
Whole Test Suite Generation
Gordon Fraser, Member, IEEE and Andrea Arcuri, Member, IEEE.

✦

Abstract—Not all bugs lead to program crashes, and not always is
there a formal specification to check the correctness of a software test’s
outcome. A common scenario in software testing is therefore that test
data is generated, and a tester manually adds test oracles. As this
is a difficult task, it is important to produce small yet representative
test sets, and this representativeness is typically measured using code
coverage. There is, however, a fundamental problem with the common
approach of targeting one coverage goal at a time: Coverage goals
are not independent, not equally difficult, and sometimes infeasible –
the result of test generation is therefore dependent on the order of
coverage goals and how many of them are feasible. To overcome this
problem, we propose a novel paradigm in which whole test suites are
evolved with the aim of covering all coverage goals at the same time,
while keeping the total size as small as possible. This approach has
several advantages, as for example its effectiveness is not affected by
the number of infeasible targets in the code. We have implemented this
novel approach in the EVOSUITE tool, and compared it to the common
approach of addressing one goal at a time. Evaluated on open source
libraries and an industrial case study for a total of 1,741 classes, we
show that EVOSUITE achieved up to 188 times the branch coverage of
a traditional approach targeting single branches, with up to 62% smaller
test suites.

Index Terms—Search based software engineering, length, branch cov-
erage, genetic algorithm, infeasible goal, collateral coverage

1 INTRODUCTION

I T is widely recognized that software testing is an essential
component of any successful software development process.

A software test consists of an input that executes the program
and a definition of the expected outcome. Many techniques
to automatically produce inputs have been proposed over the
years, and today are able to produce test suites with high code
coverage. Yet, the problem of the expected outcome persists,
and has become known as theoracle problem. Sometimes,
essential properties of programs are formally specified, orhave
to hold universally such that no explicit oracles need to be
defined (e.g., programs should normally not crash). However,
in the general case one cannot assume the availability of an
automated oracle. This means that, if we produce test inputs,
then a human tester needs to specify the oracle in terms of
the expected outcome. To make this feasible, test generation
needs to aim not only at high code coverage, but also at small
test suites that make oracle generation as easy as possible.

• Gordon Fraser is with Saarland University – Computer Science,
Saarbr̈ucken, Germany, email: fraser@cs.uni-saarland.de. Andrea Arcuri
is with the Certus Software V&V Center at Simula Research Laboratory,
P.O. Box 134, Lysaker, Norway, email: arcuri@simula.no

1public class Stack{
2 int [] values =new int[3];
3 int size = 0;

4 void push(int x) {
5 if (size>= values.length) ⇐ Requires a full stack

6 resize() ;
7 if (size< values.length) ⇐ Else branch is infeasible

8 values[size++] = x;
9 }

10 int pop() {
11 if (size> 0)⇐ May imply coverage inpushand resize

12 return values[size−−];
13 else
14 throw new EmptyStackException();
15 }

16 private void resize(){
17 int [] tmp = new int[values.length∗ 2];
18 for(int i = 0; i < values.length; i++)
19 tmp[i] = values[i];
20 values = tmp;
21 }
22}

Fig. 1. Example stack implementation: Some branches
are more difficult to cover than others, some lead to
coverage of further branches, and some can be infeasible.

A common approach in the literature is to generate a
test case for each coverage goal (e.g., branches in branch
coverage), and then to combine them in a single test suite (e.g.,
see [43]). However, the size of a resulting test suite is difficult
to predict, as a test case generated for one goal may implicitly
also cover any number of further coverage goals. This is
usually called collateral or serendipitous coverage (e.g., [25]).
For example, consider the stack implementation in Figure1:
Covering the true branch in Line11 is necessarily preceded
by the true branch in Line7, and may or may not also be
preceded by the true branch in Line5. In fact, the order
in which each goal is select can thus play a major role, as
there can be dependencies among goals. Although there have
been attempts to exploit collateral coverage to optimize test
generation (e.g., [25]), to the best of our knowledge there is
no conclusive evaluation in the literature of their effectiveness.

Stack stack0 =new Stack();
try {

stack0.pop();
} catch(EmptyStackException e){
}

Stack stack0 =new Stack();
int int0 = −510;
stack0.push(int0);
stack0.push(int0);
stack0.push(int0);
stack0.push(int0);
stack0.pop();

Fig. 2. Test suite consisting of two tests, produced by
EVOSUITE for the Stack class shown in Figure 1: All
feasible branches are covered.

There are further issues to the approach of targeting one
test goal at a time: Some targets are more difficult to cover
than others. For example, covering the true branch in Line5
of the stack example is more difficult than covering the false
branch of the same line, as the true branch requires aStack
object which has filled its internal array. Furthermore, coverage
goals can beinfeasible, such that there exists no input that
would cover them. For example, in Figure1 the false branch
of the if condition in Line 7 is infeasible. Even if this
particular infeasible branch may be easy to detect this is not
true in general (it is, in fact, an undecidable problem [23]),
and thus targeting infeasible goals will per definition failand
the effort would be wasted. This leads to the question of how
to properly allocate how much of the testing budget (e.g., the
maximum total time allowed for testing by the user) is used
for each target, and how to redistribute such budget to other
uncovered targets when the current target is covered beforeits
budget is fully consumed. Although in the literature there has
been preliminary work based on software metrics to predict
the difficulty of coverage goals in procedural code [31], its
evaluation and usefulness on object-oriented software is still
an open research question.

In this paper we evaluate a novel approach for test data
generation, which we callwhole test suite generation, that
improves upon the current approach of targeting one goal at a
time. We use an evolutionary technique [1], [34] in which,
instead of evolving each test case individually, we evolve
all the test cases in a test suite at the same time, and the
fitness function considers all the testing goals simultaneously.
The technique starts with an initial population of randomly
generated test suites, and then uses a Genetic Algorithm to
optimize towards satisfying a chosen coverage criterion, while
using the test suite size as a secondary objective. At the end,
the best resulting test suite is minimized, giving us a test
suite as shown in Figure2 for the Stack example from
Figure 1. With such an approach, most of the complications
and downsides of the one target at a time approach either
disappear or become significantly reduced. The technique is
implemented as part of our testing tool EVOSUITE [18], which
is freely available online.

This novel approach was first described in [17], and this
paper extends that work in several directions, by for example
using a much larger and variegated case study, verifying that
the presence of infeasible branches has no negative impact
on performance, and by providing theoretical analyses to shed
more lights on the properties of the proposed approach. In
particular, we demonstrate the effectiveness of EVOSUITE

by applying it to 1,741 classes coming from open source
libraries and an industrial case study (Section5); to the best
of our knowledge, this is the largest evaluation of search-
based testing of object-oriented software to date. Becauseto
effectively address the problem of test suite generation wehad
to develop specialized search operators, there would be no
guarantee on theconvergenceproperty of the resulting search
algorithm. To cope with this problem, we formally prove the
convergence of our proposed technique.

The results of our experiments show strong statistical evi-
dence that the EVOSUITE approach yields significantly better
results (i.e., either higher coverage or, if same coverage,then
smaller test suites) compared to the traditional approach of
targeting each testing goal independently. In some cases, EVO-
SUITE achieved up to 188 times higher coverage on average,
and test suites that were 62% smaller while maintaining the
same structural coverage. Furthermore, running EVOSUITE

with a constrained budget (one million statement executions
during the search, up to a maximum 10 minutes timeout)
resulted in an impressive 83% of coverage on average on our
case study.

The paper is organized as follows. Section2 provides back-
ground information. The novel approach of evolving whole
test suites is described in Section3, and the details of our
EVOSUITE tool follow in Section4. The empirical study we
conducted to validate our approach is presented and discussed
in Section5. Convergence is formally proven in Section6.
Threats to validity of our study are analyzed in Section7, and
finally, Section8 concludes the paper.

2 BACKGROUND

Coverage criteria are commonly used to guide test generation.
A coverage criterion represents a finite set of coverage goals,
and a common approach is to target one such goal at a time,
generating test inputs either symbolically or with a search-
based approach. The predominant criterion in the literature
is branch coverage, but in principle any other coverage cri-
terion or related techniques such as mutation testing [29] are
amenable to automated test generation.

Solving path constraints generated with symbolic execution
is a popular approach to generate test data [50] or unit
tests [51], and dynamic symbolic execution as an extension
can overcome a number of problems by combining concrete
executions with symbolic execution (e.g., [22], [39]). This
idea has been implemented in tools like DART [22] and
CUTE [39], and is also applied in Microsoft’s parametrized
unit testing tool PEX [42] or in the Dsc [28] tool.

Meta-heuristic search techniques have been used as an
alternative to symbolic execution based approaches (see [1],
[34] for surveys on this topic). The application of search for
test data generation can be traced as back to the 70s [35],
where the key concepts ofbranch distance[30] and approach
level [48] were introduced to help search techniques in gen-
erating the right test data. A promising avenue also seems
to be the combination of evolutionary methods with dynamic
symbolic execution (e.g., [12], [27], [33]), alleviating some of
the problems both approaches have.

Search-based techniques have also been applied to test
object-oriented software using method sequences [21], [43]
or strongly typed genetic programming [37], [47]. When
generating test cases for object-oriented software, sincethe
early work of Tonella [43], authors have tried to deal with the
problem of handling the length of the test sequences, for ex-
ample by penalizing the length directly in the fitness function.
However, longer test sequences can lead to achieve higher code
coverage [5], yet properly handling their growth/reduction
during the search requires special care [19].

Most approaches described in the literature aim to generate
test suites that achieve as high as possible branch coverage.
In principle, any other coverage criterion is amenable to
automated test generation. For example, mutation testing [29]
is often considered a worthwhile test goal, and has been used
in a search-based test generation environment [21]. When test
cases are sought for individual targets in such coverage based
approaches, it is important to keep track of the accidental
collateral coverage of the remaining targets. Otherwise, it has
been proven that random testing would fare better under some
scalability models [10]. Recently, Harman et al. [25] proposed
a search-based multi-objective approach in which, although
each goal is still targeted individually, there is the secondary
objective of maximizing the number of collateral targets that
are accidentally covered. However, no particular heuristic is
used to help covering these other targets.

