
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Second Replicated Quantitative Analysis of Fault Distributions in Complex Software
Systems

Galinac Grbac, Tihana; Runeson, Per; Huljenic, Darko

Published in:
IEEE Transactions on Software Engineering

DOI:
10.1109/TSE.2012.46

2013

Link to publication

Citation for published version (APA):
Galinac Grbac, T., Runeson, P., & Huljenic, D. (2013). A Second Replicated Quantitative Analysis of Fault
Distributions in Complex Software Systems. IEEE Transactions on Software Engineering, 39(4), 462-476.
https://doi.org/10.1109/TSE.2012.46

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/TSE.2012.46
https://portal.research.lu.se/en/publications/3526620c-2084-404b-9238-7c3875ad8b06
https://doi.org/10.1109/TSE.2012.46


A Second Replicated Quantitative Analysis of

Fault Distributions in Complex Software Systems

Tihana Galinac Grbac, Per Runeson, and Darko Huljenić,

August 15, 2013

Abstract

Background. Software engineering is in search for general principles
that apply across contexts, for example, to help guiding software qual-
ity assurance. Fenton and Ohlsson presented such observations on fault
distributions, which have been replicated once. Objectives. We aimed to
replicate their study again to assess the robustness of the findings in a new
environment, five years later. Method. We conducted a literal replication,
collecting defect data from five consecutive releases of a large software
system in the telecommunications domain, and conducted the same anal-
ysis as in the original study. Results. The replication confirms results on
un-evenly distributed faults over modules, and that fault proneness distri-
butions persist over test phases. Size measures are not useful as predictors
of fault proneness, while fault densities are of the same order of magnitude
across releases and contexts. Conclusions. This replication confirms that
the un-even distribution of defects motivates un-even distribution of qual-
ity assurance efforts, although predictors for such distribution of efforts
are not sufficiently precise.

1 Introduction

Software engineering is a relatively young discipline, and most of the decisions
within the software development life-cycle are still based on common beliefs that
have no or limited empirical foundation. Therefore, the empirical approach is
crucial for the transformation of software engineering into a mature discipline.
This can be achieved only by performing and publishing empirical studies of high
quality and replicating them in subsequent studies [36]. Replications provide
software engineering, as in all kinds of science, a mechanism to collect evidence
for the sustained characteristics of the studied phenomenon.

Numerous data have been published related to the software fault distribu-
tions, but the first systematically reported study was performed by Fenton and
Ohlsson [10], although it in part is rooted back in Basili and Perricone’s study
from the late 1970’s [3]. Fenton and Ohlsson’s study consolidates hypotheses
that are related to the Pareto principle of fault distributions within the system,
using basic measures to identify faulty system modules and benchmarking of

1



fault data. The study is replicated by Andersson and Runeson [2]. The re-
sults obtained are not fully compatible, although they corroborate most of the
original findings. Hence, there is a motivation for further replications.

Replications may be literal or theoretical [34, 36]. Literal replications at-
tempt to follow the original procedures as close as possible, while theoretical
replications vary one or more conditions in the settings, for a certain purpose.
It is debated whether literal or theoretical replications is preferable [24, 17].
Juristo and Vegas even question whether any replication in software engineer-
ing may be classified as literal, since so many factors may vary in the complex
setting of an empirical study in software engineering [15].

This paper is a second replication of the original study [10], which we have
attempted to be as literal as possible. We follow as much as possible the original
and the previous replication studies, to make comparisons possible, and thus
contributing to synthesized knowledge. We measure the same variables and
analyze the same hypotheses. However, there are certain differences in the
measurements, that we could not repeat in our study, resulting in one hypothesis
fewer than the original study. Additionally, the difference in time of over a
decade, including the introduction of incremental work practices are factors
that may have an impact of the outcome of the replication, even though it is
conducted within the same multinational corporation.

The first replication study [2] was published seven years after the original
study, and studied a different type of system; consumer products versus switch-
ing systems in the original study, although both in the telecommunications do-
main. In this, the second replication study, we performed quantitative analyses
of data from five consecutive releases of an evolutionary developed large scale
software system for telecommunication applications. We followed recommenda-
tions by Miller [24] to change some elements compared to the previous studies
to check the stability of the results. As suggested by Miller, we also stick to the
same report structure as much as possible, and we even kept the same headings
to allow easy reference to the original and first replicated studies. In the rest of
the paper we will refer to these papers as the original study [10], the previous
replication study [2], and this replication study when referring to the replication
study described in this paper.

