Whole Test Suite Generation

Gordon Fraser, Member, IEEE and Andrea Arcuri, Member, |IEEE.

Abstract—Not all bugs lead to program crashes, and not always is :Public class Stack{

there a formal specification to check the correctness of a software tests 2 INt[] values =new int[3];
outcome. A common scenario in software testing is therefore that test s int size = 0;

data is generated, and a tester manually adds test oracles. As this .
is a difficult task, it is important to produce small yet representative * void push({nt x) {

test sets, and this representativeness is typically measured using code s if (Size >= values.length) <:’ Requires a full stack
coverage. There is, however, a fundamental problem with the common . resize();
approach of targeting one coverage goal at a time: Coverage goals . . — -
are not independent, not equally difficult, and sometimes infeasible — if (S|Ze < vaIues.Iength) <:’ Else branch is '”feas'bk
the result of test generation is therefore dependent on the order of s values[size++] = x;

coverage goals and how many of them are feasible. To overcome this }

problem, we propose a novel paradigm in which whole test suites are

evolved with the aim of covering all coverage goals at the same time, 20 int pop() {

while keeping the total size as small as possible. This approach has ,; if (size > 0)<:’ May imply coverage ipushand resizq
several advant_ages, _as for example its effectiveness |_s not affected py » return vaIues[size—];

the number of infeasible targets in the code. We have implemented this

novel approach in the EVOSUITE tool, and compared it to the common ** else
approach of addressing one goal at a time. Evaluated on open source 14 throw new EmptyStackException();
libraries and an industrial case study for a total of 1,741 classes, we 15}

show that EVOSUITE achieved up to 188 times the branch coverage of
a traditional approach targeting single branches, with up to 62% smaller

16 private void resize()

test suites. 17 int[] tmp = new int[values.length« 2];
18 for(int i = 0; i < values.length; i++)
Index Terms—Search based software engineering, length, branch cov- 19 tmp[i] = valuesli];
erage, genetic algorithm, infeasible goal, collateral coverage 20 values = tmp;
21 }
22}

1 INTRODUCTION

I T is widely recognized that software testing is an essentigig. 1. Example stack implementation: Some branches
component of any successful software development processe more difficult to cover than others, some lead to

A software test consists of an input that executes the pnograoverage of further branches, and some can be infeasible.

and a definition of the expected outcome. Many techniques

to automatically produce inputs have been proposed over the

years, and today are able to produce test suites with high cod

coverage. Yet, the problem of the expected outcome persists® common approach in the literature is to generate a
and has become known as tbeacle problem Sometimes, test case for each coverage goal (e.g., branches in branch
essential properties of programs are formally specifietiage coverage), and then to combine them in a single test suds (e.
to hold universally such that no explicit oracles need to if€e #3]). However, the size of a resulting test suite is difficult
defined (e.g., programs should normally not crash). Howev&® Predict, as a test case generated for one goal may iniplicit
in the general case one cannot assume the availability of 80 cover any number of further coverage goals. This is
automated oracle. This means that, if we produce test inpuigually called collateral or serendipitous coverage (¢23]).
then a human tester needs to specify the oracle in termsF@F example, consider the stack implementation in Fidure
the expected outcome. To make this feasible, test generatfePvering the true branch in Lingl is necessarily preceded
needs to aim not only at high code coverage, but also at sniy| the true branch in Ling, and may or may not also be

test suites that make oracle generation as easy as possibi®receded by the true branch in Liree In fact, the order
in which each goal is select can thus play a major role, as

e Gordon Fraser is with Saarland University — Computer Sce&nc there can be dependenqes among goals. AIthoth_th_ere have
Saarbiicken, Germany, email: fraser@cs.uni-saarland.de. Amdkecuri DEEN attempts to exploit collateral coverage to optimizt te
is with the Certus Software V&V Center at Simula Research taiby, generation (e.g.,2p]), to the best of our knowledge there is
P.O. Box 134, Lysaker, Norway, email: arcuri@simula.no no conclusive evaluation in the literature of their effeetiess.

Stack stackO =new Stack(); Stack stackO =new Stack(); by applying it to 1,741 classes coming from open source

try { int int0 = —510; libraries and an industrial case study (Secti¥nto the best
stack0.pop(); . stack0.push(int0); of our knowledge, this is the largest evaluation of search-
} catch(EmptyStackException &) stack0.push(int0); based testing of object-oriented software to date. Bectuse
} stack0.push(int0); . - -
stack0.push(int0): effectively addre§s .the problem of test suite generatiomack
stack0.pop(); to develop specialized search operators, there would be no

guarantee on theonvergenceroperty of the resulting search
Fig. 2. Test suite consisting of two tests, produced by algorithm. To cope with this problem, we formally prove the
EvoSuITE for the St ack class shown in Figure 1: All convergence of our proposed technique.
feasible branches are covered. The results of our experiments show strong statistical evi-
dence that the ¥OSUITE approach yields significantly better
There are further issues to the approach of targeting oresults (i.e., either higher coverage or, if same covertugm
test goal at a time: Some targets are more difficult to covemaller test suites) compared to the traditional approdch o
than others. For example, covering the true branch in Ginetargeting each testing goal independently. In some cases, E
of the stack example is more difficult than covering the falsguiTE achieved up to 188 times higher coverage on average,
branch of the same line, as the true branch requiBsack and test suites that were 62% smaller while maintaining the
object which has filled its internal array. Furthermore,emage same structural coverage. Furthermore, runningp&UITE
goals can benfeasible such that there exists no input thatith a constrained budget (one million statement execation
would cover them. For example, in Figuiethe false branch during the search, up to a maximum 10 minutes timeout)
of the i f condition in Line 7 is infeasible. Even if this resulted in an impressive 83% of coverage on average on our
particular infeasible branch may be easy to detect this is rsase study.
true in general (it is, in fact, an undecidable proble23]), The paper is organized as follows. Sectprovides back-
and thus targeting infeasible goals will per definition faild ground information. The novel approach of evolving whole
the effort would be wasted. This leads to the question of haest suites is described in Secti@n and the details of our
to properly allocate how much of the testing budget (e.@, tfEvoSuUITE tool follow in Section4. The empirical study we
maximum total time allowed for testing by the user) is usecbnducted to validate our approach is presented and destuss
for each target, and how to redistribute such budget to otharSection5. Convergence is formally proven in Sectién
uncovered targets when the current target is covered b$oreThreats to validity of our study are analyzed in Secffipand
budget is fully consumed. Although in the literature theas h finally, Section8 concludes the paper.
been preliminary work based on software metrics to predict
the difficulty of coverage goals in procedural codd][its
evaluation and usefulness on object-oriented softwardilis 32 BACKGROUND
an open research question. Coverage criteria are commonly used to guide test genaratio
In this paper we evaluate a novel approach for test daacoverage criterion represents a finite set of coveragesgoal
generation, which we callvhole test suite generatiprihat and a common approach is to target one such goal at a time,
improves upon the current approach of targeting one goal agenerating test inputs either symbolically or with a search
time. We use an evolutionary techniqu#,[[34] in which, based approach. The predominant criterion in the litegatur
instead of evolving each test case individually, we evolhis branch coverage, but in principle any other coverage cri-
all the test cases in a test suite at the same time, and tégon or related techniques such as mutation testa®} dre
fitness function considers all the testing goals simultasBo amenable to automated test generation.
The technique starts with an initial population of randomly Solving path constraints generated with symbolic exeaoutio
generated test suites, and then uses a Genetic Algorithmisoa popular approach to generate test d&ifé] [or unit
optimize towards satisfying a chosen coverage criteridnlev tests p1], and dynamic symbolic execution as an extension
using the test suite size as a secondary objective. At the eodn overcome a number of problems by combining concrete
the best resulting test suite is minimized, giving us a teskecutions with symbolic execution (e.g.27], [39]). This
suite as shown in Figur@ for the St ack example from idea has been implemented in tools like DARZZ] and
Figure 1. With such an approach, most of the complicationSUTE [39], and is also applied in Microsoft's parametrized
and downsides of the one target at a time approach eithaiit testing tool PEX 42] or in the Dsc R§] tool.
disappear or become significantly reduced. The technique isMeta-heuristic search techniques have been used as an
implemented as part of our testing tooV&SuUITE [18], which alternative to symbolic execution based approaches (Hee |
is freely available online. [34] for surveys on this topic). The application of search for
This novel approach was first described /][and this test data generation can be traced as back to the 3)s [
paper extends that work in several directions, by for exampkhere the key concepts bfanch distancgd30] and approach
using a much larger and variegated case study, verifying thevel [48] were introduced to help search techniques in gen-
the presence of infeasible branches has no negative impamtting the right test data. A promising avenue also seems
on performance, and by providing theoretical analyses ¢adl shto be the combination of evolutionary methods with dynamic
more lights on the properties of the proposed approach. dymbolic execution (e.g.lp], [27], [33]), alleviating some of
particular, we demonstrate the effectiveness ofoBUITE the problems both approaches have.