All approaches mentioned so far target a single test goal
at a time – this is the predominant method. There are some
notable exceptions in search-based software testing. The works
of Arcuri and Yao [11] and Baresi et al. [13] use a single
sequence of function calls to maximize the number of covered
branches while minimizing the length of such a test case. A
drawback of such an approach is that there can be conflicting
testing goals, and it might be impossible to cover all of them
with a single test sequence regardless of its length.

Regarding the optimization of an entire test suite in which
all test cases are considered at the same time, we are aware of
only the work of Baudry et al. [14]. In that work, test suites
are optimized with a search algorithm with respect to mutation
analysis. However, in that work there is the strong limitation
of having to manually choose and fix the length of the test
cases, which does not change during the search.

In the literature of testing object-oriented software, there are
also techniques that do not directly aim at code coverage, asfor
example implemented in the Randoop [36] tool. In that work,
sequences of function calls are generated incrementally using
an extension of random testing (for details, see [36]), and the
goal is to find test sequences for which the system under test
(SUT) fails. This, however, is feasible if and only if automated
oracles are available. Once a sequence of function calls is
found for which at least one automated oracle is not passed,
that sequence can be reduced to remove all the unnecessary
function calls to trigger the failure. The software tester would
usually get as output only the test cases for which failures are
triggered. Notice that achieving higher coverage likely leads
to higher probability of finding faults, and so recent extensions
such as Palus [52] aim to achieve this.

Although targeting for path coverage, tools like DART [22]

or CUTE [39] have a similar objective, assuming the avail-
ability of an automated oracle (e.g., does the SUT crash?) to
check the generated test cases. This step is essential because,
apart from trivial cases, the test suites generated following a
path coverage criterion would be far too large to be manually
evaluated by software testers in real industrial contexts.

The testing problem we address in this paper is very
different from the one considered by tools such as Randoop,
DART, or CUTE: Our goal is to target difficult faults for which
automated oracles are not available – which is a common
situation in practice. Because in these cases the outputs of
the test cases have to be verified manually, the generated test
suites need to be of manageable size. There are two contrasting
objectives: the “quality” of the test suite (e.g., measuredin its
ability to trigger failures once manual oracles are provided)
and its size. The approach we follow in this paper can be
summarized as: Satisfy the chosen coverage criterion (e.g.,
branch coverage) with the smallest possible test suite.

3 TEST SUITE OPTIMIZATION

To evolve test suites that optimize the chosen coverage crite-
rion, we use a search algorithm, namely a Genetic Algorithm
(GA), that is applied on a population of test suites. In this sec-
tion, we describe the applied GA, the representation, genetic
operations, and the fitness function.

3.1 Genetic Algorithms

Genetic Algorithms (GAs) qualify as meta-heuristic search
technique and attempt to imitate the mechanisms of natural
adaptation in computer systems. A population of chromosomes
is evolved using genetics-inspired operations, where each
chromosome represents a possible problem solution.

The GA employed in this paper is depicted in Algorithm1:
Starting with a random population, evolution is performed un-
til a solution is found that fulfills the coverage criterion,or the
allocated resources (e.g., time, number of fitness evaluations)
have been used up. In each iteration of the evolution, a new
generation is created and initialized with the best individuals
of the last generation (elitism). Then, the new generation is
filled up with individuals produced by rank selection (Line5),
crossover (Line7), and mutation (Line10). Either the offspring
or the parents are added to the new generation, depending on
fitness and length constraints (see Section3.4).

3.2 Problem Representation

To apply search algorithms to solve an engineering problem,
the first step is to define a representation of the valid solutions
for that problem. In our case, a solution is atest suite, which
is represented as a setT of test casesti. Given |T | = n, we
haveT = {t1,t2, . . . ,tn}.

In a unit testing scenario, a test caset essentially is a
program that executes the SUT. Consequently, a test case
requires a reasonable subset of the target language (e.g., Java
in our case) that allows one to encode optimal solutions for
the addressed problem. In this paper, we use a test case
representation similar to what has been used previously [21],
[43]: A test case is a sequence of statementst = 〈s1,s2, . . . ,sl〉

Algorithm 1 The genetic algorithm applied in EVOSUITE

1 current population← generate random population
2 repeat
3 Z ← elite of current population
4 while |Z| 6= |current population| do
5 P1,P2 ← select two parents with rank selection
6 if crossover probabilitythen
7 O1,O2 ← crossoverP1,P2

8 else
9 O1,O2 ← P1,P2

10 mutateO1 andO2

11 fP = min(fitness(P1),fitness(P2))
12 fO = min(fitness(O1),fitness(O2))
13 lP = length(P1) + length(P2)
14 lO = length(O1) + length(O2)
15 TB = best individual ofcurrent population
16 if fO < fP ∨ (fO = fP ∧ lO ≤ lP) then
17 for O in {O1,O2} do
18 if length(O) ≤ 2× length(TB) then
19 Z ← Z ∪ {O}
20 else
21 Z ← Z ∪ {P1 or P2}
22 else
23 Z ← Z ∪ {P1,P2}
24 current population← Z
25 until solution found or maximum resources spent

of length l. The length of a test suite is defined as the sum of
the lengths of its test cases, i.e.,length(T) =

∑

t∈T lt. Note,
that in this paper we only consider the problem of deriving
test inputs. In practice, a test case usually also contains atest
oracle, e.g., in terms of test assertions; the problem of deriving
such oracles is addressed elsewhere (e.g., [21].

Each statement in a test case represents one valuev(si),
which has a typeτ(v(si)) ∈ T , whereT is the finite set of
types. We define five different kinds of statements:

Primitive statements represent numeric, Boolean, String,
and enumeration variables, as for exampleint var0 = 54.
Furthermore, primitive statements can also define arrays ofany
type (e.g.,Object[] var1 = new Object[10]). The
value and type of the statement are defined by the primitive
variable. In addition, an array definition also implicitly defines
a set of values of the component type of the array, according
to the length of the array.

Constructor statements generate new instances of any
given class; e.g.,Stack var2 = new Stack(). Value
and type of the statement are defined by the object constructed
in the call. Any parameters of the constructor call are assigned
values out of the set{v(sk) | 0 ≤ k < i}.

Field statements access public member variables of ob-
jects, e.g.,int var3 = var2.size. Value and type of
a field statement are defined by the member variable. If the
field is non-static, then the source object of the field has to be
in the set{v(sk) | 0 ≤ k < i}.

Method statements invoke methods on objects or call
static methods, e.g.,int var4 = var2.pop(). Again,
the source object or any of the parameters have to be values

in {v(sk) | 0 ≤ k < i}. Value and type of a method statement
are defined by its return value.

Assignment statements assign values to array indices or to
public member variables of objects, e.g.,var1[0] = new
Object() or var2.maxSize = 10. Assignment state-
ments do not define new values.

For a given SUT, thetest cluster[47] defines the set of
available classes, their public constructors, methods, and fields.

Note that the chosen representation hasvariable size. Not
only the numbern of test cases in a test suite can vary
during the GA search, but also the number of statementsl
in the test cases. The motivation for having a variable length
representation is that, for a new software to test, we do not
know its optimal number of test cases and their optimal length
a priori – this needs to be searched for.

The entire search space of test suites is composed of all
possible sets of sizes from1 to N (i.e., n ∈ [1,N]). Each
test case can have a size from1 to L (i.e., l ∈ [1,L]).
We need to have these constraints, because in the context
addressed in this paper we are not assuming the presence of
an automated oracle. Therefore, we cannot expect software
testers to manually check the outputs (i.e., writing assert
statements) of thousands of long test cases. For each position
in the sequence of statements of a test case, there can be from
Imin to Imax possible statements, depending on the SUT and
the position (later statements can reuse objects instantiated
in previous statements). The search space is hence extremely
large, although finite becauseN , L andImax are finite.

3.3 Fitness Function

In this paper, we focus onbranch coverageas test criterion,
although the EVOSUITE approach can be generalized to any
test criterion. A program contains control structures suchas
if or while statements guarded by logical predicates; branch
coverage requires that each of these predicates evaluates to true
and to false. A branch isinfeasibleif there exists no program
input that evaluates the predicate such that this particular
branch is executed.

Let B denote the set of branches of the SUT, two for
every control structure. For simplicity, we treat switch/case
constructs such that each case is treated like an individualif
condition with a true and false branch. A method without any
control structures consists of only one branch, and therefore
we require that each method in the set of methodsM is
executed at least once.

An optimal solutionTo is defined as a solution that covers
all the feasible branches/methods and it is minimal in the
total number of statements, i.e., no other test suite with the
same coverage should exist that has a lower total number of
statements in its test cases. Depending on the chosen test case
representation some branches might never be covered, even
though they are potentially reachable if the entire grammar
of the target language was used. As a very simple example,
if the chosen representation allows only to create instances
of the SUT and none of other classes, then it might not be
possible to reach the branches in the methods of the SUT that
take as input instances of other classes. Because without a

formal proof it is not possible to state that a representation is
fully adequate, for sake of simplicity we tag those branches
as infeasible for the given representation.

In order to guide the selection of parents for offspring
generation, we use a fitness function that rewards better cov-
erage. If two test suites have the same coverage, the selection
mechanism rewards the test suite with less statements, i.e., the
shorter one.

For a given test suiteT , the fitness value is measured by
executing all testst ∈ T and keeping track of the set of
executed methodsMT as well as the minimalbranch distance
dmin(b,T) for each branchb ∈ B. The branch distance is
a common heuristic to guide the search for input data to
solve the constraints in the logical predicates of the branches
[30], [34]. The branch distance for any given execution of a
predicate can be calculated by applying a recursively defined
set of rules (see [30], [34] for details). For example, for
predicatex ≥ 10 andx having the value5, the branch distance
to the true branch is10 − 5 + k, with k > 0. In practice, to
determine the branch distance each predicate of the SUT is
instrumented to keep track of the distances for each execution.

The fitness function estimates how close a test suite is to
coveringall branches of a program, therefore it is important to
consider that each predicate has to be executed at least twice
so that each branch can be taken. Consequently, we define the
branch distanced(b,T) for branchb on test suiteT as follows:

d(b,T) =



















0 if the branch has been covered,

ν(dmin(b,T)) if the predicate has been
executed at least twice,

1 otherwise.