The paper is organized as follows. In Section 2 we present an overview of
the original study and the previous replication, briefly describe their differences
and results obtained, as well as some subsequent work regarding the stated
hypotheses. In Section 3 we describe the details of the context in which the
data for this replication was collected. In Section 4 we repeat the hypotheses
from previous studies that we analyze in this replication. The results obtained
for each hypothesis are presented in separate subsections of Section 5. We also
include a subsection with an overview of the studies addressing some of our
hypothesis in the case of open source software. Finally, in Section 6 we discuss
the results with respect to the original study and the previous replication, and
conclude the paper in Section 7.

2



2 Background

In the original study [10], the hypothesis were analyzed in four groups. i) Hy-
potheses related to the Pareto principle of fault distribution, ii) Hypotheses
related to persistence of faults, iii) Hypotheses about effects of module size and
complexity on fault proneness, and iv) Hypotheses about the quality in terms
of fault densities.

The first group of hypotheses has been motivated by the application of the
Pareto principle (also known as the 20–80 rule), a well–known quality control
principle [14] on software faults distribution. In software engineering, the prin-
ciple is used to identify percentages of software modules, labeled as fault prone
for consequent quality assurance activities [28]. Furthermore, since the Pareto
principle is used to predict these 20% of most fault prone modules, it becomes
a necessity to investigate the proportion of the total system size these mod-
ules take, so the quality assurance decisions would be meaningful. That is, if
these software modules constituted the majority of software system size, then
the Pareto principle applied on fault distribution would not be helpful. In such
case, all the theory related to the classification models as in Lessman et al. [21]
and Runeson et al. [33] would be useless. The results obtained by testing this
group of hypotheses are consistent between the original and previous replication
study. The hypothesis that the small number of modules contain most of the
defects was also confirmed in many other studies [4], [6], [16], [27], [28], [9], and
no support has been obtained for the hypothesis that the modules where the
majority of faults is discovered constitute most of the system size. These results
have been repeated for the pre-release and post-release faults separately.

Another widely used approach to identify quality assurance activities in later
verification phases is based on the relationship between number of faults from
consecutive verification phases. These relationships are studied in the second
group of hypotheses. The usually applied principle is that higher incidence
of faults in earlier verification phases implies higher incidence of faults in the
subsequent verification phases [4]. The original and the previous replication
studies give contrary results on this hypothesis. Limited or no support was found
in the original study, while in the previous replication these hypotheses were
supported, or even strongly supported. The authors of the previous replication
argued that some modules are more central from the architectural point of view,
and consequently more fault prone during their whole life–cycle. In the original
study it is stressed that the causal relationship may be affected by other factors.
One example is the testing effort, which data was not available in the original
study, and neither in the previous replication study. Contrary results were also
obtained in other studies [4], [29]. Wu et al. [40] identified that the review and
testing efforts spent on the projects under study differed very much and could
be the cause of such varying results. Therefore, more replications of this study,
taking other possible influencing factors into account, are necessary, but left for
future work.

The size–defect relationship, studied by the third group of hypotheses, has
been widely used to address the product quality problem; see for example Koru

3



et al. [18],[19]. The main reason for using static code attributes, such as the
size and complexity, in fault prone module predictions lies in the absence of
other metrics, and the simplicity of their automated collection. However, their
prediction ability should be extensively validated and understood in a wider
context before it can be accepted as a generally valid principle. Observing the
NASA data sets from the PROMISE database1, it was identified that the best
static code attributes used in the fault prediction varies from data set to data
set [23], and that attribute prediction ability greatly depends on the severity of
faults [38]. Further investigation on these data sets has indicated that the simple
classifiers suffice to model that relationship [21], although better predictions are
obtained for a combination of attributes than using a single attribute.

The original study analyzed metrics for fault prediction, size metrics such as
lines of code (LOC) and complexity metrics such as McCabe’s cyclomatic com-
plexity, and the SigFF metric which measures the number of communication
signals between modules. For size as a fault predictor metric, no support or
limited support is found in the original study. On the other hand, the previous
replicated study found some support for that hypothesis but not consistently
across the analyzed projects. For the fault density as fault predictor no support
has been found in the original and the previous replication, but some other
studies confirmed this hypothesis [13], [29]. Note that there is a methodological
threat related to this predictor, see further discussion in Subsection 5.3. The hy-
pothesis testing of complexity metric as a defect predictor has found no support
or some weak support in the original study. In the previous replication study
this hypothesis has not been tested due to lack of data required to perform the
analysis.

