
(third column). For each increment value, the number in
parenthesis expresses its standard deviation. The context
switch values in the table show that, except for the EPE
algorithm (with 8% of increment), there is a small general
penalty in the number of context switches for using
specific policies for soft tasks rather than using BG (less
than 3% in all these policies). The DASS algorithm even
presents a negative value, meaning that this policy actu-
ally produces fewer context switches (on average) than
BG. On the other hand, considering the total scheduling
cost of each test, it is clear that there is a significant
penalty for using specific policies with respect to using
BG, especially in some of the policies. In particular, the
extra overhead is considerably higher than BG in DASS-
related policies and EPE.

5.2 Experiment 2: 80% of Nominal Hard Utilization
The global performance results of the experiment are
shown in Table 4. This table shows the performance
difference between each policy and the BG policy by
means of a set of percentile values of the soft task
response time ratios for all the 4000 task sets in the
experiment (including all combinations of the varying
parameters).

Comparing the data in this table with the global results
of Experiment 1 (in Table 2), the policies in this second
experiment present the following performances: the two
server-based policies again present the worst results,
only slightly better than in the previous experiment (both
policies now perform better than BG in at least 25%
of the cases). EPE now performs considerably better
than BG in a large number of cases (20% better in
50% of the cases, and 40% better in half of them); in
fact, EPE now show ratios that are similar to DASS,
or even slightly better (from the 75th percentile on).
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Fig. 3. Soft task response time ratios as a function of soft load in Experiment 1, divided by different values of gain
time: 0% (upper left), 25% (upper right), 50% (lower left) and 75% (lower right)

TABLE 4
Soft task response time ratios in Experiment 2

(percentile values)

Percentiles
Policy 5% 25% 50% 75% 95%
DS 0,5672 0,9815 1,0028 1,0079 1,0196
SS 0,3549 0,9088 1,0007 1,0064 1,0162
EPE 0,2022 0,5872 0,8135 0,9318 1,0016
DASS 0,0761 0,5321 0,8137 0,9495 1,0018
DASS-GAIN 0,0632 0,2427 0,5147 0,7538 0,9068
DP 0,2076 0,4291 0,6334 0,8032 0,9543
DP-GSELF 0,1539 0,3674 0,6000 0,7958 0,9543
DP-GPROP 0,2083 0,4285 0,6333 0,8022 0,9535
DP-GBOTH 0,1539 0,3644 0,5983 0,7930 0,9532

In this experiment, there is a great difference between
the two versions of DASS. For every percentile rank
shown in the table, the ratio value of DASS is notably
higher than the value of DASS-GAIN, meaning a better
performance for the latter. Globally, DASS-GAIN obtains
the best performance results in this experiment, while
the performance of DASS is worse than all the dual-
based policies, and sometimes worse than EPE. Finally,
the performances of the four DP-related policies are quite
homogeneous, with DP-GSELF and DP-GBOTH only
moderately improving the results of the other two, and
all of them being intermediate between DASS-GAIN and

Fig. 4. Soft task response time ratios as a function of gain
time in Experiment 2

DASS. If compared with the previous experiment, the
performances of all DP-related algorithms are now much
better in all percentile ranks.

These global results are now refined by introducing
the effect of gain time on the soft task response ratios,
as shown in Figure 4. This graph again shows that gain
time poses a negative effect on the performance benefit
of all policies with respect to BG. In fact, comparing
this graph with the one for the previous experiment,
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the effect is now more severe for all policies. This
general trend presents an exception, the EPE policy in
systems with no gain time, which is further discussed
below. When looking at specific policies, some relevant
aspects may be pointed out: SS now outperforms DS,
especially in systems with no gain time. EPE gets better
performance than DASS in systems with large amounts
of gain time (50% or higher). The effect of gain time on
DASS is critical, where the performance benefit ranges
from around 85% in systems without gain time to less
than 10% in systems with a 75% of gain time); this effect
is also evident in DASS-GAIN, but this latter policy only
degrades up to an average benefit of 25% due to its
ability to effectively use gain time for executing soft
tasks. Finally, DP-GSELF and DP-GBOTH outperform
both DP and DP-GPROP in systems with a low amount
of gain time, but this difference tends to disappear as
gain time augments.