Here, ν(x) is a normalizing function in[0,1]; we use the
normalization function [4]: ν(x) = x/(x + 1). Notice that
there is a non-trivial reason behind the choice ofd(b,T) =
ν(dmin(b,T)) applied only when the predicate is executed at
least twice [11]. For example, assume the case in which it
is always applied. If the predicate is reached, and branchb
is not covered, then we would haved(b,T) > 0, while the
opposite branchbopp would be covered, and sod(bopp,T) = 0.
The search algorithm might be able to follow the gradient
given by d(b,T) > 0 until b is covered, i.e.,d(b,T) = 0.
However, in that casebopp would not be covered any more,
and so its branch distance would increase, i.e.,d(bopp,T) > 0.
Now, the search would have a gradient to coverbopp but,
if it does cover it, then necessarilyb would not be covered
any more (the predicate is reached only once) – and so on.
Forcing a predicate to be evaluated at least twice, before
assigningν(dmin(b,T)) to the distance of the non-covered
branch, avoids this kind of circular behavior.

Finally, the resulting fitness function to minimize is as
follows:

fitness(T) = |M | − |MT |+
∑

bk∈B

d(bk,T)

3.4 Bloat Control
A variable size representation could lead tobloat, which
is a problem that is very typical for example in Genetic

Programming [41]: For instance, after each generation, test
cases can become longer and longer, until all the memory
is consumed, even if shorter sequences are better rewarded.
Notice that bloat is an extremely complex phenomenon in
evolutionary computation, and after many decades of research
it is still an open problem whose dynamics and nature are not
completely understood [41].

Bloat occurs when small negligible improvements in the
fitness value are obtained with larger solutions. This is very
typical in classification/regression problems. When in software
testing the fitness function is just the obtained coverage, then
we would not expect bloat, because the fitness function would
assume only few possible values. However, when other metrics
are introduced with large domains of possible values (e.g.,
branch distance and also for example mutation impact [21]),
then bloat might occur.

In previous work [19], we have studied several bloat control
methods from the literature of Genetic Programming [41]
applied in the context of testing object-oriented software.
However, our previous study [19] covered only the case of
targeting one branch at a time. In EVOSUITE we use the same
methods analyzed in that study [19], although further analyses
are required to study whether there are differences in their
application to handle bloat in evolving test suites rather than
single test cases. The employed bloat control methods are:

• We put a limitN on the maximum number of test cases
and limit L for their maximum length. Even if we expect
the length and number of test cases of an optimal test suite
to have low values, we still need to choose comparatively
larger N and L. In fact, allowing the search process to
employ longer test sequences and then reduce their length
during/after the search can provide staggering improvements
in terms of achieved coverage [5].

• In our GA we use rank selection [49] based on the fitness
function (i.e., the obtained coverage and branch distance
values). In case of ties, we assign better ranks to smaller
test suites. Notice that including the length directly in
the fitness function (as for example done in [11], [13]),
might have side-effects, because we would need to put
together and linearly combine two values of different units
of measure. Furthermore, although we have two distinct
objectives, coverage is more important than size.

• Offspring with non-better coverage are never accepted for
the next generation if they are larger than their parents (for
the details, see Algorithm1).

• We use a dynamic size limit conceptually similar to the
one presented by Silva and Costa [41]. If an offspring’s
coverage is not better than that of the best solutionTB in
the current entire GA population, then it is not accepted in
the new generations if it is longer than twice the length of
TB (see Line18 in Algorithm 1).

3.5 Search Operators

The GA code depicted in Algorithm1 is at high level, and can
be used for many engineering problems in which variable size
representations are used. To adapt it to a specific engineering
problem, we need to define search operators that manipulate

a() b() c() d()

x() y() z()

f() g() h() i()

a() b()

x() y() z()

f() g() h()

a()

a() b() c() d()

x() y() z()

a() b()

x() y() z() a()

f() g() h() i()f() h()g()

(a) Test Suite Crossover

a() b() c()

b() x()

b() x() d()

a() b() c()

(b) Test Case Mutation

Fig. 3. Crossover and mutation are the basic operators for
the search using a GA. Crossover is applied at test suite
level; mutation is applied to test cases and test suites.

the chosen solution representation (see Section3.2). In partic-
ular we need to define the crossover and mutation operators
for test suites. Furthermore, we need to define how random
test cases are sampled when we initialize the first population
of the GA.

3.5.1 Crossover
The crossover operator (see Figure3(a)) generates two off-
springO1 andO2 from two parent test suitesP1 andP2. A
random valueα is chosen from[0,1]. On one hand, the first
offspring O1 will contain the firstα|P1| test cases from the
first parent, followed by the last(1 − α)|P2| test cases from
the second parent. On the other hand, the second offspringO2

will contain the firstα|P2| test cases from the second parent,
followed by the last(1−α)|P1| test cases from the first parent.

Because the test cases are independent among them, this
crossover operator always yields valid offspring test suites.
Furthermore, it is easy to see that it decreases the difference
in the number of test cases between the test suites, i.e.,
abs(|O1| − |O2|) ≤ abs(|P1| − |P2|). No offspring will have
more test cases than the largest of its parents. However, it is
possible that the total sum of the length of test cases in an
offspring could increase.

3.5.2 Mutation
The mutation operator for test suites is more complicated than
that used for crossover, because it works both at test suite and
test case levels. When a test suiteT is mutated, each of its
test cases is mutated with probability1/|T |. So, on average,
only one test case is mutated. Then, a number of new random
test cases is added toT : With probability σ, a test case is
added. If it is added, then a second test case is added with
probability σ2, and so on until theith test case is not added
(which happens with probability1−σi). Test cases are added
only if the limit N has not been reached, i.e., ifn < N .

If a test case is mutated (see Figure3(b)), then three
types of operations are applied in order:remove, changeand
insert. Each is applied with probability1/3. Therefore, on
average, only one of them is applied, although with probability
(1/3)3 all of them are applied. These three operations work
as follows:

Remove: For a test caset = 〈s1,s2, . . . ,sl〉 with length l,
each statementsi is deleted with probability1/l. As the value

v(si) might be used as a parameter in any of the statements
si+1, . . . ,sl, the test case needs to be repaired to remain valid:
For each statementsj , i < j ≤ l, if sj refers tov(si), then
this reference is replaced with another value out of the set
{v(sk) | 0 ≤ k < j∧k 6= i} which has the same type asv(si).
If this is not possible, thensj is deleted as well recursively.

Change: For a test caset = 〈s1,s2, . . . ,sl〉 with length
l, each statementsi is changed with probability1/l. If si is
a primitive statement, then the numeric value represented by
si is changed by a random value in[−∆,∆], where∆ is a
constant. If the primitive value is a string, then the stringis
changed by deleting, replacing, or inserting characters ina way
similar to how sequences of method calls are mutated. In the
case of an array, the length is changed by a random value in
[−∆′,∆′] such that no accesses to the array are invalidated. In
an assignment statement, either the variable on the left or the
right hand side of the assignment is replaced with a different
variable of the same type. Ifsi is not a primitive statement,
then a method, field, or constructor with the same return type
as v(si) and parameters satisfiable with the values in the set
{v(sk) | 0 ≤ k < i} is randomly chosen out of the test cluster.

Insert: With probabilityσ′, a new statement is inserted at
a random position in the test case. If it is added, then a second
statement is added with probabilityσ′2, and so on until the
ith statement is not inserted. A new statement is added only
if the limit L has not been reached, i.e., ifl < L. For each
insertion, with probability1/3 a random call of the class under
test or its member classes is inserted, with probability1/3 a
method call on a value in the set{v(sk) | 0 ≤ k < i} for
insertion at positioni is added, and with probability1/3 a
value{v(sk) | 0 ≤ k < i} is used as a parameter in a call of
the class under test or its member classes. Any parameters of
the selected call are either reused out of the set{v(sk) | 0 ≤
k < i}, set tonull, or randomly generated.

If after applying these mutation operators a test caset has no
statements left (i.e., all have been removed), thent is removed
from T .

To evaluate the fitness of a test suite, it is necessary to
execute all its test cases and collect the branch information.
During the search, on average only one test case is changed in
a test suite for each generation. This means that re-executing
all test cases is not necessary, as the coverage informationcan
be carried over from the previous execution.

3.5.3 Random Test Cases
Random test cases are needed to initialize the first generation
of the GA, and when mutating test suites. Sampling a test case
at random means that each possible test case in the search
space has a non-zero probability of being sampled, and these
probabilities are independent. In other words, the probability
of sampling a specific test case is constant and it does not
depend on the test cases sampled so far.

When a test case representation is complex and it is of
variable length (as it happens in our case, see Section3.2),
it is often not possible to sample test cases with uniform
distribution (i.e., each test case having the same probability
of being sampled). Even when it would be possible to use a
uniform distribution, it would be unwise (for more details on

this problem, see [10]). For example, given a maximum length
L, if each test case was sampled with uniform probability, then
sampling a short sequence would be extremely unlikely. This
is because there are many more test cases with long length
compared to the ones of short length.

In this paper, when we sample a test case at random, we
choose a valuer in 1 ≤ r ≤ L with uniform probability.
Then, on an empty sequence we repeatedly apply the insertion
operator described in Section3.5.2 until the test case has a
length≥ r.

4 THE EVOSUITE TOOL

The EVOSUITE tool implements the approach presented in
this paper for generating JUnit test suites for Java code.
EVOSUITE works on the byte-code level and collects all
necessary information for the test cluster from the byte-code
via Java Reflection. This means that it does not require the
source code of the SUT, and in principle is also applicable
to other languages that compile to Java byte-code (such as
Scala or Groovy, for example). Note that we also consider
branch coverage at the byte-code level. Because high level
branch statements in Java (e.g., predicates in loop conditions)
are transformed into simpler statements similar to atomicif
statements in the byte-code, EVOSUITE is able to handle all
language constructs. Furthermore, EVOSUITE treats each case
of a switch/case construct like an individualif-condition. The
number of branches at byte-code level is thus usually larger
than at source code level, as complex predicates are compiled
into simpler byte-code instructions.

EVOSUITE instruments the byte-code with additional state-
ments to collect the information necessary to calculate fit-
ness values, and also performs some basic transformations to
improve testability: To allow optimizations of String values,
branches based on String methods likeString.equals are
transformed such that they act on the edit distance [2]. Simi-
larly, comparisons on double, float, and long datatypes in byte-
code need transformation to carry a distance measurements to
the branches.