Finally, the fourth group of hypotheses is related to benchmarking in terms
of defect densities. As indicated in the original study, the main motivation is
to engage collecting and publishing the data that would enable better intra and
inter company comparisons, help in engaging the prediction based decisions and
serve in building software engineering research [39]. Although some data, for
example fault densities, are known within the company, they are rarely pub-
lished. Still, the software engineering community lacks good prediction models
and the selection of predictors may vary across the environments, thus leaving
limited proof for adequacy of any prediction model in a wider context [5]. The
accuracy of predictions is highly related to the level of similarity between the
environments used in the prediction (process, data and domain) and could be
improved by using quantified and validated environment for prediction approach
[42]. The hypothesis that the fault densities are consistent between releases of
projects had limited support in the original study, but was supported in the
previous replication study. The hypothesis that the fault densities are similar
in similar environments is confirmed for both studies.

Studying the same hypotheses and the variability of obtained results in a
wider context helps us to better understand phenomena under analysis. In
the original and previous replication studies, these groups of hypotheses were

1http://promisedata.org

4



analyzed for closed source industrial telecommunication software. Some of the
hypotheses have also been analyzed by other researchers in other closed source
contexts [40] and on Open Source Software (OSS) [9], [6], [25], [43], [35]. OSS
is very different compared to commercial software, although in some aspects,
for example, size, complexity, coupling and cohesion, OSS programs can be
more similar to commercial software than other OSS programs[32]. Also, the
impact of programming language (procedural vs. object–oriented) or chosen
entity for analysis (e.g. module, component, file, etc) could also have impact on
the results. This kind of analysis could help us to better understand variations
in obtained results when testing the hypothesis in wider context.

3 Context of the study

The context of the study is described following the recommendations by Petersen
and Wohlin [30]. The differences to the original and the previous replicated
studies are highlighted, following the recommendations by Miller [24].

3.1 Product

The data used in this analysis are empirical data obtained from five projects de-
veloping sequential releases of a complex large scale telecommunication product,
that we denote Rel n, Rel n+1, Rel n+2, Rel n+3, and Rel n+4. The prod-
uct provides functionality for the Mobile Switching Centre (MSC), a functional
node within Third Generation (3G) Core network, and is built on Ericsson’s
proprietary AXE telephone exchange. The product developed evolutionary in
a sequence of releases over more than 30 years and is shared among different
products, following the product line concept. It is installed within hundreds of
telecom exchanges worldwide. During the evolution, the product line has been
split into several product lines to evolve separately, thus forming the product
line family. The product is composed of more than 1000 software units that are
reused among product lines, either as common or modified units. Furthermore,
each product from the product line serves a number of customers, satisfying
a number of customer specific requirements. Therefore, each fault that is de-
tected late could have serious consequences to a number of products that all
serve to the telecommunication network with high real-time and reliability de-
mands. Because of all these facts, Ericsson gives significant attention to the
quality assurance activities and improvements, that is also evident from other
publications (see for example [10], [2], [26], [11].) The analysis in the original
and the previous replication study is also performed in the telecommunication
domain and products were also part of the product line.

In this study, the analyzed part of the software product is the application
part (e.g. signalling, traffic control, charging) written in the proprietary Pro-
gramming Language for EXchanges (PLEX). The programming language used
in the analyzed product of the original study was not specified, although the
description indicates it was an earlier version of the PLEX language. In the

5



Table 1: Project characteristics

Study Project Project type No units No faults

Orig. Rel n
Application

140 1669
study Rel n+1 246 3646

Prev. Proj 1 Application 45 1558
repl. Proj 2 Platform 90 4045
study Proj 3 Application 90 2419

Rel n

Application

302 5369
This Rel n+1 179 3563
repl. Rel n+2 216 4025
study Rel n+3 71 1523

Rel n+4 71 4037

previous replication majority of code was written in C and some parts in Java.
The original study analyzed two successive releases of the application part of
the switching system, and the previous replication analyzed two application and
one platform release of different consumer products which were sharing some
common components, see Table 1.

The total number of units for the five releases included in this study are 302,
179, 217, 71, and 71, respectively, and the total number of faults included in
the analysis is 5369, 3563, 4032, 1523, and 4037, respectively. These are larger
numbers than in the original study and in the previous replication. Table 2
summarizes the distribution of modules in the analyzed sample by size in the
original, the previous replication and this replication study2. Note that the
module is a general term and is defined in accordance to the context of analysis.
In our study, the term module is equivalent to the software unit that is a smallest
self contained administrative unit of software product. The largest modules in
this replication study are approximately more than five times larger than in
the original study, and twice the size of the largest module in the previous
replication.

2Basili and Perricones’s study on IBM 360 data 1977–1980 categorize module sizes in ranges
of 50 LOC, having 10 modules out of 370 bigger than 400 LOC in Fortran [3].