The special case of the EPE policy is now discussed.
According to the graph, EPE performs worse in systems
without gain time than in systems where there is some
gain time available (up to 50% of gain time). The reason
for this can be related to (1) the extra overhead of
this algorithm and (2) the inefficient way in which the
algorithm computes off-line the initial aperiodic time
available for hard tasks (which is more evident in this
second experiment, where task sets have a high nominal
hard utilization). The algorithm is designed to increase
these aperiodic time values at run time by reclaiming
gain time; however, in systems with no available gain
time, EPE cannot compensate its poor initial config-
uration, and thus its performance gets closer to BG.
Excluding this particular case, the effect of gain time on
the EPE algorithm time shows the same trend than on
any other policy.

Finally, Figure 5 shows the influence of the soft task
utilization in the performance ratios of all policies in
each of the four possible gain time values of the ex-
periment. The conclusions that can be drawn from these
graphs are similar to the ones in the previous experiment
and are consistent with the general performance results
of this experiment presented above: first, in systems
with any particular value of gain time, the average
performance benefits of all policies versus BG decrease
as the amount of soft utilization grows. Second, for any
given value of soft utilization, all policies exhibit less
performance benefit with respect to BG as the amount of
gain time increases in the system (except for the case of
EPE in systems with no gain time, as discussed above).
And third, all policies perform better now than in the
previous experiment, for any given value of gain time.
In this second experiment, there is a clear advantage of
using some specific policies for soft tasks with respect to
using BG, even in systems with a high percentage of gain
time. Among such policies, the best results are rendered
by DASS-GAIN and the four DP-related policies.

Table 5 presents the global overhead results for this
experiment. When compared with the previous experi-

TABLE 5
Average overhead ratios (and std. dev.) in Experiment 2

(in % of increment with respect to BG)

Policy # C. Switch Total sched. cost
DS +4,48 (7,44) +14,23 (12,98)
SS +6,01 (9,75) +18,05 (14,69)
EPE +11,86 (8,02) +51,04 (26,69)
DASS +1,20 (5,85) +43,09 (23,41)
DASS-GAIN +4,14 (8,10) +44,74 (24,79)
DP +2,49 (5,40) +23,32 (16,57)
DP-GSELF +2,53 (5,53) +21,84 (16,84)
DP-GPROP +2,48 (5,41) +23,52 (16,31)
DP-GBOTH +2,52 (5,56) +23,88 (17,51)

Fig. 6. Total overhead ratios as a function of the number
of hard tasks in Experiment 2

ment, the values for the total scheduling costs are similar
for each policy, while the values for the number of
context switches are now higher in all policies except the
DP-related ones. In particular, server-based policies have
increased their context switch penalties with respect to
BG around 4% (due to a higher number of times in
which their budgets run out), the DASS-GAIN exhibits
an increment of around 2% (due to the presence of a
greater amount of absolute gain time, which allows more
tasks to be run within the intervals of reclaimed gain
time), and the EPE algorithm has incremented its penalty
from around 8% to almost 12% (due to both more gain
time available and a mechanism of reclaiming and using
this time less efficiently than other algorithms, such as
DASS-GAIN).

When analyzing the global overhead ratios as a func-
tion of the experiment parameters, the one with the
greatest influence was, as expected, the number of hard
tasks (since all the scheduling policies are based on
certain computations to be performed over the entire list
of hard tasks). In order to better show this, this second
experiment was extended to incorporate task sets with
more hard tasks (up to 32). The results are presented
in Figure 6. The graph shows that the number of hard
tasks in the system produces a linear increment of the
total overhead ratio with respect to BG in all policies,
but this effect is more pronounced in some policies than
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Fig. 5. Soft task response time ratios as a function of soft load in Experiment 2, divided by different values of gain
time: 0% (upper left), 25% (upper right), 50% (lower left) and 75% (lower right)

in others. In particular, three different groups of policies
can be observed: (1) the overhead values of DS and SS
with respect to BG are barely affected; (2) for DASS,
DASS-GAIN and EPE, the effect of this parameter is
very significant (in EPE, the total scheduling cost is 26%
higher than BG with 4 tasks, but it gets up to 87% higher
with 32 tasks); and (3) the DP-related policies present an
intermediate effect, in which the ratio worsens by around
7% every time the number of hard tasks doubles.