During test generation, EVOSUITE considers one top-level
class at a time. The class and all its anonymous and member
classes are instrumented at byte-code level to keep track of
called methods and branch distances during execution. To
produce test cases as compilable JUnit source code, EVO-
SUITE accesses only the public interfaces for test generation;
any subclasses are also considered part of the unit under
test to allow testing of abstract classes. To execute the tests
during the search, EVOSUITE uses Java Reflection. Before
presenting the result to the user, test suites are minimizedusing
a simple minimization algorithm [5] which attempts to remove
each statement one at a time until all remaining statements
contribute to the coverage; this minimization reduces both
the number of test cases as well as their length, such that
removing any statement in the resulting test suite will reduce
its coverage.

The search operators for test cases make use of only the type
information in the test cluster, and although type information
is updated during execution difficulties can arise when method

signatures are imprecise. In particular, this problem exists
for all classes using Java Generics, as type erasure removes
much of the useful information during compilation and all
generic parameters look likeObject for Java Reflection. To
overcome this problem for container classes (and in generalfor
any class with methods that take as input and returnObject
instances), we always putInteger objects into container
classes, such that we can also cast returnedObject instances
back to Integer. Currently, container classes need to be
identified manually, but future versions of EVOSUITE will
determine suitable types automatically.

Test case execution can be slow, and in particular when
generating test cases randomly, infinite recursion can occur
(e.g., by adding a container to itself and then calling the
hashCode method). Therefore, we chose a timeout of five
seconds for test case execution. If a test case times out, then
the test suite with that test case is assigned the maximum
fitness value, which is|M | + |B|, the sum of methods and
branches to be covered.

Test cases are executed in their own threads, but as Java does
not allow to forcefully stop threads it may happen that afterthe
timeout such a thread survives. To overcome this problem, we
instrument the byte-code with additional statements that yield
the execution of a test when the thread is interrupted. If this
also shows no effect, the thread is given a low priority and
its execution is ignored. Aggregations of such stale threads
consume memory, and so EVOSUITE uses a client/server
architecture where the client monitors its free memory, and
asks the server for a process restart which resumes at the same
point in the search, if it runs out of memory.

EVOSUITE also employs a custom, configurable security
manager which can be used to control what permissions
are granted during the test execution. For example, it is
usually not desirable to have the tests open random networking
connections or access the filesystem in random ways. The
use of a custom security manager was an essential feature
for the large empirical study we conduct in this paper. In
fact, thanks to that we were able to select a large number
of SUTs from different sources without needing to worry
whether their behavior was safe under all inputs. However,
this means that EVOSUITE currently can only cover code that
has no environmental dependencies. Furthermore, EVOSUITE

assumes that the code under test is deterministic, such that
executing the same test case twice will yield the same results.

4.1 Single Branch Strategy

To allow a fair comparison with the traditional single branch
approach (e.g., [43]), we implemented this strategy on top
of EVOSUITE. In the single branch strategy, an individual of
the search space is a single test case. The identical mutation
operators for test cases can be used as in EVOSUITE, but
crossover needs to be done at the test case level. For this,
we used the approach also applied by Tonella [43] and Fraser
and Zeller [21]: Offspring is generated using the single point
crossover function described in Section3.5.1, where the first
part of the sequence of statements of the first parent is merged
with the second part of the second parent, and vice versa.

Because there are dependencies between statements and values
generated in the test case, this might invalidate the resulting
test case, and we need to repair it: The statements of the second
part are appended one at a time similarly to the insertion
described in Section3.5.2, except that whenever possible
dependencies are satisfied using existing values.

The fitness function in the single branch strategy also needs
to be adapted: We use the traditionalapproach level[48]
plus normalized branch distance fitness function, which is
commonly used in the literature (e.g., see [26], [34]). The
approach level is used to guide the search toward the target
branch. It is determined as the minimal number of control
dependent edges in the control dependency graph between the
target branch and the control flow represented by the test case.
The branch distance is calculated as in EVOSUITE, but taken
for the closest control dependent branch where the control flow
diverges from the target branch.

While implementing this approach, we tried to derive a
faithful representation of current practice, which means that
there are some optimizations proposed in the literature which
we did not include:

• New test cases are only generated for branches that have
not already been covered through collateral coverage of
previously created test cases. However, we do not evaluate
the collateral coverage of all individuals during the search,
as this would add a significant overhead, and it is not clear
what effects this would have given the fixed timeout we
used in our experiments.

• When applying the one target at a time approach, a possible
improvement could be to use aseedingstrategy [48]. During
the search, we could store the test data that have good fitness
values on targets that are not covered yet. These test data
can then be used as starting point (i.e., for seeding the first
generation of a GA) in the successive searches for those
uncovered targets. However, we decided not to implement
this, as reference [48] does not provide sufficient details to
reimplement the technique, and there is no conclusive data
regarding several open questions; for example, potentially
a seeding strategy could reduce diversity in the population,
and so in some cases it might in fact reduce the overall
performance of the search algorithm.

• The order in which coverage goals are selected might also
influence the result. As in the literature usually no order is
specified (e.g., [25], [27], [43]), we selected the branches in
random order. However, in the context of procedural code
approaches to prioritize coverage goals have been proposed,
e.g., based on dynamic information [48]. However, the goal
of this paper is neither to study the impact of different
orders, nor to adapt these prioritization techniques to object-
oriented code and prioritization techniques.

• In practice, when applying a single goal strategy, one
might also bootstrap an initial random test suite to identify
the trivial test goals, and then use a more sophisticated
technique to address the difficult goals; here, a difficult
question is when to stop the random phase and start the
search. In contrast, EVOSUITE has this initial random phase
integrated into its own search process.

TABLE 1
Number of classes, branches, and lines of code in the

case study subjects

Case Study #Classes #Branches LOC1

Public All

COL Colt 135 298 10,795 20,741
CCL Commons CLI 14 15 662 1,078
CCD Commons Codec 21 22 1,369 2,205
CCO Commons Collections 246 421 8,683 19,190
CMA Commons Math 247 306 10,503 23,881
CPR Commons Primitives 210 231 2,874 7,008
GCO Google Collections 85 370 4,214 9,886
ICS Industrial Casestudy 21 29 373 809
JCO Java Collections 30 118 3,531 6,339
JDO JDom 57 61 4,098 6,452
JGR JGraphT 137 193 2,467 5,924
JTI Joda Time 131 199 8,681 18,003
NXM NanoXML 1 1 310 661
NCS Numerical Casestudy 11 11 209 421
REG Java Regular Expressions 3 91 1,922 3,020
SCS String Casestudy 12 12 607 606
TRO GNU Trove 205 591 10,585 24,297
XEN Xmlenc 7 7 1,645 788
XOM XML Object Model 165 185 11,794 23,814
ZIP Java ZIP Utils 3 4 219 441

Σ 1,741 3,165 85,541 175,564

5 EXPERIMENTS

The independence of the order in which test cases are selected
and the collateral coverage are inherent to the EVOSUITE

approach, therefore the evaluation focuses on the improvement
over the single branch strategy.

5.1 Case Study Subjects

For the evaluation, we chose a total of 19 open source libraries
and programs. For example, among those there are several
widely used libraries developed by Google and the Apache
Software Foundation. Furthermore, to analyze in more details
some specific types of software, we also used a translation of
the String case study subjects employed by Alshraideh and
Bottaci [2], and we also used a set of numerical applications
from [6]. To avoid a bias caused by considering only open
source code, we also selected a subset of an industrial case
study project previously used by Arcuri et al. [9]. This results
in a total of 3,165 classes, which were tested by only calling
the API of the 1,741 public classes (the remaining classes are
member classes).

The choice of a case study is of paramount importance for
any empirical analysis in software engineering. To addressthis
problem, in this paper we consider several types of software,
as for example container classes, numerical applications,and
software with high use of strings and arrays processing.
Table1 summarizes the properties of these case study subjects.

To avoid bias in analyzing the results, we present and
discuss the results of our empirical study grouped by project.
In fact, different testing techniques can have comparatively
different performance on different types of SUT. For example,

1. LOC stands for non-commenting lines of source code, calculated with
JavaNCSS (http://javancss.codehaus.org/)

random testing has been shown to be very effective in testing
container classes [40]. If one only chooses container classes
as case study and ignores for example numerical applications,
then random testing could be misleadingly advantaged in
technique comparisons. In fact, even if one uses several kinds
of software as SUTs, then it all depends on the proportion
of the SUT types (e.g., if in the case study there are many
more container classes than numerical applications). There-
fore, aggregated statistics on all the artifacts of a case study
need to be interpreted with care, as the proportion of different
kinds of software types could lead to misleading results.
Unfortunately, how to define a representative case study for
test data generation is still an open research question.

5.2 Experimental Setup
As witnessed in Section3, search algorithms are influenced by
a great number of parameters. For many of these parameters
there are “best practices”: For example, we chose a crossover
probability of 3/4 based on past experience. In EVOSUITE,
the probabilities for mutation are largely determined by the
individual test suite size or test case length; the initial prob-
ability for test case insertion was set toσ = 0.1, and the
initial probability for statement insertion was set toσ′ = 0.5.
The maximum value for the perturbation of integral primitive
types∆ was set to 20. Although longer test cases are better
in general [5], we limited the length of test cases toL =
80 because we experienced this to be a suitable length at
which the test case execution does not take too long. The
maximum test suite size was set toN = 100, although the
initial test suites are generated with only two test cases each.
The population size for the GA was chosen to be 80.

Different settings (e.g., population size) of an algorithm
would lead to different performance. Unfortunately, on a new
search problem (such as generation of test suites in this paper)
it is not possible to know beforehand which are the best
settings to use. A tuning phase could lead to find settings
for which EVOSUITE performs better, but tuning phases are
computational expensive. As even with common settings based
on the literature it is possible to achieve reasonable results [8],
we postponed the tuning investigation to future work, and
preferred to focus on having a larger case study with the aim
of reducing threats to external validity.

Search algorithms are often compared in terms of the
number of fitness evaluations; in our case, comparing to a
single branch strategy would not be fair, as each individual
in EVOSUITE represents several test cases, such that the
comparison would favor EVOSUITE. As the length of test
cases can vary greatly and longer test cases generally have
higher coverage, we decided to take the number ofexecuted
statementsas execution limit. This means that the search is
performed until either a solution with 100% branch coverageis
found, ork statements have been executed as part of the fitness
evaluations. In our experiments, we chosek = 1,000,000.