Search-based techniques have also been applied to t#sCUTE [39] have a similar objective, assuming the avail-
object-oriented software using method sequen@d$, [43] ability of an automated oracle (e.g., does the SUT crash?) to
or strongly typed genetic programming7], [47]. When check the generated test cases. This step is essentialskecau
generating test cases for object-oriented software, sihee apart from trivial cases, the test suites generated foligvé
early work of Tonella 43], authors have tried to deal with thepath coverage criterion would be far too large to be manually
problem of handling the length of the test sequences, for exaluated by software testers in real industrial contexts.
ample by penalizing the length directly in the fithess fumeti ~ The testing problem we address in this paper is very
However, longer test sequences can lead to achieve higter cdifferent from the one considered by tools such as Randoop,
coverage %], yet properly handling their growth/reductionDART, or CUTE: Our goal is to target difficult faults for which
during the search requires special caté][automated oracles are not available — which is a common

Most approaches described in the literature aim to generattiation in practice. Because in these cases the outputs of
test suites that achieve as high as possible branch coverdge test cases have to be verified manually, the generated tes
In principle, any other coverage criterion is amenable &uites need to be of manageable size. There are two congasti
automated test generation. For example, mutation tes#iglg [objectives: the “quality” of the test suite (e.g., measureds
is often considered a worthwhile test goal, and has been usdality to trigger failures once manual oracles are prog)de
in a search-based test generation environm2ijt When test and its size. The approach we follow in this paper can be
cases are sought for individual targets in such coveragedbasummarized as: Satisfy the chosen coverage criterion, (e.g.
approaches, it is important to keep track of the accidentadlanch coverage) with the smallest possible test suite.
collateral coverage of the remaining targets. Otherwiskas
been proven that random testing would fare better under some TesT SUITE OPTIMIZATION
scalability models10]. Recently, Harman et al2p] proposed , . .

a search-based multi-objective approach in which, althougo evolve test suites that optimize the chosen coverage- crit

each goal is still targeted individually, there is the setay lon, we use a sgarch algorithm, _namely a ngetic Alg.orithm
objective of maximizing the number of collateral targetatth (_GA)’ that is applied on a population of test suites. In tieis-s

are accidentally covered. However, no particular heuwristi tion, we describe the applied GA, the representation, genet

used to help covering these other targets. operations, and the fitness function.
All approaches mentioned so far target a single test goal
at a time — this is the predominant method. There are so®d Genetic Algorithms

notable exceptions in search-based software testing. Bhesw Genetic Algorithms (GAs) qualify as meta-heuristic search
of Arcuri and Yao [L1] and Baresi et al. 3] use a single technique and attempt to imitate the mechanisms of natural
sequence of function calls to maximize the number of COVefﬁGaptation in computer systems. A population of chromosome
branches while minimizing the length of such a test case. 4 evolved using genetics-inspired operations, where each
drawback of such an approach is that there can be conflictifigromosome represents a possible problem solution.
testing goals, and it might be impossible to cover all of them The gA employed in this paper is depicted in Algoritdm
with a single test sequence regardless of its length. Starting with a random population, evolution is performed u
Regarding the optimization of an entire test suite in whicly a solution is found that fulfills the coverage critericr, the
all test cases are considered at the same time, we are awarg|igtated resources (e.g., time, number of fitness evahmsiti
only the work of Baudry et al.14]. In that work, test suites have been used up. In each iteration of the evolution, a new
are optimized with a search algorithm with respect to matati generation is created and initialized with the best indieis
analysis. However, in that work there is the strong limiati of the last generatione(itism). Then, the new generation is
of having to manually choose and fix the length of the tegfied up with individuals produced by rank selection (LiBE
cases, which does not change during the search. crossover (Ling), and mutation (Line.0). Either the offspring
In the literature of testing object-oriented softwareréhare o the parents are added to the new generation, depending on

also techniques that do not directly aim at code coveraderasfitness and length constraints (see Sec8of).
example implemented in the Rando&®] tool. In that work,

sequences of function calls are generated incrementagus3-2 Problem Representation
an extension of random testing (for details, s@@)} and the To apply search algorithms to solve an engineering problem,
goal is to find test sequences for which the system under tds first step is to define a representation of the valid smisti
(SUT) fails. This, however, is feasible if and only if autaw@ for that problem. In our case, a solution igest suite which
oracles are available. Once a sequence of function callsigsrepresented as a S€tof test cases;. Given |T| = n, we
found for which at least one automated oracle is not passédyveT = {{1,lo, ...,y }.
that sequence can be reduced to remove all the unnecessaty a unit testing scenario, a test caseessentially is a
function calls to trigger the failure. The software testenwd program that executes the SUT. Consequently, a test case
usually get as output only the test cases for which failures aequires a reasonable subset of the target language @vg., J
triggered. Notice that achieving higher coverage likelgde in our case) that allows one to encode optimal solutions for
to higher probability of finding faults, and so recent extens the addressed problem. In this paper, we use a test case
such as Palusbp] aim to achieve this. representation similar to what has been used previoddly [
Although targeting for path coverage, tools like DARZZ] [43]: A test case is a sequence of statements(sy,sa, . . . ,s;)

Algorithm 1 The genetic algorithm applied in®SUITE in {v(s},) | 0 < k < i}. Value and type of a method statement
1 current_population < generate random population are defined by its return value.

2> repeat Assignment statements assign values to array indices or to

s Z « elite of current_population public member variables of objects, e.gar 1[0] = new

« while |Z| # |current_population| do bj ect () or var2. maxSi ze = 10. Assignment state-

5 P,,P, <+ select two parents with rank selection ments do not define new values.

6 if crossover probabilitghen For a given SUT, theest cluster[47] defines the set of

7 01,02 < crossoverP;, P, available classes, their public constructors, methodsfiatus.

8 else Note that the chosen representation kiasable size Not

o 01,02 < P, only the numbern of test cases in a test suite can vary

10 mutateO; and Oz during the GA search, but also the number of stateménts

u fp = min(fitness(P1),fitness(F)) in the test cases. The motivation for having a variable lengt

12 fo = min(fitness(O1),fitness(Oz)) representation is that, for a new software to test, we do not
13 lp = length(Py) + length(Py) know its optimal number of test cases and their optimal lengt

14 lo = length(Oy) + length(O2) a priori — this needs to be searched for.

15 Tp = best individual ofcurrent_population The entire search space of test suites is composed of all
16 if fo<fpV(fo=fpNlo<lp)then possible sets of sizes from to N (i.e., n € [1,N]). Each

v for O in {01,02} do test case can have a size fromto L (i.e., I € [1,L]).

18 if length(O) < 2 x length(Ts) then We need to have these constraints, because in the context
1 Z «+ zU{0} addressed in this paper we are not assuming the presence of
20 else an automated oracle. Therefore, we cannot expect software
2 Z < ZU{P or P} testers to manually check the outputs (i.e., writing assert
2 else statements) of thousands of long test cases. For eachguositi

2 Z « ZU{P\,P} in the sequence of statements of a test case, there can be from
a2 current_population < Z Inin 10 I,,., possible statements, depending on the SUT and
25 until solution found or maximum resources spent the position (later statements can reuse objects instadtia

in previous statements). The search space is hence exyremel
large, although finite becausé, L and,,,, are finite.
of length/. The length of a test suite is defined as the sum of
the lengths of its test cases, i.eepgth(T) =), l;. Note,
that in this paper we only consider the problem of derivin
test inputs. In practice, a test case usually also contatasta In this paper, we focus obranch coverageas test criterion,
oracle, e.g., in terms of test assertions; the problem afidgr although the EoSuITE approach can be generalized to any
such oracles is addressed elsewhere (e #]. [test criterion. A program contains control structures sash
Each statement in a test case represents one vdkje, i f orwhil e statements guarded by logical predicates; branch
which has a typer(v(s;)) € T, whereT is the finite set of coverage requires that each of these predicates evalodtes t
types. We define five different kinds of statements: and to false. A branch imfeasibleif there exists no program
Primitive statements represent numeric, Boolean, Stringjnput that evaluates the predicate such that this particula
and enumeration variables, as for exanipt¢ var 0 = 54. branch is executed.
Furthermore, primitive statements can also define arragapf Let B denote the set of branches of the SUT, two for
type (e.g.,0bj ect[] varl = new Object[10]). The every control structure. For simplicity, we treat switcige
value and type of the statement are defined by the primitigenstructs such that each case is treated like an individlual
variable. In addition, an array definition also implicitlgfthes condition with a true and false branch. A method without any
a set of values of the component type of the array, accordiagntrol structures consists of only one branch, and thezefo
to the length of the array. we require that each method in the set of methddsis
Constructor statements generate new instances of anyexecuted at least once.
given class; e.g.Stack var2 = new Stack(). Value An optimal solutionT, is defined as a solution that covers
and type of the statement are defined by the object constiuctdl the feasible branches/methods and it is minimal in the
in the call. Any parameters of the constructor call are amsig total number of statements, i.e., no other test suite with th
values out of the sefv(sy) | 0 < k < i}. same coverage should exist that has a lower total number of
Field statements access public member variables of obstatements in its test cases. Depending on the chosen sest ca
jects, e.g.,int var3 = var2.size. Value and type of representation some branches might never be covered, even
a field statement are defined by the member variable. If theough they are potentially reachable if the entire grammar
field is non-static, then the source object of the field hassto bf the target language was used. As a very simple example,
in the set{v(s;) | 0 < k < i}. if the chosen representation allows only to create instnce
Method statements invoke methods on objects or callof the SUT and none of other classes, then it might not be
static methods, e.gi,nt var4 = var 2. pop(). Again, possible to reach the branches in the methods of the SUT that
the source object or any of the parameters have to be valtelee as input instances of other classes. Because without a

8.3 Fitness Function

formal proof it is not possible to state that a representaiso Programming 41]: For instance, after each generation, test
fully adequate, for sake of simplicity we tag those branchesises can become longer and longer, until all the memory
as infeasible for the given representation. is consumed, even if shorter sequences are better rewarded.
In order to guide the selection of parents for offsprin§lotice that bloat is an extremely complex phenomenon in
generation, we use a fitness function that rewards better cevolutionary computation, and after many decades of rekear
erage. If two test suites have the same coverage, the selecii is still an open problem whose dynamics and nature are not
mechanism rewards the test suite with less statementghiee. completely understood4[].
shorter one. Bloat occurs when small negligible improvements in the
For a given test suitd’, the fitness value is measured byitness value are obtained with larger solutions. This is/ver
executing all test¢ € 7' and keeping track of the set oftypical in classification/regression problems. When ingafe
executed methodd/r as well as the minimdbranch distance testing the fitness function is just the obtained coverayen t
dmin(b,T) for each branchh € B. The branch distance iswe would not expect bloat, because the fitness function would
a common heuristic to guide the search for input data t&sume only few possible values. However, when other rsetric
solve the constraints in the logical predicates of the Wrasc are introduced with large domains of possible values (e.g.,
[30], [34]. The branch distance for any given execution of Branch distance and also for example mutation impaxd]) [
predicate can be calculated by applying a recursively definghen bloat might occur.
set of rules (see3[)], [34] for details). For example, for |n previous work 9], we have studied several bloat control
predicater > 10 andx having the valué, the branch distance methods from the literature of Genetic Programminid] [
to the true branch i30 — 5 + k, with £ > 0. In practice, to applied in the context of testing object-oriented software
determine the branch distance each predicate of the SUTHiswever, our previous studyly] covered only the case of
instrumented to keep track of the distances for each ex@tutitargeting one branch at a time. Iv&SuITE we use the same
The fitness function estimates how close a test suite is ffethods analyzed in that studid], although further analyses
coveringall branches of a program, therefore it is important tgre required to study whether there are differences in their
consider that each predicate has to be executed at least tvdigplication to handle bloat in evolving test suites ratfemt

so that each branch can be taken. Consequently, we definedipgle test cases. The employed bloat control methods are:
branch distancé(b, ") for branchb on test suitel” as follows: | \ye put a limit N' on the maximum number of test cases