6 CONCLUSIONS
This paper has presented the results of an empirical
study on the most relevant scheduling policies for soft
tasks in fixed-priority, preemptive real-time systems. In
particular, the goal of the study was to characterize the
effect of gain time on the behavior of these scheduling
policies. The existence of gain time, which is defined as
the difference between the WCET of a hard task and
its actual execution time, is typical in many real-time
systems, for two main reasons. First, because the WCET
overestimation is still a common practice in the design
of many real-time systems in order to ensure the safety
of the schedulability analysis. And second, because even
if WCETs are accurately calculated, the typical case for
tasks is to consume only a fraction of their WCETs at
run time. Traditionally, gain time has been regarded as

a design problem for hard tasks (when related to WCET
overestimation), but also as an opportunity for soft tasks,
which can use this spare time in order to improve their
response times. Indeed, some scheduling policies for
soft tasks have included specific extensions to make an
effective use of this gain time.

The most general conclusion of the paper is that,
other things being equal, the increase in gain time in
the system significantly reduces the advantages of using
any of the policies under study. More specifically, the
relative performance benefits of all policies with respect
to serving soft tasks in background (BG) are significantly
reduced for all policies as gain time increases. This is
consistent with the theoretical definition of these poli-
cies, where performance can be directly related to some
policy variables that depend on the hard nominal load
(such as the servers’ budgets, the run-time available
capacity/slack for EPE/DASS, or the promotion times
for DP). Furthermore, the results presented in the paper
have shown that this negative influence of gain time may
affect policies differently, depending on some system
parameters, as it is now summarized.

In systems with low hard nominal utilization, gain
time produces a homogeneous negative effect on all
policies with respect to BG. Although all policies still
perform better than BG except in some particular cases
(DS and SS actually perform worse than BG in systems
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with high percentages of gain time, due to their extra
overheads), adopting any of them becomes less worth-
while as the amount of gain time increases, especially
for systems with high soft load utilization. Moreover, in
the case of DASS or DP, their gain-time extensions have
no effect on their respective performance benefits with
respect to BG.

In systems with high hard nominal utilization, there
is an even more pronounced negative impact of gain
time on all policies (compared to BG), but this impact
does not affect all policies in the same way. Both server-
based policies provide good results when no gain time
is available, but they rapidly degrade to BG as gain time
augments, since their budgets become artificially small,
and they cannot compensate this at run time. Moreover,
as soft utilization grows, they end up performing worse
than BG due to their extra overhead (especially due to
the higher number of context switches, which is also a
consequence of server budgets being very small). It has
to be noted that SS has been implemented according to
its official definition by POSIX; a recent study [26] claims
that this definition has some defects which directly affect
its performance and proposes some corrections, which
have not been incorporated to the standard yet. EPE
performs worse when there is no gain time available,
because of being unable to compensate both its high
overhead and its inefficiency at computing the initial
capacity values of hard tasks. However, in systems with
gain time, it presents much better results, and it ends
up outperforming both server-based policies and DASS.
Gain time has a very strong negative effect on DASS,
which makes this policy degrade dramatically as gain
time augments. In this case, its gain time extension
becomes vital to compensate this degradation, to the
extent that DASS-GAIN outperforms all other policies,
even considering its extra overhead. Finally, the four DP
policies (DP plus its three gain time extensions) present
the most stable behavior in the performance results as
gain time augments. In this case, the incorporation of
gain time extensions does not produce a clear benefit,
and all policies tend to perform equally (and equal to
DASS-GAIN) with greater values of gain time. Also,
since that DP has a straightforward implementation and
produces little overhead, this policy is probably the best
choice for these systems.
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Luis Búrdalo studied computer science in the
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in Spain, where he received his B.S. degree in
1988, and his Ph.D. degree in 2003. He currently
works as an Associate Professor at the Depart-
ment of Information Systems and Computation
(DSIC) of the UPV. Also, he is a member of the
Group of Information Technology/Artificial Intel-
ligence (GTI/IA) research group. His research
interests mainly include real-time systems, real-
time artificial intelligence, and multi-agent sys-

tems.

Ana Garcı́a-Fornes received her B.S.(1986)
and Ph.D.(1996) degrees in Computer Sci-
ence from the Polytechnic University of Cat-
alonia, Spain, and the Universitat Politècnica
de València, Spain, respectively. She currently
works as an Associate Professor at the De-
partment of Information Systems and Compu-
tation at the Universitat Politcnica de Valencia,
Spain. Her research interests focus on real-time
scheduling, real-time operating systems, real-
time agent/multi-agent systems, and multi-agent

systems platforms.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