6



T
ab

le
2
:

D
is

tr
ib

u
ti

on
of

m
o
d

u
le

s
b
y

si
ze

.
N

ot
e

th
a
t

th
e

p
re

v
io

u
s

re
p

li
ca

ti
o
n

st
u

d
y

h
a
s

d
iff

er
en

t
p

ro
g
ra

m
m

in
g

la
n

g
u

a
g
es

fr
o
m

th
e

or
ig

in
al

an
d

th
is

re
p

li
ca

ti
on

st
u

d
y.

O
ri

gi
n

al
st

u
d

y
P

re
v
io

u
s

re
p

li
ca

ti
o
n

st
u

d
y

T
h

is
re

p
li

ca
ti

o
n

st
u

d
y

L
O

C
R

el
n

R
el

n
+

1
L

O
C

P
1

P
2

P
3

L
O

C
R

n
R

n
+

1
R

n
+

2
R

n
+

3
R

n
+

4

≤
10

00
23

26
≤

10
00

0
1
2

3
0

2
5

≤
5

0
0
0

1
67

7
8

7
2

2
2

1
4

10
01

-2
00

0
58

85
10

00
1-

30
0
0
0

1
4

2
8

2
9

5
0
0
1
-1

0
0
0
0

83
5
5

7
6

2
5

1
4

20
01

-3
00

0
37

73
30

00
1-

50
0
0
0

8
1
4

1
6

1
0

0
0
1
-2

0
0
0
0

3
6

3
4

4
1

2
1

3
0

30
01

-4
00

0
15

38
50

00
1-

70
0
0
0

6
6

3
2
0

0
0
1
-3

0
0
0
0

6
4

6
3

8
40

01
-5

00
0

6
16

70
00

1-
90

0
0
0

1
3

4
3
0

0
0
1
-4

0
0
0
0

5
3

8
0

3
50

01
-6

00
0

0
6

>
90

00
0

4
9

1
3

>
4
0

0
0
1

5
5

1
3

0
2

>
60

00
1

2

T
ot

al
14

0
24

6
T

ot
al

4
3

9
0

9
0

T
o
ta

l
3
0
2

1
7
9

2
1
7

7
1

7
1

7



3.2 Organization and Process

The product development unit under study is globally distributed and during
the observed period, the organization of the unit changed dramatically several
times. The number of involved local development centers (LDC) distributed
across the world, have varied during the five projects and consisted of eleven,
five, four, five and four LDCs, respectively. That is different in comparison
to the original study where more than 20 design centers were involved in the
product development, and to the previous replication where projects involved
only one development site.

The software development process has evolved, during the years of product
evolution, from the traditional waterfall process and is now characterized by
being incremental, iterative and focused on feature development. A number of
quality assurance and verification activities are integrated throughout the en-
tire software development process. Design, implementation and maintenance
are performed by local development centers (LDC) having defined responsi-
bilities over the particular modules forming the product. Remote LDCs use
common development environment, processes, tools and databases. Local im-
plementation may vary because of cultural differences and local habits. All unit
verification activities and function testing (FT) is performed locally, but within
simulated environments before modules are integrated into the system. At a
defined milestone, the modules are delivered to the system integration and ver-
ification centre that is responsible for integration of modules into the system
and performing the System test (ST). Again, at the next milestone the product
is delivered to the network integration and verification organization, where the
system is integrated into network and Site tests (SI) are performed. At the end,
finally, the product is launched into operation (OP). As in the original study, we
will follow the notation for the faults that are found during FT and ST testing
as pre-release faults, and faults found during SI testing as post-release faults.

4 Study design

4.1 Hypotheses

In this study we re-use the hypotheses from the original and the previous repli-
cation studies. This enables us to additionally verify the original experiment,
that has already been verified in the previous replication study, and to explore
the hypotheses in another environment, thus investigating the compatibility of
the results. In this way we provide further generalization of the results obtained
in the original and previous replication study. The hypotheses were grouped
into four groups as mentioned in Section 2. The numbering is the same as in
the original study.

G1. Hypotheses related to the Pareto principle of fault distribution

1a A small number of modules contain most of the faults detected during
pre-release testing.

8



1b If a small number of modules contain most of the pre-release faults, then
it is because these modules constitute most of the code size.

2a A small number of modules contain most of the faults detected during
post-release testing.

2b If a small number of modules contain most of the post-release faults, then
it is because these modules constitute most of the code size.

G2. Hypotheses related to the persistence of faults

3 A higher incidence of faults in function testing (FT) implies a higher
incidence of faults in system testing (ST).

4 A higher incidence of faults in pre-release testing implies a higher incidence
of faults in post-release testing and use.