0 if the branch has been covered, and limit . for their maximum length. Even if we expect
U(dmin(b,T)) if the predicate has been the length and number of test cases of an optimal test.suite
executed at least twice to have low values, we still need to choose comparatively
’ larger N and L. In fact, allowing the search process to
1 otherwise. employ longer test sequences and then reduce their length
Here, v(z) is a normalizing function in0,1]; we use the during/after the search can provide staggering improvésnen
normalization function 4]: v(x) = z/(x + 1). Notice that in terms of achieved coveragg]|
there is a non-trivial reason behind the choiced¢h,7) = « In our GA we use rank selectiod§] based on the fitness
v(dmin(b,T)) applied only when the predicate is executed at function (i.e., the obtained coverage and branch distance
least twice [L1]. For example, assume the case in which it values). In case of ties, we assign better ranks to smaller
is always applied. If the predicate is reached, and branch test suites. Notice that including the length directly in
is not covered, then we would havkb,T) > 0, while the the fitness function (as for example done id1][[13]),

d(b,T) =

opposite branch,,, would be covered, and st{b,,,,T’) = 0. might have side—effects, pecause we would.need to put
The search algorithm might be able to follow the gradient together and linearly combine two values of different units
given by d(b,T) > 0 until b is covered, i.e.d(b,T) = 0. of measure. Furthermore, although we have two distinct

However, in that casé,,, would not be covered any more, objectives, coverage is more important than size.

and so its branch distance would increase, il@,,,,1") > 0. « Offspring with non-better coverage are never accepted for
Now, the search would have a gradient to co¥gy, but, the next generation if they are larger than their parents (fo
if it does cover it, then necessarilywould not be covered the details, see Algorithri).

any more (the predicate is reached only once) — and so om.We use a dynamic size limit conceptually similar to the
Forcing a predicate to be evaluated at least twice, beforeone presented by Silva and Costl][If an offspring’s
assigningv(d,i»(b,T)) to the distance of the non-covered coverage is not better than that of the best solufignin

branch, avoids this kind of circular behavior. the current entire GA population, then it is not accepted in
Finally, the resulting fitness function to minimize is as the new generations if it is longer than twice the length of
follows: Tg (see Linel8in Algorithm 1).

fitnessT) = M| — |Mz| + Y d(bx,T)
breB

3.5 Search Operators

The GA code depicted in Algorithrhis at high level, and can
3.4 Bloat Control be used for many engineering problems in which variable size
A variable size representation could lead hoat, which representations are used. To adapt it to a specific engigeeri
is a problem that is very typical for example in Genetiproblem, we need to define search operators that manipulate

| v(s;) might be used as a parameter in any of the statements
Si+1,---,S1, the test case needs to be repaired to remain valid:
For each statement;, ¢ < j < [, if s; refers touv(s;), then
this reference is replaced with another value out of the set
{v(sk) | 0 < k < jAk # i} which has the same type aés;).
If this is not possible, ther; is deleted as well recursively.
Change: For a test casé = (s1,89,...,5) with length
[, each statemeny; is changed with probabilityl /1. If s; is
b) | x0 a primitive statement, then the numeric value represenyed b
s; is changed by a random value jrA,A], where A is a
(a) Test Suite Crossover (b) Test Case Mutation constant. If the primitive value is a string, then the striag
changed by deleting, replacing, or inserting characteasvimy
similar to how sequences of method calls are mutated. In the
case of an array, the length is changed by a random value in
[-A’ A’] such that no accesses to the array are invalidated. In

the chosen solution representaﬁon (See Se(ﬁlﬁ)'] In partic- an a.SSignment statement, either the variable on the lefteor t
ular we need to define the crossover and mutation operattgdt hand side of the assignment is replaced with a differen
for test suites. Furthermore, we need to define how randdf@riable of the same type. H; is not a primitive statement,
test cases are sampled when we initialize the first populatihen a method, field, or constructor with the same return type

=

2
o

Z

=
o

2

=

Fig. 3. Crossover and mutation are the basic operators for
the search using a GA. Crossover is applied at test suite
level; mutation is applied to test cases and test suites.

of the GA. aswv(s;) and parameters satisfiable with the values in the set
{v(sk) | 0 < k < i} is randomly chosen out of the test cluster.
3.5.1 Crossover Insert: With probability o/, a new statement is inserted at

The crossover operator (see FiguB@) generates two off- a random position in the test case. If it is added, then a secon
spring O; and O, from two parent test suite® and P,. A statement is added with probability?, and so on until the
random valuer is chosen from0,1]. On one hand, the first ith statement is not inserted. A new statement is added only
offspring O, will contain the firsta|P;| test cases from the if the limit L has not been reached, i.e.,litkc L. For each
first parent, followed by the lagtl —)| P»| test cases from insertion, with probabilityl /3 a random call of the class under
the second parent. On the other hand, the second offspringtest or its member classes is inserted, with probability a
will contain the firsta|P,| test cases from the second parentnethod call on a value in the séi(s,) | 0 < k < i} for
followed by the las{1—«)| P, | test cases from the first parentinsertion at position; is added, and with probability /3 a
Because the test cases are independent among them, \talge {v(sx) | 0 < k < i} is used as a parameter in a call of
crossover operator always yields valid offspring testesuit the class under test or its member classes. Any parameters of
Furthermore, it is easy to see that it decreases the ditfereithe selected call are either reused out of the{sét) | 0 <
in the number of test cases between the test suites, ifes i}, settonul |, or randomly generated.
abs(|O1] — |Oz|) < abs(|Py| — | P2|). No offspring will have If after applying these mutation operators a test ¢ds#s no
more test cases than the largest of its parents. However, isiatements left (i.e., all have been removed), thesyemoved
possible that the total sum of the length of test cases in &am 7.

offspring could increase. To evaluate the fitness of a test suite, it is necessary to
_ execute all its test cases and collect the branch informatio
3.5.2 Mutation During the search, on average only one test case is changed in

The mutation operator for test suites is more complicatad tha test suite for each generation. This means that re-exregcuti
that used for crossover, because it works both at test suite all test cases is not necessary, as the coverage inforneion
test case levels. When a test suiifeis mutated, each of its be carried over from the previous execution.
test cases is mutated with probability|T’|. So, on average,
only one test case is mutated. Then, a number of new rand8R-3 Random Test Cases
test cases is added tB: With probability o, a test case is Random test cases are needed to initialize the first geoerati
added. If it is added, then a second test case is added wiftthe GA, and when mutating test suites. Sampling a test case
probability 2, and so on until theth test case is not addedat random means that each possible test case in the search
(which happens with probability — o%). Test cases are addedspace has a non-zero probability of being sampled, and these
only if the limit N has not been reached, i.e.nif< N. probabilities are independent. In other words, the prditabi
If a test case is mutated (see FiguBéb)), then three of sampling a specific test case is constant and it does not
types of operations are applied in ordegmove changeand depend on the test cases sampled so far.
insert Each is applied with probability /3. Therefore, on ~ When a test case representation is complex and it is of
average, only one of them is applied, although with prolitgbil variable length (as it happens in our case, see Se&ign
(1/3)3 all of them are applied. These three operations woik is often not possible to sample test cases with uniform
as follows: distribution (i.e., each test case having the same prababil
Remove: For a test case = (sq,so,...,s;) with lengthl, of being sampled). Even when it would be possible to use a
each statemery; is deleted with probabilityl /I. As the value uniform distribution, it would be unwise (for more detaila o

this problem, seel[0]). For example, given a maximum lengthsignatures are imprecise. In particular, this problem texis

L, if each test case was sampled with uniform probabilitynthdor all classes using Java Generics, as type erasure removes
sampling a short sequence would be extremely unlikely. Thisuch of the useful information during compilation and all

is because there are many more test cases with long lengémeric parameters look likébj ect for Java Reflection. To
compared to the ones of short length. overcome this problem for container classes (and in gefaral

In this paper, when we sample a test case at random, a®y class with methods that take as input and re@ojpect
choose a value in 1 < r < L with uniform probability. instances), we always putnt eger objects into container
Then, on an empty sequence we repeatedly apply the insertitamsses, such that we can also cast retu@gdect instances
operator described in Sectidh5.2 until the test case has aback tol nt eger. Currently, container classes need to be
length > r. identified manually, but future versions ofvBSuUITE will
determine suitable types automatically.

4 THE EVOSUITE TooL Test case execution can be slpw, _and in pa}rticular when
generating test cases randomly, infinite recursion canroccu
The EvOSUITE tool implements the approach presented i(e.g., by adding a container to itself and then calling the
this paper for generating JUnit test suites for Java codeashCode method). Therefore, we chose a timeout of five
EvoSuITE works on the byte-code level and collects alseconds for test case execution. If a test case times out, the
necessary information for the test cluster from the byt@ecothe test suite with that test case is assigned the maximum
via Java Reflection. This means that it does not require tfighess value, which i$M| + |B|, the sum of methods and
source code of the SUT, and in principle is also applicablganches to be covered.
to other languages that compile to Java byte-code (such agest cases are executed in their own threads, but as Java does
Scala or Groovy, for example). Note that we also considapt allow to forcefully stop threads it may happen that atfer
branch coverage at the byte-code level. Because high letigleout such a thread survives. To overcome this problem, we
branch statements in Java (e.g., predicates in loop cond]ti instrument the byte-code with additional statements tieltly
are transformed into simpler statements similar to atanfic the execution of a test when the thread is interrupted. & thi
statements in the byte-codev&SUITE is able to handle all also shows no effect, the thread is given a low priority and
language constructs. FurthermoreydESUITE treats each caseijts execution is ignored. Aggregations of such stale ttsead
of a switch/case construct like an individudl-condition. The consume memory, and soVBSUITE uses a client/server
number of branches at byte-code level is thus usually larggichitecture where the client monitors its free memory, and
than at source code level, as complex predicates are campigks the server for a process restart which resumes at thee sam
into simpler byte-code instructions. point in the search, if it runs out of memory.