For the single branch strategy, the maximum test case
length, population size, and any probabilities are chosen
identical to the settings of EVOSUITE. At the end of the test
generation, the resulting test suite is minimized in the same
way as in EVOSUITE.

The stopping condition for the single branch strategy is
chosen the same as for EVOSUITE, i.e., maximum 1,000,000
statements executed. To avoid that this budget is spent entirely
on the first branch if it is difficult or infeasible, we apply the
following strategy: For|B| branches and an initial budget of
X statements, the execution limit for each branch isX/|B|
statements. If a branch is covered, some budget may be left
over, and so after the first iteration on all branches there isa
remaining budgetX ′. For the remaining uncovered branches
B′ a new budgetX ′/|B′| is calculated and a new iteration is
started on these branches. This process is continued until the
maximum number of statements (1,000,000) is reached.

EVOSUITE and search-based testing are based on ran-
domized algorithms, which are affected by chance. Running
a randomized algorithm twice will likely produce different
results. It is essential to use rigorous statistical methods to
properly analyze the performance of randomized algorithms
when we need to compare two or more of them. In this paper,
we follow the guidelines described in [7].

For each of the 1,741 public classes, we ran EVOSUITE

against the single branch strategy to compare their achieved
coverage. Each experiment comparison was repeated 30 times
with different seeds for the random number generator. When
one can have an arbitrarily large number of artifacts for a
case study (e.g., in our case we could download and use
as SUT as many projects as we wanted from open source
repositories, because EVOSUITE is fully automated and has a
customized security manager to avoid undesired side effects),
then there is the trade-off between the number of runs per
artifact and size of the case study. In general, it is advisable
to have enough runs (e.g., 30) to detect statistical difference
of algorithm performances on single artifacts, and then have a
case study as large and variegated as possible to reduce threats
to external validity. Notice that, in our empirical analysis, even
with the use of a large cluster of computers it took several days
to run all the experiments.

5.3 Results

Due to space constraints we cannot provide full informationof
the analyzed data [7], but just show the data that are sufficient
in claiming the superiority of the EVOSUITE technique. Sta-
tistical difference has been measured with the Mann-Whitney
U test. To quantify the improvement in a standardized way, we
used the Vargha-DelaneŷA12 effect size [44]. In our context,
the Â12 is an estimation of the probability that, if we run
EVOSUITE, we will obtain better coverage than running the
single branch strategy. When two randomized algorithms are
equivalent, thenÂ12 = 0.5. A high value Â12 = 1 means
that, inall of the 30 runs of EVOSUITE, we obtained coverage
values higher than the ones obtained inall of the 30 runs of
the single branch strategy.

The box-plot in Figure4 compares the actual obtained
coverage values (averaged out of the 30 runs) of EVOSUITE

and the single branch strategy (Single). In total, the coverage
improvement of EVOSUITE ranged up to 188 times that of the
single branch strategy. This happened for a particular SUT in
which EVOSUITE obtained a coverage of70.2% (averaged

TABLE 2
Â12 measure values in the coverage comparisons:

Â12 < 0.5 means EVOSUITE resulted in less, Â12 = 0.5
equal, and Â12 > 0.5 better coverage than a single

branch approach. In brackets “()” the number of times the
effect size is statistically significant at level 0.05.

Case Study #Â12 < 0.5 #Â12 = 0.5 #Â12 > 0.5

COL 13(9) 30 92(79)
CCL 2(1) 6 6(4)
CCD 2(1) 13 6(5)
CCO 19(5) 137 90(81)
CMA 24(10) 100 123(103)
CPR 23(10) 150 37(19)
GCO 4(2) 31 50(42)
ICS 0(0) 17 4(3)
JCO 2(1) 10 18(17)
JDO 3(2) 27 27(25)
JGR 2(1) 88 47(41)
JTI 41(28) 28 62(41)
NXM 0(0) 0 1(1)
NCS 1(0) 10 0(0)
REG 0(0) 1 2(2)
SCS 4(4) 6 2(1)
TRO 2(1) 73 130(124)
XEN 0(0) 4 3(3)
XOM 22(11) 92 51(45)
ZIP 0(0) 1 2(2)

Σ 164(86) 824 753(638)

over 30 runs), while for the single branch strategy the average
coverage was only0.3%. Calculated on all the SUTs in the
case study, EVOSUITE obtained an average coverage of83%,
whereas the single branch strategy obtained77%.

Figure 5 shows a box-plot of the results of thêA12 6= 0.5
measure for the coverage grouped by case study subject; this
figure illustrates the strong statistical evidence that EVOSUITE

achieves higher coverage. In many cases, EVOSUITE is prac-
tically certain to achieve better coverage results, even when
we take the randomness of the results into account.

Whole test suite generation achieveshigher coverage
than single branch test case generation.

Table 2 shows for the coverage comparisons how many
times we obtainedÂ12 values equal, lower and higher than
0.5. We obtained p-values lower than0.05 in 724 out of 917
comparisons in whichÂ12 6= 0.5. Among the 20 projects,
there is one for which EVOSUITE gave worse results, i.e.,
SCS. Without an in depth analysis on that project, it is difficult
to conjecture why that is the case. The projectSCS contains
a set ofartificial classes, where all methods are static, take as
input (and manipulate) string objects, and have no infeasible
branches. It might be that using a hybrid algorithm in which
EVOSUITE is enhanced with local search (e.g., see [26]) could
be effective for this type of software. But the use of local
search for test suite evolution is still an unexplored field,
although promising (see for example [11], [13], [26]). At any
rate, although the single branch strategy is statisticallybetter
on four SUTs and achieves an average coverage of86.8%,
even if EVOSUITE is statistically better on only one SUT,

its average coverage is actually higher, i.e.,87.7%. This is
not a contradiction. It could be explained by the fact that,
when EVOSUITE is worse on a specific SUT, it is only worse
by little, whereas when it is better, it is better by a larger
quantity. This is clearly visible in the boxplot in Figure4,
where although the median value for EVOSUITE is lower, then
however its lower quartile and minimum value is much higher.

Notice that in many cases (i.e., 824) we haveÂ12 = 0.5.
This did not come as a surprise: For some “easy” classes,
a budget of 1,000,000 statements executions would be more
than enough to cover all the feasible branches with very high
probability. In these cases, it is important to analyze what
is the resulting size of the generated test suites. When the
coverage is different, analyzing the resulting test suite sizes is
not reasonable (e.g., a test suite with higher coverage likely
has to be larger).

For those cases wherêA12 = 0.5 for the coverage, Figure6
compares the obtained test suite size values (averaged out of
the 30 runs) of EVOSUITE and the single branch strategy
(Single). In the best case, we obtained a test suite size
(averaged out of the 30 runs) that for EVOSUITE was 62%
smaller. In particular, EVOSUITE has an average length of3.23
statements, whereas the length of the test suites generatedwith
the single branch strategy led to an average8.36 length.

Figure7 showsÂ12 for the length of the resulting test suites,
but only when p-values are lower than0.05. Recall that for
both EVOSUITE and the single branch strategy we use the
samepost-processing technique to reduce the length of the
output test suites. When we obtain full coverage of all the
feasible branches, then EVOSUITE has a low probability of
generating larger test suites.

Whole test suite generation producessmaller test suites
than single branch test case generation.

The results obtained with EVOSUITE compared to the
traditional approach (of targeting each branch separately) are
simply staggering. How is it possible to achieve such large
improvements? There can be several explanations. First, in
case of infeasible branches, all the effort spent by a single
branch at a time strategy would be wasted, apart from pos-
sible collateral coverage. Collateral coverage of difficult to
reach branches, however, would be quite unlikely. Second, the
traditional fitness function would have problems in guiding
the search toward private methods that are difficult to execute.
For example, consider the case of a private method that is
called only once in a public method, but that method call is
nested in a branch whose predicate is very complicated to
satisfy. Unless the fitness function is extended to considerall
possible methods that can lead to execute the private methods
(as for example done in [46]), then there would be no guidance
to execute those private methods. Third, assume that there is
a difficult branch to cover, and nested to that branch there
are several others. Once EVOSUITE is able to generate a test
sequence that covers that difficult branch, this sequence can be
extended (e.g., by adding function calls at its end) or copied in
another test case in the test suite (e.g., through the crossover
operator) to make it easier to cover the other nested branches.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 B
ra

nc
h

C
ov

er
ag

e

COL CCL CCD CCO CMA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EvoSuite
Single

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 B
ra

nc
h

C
ov

er
ag

e

CPR GCO ICS JCO JDO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EvoSuite
Single

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 B
ra

nc
h

C
ov

er
ag

e

JGR JTI NXM NCS REG

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EvoSuite
Single

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
ve

ra
ge

 B
ra

nc
h

C
ov

er
ag

e

SCS TRO XEN XOM ZIP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EvoSuite
Single

Fig. 4. Average branch coverage: Even with an evolution limit of 1,000,000 statements, EVOSUITE achieves higher
coverage.

COL CCL CCD CCO CMA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

CPR GCO ICS JCO JDO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

JGR JTI NXM NCS REG

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

SCS TRO XEN XOM ZIP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

Fig. 5. Â12 for coverage: EVOSUITE has a high probability of achieving higher coverage than a single branch approach.

0
10

20
30

40
50

60

A
ve

ra
ge

 L
en

gt
h

COL CCL CCD CCO CMA

0
10

20
30

40
50

60

EvoSuite
Single

0
10

20
30

40
50

60

A
ve

ra
ge

 L
en

gt
h

CPR GCO ICS JCO JDO

0
10

20
30

40
50

60

EvoSuite
Single

0
10

20
30

40
50

60

A
ve

ra
ge

 L
en

gt
h

JGR JTI NXM NCS REG

0
10

20
30

40
50

60
EvoSuite
Single

0
10

20
30

40
50

60

A
ve

ra
ge

 L
en

gt
h

SCS TRO XEN XOM ZIP

0
10

20
30

40
50

60

EvoSuite
Single

Fig. 6. Average test suite length: Even after minimization, EVOSUITE test suites tend to be smaller than those created
with a single branch strategy (shown for cases with identical coverage).