G3. Hypotheses about effects of module size and complexity on fault prone-
ness

5a Smaller modules are less likely to be fault–prone than larger ones.

5b Size metrics are good predictors of pre-release faults in a module.

5c Size metrics are good predictors of post-release faults in a module.

5d Size metrics are good predictors of a module’s pre-release fault density.

5e Size metrics are good predictors of a module’s post-release fault density.

6 Complexity metrics are better predictors than simple size metrics of fault
and fault-prone modules (due to lack of data, this hypothesis is not in-
cluded in our replication study).

G4. Hypotheses about the quality in terms of fault densities

7 Fault densities at corresponding phases of testing and operation remain
roughly constant between subsequent major releases of a software system.

8 Software systems produced in similar environments have broadly similar
fault densities at similar testing and operational phases.

4.2 Data collection

As in the original study and the first replication, the study procedures do not
intervene with the projects but only passively collect data from several sources.
The dependent variable is the number of faults and the independent variable is
the lines of code (LOC), as in the original and the previous replication studies.

Information about modules is collected from quality reports, which are spread-
sheets reporting results of verification activities in the project. The following
information is reported for each module: module name, identity and revision,

9



modified and total size of code, number of faults detected during unit verifi-
cation and FT. Similar to the previous studies, only modules that have been
modified within the project are included. Note that these modules are not all
the modules composing the final system.

The underlying faults causing the failures experienced during the ST, SI
and OP, are reported in the form of the so called Trouble Reports (TR), and
are addressed to a particular location in the software product (e.g. particular
module). If the failure is related to faults in several locations in the system,
then one TR is issued per location. On the other hand, this single fault could
be the cause of a number of failures, resulting in several duplicate TRs, which
later have to be removed. We collected all TRs reported on the modules listed
in the Quality reports of each analyzed project. In our sample, all duplicate
TRs were excluded and thus every fault is counted only once. Also, there are
faults that are wrongly assigned to modules and rerouted to another module,
and faults that are still not answered. In our analysis we included only TRs with
’Status=Finished’ meaning that all activities regarding this TR are completed.
Every TR also has the ’Answer code’, which contains different values encoding
the action taken on that fault. In our analysis we included only TRs that were
classified as correction is needed in the source code and has to be solved; all
other TRs were excluded from the analysis to avoid noise in the data. Each
testing activity has its own reference, that is stored as the ’Market reference’ of
the TR. This allows us to collect TRs related to ST and SI testing separately.
In our study, we did not have the opportunity to collect the OP faults. Hence,
the post-release faults refer only to the SI faults.

The modules in the original study “were selected randomly for analysis from
the set of modules that were either new or had been modified” [10]. In the
previous replication, the “samples are limited to the modules for which [code]
data could be collected automatically” [2], thus excluding some special mod-
ules. In our analysis we included the modified and new modules that had faults
reported. Moreover, we identified two outliers, both in release Rel n+3. We
removed these two unusual observations from that sample. These two observa-
tions have unusually high amount of faults compared to other testing phases of
the same module and compared to other software modules.

4.3 Data analysis techniques

The data analysis techniques used in this replication are the same as the ones
used in the previous replication study. These are Alberg diagrams [28], scatter
plot diagrams and correlation analysis. The replication analysis is done by basic
vote counting (i.e. counting data point for or against the hypotheses [31]), since
raw data is not available from the original study, and the few data points (mostly
three) does not allow any statistical analyses.

10



5 Data Analysis and Results

The analysis of the hypotheses stated in Section 4 is performed in the context
of the study described in Section 3. The results are discussed for each group
of hypotheses in separate subsections, and in relation to the original and previ-
ous replication study. Also, where appropriate, the relation to other studies is
elaborated.

5.1 Hypotheses related to the Pareto principle of fault
distribution

The main idea behind the Pareto principle, also known as 80–20 rule, has been
widely used within the software engineering community, mostly in the form that
the 20% of the software modules are responsible for 80% of the faults (hypothesis
1a and 2a). However, if these 20% of modules constitute the majority of the
system size, its practical application would be meaningless (hypothesis 1b and
2b).

Hypothesis 1a. A small number of modules contain most of the faults
detected during pre-release testing

The hypothesis 1a, as stated in the original and previous replications, is test-
ing the percentage of modules in relation to the percentage of the pre-release
faults. Here, we repeat the same analysis, reporting the results using the Al-
berg diagram in Figure 1(a). The modules are sorted in decreasing order with
respect to the number of pre–release faults, and the hypothesized relationship is
represented in the percentage scale. Almost identical graphs are obtained for all
analyzed releases. Moreover, these graphs are very similar to the graphs in the
original and previous replication. When compared at the point corresponding
to 20% of most pre-release fault prone modules, the original study reports that
60% of pre-release faults are located in these modules, the previous replication
63%, 70% and 70% for the three projects, respectively, and this replication 67%,
66%, 78%, 63% and 80% for the five releases, respectively (see Table 3). We
consider these results be consistent across the original, previous replication and
this replication study.