EVOSUITE instruments the byte-code with additional state- EvoSuiTe also employs a custom, configurable security
ments to collect the information necessary to calculate fihanager which can be used to control what permissions
ness values, and also performs some basic transformationgre granted during the test execution. For example, it is
improve testability: To allow optimizations of String vals, usually not desirable to have the tests open random netagrki
branches based on String methods Bte i ng. equal s are connections or access the filesystem in random ways. The
transformed such that they act on the edit distar®te§imi- use of a custom security manager was an essential feature
larly, comparisons on double, float, and long datatypes ta-byfor the large empirical study we conduct in this paper. In
code need transformation to carry a distance measureneentfatt, thanks to that we were able to select a large number
the branches. of SUTs from different sources without needing to worry

During test generation, \EDSUITE considers one top-level whether their behavior was safe under all inputs. However,
class at a time. The class and all its anonymous and memfigs means that #oSuITE currently can only cover code that
classes are instrumented at byte-code level to keep trackhak no environmental dependencies. Furthermove JB/ITE
called methods and branch distances during execution. desumes that the code under test is deterministic, such that

produce test cases as compilable JUnit source code- E executing the same test case twice will yield the same mesult
SUITE accesses only the public interfaces for test generation;

any subclasses are also considered part of the unit under

test to allow testing of abstract classes. To execute the te&1 Single Branch Strategy

during the search, ¥OSUITE uses Java Reflection. BeforeTo allow a fair comparison with the traditional single brlnc

presenting the result to the user, test suites are minimiged) approach (e.g.,4[3]), we implemented this strategy on top

a simple minimization algorithmb] which attempts to remove of EVOSUITE. In the single branch strategy, an individual of

each statement one at a time until all remaining statemetite search space is a single test case. The identical mutatio

contribute to the coverage; this minimization reduces botiperators for test cases can be used as \Ww3ITE, but

the number of test cases as well as their length, such tkadssover needs to be done at the test case level. For this,

removing any statement in the resulting test suite will ceduwe used the approach also applied by Toneld pnd Fraser

its coverage. and Zeller p1]: Offspring is generated using the single point
The search operators for test cases make use of only the tgpessover function described in Secti8rb.1 where the first

information in the test cluster, and although type inforigrat part of the sequence of statements of the first parent is merge

is updated during execution difficulties can arise when wethwith the second part of the second parent, and vice versa.

Because there are dependencies between statements agsl valu
generated in the test case, this might invalidate the iiagult

test case, and we need to repair it: The statements of thadeco
part are appended one at a time similarly to the insertion

TABLE 1

case study subjects

Number of classes, branches, and lines of code in the

described in Sectior8.5.2 except that whenever possible Case Study #Classes #Branches LOC
dependencies are satisfied using existing values. Public Al

' C : oL Colt 135 298 10,795 20,741

The fitness function in the smgle_ pranch strategy also neec@CL Commons CLI 14 15 662 1,078
to be adapted: We use the traditiorgbproach level[4§] ccb Commons Codec 21 22 1,369 2,205
plus normalized branch distance fitness function, which i%cﬂg gommons EAC"t'ﬁCUOHS gig ‘31(2)613 1%2%% é%é%‘l’

. . ommons Mal s ,
commonly useq in the IlteraFure (e.g., sex[[34]). The CPR Commons Primitives 210 231 2874 7008
approach level is used to guide the search toward the targeico Google Collections 85 370 4,214 9,886
branch. It is determined as the minimal number of controllCS IJndUSt(?aIII C?SeStUdy gé ﬁg 3%231 683%%
. ava Collections))
dependent edges in the control dependency graph between IDom 57 61 4,098 6.452
target branch and the control flow represented by the test casiGr JGraphT 137 193 2,467 5,924
The branch distance is calculated as mdSUITE, but taken }]\lTxIM f\lOda ;;\f/ﬂ_e 1311 1919 8561%1 18é%23
ano

fqr the closest control dependent branch where the contwl fl (~c Numerical Casestudy 11 11 209 421
diverges from the target branch. REG Java Regular Expressions 3 91 1,922 3,020
Ha ; ; ; ; SCS String Casestudy 12 12 607 606
_Wh|le |mplemen'qng this approach, we tne_d to derive aJRo GNU Trove 205 501 10,585 24.297
faithful representation of current practice, which medmstt xen Xmlenc _ 7 7 1,645 788
there are some optimizations proposed in the literaturelhvhi XOM XML Object Model 165 185 11,794 23,814
we did not include: ZIP Java ZIP Utils 3 4 219 441
1,741 3,165 85541 175,564

« New test cases are only generated for branches that ha?e
not already been covered through collateral coverage of
previously created test cases. However, we do not evalu%te
the collateral coverage of all individuals during the sharc

EXPERIMENTS

as this would add a significant overhead, and it is not cledhe independence of the order in which test cases are slecte
what effects this would have given the fixed timeout wand the collateral coverage are inherent to theo&UITE
used in our experiments. approach, therefore the evaluation focuses on the imprerem

« When applying the one target at a time approach, a possibker the single branch strategy.

improvement could be to useseedingstrategy £8]. During
the search, we could store the test data that have good fitngss
values on targets that are not covered yet. These test data
can then be used as starting point (i.e., for seeding the fi
generation of a GA) in the successive searches for th

Case Study Subjects

Far the evaluation, we chose a total of 19 open source ldsari
fd programs. For example, among those there are several

uncovered targets. However, we decided not to implemefiidely used libraries developed by Google and the Apache

this, as reference4B] does not provide sufficient details to

Software Foundation. Furthermore, to analyze in more Wdetai

reimplement the technique, and there is no conclusive d§N€ SPecific types of software, we also used a translation of

regarding several open questions; for example, poteyltiaﬁ'|
a seeding strategy could reduce diversity in the populati
and so in some cases it might in fact reduce the overgl?
performance of the search algorithm.

« The order in which coverage goals are selected might a

e String case study subjects employed by Alshraideh and
Jgottaci [2], and we also used a set of numerical applications
m [6]. To avoid a bias caused by considering only open
source code, we also selected a subset of an industrial case
iSiydy project previously used by Arcuri et][This results

influence the result. As in the literature usually no order {8 @ total of 3,165 classes, which were tested by only calling
specified (e.g.,35], [27], [43]), we selected the branches inthe API of the 1,741 public classes (the remaining classes ar

random order. However, in the context of procedural codBeMPer classes).

approaches to prioritize coverage goals have been propose

dhe choice of a case study is of paramount importance for

e.g., based on dynamic informatiofig]. However, the goal any empir_ical gnalysis in software engineering. To addit@ss
of this paper is neither to study the impact of differenroblem, in this paper we consider several types of software

orders, nor to adapt these prioritization techniques teaibj
oriented code and prioritization techniques.
« In practice, when applying a single goal strategy, onk?

as for example container classes, numerical applicatiamg,
software with high use of strings and arrays processing.
blel summarizes the properties of these case study subjects.

might also bootstrap an initial random test suite to idgntif 10 @void bias in analyzing the results, we present and
the trivial test goals, and then use a more sophisticatdifcuss the results of our empirical study grouped by ptojec

technique to address the difficult goals; here, a difficulff fact, different testing techniques can have comparitive

question is when to stop the random phase and start &
search. In contrast,\EOSUITE has this initial random phase
integrated into its own search process.

fferent performance on different types of SUT. For exampl

1. LOC stands for non-commenting lines of source code, catilaith
JavaNCSS (http://javancss.codehaus.org/)

random testing has been shown to be very effective in testingThe stopping condition for the single branch strategy is
container classesi{]. If one only chooses container classeshosen the same as fov&SUITE, i.e., maximum 1,000,000
as case study and ignores for example numerical applicatiostatements executed. To avoid that this budget is spemebnti
then random testing could be misleadingly advantaged am the first branch if it is difficult or infeasible, we applyeth
technique comparisons. In fact, even if one uses severdskiriollowing strategy: For{B| branches and an initial budget of
of software as SUTSs, then it all depends on the proportioXi statements, the execution limit for each branchXig B|

of the SUT types (e.g., if in the case study there are mastatements. If a branch is covered, some budget may be left
more container classes than numerical applications). eFheover, and so after the first iteration on all branches thewe is
fore, aggregated statistics on all the artifacts of a casdyst remaining budgetX’. For the remaining uncovered branches
need to be interpreted with care, as the proportion of differ B’ a new budgetfX’/|B’| is calculated and a new iteration is
kinds of software types could lead to misleading resultstarted on these branches. This process is continued hetil t
Unfortunately, how to define a representative case study foaximum number of statements (1,000,000) is reached.

test data generation is still an open research question. EvoSuITE and search-based testing are based on ran-
_ domized algorithms, which are affected by chance. Running
5.2 Experimental Setup a randomized algorithm twice will likely produce different