COL CCL CCD CCO CMA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

CPR GCO ICS JCO JDO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

JGR JTI NXM NCS REG

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

SCS TRO XEN XOM ZIP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
 S

iz
e

Fig. 7. Â12 for test suite length: EVOSUITE has a low probability of generating longer test suites than a single branch
approach.

On the other hand, in the traditional approach of targeting
one branch at a time, unless smart seeding strategies are used
based on previously covered branches, the search to cover
nested branches would be harmed by the fact that covering
their difficult parent needs to be done from scratch again.

Because our empirical analysis employs a very large case
study (1,741 classes for a total of 85,503 byte-code level
branches), we cannot analyze all of these branches to give an
exact explanation for the better performance of EVOSUITE.
However, the three possible explanations we gave are plausi-
ble, although further analyses (e.g., on artificial software that
we can generate with known number of infeasible branches)
would be required to shed light on this important research
question. To this goal, we created an artificial problem to
experiment with, whose analysis is discussed later in the paper.

5.3.1 Difficult Branches
Looking at the results in Table2 we see that EVOSUITE does
not achieve 100% coverage for all classes. To some extent,
this is due to infeasible branches. Due to the large amount of
classes empirically investigated in this paper, it is not possible
to distinguish between all infeasible and difficult branches
by hand. However, identifying some of the difficult cases is
helpful to understand the results and guide future research.

Not all infeasible branches are as obvious as the example in
Figure1. Other examples of infeasible branches are given by
private methods that are not called in any public methods, dead
code, or methods of abstract classes that are overridden in all
concrete subclasses without calling the abstract super-class.

Some difficult branches we could identify are the following:
Environment dependencies such as databases or the

filesystem are not currently handled by EVOSUITE. Using
the custom security manager one can avoid that interactions
with the environment cause damage, but branches depending,
for example, on network connections or file contents usually
cannot be covered.

Methods called by native code such asreadObject
and writeObject of the JavaSerializable interface
cannot be directly called.

Anonymous and private classes are more difficult to
cover than top level classes, as they can only be handled
indirectly via the owner classes’ public interface. An even
more difficult variant of this problem are abstract classes that
are only instantiated by anonymous classes – there is no way
to directly test the abstract class, except by creating stubs.

Multi-threaded code is also difficult for a search-based
approach, as the test generation would need to handle thread
creation and termination.

Static and private constructors are only executed once
after a class is loaded, and private constructors are often used
in singleton instances where the constructor is again only
called once. To achieve full coverage in such cases one would
need to unload classes after each test execution; EVOSUITE

uses a faster but less precise approach introduced in the
JCrasher [15] tool, where static constructors are duplicated in
callable methods, and then re-executed before test execution.

5.4 Infeasible Test Goals

A coverage goal is infeasible if there exists no test that would
exercise it. For some simple cases, there could be techniques
that are able to identify infeasible targets; for example, dead-
code detection might reveal some infeasible branches, such
as the one listed in Figure1. However, in general it is an
undecidable problem whether a particular coverage goal or
program path is feasible [23] or if a mutant is equivalent.
Furthermore, a branch might be infeasible for other reasons
(e.g., environmental dependencies), and applying techniques
to detect infeasible goals on several targets might have a non
negligible computational overhead, which would reduce the
time budget for test data generation (e.g., less generations in
an evolutionary algorithm). Depending on how effective these
techniques are, their use might thus either increase or even
decrease the overall performance of the testing tool.

When targeting each coverage goal individually, any re-
sources invested for an infeasible goal are per definition
wasted. Depending on how the available resources are dis-
tributed across the individual goals, the more infeasible goals
there are the fewer of the resources will be spent on the
feasible goals, thus leading to overall worse results.

In contrast, EVOSUITE does not focus on individual cover-
age goals, and so the infeasible goals have no effect on the
achieved coverage of the feasible goals. To demonstrate this
effect, we ran a set of experiments on the example code listed
in Figure8. In the byte-code representation, this code contains
six feasible branches. At the position labelled in the source
code we iteratively inserted infeasible branches (if(x * x
== y * y + 2)) and analyzed the behavior of EVOSUITE

and the single branch strategy over the number of inserted

1class Infeasible{
2 void infeasibleGoals(int x, int y) {
3 if (x > 0 && y > 0 && 2 ∗ x == Math.sqrt(y)){
4 }
5 // Infeasible branches are added here
6 }
7}

Fig. 8. A simple example to demonstrate the effect of
infeasible coverage goals. In the default case, there are
three predicates, leading to six (feasible) branches in the
compiled byte-code.

0 20 40 60 80 100

0
1

2
3

4
5

Number of Infeasible Targets

A
ve

ra
ge

 N
um

be
r

of
 M

is
se

d
F

ea
si

bl
e

Ta
rg

et
s

EvoSuite
Single

Fig. 9. The effect of infeasible goals on the coverage of
the feasible goals in the code: The number of unsatisfied
coverage goals rises with the number of infeasible test
goals in the single branch strategy, while EVOSUITE is not
influenced at all by the infeasible goals.

infeasible branches. For each version of the example code, we
performed 100 runs of EVOSUITE and 100 runs of the single
branch strategy with different random seeds and a search limit
of 40,000 statements. Figure9 impressively demonstrates how
EVOSUITE is oblivious to the introduced infeasible branches,
while the performance of the single branch strategy degrades.

To give more soundness to this analysis, we also applied
a Kruskal-Wallis test to verify the impact of the number of
infeasible targets on the number of missed (i.e., uncovered)
feasible branches. For the single branch strategy, we obtained
a p-value lower than2.2×10−16, with χ2 = 932.5. This gives
strong statistical evidence that confirms the trend in Figure 9.
On the other hand, for EVOSUITE we obtained a very high
p-value, i.e.0.73, whereχ2 = 9.44. Notice that a high p-value
does not mean that we have strong statistical evidence to claim
that infeasible targets have no impact on EVOSUITE. To make
analyses as precise and sound as possible, one should quantify
the effect sizes and then use power analysis to calculate the
probability of Type II error [7]. However, the differences in
coverage in Figure9 look so small that, even if higher number
of runsmightdecrease the p-value of the test, then anyway the
differences would be so small to be of little practical interest.

5.5 Comparisons with Other Tools

In this paper, we have carried out a large empirical analysisto
show that the EVOSUITE strategy of evolving whole test suites
is generally better than the traditional approach of searching
for only one target at the time. To provide further evidence
on the effectiveness of EVOSUITE, and to get more insight on
the dynamics of test data generation, it would be important to
compare its performance against other tool prototypes in the
literature. Unfortunately, this was not possible. In this section,
we describe the challenges and shortcomings that would be
faced in tool comparisons.

First, because our tool handles Java byte-code, we could
only compare it with others that handle languages also com-
piling to Java byte-code. For example, this precludes (or it
makes them hard) comparisons with testing tools supporting
C (e.g., CUTE [39]) and C# (e.g., PEX [42]). Similarly, tool
prototypes are often targeted for specific operating systems;
e.g., PEX [42] and Dsc [28] only work with Windows.

Second, although there are popular testing tools for Java, as
for example Randoop [36], those do not address our testing
problem (i.e., generating high coverage test suites that are
small, so non-automated oracles can be manually verified by
the software engineers). Third, some old tool prototypes are
no longer supported, and can give problems when used on
new versions of Java and/or SUTs with specific features (e.g.,
we did not manage to run jCUTE on several of the SUTs we
experimented with). Fourth, some tool prototypes are simply
not publicly available, and re-implementing them would be
too time consuming and prone to errors and misunderstanding
in the implementation.

Another important point is that many testing tools are only
semi-automatic and, for example, require the user to writing
drivers and ad hoc generators for specific type of objects. This
is a kind of problem we faced when we tried to compare
EVOSUITE with tools such as JPF [45] and TestFul [13],
and which makes large empirical studies difficult. Another
problem for empirical studies on testing is that the tools need
to guarantee that the test code does not break anything, e.g., by
running it in a sandbox like EVOSUITE– this is usually not the
case (e.g. the Randoop documentation1 states: “WARNING:
Testing code that modifies your file system might result in
Randoop generating tests that modify your file system! Be
careful when choosing classes and methods to test”.).

Often research prototypes have known limitations. For
example, Dsc [28] clearly indicates in its documentation2

that it does not support floating-point numbers and has only
basic support for strings. Such limitations would put these
prototypes in disadvantage in tool comparisons, although they
might feature novel algorithms that are very useful for the type
of program constructs (e.g., constraints on integer variables)
that they can handle.

To the best of our knowledge, we have not found any other
test data generation tool in the literature that satisfies all the
above requirements and that we could use for comparisons

1. http://randoop.googlecode.com/hg/doc/index.html, accessed August
2011.

2. http://ranger.uta.edu/∼csallner/dsc/index.html, accessed August 2011.

with EVOSUITE. There are however commercial tools that
are likely to satisfy those constraints, as for example the
ones developed by companies such as Parasoft3 and Agitar4.
Unfortunately, comparisons with commercial tools have their
own set of challenges. For example, usually the details of the
underlying technologies of commercial tools are not disclosed.
Therefore, it would be hard to understand why they behave in
a particular way on some SUTs, and so explaining differences
in results would be infeasible.

6 CONVERGENCE

Search algorithms can be run for any arbitrary amount of
time (or fitness evaluations, depending on the chosen stopping
criterion). The more time it is allowed for the search, the better
results we would expect on average. If given enough time, will
a GA find an optimal solution? Or is there the possibility that
it will be stuck forever in a sub-optimal area of search space?
The answer to these questions lies in theconvergenceanalysis
of search algorithms [38].

Standard evolutionary algorithms using elitism are proven
to converge to optimal solutions [38]. This means that, if
left running for an infinite time, they willalways find an
optimal solution. Formally, givenPo(i) the probability of
finding an optimal solution withini steps of the search, we
would havelimi→∞ Po(i) = 1. Convergence in infinite time
might be of little practical interest, as it is not feasible to
run a search algorithm for infinite time. Furthermore, given
the boundsN andL, an exhaustive enumeration of the entire
search space would also find an optimal solution in finite time.
However, there is a major motivation for proving convergence:
Convergence should be a pre-requisite of any algorithm – if
an algorithm does not guarantee an optimal solution even if
run for infinite time, then its use is questionable.