11



0 20 40 60 80 100
0

20

40

60

80

100

% of modules

%
 o

f 
fa

u
lt
s

Rel n

Rel n+1

Rel n+2

Rel n+3

Rel n+4

(a)

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

%
 o

f 
fa

u
lt
s

Rel n

Rel n+1

Rel n+2

Rel n+3

Rel n+4

(b)

0 20 40 60 80 100
0

20

40

60

80

100

% system size

%
 p

o
s
t−

re
le

a
s
e
 f
a
u
lt
s

Rel n

Rel n+1

Rel n+2

Rel n+3

Rel n+4

(c)

Figure 1: Alberg diagram showing the percentage of: (a) modules versus the
percentage of pre-release faults, (b) modules versus the percentage of post-
release faults, and (c) system size versus the percentage of post-release faults

Hypothesis 1b. If a small number of modules contain most of the pre-
release faults, then it is because these modules constitute most of the code size.

The analyses performed in the original study and previous replication studies
have found no support for this hypothesis. The result obtained in this study
is consistent with the previous ones, thus, giving even stronger support for
the applicability of Pareto principle as stated in hypothesis 1a. At the point
corresponding to 20% of most pre-release fault prone modules, their share in
the system size is 30% in the original study, 38%, 25% and 39% in the three
projects of the previous replication study, and 32%, 28%, 23%, 26% and 23% in
the five releases, respectively, of this replication study. Therefore, we conclude
the hypothesis 1b is not supported (see Table 3).

Hypothesis 2a. A small number of modules contain most of the faults
detected during post-release testing

The Alberg diagram is used to analyze this hypothesis (see Figure 1(b)),
comparing two observation points in the diagram. At the point corresponding
to 10% of the most post-release fault prone modules, the percentages of post-
release faults were the following: in the original study 100% and 80%, in the

12



previous replication 63%, 74% and 59% for three projects, and 62%, 39%, 40%,
55% and 53% for the five releases in this replication study. At the point corre-
sponding to 20%, the percentage of the most post-release fault prone modules in
the previous replication study is 87%, 88%, and 80%, for the analyzed projects,
and in this replication is 81%, 61%, 58%, 76% and 81% for the five sequen-
tial releases, respectively (see Table 3). In the original study, the hypothesis
was strongly supported already at the 10% level, whereas in this replication
study, this hypothesis is confirmed first at 20% of the modules. The previous
replication study also gives stronger support to this hypothesis than this second
replication study does.

It is important to notice that there are certain differences in how the post-
release faults were measured between the original, previous and this replication.
In the original study, the post-release faults included all SI and faults from
the first year of operation. In the previous replication, all SI faults and faults
from the first months of operation were included, while in this replication only
SI faults represent the post-release faults. Although we can not bring definite
conclusions based only on these three studies, it is indicative that for longer
period of operation, the growth of graphs in the Alberg diagram is faster. A
possible explanation for this observation could be that the operational faults
are concentrated in an even smaller portion of modules than post-release faults
in general.

In the original and previous replication studies, stronger support is observed
for hypothesis H2a regarding post-release faults than for hypothesis H1a re-
garding the pre-release faults, although with higher variability for post-release
faults. In this study, the support for hypothesis H1a and H2a is very similar,
although the variability is again higher for post-release faults.

13



Table 3: H1: Percentage distribution of pre-release faults over modules related
to size; H2: Percentage distribution of post-release faults over modules related
to size

H1a H1b H2a H2b

Share Share Share Share Share
Study Project of of of of of

mod. pre-r. sys. post-r. sys.
faults size faults size

Orig. Rel n 10% - - 100% 12%
study Rel n+1 10% - - 80% -

Rel n 20% 60% 30% - -
Rel n+1 almost identical to Rel n - -

Proj 1 10% - - 63% 19%
Prev. Proj 2 10% - - 74% 10%
repl. Proj 3 10% - - 59% 27%

study Proj 1 20% 63% 38% 87% 24%
Proj 2 20% 70% 25% 88% 22%
Proj 3 20% 70% 39% 80% 40%

Rel n 10% - - 62% 15%
Rel n+1 10% - - 39% 15%

This Rel n+2 10% - - 40% 15%
repl. Rel n+3 10% - - 55% 16%
study Rel n+4 10% - - 53% 11%