As witnessed in SectioB, search algorithms are influenced byesults. It is essential to use rigorous statistical methtuod
a great number of parameters. For many of these parametgperly analyze the performance of randomized algorithms
there are “best practices”: For example, we chose a crossowaen we need to compare two or more of them. In this paper,
probability of 3/4 based on past experience. Iv@&uiTe, Wwe follow the guidelines described if][
the probabilities for mutation are largely determined bg th For each of the 1,741 public classes, we ravoBuUITE
individual test suite size or test case length; the initibp against the single branch strategy to compare their adhieve
ability for test case insertion was set ¢o = 0.1, and the coverage. Each experiment comparison was repeated 30 times
initial probability for statement insertion was set¢b= 0.5. with different seeds for the random number generator. When
The maximum value for the perturbation of integral primétivone can have an arbitrarily large number of artifacts for a
types A was set to 20. Although longer test cases are bettgase study (e.g., in our case we could download and use
in general p], we limited the length of test cases # = as SUT as many projects as we wanted from open source
80 because we experienced this to be a suitable lengthrejositories, becausevEBSUITE is fully automated and has a
which the test case execution does not take too long. Thastomized security manager to avoid undesired side sjfect
maximum test suite size was set 1 = 100, although the then there is the trade-off between the number of runs per
initial test suites are generated with only two test caseh.eaartifact and size of the case study. In general, it is adlgsab
The population size for the GA was chosen to be 80. to have enough runs (e.g., 30) to detect statistical difiege
Different settings (e.g., population size) of an algorithrof algorithm performances on single artifacts, and thereteav
would lead to different performance. Unfortunately, on & necase study as large and variegated as possible to reduegsthre
search problem (such as generation of test suites in thisrpafio external validity. Notice that, in our empirical analyséven
it is not possible to know beforehand which are the besiith the use of a large cluster of computers it took severgda
settings to use. A tuning phase could lead to find settings run all the experiments.
for which EvOSuUITE performs better, but tuning phases are
computational expensive. As even with common settingsdaasge3 Results
on the literature it is possible to achieve reasonable tef]| '
we postponed the tuning investigation to future work, arldue to space constraints we cannot provide full informatibn
preferred to focus on having a larger case study with the afive analyzed data’], but just show the data that are sufficient
of reducing threats to external validity. in claiming the superiority of the WoSUITE technique. Sta-
Search algorithms are often compared in terms of tlistical difference has been measured with the Mann-Whitney
number of fitness evaluations; in our case, comparing tolatest. To quantify the improvement in a standardized way, we
single branch strategy would not be fair, as each individuased the Vargha-Delaney,» effect size §4]. In our context,
in EVOSUITE represents several test cases, such that tie A, is an estimation of the probability that, if we run
comparison would favor ¥OSUITE. As the length of test EVOSUITE, we will obtain better coverage than running the
cases can vary greatly and longer test cases generally hsivgle branch strategy. When two randomized algorithms are
higher coverage, we decided to take the numbeexafcuted equivalent, thend;, = 0.5. A high value 4,2 = 1 means
statementsas execution limit. This means that the search that, inall of the 30 runs of FOSUITE, we obtained coverage
performed until either a solution with 100% branch coveriage values higher than the ones obtainedalhof the 30 runs of
found, ork statements have been executed as part of the fitngss single branch strategy.
evaluations. In our experiments, we chdse- 1,000,000. The box-plot in Figure4 compares the actual obtained
For the single branch strategy, the maximum test caseverage values (averaged out of the 30 runs) wb&uUITE
length, population size, and any probabilities are chosand the single branch stratediigle). In total, the coverage
identical to the settings of WOSUITE. At the end of the test improvement of FOSUITE ranged up to 188 times that of the
generation, the resulting test suite is minimized in the esarsingle branch strategy. This happened for a particular SUT i
way as in EVFOSUITE. which EvoSuUITE obtained a coverage ¢f0.2% (averaged

TABLE 2
Ay, measure values in the coverage comparisons:
A5 < 0.5 means EVOSUITE resulted in less, A5 = 0.5
equal, and A5 > 0.5 better coverage than a single
branch approach. In brackets “()” the number of times the
effect size is statistically significant at level 0.05.

its average coverage is actually higher, i%7,7%. This is
not a contradiction. It could be explained by the fact that,
when B/OSUITE is worse on a specific SUT, it is only worse
by little, whereas when it is better, it is better by a larger
quantity. This is clearly visible in the boxplot in Figur
where although the median value fov&SUITE is lower, then
however its lower quartile and minimum value is much higher.

Case Study #Ai <05 #A12=05 #A;2>05 Notice that in many cases (i.e., 824) we hate, = 0.5.

coL 13(9) 30 92(79) This did not come as a surprise: For some “easy” classes,

CcCL 2(1) 6 6(4) a budget of 1,000,000 statements executions would be more

CCD 2(1) 13 6(5) : . .

oco 19(5) 137 90(81) than eqqugh to cover all the fe:?\s,lple branches with very high

CMA 24(10) 100 123(103) probability. In these cases, it is important to analyze what

CPR 23(10) 150 37(19) is the resulting size of the generated test suites. When the

IGC%O gg; % 502‘(‘3?)) coverage is different, analyzing the resulting test suitessis

JjCOo 2(1) 10 18(17) not reasonable (e.g., a test suite with higher coveragéylike

JDO 3(2) 27 27(25) has to be larger).

JGR 2(1) 88 47(41) b i

m 41(28) o8 62(41) For those cases _Nheﬁalg = 0._5 for_ the coverage, Figuré

NXM 0(0) 0 1() compares the obtained test suite size values (averaged out o

NCS 1(0) 10 0(0) the 30 runs) of EOSUITE and the single branch strategy

ggg 28; é %g; (Single). In the best case, we obtained a test suite size

TRO 2(1) 73 130(124) (averaged out of the 30 runs) that fov&SuUITE was 62%

XEN 0(0) 4 3(3) smaller. In particular, FOSUITE has an average length 23

;fg’v' 22(%)) 912 512(?25)) statements, whereas the length of the test suites geneviked
the single branch strategy led to an averagi length.

z 164(86) 824 753(638) Figure7 showsA;, for the length of the resulting test suites,

but only when p-values are lower than05. Recall that for
both BvOSUITE and the single branch strategy we use the
over 30 runs), while for the single branch strategy the ay@rasame post-processing technique to reduce the length of the
coverage was onl).3%. Calculated on all the SUTs in theoutput test suites. When we obtain full coverage of all the
case study, FOSUITE obtained an average coveragessfs, feasible branches, thenvBSUITE has a low probability of
whereas the single branch strategy obtaifi&d. . generating larger test suites.
Figure 5 shows a box-plot of the results of thé , # 0.5
measure for the coverage grouped by case study subject; thig/hole test suite generation producasaller test suites
figure illustrates the strong statistical evidence thabBuITE than single branch test case generation.
achieves higher coverage. In many casesp&JITE is prac-
tically certain to achieve better coverage results, eveenwh The results obtained with \EOSUITE compared to the

we take the randomness of the results into account. traditional approach (of targeting each branch sepaiasely
simply staggering. How is it possible to achieve such large
Whole test suite generation achieveigher coverage improvements? There can be several explanations. First, in
than single branch test case generation. case of infeasible branches, all the effort spent by a single

branch at a time strategy would be wasted, apart from pos-
Table 2 shows for the coverage comparisons how marsible collateral coverage. Collateral coverage of diffical

times we obtainedd,, values equal, lower and higher thameach branches, however, would be quite unlikely. Secdred, t
0.5. We obtained p-values lower th&n05 in 724 out of 917 traditional fithess function would have problems in guiding
comparisons in whichd;, # 0.5. Among the 20 projects, the search toward private methods that are difficult to execu
there is one for which #OSUITE gave worse results, i.e.,For example, consider the case of a private method that is
SCS. Without an in depth analysis on that project, it is difficultalled only once in a public method, but that method call is
to conjecture why that is the case. The proj8@S contains nested in a branch whose predicate is very complicated to
a set ofartificial classes, where all methods are static, take aatisfy. Unless the fithess function is extended to constler
input (and manipulate) string objects, and have no inféasilpossible methods that can lead to execute the private method
branches. It might be that using a hybrid algorithm in whicfas for example done irtf]), then there would be no guidance
EvOSUITE is enhanced with local search (e.g., se@) could to execute those private methods. Third, assume that there i
be effective for this type of software. But the use of loca difficult branch to cover, and nested to that branch there
search for test suite evolution is still an unexplored fielégre several others. Oncev&SUITE is able to generate a test
although promising (see for exampl&l], [13], [2€]). At any sequence that covers that difficult branch, this sequenteea
rate, although the single branch strategy is statistidadiifter extended (e.g., by adding function calls at its end) or abpie
on four SUTs and achieves an average coverag86ai’%, another test case in the test suite (e.g., through the ar@sso
even if EVOSUITE is statistically better on only one SUT,operator) to make it easier to cover the other nested branche

0+

.
|

amort]

- I
T

EE [

A 1 ; b
o ! O Evosuite O Evosuite| | © o
Y B Single msige | 1 [

T

°
T T T T T T T T T T T
coL coL cep cco CMA CcPR Gco ics ico 00 IGR an NXM NeS REG scs TRO XEN XOM P

L
®

00 02 04 06 08 10
®

Average Branch Coverage
0.0 02 0.4 06 08 10
Average Branch Coverage
Average Branch Coverage
Average Branch Coverage
0.0 02 04 06 08 10

Fig. 4. Average branch coverage: Even with an evolution limit of 1,000,000 statements, EVOSUITE achieves higher
coverage.

8 8
°

.,_m}l

!
-
|

°
8

Effect Size
L

Effect Size
L
L

Effec
L

]
8
8
o

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

}“44““44““

T T
coL coL cep cco CMA CcPR [ics ico 00 JGR an NXM NeS REG scs TRO XEN XOM 2P

Average Length
Average Length

Average Length
] 10 20 30 40 50 60
L
o
HE--

|L u. IB IE

o 10 20 30 40 50 60
L
]
I 1
-
[
|
|
Average Length

T T T T T T T T T T T T T
coL ceL cco cco cMA CPR JGR an NXM NCS REG scs TRO XEN XOM 2P

Fig. 6. Average test suite length: Even after minimization, EvVOSUITE test suites tend to be smaller than those created
with a single branch strategy (shown for cases with identical coverage).

L
©00m

-
Hill
+
m
[
B
e
|
i

|

f
;l .
f
f
f
f

Effect Si
00 02 04 06 08 10
Effect Si
00 02 04 06 08 10
Effect Si
00 02 04 06 08 10
L

Fig. 7. A, for test suite length: EVOSUITE has a low probability of generating longer test suites than a single branch
approach.