To use search algorithms for testing object-oriented soft-
ware, new search operators are often designed in the literature,
because the standard ones based on bit-strings cannot be used
(e.g., [43]). But once non-standard operators are used, the
theoretical results coming from the literature of evolutionary
computation cannot be applied. If new search operators are
designed, it is hence important to prove the convergence of
the resulting new algorithms, and we do that for the GA we
use in this paper (the results can be directly extended to allthe
other search algorithms that use the same mutation operator
described in Section3.5.2). To the best of our knowledge, this
is the first time this type of theoretical results is providedfor
the problem of test data generation.

Let us define the number of “iterations” of a search algo-
rithm as the number of fitness evaluations that are computed
(this is a typical procedure in the formal analysis of search
algorithms). TheruntimeR of a search algorithm is a random
variable describing the number of iterations it needs to findan
optimal solution. Notice that the notationPo(i) is equivalent to
P(R ≤ i). Let us assume that, before a solution is evaluated,
it is always mutated with an operatorµ. It does not matter if
other search operators are applied beforeµ (as for example

3. http://www.parasoft.com, accessed August 2011.
4. http://www.agitar.com, accessed August 2011.

a crossover). The best solution seen so far is always stored
(i.e., elitism). Let us callA the class of algorithms for which
all the above conditions hold. Notice that the GA used in
this paper (depicted in Algorithm1) belongs to the class
A. The following lemma providessufficient conditions for
which a search algorithm inA converges. This lemma is a
simplification and adaptation of similar theoretical results in
the literature of search algorithms [38].

Lemma 1: For the class of search algorithmsA, if µ is
able to sample an optimal solution with probabilityp lower
bounded by a constant (i.e.,p ≥ c for some constantc), then
the search algorithms usingµ converge, i.e.,limi→∞ P(R ≤
i) = 1, whereP(R ≤ i) is the probability of finding an
optimal solution withini iterations. Furthermore,E[R] ≤ 1/c,
i.e., the expected number of iterations is upper bounded by the
constant1/c.

Proof: Because we are interested in the convergence for
i → ∞, we do not need to study the exact dynamics of the
search algorithms. We just provide loose lower bounds to the
effectiveness that are high enough to prove this theorem. We
can focus only on the mutation operatorµ and in its ability
of sampling an optimal solution with probabilityp ≥ c. The
process of sampling an optimal solution withµ at iterationi
can be described as a geometric distribution with parameter
greater or equal thanc (see [16]). Therefore:

lim
i→∞

P(R ≤ i) ≥ lim
i→∞

1− (1− c)i = 1 .

The expected valueE of a geometric distribution with
parameterp is equal to1/p (see [16]). Therefore,E[R] ≤ 1/c.

Because the algorithms inA always store the best solution
seen so far, the convergence is hence proven.

To prove that our GA converges, it is sufficient to prove that
our mutation operator described in Section3.5.2is always able
to sample an optimal solution with probability lower bounded
by a constant.

Proposition 1: The mutation operator described in Section
3.5.2is able to sample an optimal solutionTo with probability
p ≥ c, for some constantc, when applied to any test suiteT
whose number of test cases and their length is bounded inN
andL, respectively.

Proof: To prove this proposition, we do not need to
provide tight bounds (i.e., the highest possible constantc).
Very loose bounds will be sufficient. It will be enough to
prove that with constant probability we can remove and add
any number of test cases inT .

An optimal solutionTo is composed ofno ≤ N test cases,
each one with length up toL. With probability that is at least
(1/N)N , all the test cases are mutated. With probability(1/3)·
(2/3)2, only the remove operation is applied on a test case.
With probability at least(1/L)L, all the statements in a test
case are removed. Therefore, all the test cases are removed
with probability at least:

ρ =
(1

N

22

33
1

LL

)N

.

After removing all the test cases inT , exactly no new
random test cases will be added with probabilityψ = (1 −

σno+1) ×
∏no

j=1 σ
j = (1 − σno+1) × σno(no+1)/2 (see Sec-

tion 3.5.2). In fact we need the first insertion with probability
σ1, then second with probabilityσ2, and so on until the last
one with probabilityσno . Then, for the(no + 1)th test case,
we do not insert it with probability1− σno+1.

When we generate a new test case at random, each possible
test case in the chosen representation (Section3.2) can be
sampled with non-zero probability, although the sampling is
not uniform (Section3.5.3). Let Ω be the lowest probability
for a test case to be sampled. BecauseN , L and Imax are
finite, thenΩ is a constant.

In an optimal test suite of sizeno, there would beno distinct
test cases. If any of these are equal, then the duplicates could
be removed because they do not increase the coverage (in fact,
the execution of test cases is independent, so none of them can
have effects on the others). There can be several optimal test
suites with sizeno, but, as a lower bound, we can consider
just one. Because the order in which the test cases are sampled
is not important, we can consider all theirno! permutations.
Therefore, sampling the right test cases has probability atleast
Ψ = no!× Ωno .

Finally, we can prove that the probabilityp of sampling an
optimal solution is at leastp ≥ c, wherec = ρ× ψ ×Ψ.

Although the conditions to apply Lemma1 are very general,
and proving whether they hold is rather straightforward (see
the proof of Proposition1), for many mutation operators
proposed in the software testing literature (e.g., [43]) it does
not seem that Lemma1 is applicable. However, Lemma1 is a
sufficient condition, and so it might not be necessary. In other
words, it could well be that all the techniques that have been
proposed so far in the literature do converge, even if Lemma1
does not apply to them. However, if a technique does not
converge, there might be cases for which it might never find a
solution even if left running for infinite time. Without a formal
proof that is valid for all software (as for example Lemma1), it
would not be possible to know beforehand whether a technique
would converge on any particular addressed problem instance.

7 THREATS TO VALIDITY

The focus of this paper is on comparing the approach “entire
test suite” to “one target at the time”.

Threats toconstruct validityare on how the performance of
a testing technique is defined. We gave priority to the achieved
coverage, with the secondary goal of minimizing the length.
This yields two problems: (1) in practical contexts, we might
not want a much larger test suite if the achieved coverage is
only slightly higher, and (2) this performance measure doesnot
take into account how difficult it will be to manually evaluate
the test cases for writing assert statements (i.e., checking the
correctness of the outputs).

Threats to internal validity might come from how the
empirical study was carried out. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. But it is well known that testing alone cannot prove
the absence of defects. Furthermore, randomized algorithms
are affected by chance. To cope with this problem, we ran
each experiment30 times, and we followed rigorous statistical
procedures to evaluate their results.

Another possible threat to internal validity is that we did
not study the effect of the different configurations for the
employed GA. In this paper we claim that EVOSUITE is
superior to the common approach of focusing on only one
target at the time. However, in theory it might be possible that
there exist parameter settings for which the one target at the
time approach is better than any configuration of EVOSUITE.
To shed light on this possible issue, we would need to carry
out large tuning phases on both the two approaches. However,
as already explained earlier in the paper, we preferred to use
the computational time of the experiments to have a much
larger case study rather than applying tuning phases.

Although we used both open source projects and industrial
software as case studies, there is the threat toexternal validity
regarding the generalization to other types of software, which
is common for any empirical analysis. Furthermore, we evalu-
ated the optimization of entire test suites against going toeach
testing target individually only by using a GA. The superiority
of an EVOSUITE-like approach might not hold when other
testing techniques are employed (e.g., other types of search
algorithms such as Simulated Annealing).

Our EVOSUITE prototype might not be superior to all
existing testing tools; this, however, is not our claim: We
have shown that whole test suite generation is superior to a
traditional strategy targeting one test goal at a time. Basically,
this insight can be used to improve any existing testing
tool, independent of the underlying test criterion (e.g., branch
coverage, mutation testing, ...) or test generation technique
(e.g., search algorithm), although such a generalization to other
techniques will of course need further evidence.

8 CONCLUSIONS

Coverage criteria are a standard technique to automate test
generation. In this paper, we have shown that optimizing whole
test suites towards a coverage criterion is superior to the
traditional approach of targeting one coverage goal at a time.
In our experiments, this results in significantly better overall
coverage with smaller test suites.

While we have focused on branch coverage in this paper, the
findings also carry over to other test criteria. Consequently, the
ability to avoid being misled by infeasible test goals can help
overcoming similar problems in other criteria, for example,
the equivalent mutant problem in mutation testing [29].

Even though the results achieved with EVOSUITE already
demonstrate that whole test suite generation is superior to
single target test generation, there is ample opportunity to
further improve our EVOSUITE prototype. For example, there
is potential in combining search-based test generation with
dynamic symbolic execution (e.g., [12], [33]), and search
optimizations such as testability transformation [24] or local
search [26] should further improve the achieved coverage.
Furthermore, there are general enhancements in the literature
of search algorithms that we could integrate and evaluate in
EVOSUITE, as for example island models (e.g., see the recent
[3]) and adaptive parameter control [32].

In our empirical study, we targeted object-oriented software.
However, the EVOSUITE approach could be easily applied

to procedural software as well, although further research is
needed to assess the potential benefits in such a context.

The approach presented in this paper aims at producing
small test suites with high coverage, such that the developer
can add test oracles in terms of assertions. Although keeping
the test suites small is helpful in this respect, the oracle prob-
lem is still very difficult. In this respect, we are investigating
ways to support the developer by automatically producing
effective [21] assertions, and to ease understanding we try to
make the produced test cases more readable [20].

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

Acknowledgments. We thank Valentin Dallmeier, Yana Mil-
eva, Andrzej Wasylkowski and Andreas Zeller for comments
on earlier versions of this paper. This work is funded by a
Google Focused Research Award on “Test Amplification” and
the Norwegian Research Council.

REFERENCES

[1] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege, “A system-
atic review of the application and empirical investigation of search-
based test-case generation,”IEEE Transactions on Software Engineering
(TSE), vol. 36, no. 6, pp. 742–762, 2010.

[2] M. Alshraideh and L. Bottaci, “Search-based software test data gener-
ation for string data using program-specific search operators: Research
articles,” Software Testing, Verification, and Reliability, vol. 16, no. 3,
pp. 175–203, 2006.

[3] L. Araujo and J. Merelo, “Diversity through multiculturality: Assessing
migrant choice policies in an island model,”Evolutionary Computation,
IEEE Transactions on, no. 99, pp. 1–14, 2011.

[4] A. Arcuri, “It really does matter how you normalize the branch distance
in search-based software testing,”Software Testing, Verification and
Reliability (STVR), 2011, http://dx.doi.org/10.1002/stvr.457.