Rel n 20% 67% 32% 81% 27%
Rel n+1 20% 66% 28% 61% 27%
Rel n+2 20% 78% 23% 58% 25%
Rel n+3 20% 63% 26% 76% 26%
Rel n+4 20% 80% 23% 81% 22%

14



Hypothesis 2b. If a small number of modules contain most of the post-
release faults, then it is because these modules constitute most of the code size

The results for the original, previous and this replication study are given
in Table 3. In neither of the three studies the hypothesis H2b is supported.
However, contrary to the previous studies, in our case the converse hypothesis to
H2b is not supported either, because 100% of post-release faults were contained
in modules that make 50%, 88%, 92%, 50% and 88% of the system size for
the five projects, respectively. However, already 80% of post-release faults are
contained in 26%, 39%, 43%, 28% and 22% of the system size, respectively.
Thus, most of the post-release faults are concentrated in small portion of the
system size, but the last few are spread across most of the system. The Alberg
diagram of percentage of system size versus the percentage of post-release faults
is shown in Figure 1(c). Again, it is worth to mention that the sample of post-
release faults in this replication consisted only of SI faults.

5.2 Hypotheses related to the persistence of faults

Planning of later verification activities for a software system is usually based
on the results obtained in earlier verification. The widely used principle is
that higher incidence of faults in earlier verification implies higher incidence of
faults in subsequent verification activities. Therefore, this group of hypotheses
is stated to test this principle.

Hypothesis 3. Higher incidence of faults in FT implies higher incidence
of faults in ST

The scatter plots representing the relation of the FT faults and ST faults on
each software module are presented in Figure 2(a) for five releases, respectively.
It can be observed that there exist some relationships between FT and ST faults,
as was also indicated in the original and previous replication studies using the
same plots. As in the previous replication study, the statistically significant
correlation (that is, with p–value< 0.05) is identified and confirms the stated
hypothesis, meaning that the majority of ST faults are contained in the modules
where the majority of FT faults is located. The Pearson correlation coefficient
r equals 0.86, 0.82, 0.96, 0.83 and 0.94, for the five releases, respectively, which
indicate quite strong correlations, although the highest data point tend to have
an un-proportionally high impact on the parameters of the correlation line.
Similar results were obtained in the previous replication, in which the coefficient
r equals 0.74, 0.84 and 0.68 in the three analyzed projects, respectively.

Figure 3 depicts the Alberg diagrams for accumulated percentage of ST
faults, the dotted lines show modules ordered according to the number of FT
faults, and the solid line show modules ordered according to the number of ST
faults. In the original and the previous replicated study the same diagrams
were used in the analysis and the selected point of observation was at 50% of
faults detected in the ST. Columns under H3(a) in the Table 4 summarizes the
results obtained in the previous studies along with the results obtained in this
replication study. The results indicate that 50% of ST faults occurred in the
modules that were responsible for 37% and 25% of FT faults in the original

15



FT

S
T

Rel n;
r=0.86, p<0.001

FT

S
T

Rel n+1;
r=0.82, p<0.001

FT

S
T

Rel n+2;
r=0.9636, p<0.001

(a)

FT

S
T

Rel n+3;
r=0.84, p<0.001

FT

S
T

Rel n+4;
r=0.94, p<0.001

Pre−release faults

P
o
s
t−

re
le

a
s
e
 f
a
u
lt
s Rel n;

r=0.27, p<0.001

Pre−release faults

P
o
s
t−

re
le

a
s
e
 f
a
u
lt
s Rel n+1;

r=0.56, p<0.001

Pre−release faults

P
o
s
t−

re
le

a
s
e
 f
a
u
lt
s Rel n+2;

r=0.67, p<0.001

(b)

Pre−release faults

P
o
s
t−

re
le

a
s
e
 f
a
u
lt
s Rel n+3;

r=0.70, p<0.001

Pre−release faults

P
o
s
t−

re
le

a
s
e
 f
a
u
lt
s Rel n+4;

r=0.88, p<0.001

Figure 2: Scatter plot showing relationship: (a) between faults detected in
function test and faults detected in system test, (b) between pre-release and
post-release faults faults

study, 40%, 39% and 38% in the previous replication, and 54%, 53%, 63%, 62%
and 48% in this replication study. The highest concentration of FT faults in
the observed modules was obtained in this replication study, thus providing the
stronger evidence for this hypothesis than in the previous studies.