On the other hand, in the traditional approach of targetirfg3.1 Difficult Branches
one branch at a time, unless smart seeding strategies ate yssking at the results in Tabl2 we see that EOSUITE does
based on previously covered branches, the search to cayef achieve 100% coverage for all classes. To some extent,
nested branches would be harmed by the fact that coverigs is due to infeasible branches. Due to the large amount of
their difficult parent needs to be done from scratch again. classes empirically investigated in this paper, it is natsilole
Because our empirical analysis employs a very large casedistinguish between all infeasible and difficult brarshe
study (1,741 classes for a total of 85,503 byte-code levgy hand. However, identifying some of the difficult cases is
branches), we cannot analyze all of these branches to givehafpful to understand the results and guide future research
exact explanation for the better performance ofolSUITE. Not all infeasible branches are as obvious as the example in
However, the three possible explanations we gave are platdgure 1. Other examples of infeasible branches are given by
ble, although further analyses (e.g., on artificial sofevdrat private methods that are not called in any public method=sg de
we can generate with known number of infeasible branches)de, or methods of abstract classes that are overriddeh in a
would be required to shed light on this important resear@oncrete subclasses without calling the abstract supsscl
question. To this goal, we created an artificial problem to Some difficult branches we could identify are the following:
experiment with, whose analysis is discussed later in tpepa Environment dependencies such as databases or the

filesystem are not currently handled byw&SuiTE. Using :class Infeasible {

the custom security manager one can avoid that interaction¥0id infeasibleGoals(t x, int y) {

with the environment cause damage, but branches depending,if(x > 0 &&y > 0 && 2 x x == Math.sqrt(y)){
for example, on network connections or file contents usually }

cannot be covered. s [/l Infeasible branches are added here

Methods called by native code such asreadOhj ect ¢ }
andw it eObj ect of the JavaSeri al i zabl e interface *
cannot be directly called.

Anonymous and private classes are more difficult to Fig. 8. A simple example to demonstrate the effect of
cover than top level classes, as they can only be handietkasible coverage goals. In the default case, there are
indirectly via the owner classes’ public interface. An evethree predicates, leading to six (feasible) branches in the
more difficult variant of this problem are abstract clas$eg t compiled byte-code.
are only instantiated by anonymous classes — there is no way
to directly test the abstract class, except by creatingsstub

Multi-threaded code is also difficult for a search-based
approach, as the test generation would need to handle thread,, _
creation and termination. g

Static and private constructors are only executed once
after a class is loaded, and private constructors are ofted u g
in singleton instances where the constructor is again onB/ B --o T
called once. To achieve full coverage in such cases one wodld _ e
need to unload classes after each test executiogSEITE 3 I
uses a faster but less precise approach introduced in t§1eH i -7
JCrasher 15] tool, where static constructors are duplicated irg)
callable methods, and then re-executed before test erecuti § o -

—— EvoSuite
- Single

< -

asible Tar

0 20 40 60 80 100
5.4 Infeasible Test Goals Number of Infeasible Targets

A coverage goal is infeasible if there exists no test thatldiou
exercise it. For some simple cases, there could be tectmigqfiéd- 9. The effect of infeasible goals on the coverage of
that are able to |dent|fy infeasible targets; for exampmd} the feasible goaIS in the code: The number of unsatisfied
code detection might reveal some infeasible branches, s§&yerage goals rises with the number of infeasible test
as the one listed in Figuré. However, in general it is an goals in the single branch strategy, while EVOSUITE is not
undecidable problem whether a particular coverage goal iBfluenced at all by the infeasible goals.
program path is feasible2f] or if a mutant is equivalent.
Furthermore, a branch might be infeasible for other reasons]
(e.g., environmental dependencies), and applying tedesig infeasible branches. For each version of the example c_oele, W
to detect infeasible goals on several targets might havena grformed 100 runs of '0SUITE and 100 runs of the single
negligible computational overhead, which would reduce ttanch strategy with different random seeds and a seardh lim
time budget for test data generation (e.g., less genegation of 40,000 s.tatem_e'nts. Flgugar.npresswely.demo_nstrates how
an evolutionary algorithm). Depending on how effectivesthe EVQSUITE is oblivious to the m_troduced infeasible branches,
techniques are, their use might thus either increase or ey¥pile the performance of the single branch strategy degrade
decrease the overall performance of the testing tool. To give more soundness to this analysis, we also applied
When targeting each coverage goal individually, any re- Kruskal-Wallis test to verify the impact of the number of
sources invested for an infeasible goal are per definitiomfeasible targets on the number of missed (i.e., uncoyered
wasted. Depending on how the available resources are d&asible branches. For the single branch strategy, we rastai
tributed across the individual goals, the more infeasildalg a p-value lower thag.2 x 10716, with y? = 932.5. This gives
there are the fewer of the resources will be spent on tk&ong statistical evidence that confirms the trend in Fgur
feasible goals, thus leading to overall worse results. On the other hand, for ¥®OSUITE we obtained a very high
In contrast, EOSUITE does not focus on individual cover-p-value, i.e0.73, wherey? = 9.44. Notice that a high p-value
age goals, and so the infeasible goals have no effect on tlees not mean that we have strong statistical evidenceita cla
achieved coverage of the feasible goals. To demonstrage tthiat infeasible targets have no impact omdSuUITE. To make
effect, we ran a set of experiments on the example code lisghlyses as precise and sound as possible, one shouldfguanti
in Figure8. In the byte-code representation, this code contaitfse effect sizes and then use power analysis to calculate the
six feasible branches. At the position labelled in the seurprobability of Type Il error J]. However, the differences in
code we iteratively inserted infeasible branchieg((x * x coverage in Figur® look so small that, even if higher number
== vy x y + 2))and analyzed the behavior ofvBSUITE of runsmightdecrease the p-value of the test, then anyway the
and the single branch strategy over the number of insertaifferences would be so small to be of little practical ietr

5.5 Comparisons with Other Tools with EVOSUITE. There are however commercial tools that

In this paper, we have carried out a large empirical analyisisare likely to satisfy those constraints, as for example the
ones developed by companies such as Paraaofl Agitaf.

show that the FOSUITE strategy of evolving whole testsuitesU ; | : th il ls haverth
is generally better than the traditional approach of seagch nfortunately, comparisons with commercial tools havarthe

for only one target at the time. To provide further evidenc@VN set of challenges. For example, usually the details &f th

on the effectiveness of\BSUITE, and to get more insight on underlying technologies of commercial tools are not disetb

the dynamics of test data generation, it would be imporlrantThere_fore' it would be hard to understand why t_hey l_aehave n
compare its performance against other tool prototypes en tfi particular way on Some SUTS’ and so explaining differences
literature. Unfortunately, this was not possible. In trestion, N results would be infeasible.
we describe the challenges and shortcomings that would be
faced in tool comparisons. 6 CONVERGENCE
First, because our tool handles Java byte-code, we coddarch algorithms can be run for any arbitrary amount of
only compare it with others that handle languages also cofime (or fitness evaluations, depending on the chosen stgppi
piling to Java byte-code. For example, this precludes (ordtiterion). The more time it is allowed for the search, thtidre
makes them hard) comparisons with testing tools supportirgsults we would expect on average. If given enough time, wil
C (e.g., CUTE B9)) and C# (e.g., PEX4Z2). Similarly, tool a GA find an optimal solution? Or is there the possibility that
prototypes are often targeted for specific operating systerit will be stuck forever in a sub-optimal area of search sface
e.g., PEX 2] and Dsc p§] only work with Windows. The answer to these questions lies in th@vergencanalysis
Second, although there are popular testing tools for Java,ci search algorithms3fg).
for example Randoop3f], those do not address our testing Standard evolutionary algorithms using elitism are proven
problem (i.e., generating high coverage test suites that @ converge to optimal solutions3§. This means that, if
small, so non-automated oracles can be manually verified le§t running for an infinite time, they willalways find an
the software engineers). Third, some old tool prototypes asptimal solution. Formally, giverP,(i) the probability of
no longer supported, and can give problems when used firding an optimal solution within steps of the search, we
new versions of Java and/or SUTs with specific features, (e.gould havelim; .., P,(i) = 1. Convergence in infinite time
we did not manage to run JCUTE on several of the SUTs waight be of little practical interest, as it is not feasibte t
experimented with). Fourth, some tool prototypes are simptun a search algorithm for infinite time. Furthermore, given
not publicly available, and re-implementing them would bthe boundsV and L, an exhaustive enumeration of the entire
too time consuming and prone to errors and misunderstandig®arch space would also find an optimal solution in finite time
in the implementation. However, there is a major motivation for proving convergenc
Another important point is that many testing tools are onl€onvergence should be a pre-requisite of any algorithm — if
semi-automatic and, for example, require the user to vgitiran algorithm does not guarantee an optimal solution even if
drivers and ad hoc generators for specific type of objects Thun for infinite time, then its use is questionable.
is a kind of problem we faced when we tried to compare To use search algorithms for testing object-oriented soft-
EvoSuITE with tools such as JPF4§] and TestFul 13], ware, new search operators are often designed in the litefat
and which makes large empirical studies difficult. Anothdsecause the standard ones based on bit-strings cannotdbe use
problem for empirical studies on testing is that the toolsche (e.g., §3]). But once non-standard operators are used, the
to guarantee that the test code does not break anythingbg.g.theoretical results coming from the literature of evolotoy
running it in a sandbox like ¥ SuITE- this is usually not the computation cannot be applied. If new search operators are
case (e.g. the Randoop documentdtistates: “WARNING: designed, it is hence important to prove the convergence of
Testing code that modifies your file system might result ithe resulting new algorithms, and we do that for the GA we
Randoop generating tests that modify your file system! Rese in this paper (the results can be directly extended thell
careful when choosing classes and methods to test”.). other search algorithms that use the same mutation operator
Often research prototypes have known limitations. Falescribed in SectioB.5.2). To the best of our knowledge, this
example, Dsc 18] clearly indicates in its documentatibn is the first time this type of theoretical results is provided
that it does not support floating-point numbers and has orilye problem of test data generation.
basic support for strings. Such limitations would put these Let us define the number of “iterations” of a search algo-
prototypes in disadvantage in tool comparisons, althotgh t rithm as the number of fithess evaluations that are computed
might feature novel algorithms that are very useful for ffmet (this is a typical procedure in the formal analysis of search
of program constructs (e.g., constraints on integer via®b algorithms). Theuntime R of a search algorithm is a random
that they can handle. variable describing the number of iterations it needs to éind
To the best of our knowledge, we have not found any otheptimal solution. Notice that the notatidn, (i) is equivalent to
test data generation tool in the literature that satisfieshal P(R < 4). Let us assume that, before a solution is evaluated,
above requirements and that we could use for comparisohés always mutated with an operatpr It does not matter if
other search operators are applied beforéas for example

1. http://randoop.googlecode.com/hg/doc/index.html, essed August
2011. 3. http://www.parasoft.com, accessed August 2011.
2. http://ranger.uta.edwsicsallner/dsc/index.html, accessed August 2011. 4. http://www.agitar.com, accessed August 2011.