[5] ——, “A theoretical and empirical analysis of the role of test sequence
length in software testing for structural coverage,”IEEE Transactions
on Software Engineering (TSE), 2011.

[6] A. Arcuri and L. Briand, “Adaptive random testing: An illusion of
effectiveness?” inACM Int. Symposium on Software Testing and Analysis
(ISSTA), 2011.

[7] ——, “A practical guide for using statistical tests to assess random-
ized algorithms in software engineering,” inACM/IEEE International
Conference on Software Engineering (ICSE), 2011, pp. 1–10.

[8] A. Arcuri and G. Fraser, “On parameter tuning in search based software
engineering,” in International Symposium on Search Based Software
Engineering (SSBSE), 2011, pp. 33–47.

[9] A. Arcuri, M. Z. Iqbal, and L. Briand, “Black-box system testing of
real-time embedded systems using random and search-based testing,” in
IFIP International Conference on Testing Software and Systems (ICTSS),
2010, pp. 95–110.

[10] ——, “Random testing: Theoretical results and practical implications,”
IEEE Transactions on Software Engineering (TSE), vol. 38, no. 2, pp.
258–277, 2012.

[11] A. Arcuri and X. Yao, “Search based software testing of object-oriented
containers,” Information Sciences, vol. 178, no. 15, pp. 3075–3095,
2008.

[12] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella,
and T. Vos, “Symbolic search-based testing,” inIEEE/ACM Int. Confer-
ence on Automated Software Engineering (ASE), 2011.

[13] L. Baresi, P. L. Lanzi, and M. Miraz, “Testful: an evolutionary test
approach for java,” inIEEE International Conference on Software
Testing, Verification and Validation (ICST), 2010, pp. 185–194.

[14] B. Baudry, F. Fleurey, J.-M. Jéźequel, and Y. Le Traon, “Automatic test
cases optimization: a bacteriologic algorithm,”IEEE Software, vol. 22,
no. 2, pp. 76–82, Mar. 2005.

[15] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic robustness
tester for Java,”Softw. Pract. Exper., vol. 34, pp. 1025–1050, 2004.

[16] W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. 1, 3rd ed. Wiley, 1968.

http://www.evosuite.org

[17] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,”
in International Conference On Quality Software (QSIC). Los Alamitos,
CA, USA: IEEE Computer Society, 2011, pp. 31–40.

[18] ——, “Evosuite: Automatic test suite generation for object-oriented soft-
ware.” in ACM Symposium on the Foundations of Software Engineering
(FSE), 2011, pp. 416–419.

[19] ——, “It is not the length that matters, it is how you control it,” in
IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2011, pp. 150 – 159.

[20] G. Fraser and A. Zeller, “Exploiting common object usage in test
case generation,” inICST’11: Proceedings of the 4th International
Conference on Software Testing, Verification and Validation. IEEE
Computer Society, 2011, pp. 80–89.

[21] ——, “Mutation-driven generation of unit tests and oracles,” IEEE
Transactions on Software Engineering, vol. 99, no. PrePrints, 2011.

[22] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” inPLDI’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2005, pp. 213–223.

[23] A. Goldberg, T. C. Wang, and D. Zimmerman, “Applications offeasible
path analysis to program testing,” inISSTA’94: Proceedings of the
1994 ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 1994, pp. 80–94.

[24] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and
M. Roper, “Testability transformation,”IEEE Transactions on Software
Engineering, vol. 30, no. 1, pp. 3–16, 2004.

[25] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo.,
“Optimizing for the number of tests generated in search based test
data generation with an application to the oracle cost problem,” in
International Workshop on Search-Based Software Testing (SBST), 2010.

[26] M. Harman and P. McMinn., “A theoretical and empirical study of search
based testing: Local, global and hybrid search.”IEEE Transactions on
Software Engineering (TSE), vol. 36, no. 2, pp. 226–247, 2010.

[27] K. Inkumsah and T. Xie, “Improving structural testing of object-oriented
programs via integrating evolutionary testing and symbolic execution,”
in ASE’08: Proc. of the 23rd IEEE/ACM Int. Conference on Automated
Software Engineering, 2008, pp. 297–306.

[28] M. Islam and C. Csallner, “Dsc+mock: A test case + mock class
generator in support of coding against interfaces,” inInternational
Workshop on Dynamic Analysis (WODA), 2010, pp. 26–31.

[29] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” CREST Centre, King’s College London, London, UK,
Technical Report TR-09-06, September 2009.

[30] B. Korel, “Automated software test data generation,”IEEE Transactions
on Software Engineering, pp. 870–879, 1990.

[31] F. Lammermann, A. Baresel, and J. Wegener, “Evaluating evolutionary
testability for structure-oriented testing with softwaremeasurements,”
Applied Soft Computing, vol. 8, no. 2, pp. 1018–1028, 2008.

[32] F. Lobo, C. Lima, and Z. Michalewicz,Parameter setting in evolutionary
algorithms. Springer Verlag, 2007, vol. 54.

[33] J. Malburg and G. Fraser, “Combining search-based and constraint-
based testing,” inIEEE/ACM Int. Conference on Automated Software
Engineering (ASE), 2011.

[34] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[35] W. Miller and D. L. Spooner, “Automatic generation of floating-point
test data,”IEEE Transactions on Software Engineering, vol. 2, no. 3,
pp. 223–226, 1976.

[36] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random test-
ing for Java,” inOOPSLA’07: Companion to the 22nd ACM SIGPLAN
Conference on Object-oriented Programming Systems and Application.
ACM, 2007, pp. 815–816.

[37] J. C. B. Ribeiro, “Search-based test case generation for object-
oriented Java software using strongly-typed genetic programming,” in
GECCO’08: Proceedings of the 2008 GECCO conference companion
on Genetic and evolutionary computation. ACM, 2008, pp. 1819–1822.

[38] G. Rudolph, “Convergence analysis of canonical genetic algorithms,”
IEEE transactions on Neural Networks, vol. 5, no. 1, pp. 96–101, 1994.

[39] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing
engine for C,” inESEC/FSE-13: Proc. of the 10th European Software
Engineering Conf. held jointly with 13th ACM SIGSOFT Int. Symposium
on Foundations of Software Engineering. ACM, 2005, pp. 263–272.

[40] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov, “Testing
container classes: Random or systematic?” inFundamental Approaches
to Software Engineering (FASE), 2011.

[41] S. Silva and E. Costa, “Dynamic limits for bloat control ingenetic
programming and a review of past and current bloat theories,”Genetic
Programming and Evolvable Machines, vol. 10, no. 2, pp. 141–179,
2009.

[42] N. Tillmann and J. N. de Halleux, “Pex — white box test generation
for .NET,” in TAP’08: International Conference on Tests And Proofs,
ser. LNCS, vol. 4966. Springer, 2008, pp. 134 – 253.

[43] P. Tonella, “Evolutionary testing of classes,” inACM Int. Symposium on
Software Testing and Analysis (ISSTA), 2004, pp. 119–128.

[44] A. Vargha and H. D. Delaney, “A critique and improvement ofthe CL
common language effect size statistics of McGraw and Wong,”Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[45] W. Visser, C. S. Pasareanu, and S. Khurshid, “Test InputGeneration
with Java PathFinder,” inACM Int. Symposium on Software Testing and
Analysis (ISSTA), 2004, pp. 97–107.

[46] S. Wappler and I. Schieferdecker, “Improving evolutionary class testing
in the presence of non-public methods,” inIEEE/ACM Int. Conference
on Automated Software Engineering (ASE), 2007, pp. 381–384.

[47] S. Wappler and F. Lammermann, “Using evolutionary algorithms for the
unit testing of object-oriented software,” inGECCO’05: Proceedings of
the 2005 Conference on Genetic and Evolutionary Computation. ACM,
2005, pp. 1053–1060.

[48] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment
for automatic structural testing,”Information and Software Technology,
vol. 43, no. 14, pp. 841–854, 2001.

[49] D. Whitley, “The genitor algorithm and selective pressure: Why rank-
based allocation of reproductive trials is best,” inProceedings of the
Third International Conference on Genetic Algorithms (ICGA-89), 1989,
pp. 116–121.

[50] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: automatic
generation of path tests by combining static and dynamic analysis,” in
EDCC’05: Proceedings ot the 5th European Dependable Computing
Conference, ser. LNCS, vol. 3463. Springer, 2005, pp. 281–292.

[51] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: Aframework
for generating object-oriented unit tests using symbolic execution,” in
TACAS’05: 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2005, pp. 365–381.

[52] S. Zhang, D. Saff, Y. Bu, and M. Ernst, “Combined static and dynamic
automated test generation,” inACM Int. Symposium on Software Testing
and Analysis (ISSTA), 2011.

PLACE
PHOTO
HERE

Gordon Fraser is a post-doc researcher at
Saarland University. He received a PhD in com-
puter science from Graz University of Technol-
ogy, Austria, in 2007, and his research concerns
the prevention, detection, and removal of defects
in software. He develops techniques to generate
test cases automatically, and to guide the tester
in validating the output of tests by producing test
oracles and specifications.

PLACE
PHOTO
HERE

Andrea Arcuri received a BSc and a MSc de-
gree in computer science from the University
of Pisa, Italy, in 2004 and 2006, respectively.
He received a PhD in computer science from
the University of Birmingham, England, in 2009.
Since then, he has been a research scientist
at Simula Research Laboratory, Norway. His re-
search interests include search based software
testing and analyses of randomized algorithms.

	1 Introduction
	2 Background
	3 Test Suite Optimization
	3.1 Genetic Algorithms
	3.2 Problem Representation
	3.3 Fitness Function
	3.4 Bloat Control
	3.5 Search Operators
	3.5.1 Crossover
	3.5.2 Mutation
	3.5.3 Random Test Cases

	4 The EvoSuite Tool
	4.1 Single Branch Strategy

	5 Experiments
	5.1 Case Study Subjects
	5.2 Experimental Setup
	5.3 Results
	5.3.1 Difficult Branches

	5.4 Infeasible Test Goals
	5.5 Comparisons with Other Tools

	6 Convergence
	7 Threats to Validity
	8 Conclusions
	References
	Biographies
	Gordon Fraser
	Andrea Arcuri