a crossover). The best solution seen so far is always storett™!) x [[/2, 07 = (1 — g"Tt) x g"e(nT1)/2 (see Sec-

(i.e., elitism). Let us calld the class of algorithms for which tion 3.5.9. In fact we need the first insertion with probability

all the above conditions hold. Notice that the GA used in!, then second with probability®>, and so on until the last

this paper (depicted in Algorithni) belongs to the class one with probabilityo™. Then, for the(n, + 1)th test case,

A. The following lemma providesufficient conditions for we do not insert it with probability — o™ *1.

which a search algorithm itd converges. This lemma is a When we generate a new test case at random, each possible

simplification and adaptation of similar theoretical résuh test case in the chosen representation (Secti@h can be

the literature of search algorithm3q]. sampled with non-zero probability, although the samplisg i
Lemma 1: For the class of search algorithroé, if 1 is not uniform (Sectior3.5.3. Let © be the lowest probability

able to sample an optimal solution with probabilitylower for a test case to be sampled. BecawéeL and I,,,, are

bounded by a constant (i.e2,> ¢ for some constant), then finite, then(2 is a constant.

the search algorithms using converge, i.e.lim; ., P(R < In an optimal test suite of size,, there would be:, distinct

i) = 1, where P(R < 1) is the probability of finding an test cases. If any of these are equal, then the duplicatéd cou

optimal solution withini iterations. Furthermorey[R] < 1/c, be removed because they do not increase the coverage (in fact

i.e., the expected number of iterations is upper boundethdy the execution of test cases is independent, so none of them ca

constantl /c. have effects on the others). There can be several optintal tes

Proof: Because we are interested in the convergence fitites with sizen,, but, as a lower bound, we can consider

i — oo, we do not need to study the exact dynamics of tHest one. Because the order in which the test cases are sample

search algorithms. We just provide loose lower bounds to tifenot important, we can consider all theip! permutations.

effectiveness that are high enough to prove this theorem. Weerefore, sampling the right test cases has probabiliyeast

can focus only on the mutation operaterand in its ability ¥ = n,! x Q".

of sampling an optimal solution with probability > ¢. The Finally, we can prove that the probabilityof sampling an

process of sampling an optimal solution wjthat iteration; optimal solution is at leagt > ¢, wherec = p x ¢ x V. [J

can be described as a geometric distribution with parameteAlthough the conditions to apply Lemnizare very general,

greater or equa| than (See [|_6]) Therefore: and proving whether they hold is rather straightforwarce (se
‘ the proof of Propositionl), for many mutation operators
Zlggc PR <i) > ilirgl —(1—-¢=1. proposed in the software testing literature (e.d3)) it does

not seem that Lemma s applicable. However, Lemnihis a
The expected valueZ' of a geometric distribution with sufficient condition, and so it might not be necessary. Ireoth
parametep is equal tol /p (see [L6]). Therefore, B[R] < 1/c. words, it could well be that all the techniques that have been
Because the algorithms A always store the best solutionproposed so far in the literature do converge, even if Lerima
seen so far, the convergence is hence proven. LI does not apply to them. However, if a technique does not
To prove that our GA converges, it is sufficient to prove thafonverge, there might be cases for which it might never find a
our mutation operator described in Sect®B.2is always able solution even if left running for infinite time. Without a fioil
to sample an optimal solution with probability lower bouddeproof that is valid for all software (as for example Lemfait
by a constant. would not be possible to know beforehand whether a technique
Proposition 1: The mutation operator described in Sectiowould converge on any particular addressed problem instanc
3.5.2is able to sample an optimal soluti@y with probability
p > ¢, for some constant, when applied to any test suie 7 THREATS TO VALIDITY
whose number of test cases and their length is boundéd inThe focus of this paper is on comparing the approach “entire
and L, respectively. test suite” to “one target at the time”.

Proof: To prove this proposition, we do not need to Threats toconstruct validityare on how the performance of
provide tight bounds (i.e., the highest possible constant a testing technique is defined. We gave priority to the aeiiev
Very loose bounds will be sufficient. It will be enough tacoverage, with the secondary goal of minimizing the length.
prove that with constant probability we can remove and adthis yields two problems: (1) in practical contexts, we ntigh
any number of test cases i not want a much larger test suite if the achieved coverage is

An optimal solutionT;, is composed ofi, < N test cases, only slightly higher, and (2) this performance measure chags
each one with length up th. With probability that is at least take into account how difficult it will be to manually evaleat
(1/N)N, all the test cases are mutated. With probability3)- the test cases for writing assert statements (i.e., chgdkie
(2/3)?, only the remove operation is applied on a test casgorrectness of the outputs).

With probability at least(1/L)~, all the statements in a test Threats tointernal validity might come from how the
case are removed. Therefore, all the test cases are remayegirical study was carried out. To reduce the probability o

with probability at least having faults in our testing framework, it has been cargfull
192 1 \N tested. But it is well known that testing alone cannot prove
p= (N§ﬁ) . the absence of defects. Furthermore, randomized alga@ithm

are affected by chance. To cope with this problem, we ran
After removing all the test cases i, exactly n, new each experimer0 times, and we followed rigorous statistical
random test cases will be added with probability= (1 — procedures to evaluate their results.

Another possible threat to internal validity is that we dido procedural software as well, although further reseasch i
not study the effect of the different configurations for theeeded to assess the potential benefits in such a context.
employed GA. In this paper we claim thatv&SUITE is The approach presented in this paper aims at producing
superior to the common approach of focusing on only orsmnall test suites with high coverage, such that the develope
target at the time. However, in theory it might be possibkt thcan add test oracles in terms of assertions. Although kgepin
there exist parameter settings for which the one targeteat tihe test suites small is helpful in this respect, the oraohdp
time approach is better than any configuration @OBUITE. lem is still very difficult. In this respect, we are investiiga
To shed light on this possible issue, we would need to canyays to support the developer by automatically producing
out large tuning phases on both the two approaches. Howewffective R1] assertions, and to ease understanding we try to
as already explained earlier in the paper, we preferred ¢o umake the produced test cases more readdtile [
the computational time of the experiments to have a muchTo learn more about ¥ SUITE, visit our Web site:
larger case study rather than applying tuning phases.

Although we used both open source projects and industrial
software as case studies, there is the threakternal validity Acknowledgments. We thank Valentin Dallmeier, Yana Mil-
regarding the generalization to other types of softwardéciwh eva, Andrzej Wasylkowski and Andreas Zeller for comments
is common for any empirical analysis. Furthermore, we evalon earlier versions of this paper. This work is funded by a
ated the optimization of entire test suites against goinggith Google Focused Research Award on “Test Amplification” and
testing target individually only by using a GA. The supeitior the Norwegian Research Council.
of an EvOoSuITE-like approach might not hold when other
testm_g techniques are employed (e.g., other types of BeaﬁEFERENCES
algorithms such as Simulated Annealing).

Our EvOSUITE prototype might not be superior to allll]l S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege, Ystem-
existing testing to0ls; this, however, is ot our claim: We 21 TS of e spplcaton and emprical miesigaich sarch.
have shown that whole test suite generation is superior t0 a (TSE) vol. 36, no. 6, pp. 742-762, 2010.
traditional strategy targeting one test goal at a time. &dlyi [2] M. Alshraideh and L. Bottaci, “Search-based softwarst @ata gener-
this insight can be used to improve any existing testing %1% 0 £ catz s program specc searc opebe-cart
tool, independent of the underlying test criterion (e.ganch pp. 175-203, 2006.
coverage, mutation testing, ...) or test generation teglni [3] L. Araujo and J. Merelo, “Diversity through multicultuiy: Assessing
(e.g., search algorithm), although such a generalizatiathter migrant choice policies in an island modeEVolutionary Computation,

; - . IEEE Transactions onno. 99, pp. 1-14, 2011.

techniques will of course need further evidence. [4] A. Arcuri, “It really does matter how you normalize the bedndistance
in search-based software testingbftware Testing, Verification and
Reliability (STVR) 2011, http://dx.doi.org/10.1002/stvr.457.

8 CONCLUSIONS [5] ——, “A theoretical and empirical analysis of the role otesequence
length in software testing for structural coveragsEE Transactions

Coverage criteria are a standard technique to automate test on Software Engineering (TSE)011.

generation. In this paper, we have shown that optimizingleshd®l A. Arcuri and L. Briand, "Adaptive random testing: An uision of
effectiveness?” iMCM Int. Symposium on Software Testing and Analysis

test suites towards a coverage criterion is superior to the (gsTa)2011.
traditional approach of targeting one coverage goal at a.tinf7] ——, “A practical guide for using statistical tests to ass random-

In our experiments, this results in significantly better ralle ized algorithms in software gngin_eering,” ARCM/IEEE International
P ith I . 9 y Conference on Software Engineering (ICS#)11, pp. 1-10.
coverage with smaller test suites. o [8] A. Arcuri and G. Fraser, “On parameter tuning in searcheblasoftware
While we have focused on branch coverage in this paper, the engineering,” ininternational Symposium on Search Based Software

findings also carry over to other test criteria. Conseqyetité Engineering (SSBSE2011, pp. 33-47.
9 y que [9] A. Arcuri, M. Z. Igbal, and L. Briand, “Black-box systenesting of

ability tO.aVOiq b.eing misled bY infeaSible.teS_t goals catphe real-time embedded systems using random and search-based, test
overcoming similar problems in other criteria, for example IFIP International Conference on Testing Software and @yst(ICTSS)

http://www.evosuite.org

the equivalent mutant problem in mutation testigg][2010, pp. 95-110. . o
. . [10] ——, “Random testing: Theoretical results and pradtiogplications,”
Even though the results achieved witiv@&UITE already IEEE Transactions on Software Engineering (TSE&). 38, no. 2, pp.

demonstrate that whole test suite generation is superior to 258-277, 2012.

single target test generation, there is ample opporturat [£1] A Arguri and X. Yao_, “Searph based software testing bjeat-oriented
f '[%1 . 9 gE SUITE tot = P ppl th Y containers,” Information Sciencesvol. 178, no. 15, pp. 3075-3095,
urther improve our KOSU prototype. For example, there 2008.

is potential in combining search-based test generatioh witl2] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn;TBnella,

dynamic symbolic execution (e_g_lz] [33]) and search and T. Vos, “Symbolic search-based testing,IHEE/ACM Int. Confer-
' . ence on Automated Software Engineering (AZB)L1.

optimizations such as testgbility transformat_icﬁtl][or local [13] L. Baresi, P. L. Lanzi, and M. Miraz, “Testful: an evoiomary test
search 6] should further improve the achieved coverage. approach for java,” inlEEE International Conference on Software

Furthermore, there are general enhancements in the literat__ Testing, Verification and Validation (ICST2010, pp. 185-194.
. . 14] B. Baudry, F. Fleurey, J.-M.&¥equel, and Y. Le Traon, “Automatic test
of search algorithms that we could integrate and evaluate'in’ _,qos optimization: a bacteriologic algorithtEEE Software vol. 22,
EVOSUITE, as for example island models (e.g., see the recent no. 2, pp. 76-82, Mar. 2005.
[3]) and adaptive parameter contrd!2|. [15] C. Csallner and Y. Smaragdakis, “JCrasher: an automatitistness
. . . tester for Java,Softw. Pract. Expervol. 34, pp. 1025-1050, 2004.
In our empirical study, we targeted object-oriented sofewa 16] W. Feller, An Introduction to Probability Theory and Its Applicatigns

However, the EOSUITE approach could be easily applie Vol. 1, 3rd ed. Wiley, 1968.

http://www.evosuite.org

[17]

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

G. Fraser and A. Arcuri, “Evolutionary generation of ol test suites,”
in International Conference On Quality Software (QSIQ)s Alamitos,
CA, USA: IEEE Computer Society, 2011, pp. 31-40.

——, “Evosuite: Automatic test suite generation for attjeriented soft-

ware.” in ACM Symposium on the Foundations of Software Engineerifg2]

(FSE) 2011, pp. 416-419.

——, "It is not the length that matters, it is how you contig” in
IEEE International Conference on Software Testing, Veaiiim and
Validation (ICST) 2011, pp. 150 — 159.

G. Fraser and A. Zeller, “Exploiting common object usage tést
case generation,” inCST'11: Proceedings of the 4th International
Conference on Software Testing, Verification and Validatio IEEE
Computer Society, 2011, pp. 80—89.

——, “Mutation-driven generation of unit tests and des;” |IEEE
Transactions on Software Engineerjingl. 99, no. PrePrints, 2011.
P. Godefroid, N. Klarlund, and K. Sen, “DART: directeditamated

random testing,” ifPLDI'05: Proceedings of the 2005 ACM SIGPLANI[46]

Conference on Programming Language Design and Implementat
ACM, 2005, pp. 213-223.

A. Goldberg, T. C. Wang, and D. Zimmerman, “Applicationsfeésible
path analysis to program testing,” Il6STA'94: Proceedings of the
1994 ACM SIGSOFT International Symposium on Softwarenteaid
Analysis ACM, 1994, pp. 80-94.

M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, AeBal, and (48]

M. Roper, “Testability transformationJEEE Transactions on Software
Engineering vol. 30, no. 1, pp. 3-16, 2004.

M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo.,[49]

“Optimizing for the number of tests generated in search basst t
data generation with an application to the oracle cost pralil in
International Workshop on Search-Based Software Tes8B$() 2010.
M. Harman and P. McMinn., “A theoretical and empiricaldjof search
based testing: Local, global and hybrid seardBEE Transactions on
Software Engineering (TSE)ol. 36, no. 2, pp. 226-247, 2010.

K. Inkumsah and T. Xie, “Improving structural testing diject-oriented
programs via integrating evolutionary testing and symbakecetion,”
in ASE’08: Proc. of the 23rd IEEE/ACM Int. Conference on Auttada
Software Engineering2008, pp. 297-306.

M. Islam and C. Csallner, “Dsc+mock: A test case + mock <la:
generator in support of coding against interfaces,” liternational
Workshop on Dynamic Analysis (WODA&P10, pp. 26-31.

Y. Jia and M. Harman, “An analysis and survey of the depeient of
mutation testing,” CREST Centre, King's College London, don, UK,
Technical Report TR-09-06, September 2009.

B. Korel, “Automated software test data generatidBEE Transactions
on Software Engineeringp. 870-879, 1990.

F. Lammermann, A. Baresel, and J. Wegener, “Evaluatindugeoary
testability for structure-oriented testing with softwareasurements,”

(43]

[44]

[45]

[47]

(50]

(51]

I52]

[41] S. Silva and E. Costa, “Dynamic limits for bloat control genetic

programming and a review of past and current bloat theor{@srietic
Programming and Evolvable Machinesol. 10, no. 2, pp. 141-179,
2009.

N. Tillmann and J. N. de Halleux, “Pex — white box test gextion
for .NET,” in TAP'08: International Conference on Tests And Proofs
ser. LNCS, vol. 4966. Springer, 2008, pp. 134 — 253.

P. Tonella, “Evolutionary testing of classes,”ACM Int. Symposium on
Software Testing and Analysis (ISSTAQ04, pp. 119-128.

A. Vargha and H. D. Delaney, “A critique and improvementtio¢ CL
common language effect size statistics of McGraw and Wodgyjinal
of Educational and Behavioral Statistjcgol. 25, no. 2, pp. 101-132,
2000.

W. Visser, C. S. Pasareanu, and S. Khurshid, “Test Ir(peiheration
with Java PathFinder,” ilCM Int. Symposium on Software Testing and
Analysis (ISSTA)2004, pp. 97-107.

S. Wappler and I. Schieferdecker, “Improving evolution class testing
in the presence of non-public methods,”IBEE/ACM Int. Conference
on Automated Software Engineering (ASE)07, pp. 381-384.

S. Wappler and F. Lammermann, “Using evolutionary algons for the
unit testing of object-oriented software,” GBECCQO’05: Proceedings of
the 2005 Conference on Genetic and Evolutionary Computatid@CM,
2005, pp. 1053-1060.

J. Wegener, A. Baresel, and H. Sthamer, “Evolutionasy éavironment
for automatic structural testinglhformation and Software Technolagy
vol. 43, no. 14, pp. 841-854, 2001.

D. Whitley, “The genitor algorithm and selective pressuwWhy rank-
based allocation of reproductive trials is best,” Rmoceedings of the
Third International Conference on Genetic Algorithms (IK£89), 1989,
pp. 116-121.

N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawlautomatic
generation of path tests by combining static and dynamic aisglyin
EDCC'05: Proceedings ot the 5th European Dependable Coimgut
Conferenceser. LNCS, vol. 3463. Springer, 2005, pp. 281-292.

T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: flamework
for generating object-oriented unit tests using symboliecetion,” in
TACAS'05: 11th International Conference on Tools and Aithans for
the Construction and Analysis of Systen®&pringer, 2005, pp. 365-381.
S. Zhang, D. Saff, Y. Bu, and M. Ernst, “Combined staticl atynamic
automated test generation,” ACM Int. Symposium on Software Testing
and Analysis (ISSTARO11.

Applied Soft Computingvol. 8, no. 2, pp. 1018-1028, 2008.

F. Lobo, C. Lima, and Z. MichalewicBarameter setting in evolutionary
algorithms Springer Verlag, 2007, vol. 54.

J. Malburg and G. Fraser, “Combining search-based anttraint-
based testing,” inEEE/ACM Int. Conference on Automated Software
Engineering (ASE)2011.

P. McMinn, “Search-based software test data generatfo survey,”
Software Testing, Verification and Reliabilityol. 14, no. 2, pp. 105—
156, 2004.

W. Miller and D. L. Spooner, “Automatic generation of ftoay-point

Gordon Fraser is a post-doc researcher at
Saarland University. He received a PhD in com-
puter science from Graz University of Technol-
ogy, Austria, in 2007, and his research concerns
the prevention, detection, and removal of defects
in software. He develops techniques to generate
test cases automatically, and to guide the tester
in validating the output of tests by producing test
oracles and specifications.

PLACE
PHOTO
HERE

test data,"IEEE Transactions on Software Engineeringl. 2, no. 3,
pp. 223-226, 1976.

C. Pacheco and M. D. Ernst, “Randoop: feedback-dicecamdom test-
ing for Java,” inOOPSLA'07: Companion to the 22nd ACM SIGPLAN
Conference on Object-oriented Programming Systems andicagpn.
ACM, 2007, pp. 815-816.

J. C. B. Ribeiro, “Search-based test case generatian ofgject-
oriented Java software using strongly-typed genetic @mgning,” in
GECCOQ'08: Proceedings of the 2008 GECCO conference coropani
on Genetic and evolutionary computatioMCM, 2008, pp. 1819-1822.
G. Rudolph, “Convergence analysis of canonical genatgorithms,”
IEEE transactions on Neural Networksol. 5, no. 1, pp. 96-101, 1994.
K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unitstieg
engine for C,” INESEC/FSE-13: Proc. of the 10th European Software
Engineering Conf. held jointly with 13th ACM SIGSOFT Intrppsium
on Foundations of Software EngineeringACM, 2005, pp. 263-272.

Andrea Arcuri received a BSc and a MSc de-
gree in computer science from the University
of Pisa, ltaly, in 2004 and 2006, respectively.
He received a PhD in computer science from
the University of Birmingham, England, in 2009.
Since then, he has been a research scientist
at Simula Research Laboratory, Norway. His re-
search interests include search based software
testing and analyses of randomized algorithms.

PLACE
PHOTO
HERE

R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Mamnn “Testing
container classes: Random or systematic?Fumdamental Approaches
to Software Engineering (FASE2011.

	1 Introduction
	2 Background
	3 Test Suite Optimization
	3.1 Genetic Algorithms
	3.2 Problem Representation
	3.3 Fitness Function
	3.4 Bloat Control
	3.5 Search Operators
	3.5.1 Crossover
	3.5.2 Mutation
	3.5.3 Random Test Cases

	4 The EvoSuite Tool
	4.1 Single Branch Strategy

	5 Experiments
	5.1 Case Study Subjects
	5.2 Experimental Setup
	5.3 Results
	5.3.1 Difficult Branches

	5.4 Infeasible Test Goals
	5.5 Comparisons with Other Tools

	6 Convergence
	7 Threats to Validity
	8 Conclusions
	References
	Biographies
	Gordon Fraser
	Andrea Arcuri