Furthermore, the columns under H3(b) in Table 4 summarizes the results
obtained for 10% of modules that were the most fault prone in the ST. The
the fifth and sixth column of the table list the percentage of faults found in
those modules during ST and FT, respectively. We can observe that faults
in FT imply faults in ST, but the levels vary for the analyzed projects and
consequently, prediction models for number of ST faults based on the number
of FT faults must be calibrated for different situations [1]. Note that in all
projects under H3(b) in Table 4, the percentage of FT faults is less than the
percentage of ST faults for the 10% of the most ST fault prone modules.

16



Table 4: H3: (a) Percentage distribution of system test faults over function test;
(b) Faults in ST for 10% of the most fault prone modules when ordered with
respect to fault proneness in the ST and the FT; H4: Percentage of pre-release
faults in modules that have no subsequent post-release faults (–PoR)

H3(a) H3(b) H4

Study Project %ST %FT %ST %FT %FT %–PoR
+ST modules

Orig. Rel n 50% 37% 38% 17% 93%
study Rel n+1 50% 25% 46% 24% 77%

Prev. Proj 1 50% 40% 53% 39% 36%
repl. Proj 2 50% 39% 56% 52% 29%
study Proj 3 50% 38% 56% 39% 13%

Rel n 50% 54% 47% 43% 26% XX%
This Rel n+1 50% 53% 46% 38% 10% XX%
repl. Rel n+2 50% 63% 62% 40% 3% XX%
study Rel n+3 50% 62% 43% 49% 25% XX%

Rel n+4 50% 48% 60% 58% 2% XX%

The correlations determined in this study confirm the findings from the
previous replication study and lead to the conclusion that this hypothesis is
strongly supported. The support for this hypothesis is even stronger than in
the previous replication study.

17



0 20 40 60 80 100
0

20

40

60

80

100

% of modules

%
 o

f 
a
c
c
. 
fa

u
lt
s
 i
n
 S

T

ST

FT

Rel n

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

ST

FT

Rel n+1

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

ST

FT

Rel n+2

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

%
 o

f 
a
c
c
. 
fa

u
lt
s
 i
n
 S

T

ST

FT

Rel n+3

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

ST

FT

Rel n+4

Figure 3: Alberg diagrams showing accumulated percentage of the number of
faults in system test when modules are ordered with respect to the number of
faults in system test and function test, respectively.

18



Hypothesis 4. A higher incidence of faults in pre-release testing implies
higher incidence of faults in post-release

Strictly speaking, this hypothesis can not be tested in this study, since we
do not have data regarding OP faults. We tested this hypothesis conditionally,
counting post-release faults only as the faults detected during SI testing. In
Figure 2(b) scatter plots for the five analyzed releases are presented. In these
plots each dot represents one system module, and its position in the plot is
defined by the number of pre-release and post-release faults in that module.
From the statistical analysis using Pearson correlation, it can be concluded that
there exists statistically significant correlation (that is, p–values< 0.001 between
the pre-release and post-release faults in majority of releases. The Pearson
correlation coefficients r in the five releases are 0.27, 0.56, 0.67, 0.70 and 0.88,
respectively. A possible reason for variability of r may be in the sample size and
possible outliers.

Furthermore, we analyzed the modules with no subsequent post-release faults
and the percentage of pre-release faults detected in such modules is listed in sev-
enth column of Table 4. The table shows that this replication provides contrary
results, compared to the original study. In the modules with no subsequent
post-release faults (XX% of the total number, respectively), the percentage of
pre-release faults was 26%, 10%, 3%, 25% and 2% for the five releases, re-
spectively. Although, we were testing this hypothesis conditionally (only SI
faults were included), the obtained result confirms the hypothesis uncondition-
ally, because any additional OP fault would only lower the percentage. Similar
results were obtained in the previous replication as well. The percentages of
pre-release faults in the analyzed modules were 36%, 29% and 13% for three
different projects, while the original study found no evidence to support this
hypothesis and could even report evidence to support the converse hypothesis.

Other studies also report inconsistent results. Wu et al. [40] found that
38.4% of not fault-prone modules in testing contain 94.4% of faults in the field
and that 61.6% of fault-prone modules in testing contain 5.6% faults in the field.
This result was obtained for one project but is not consistent with sequential
project under the same conditions, by the same experienced developers in the
same environment, and with the same languages and tools. After further in-
vestigation performed in that context, the authors report that reason for such
results lies in the variation of review and testing effort invested in each project.
The previous studies also noticed that there are other factors that could influ-
ence the results obtained. For example, the fault density measure is a better
measure of verification process then of product quality [11].

5.3 Hypotheses about the effects of module size and com-
plexity on fault proneness

There are fault prediction techniques developed on the basis of various code
attributes. The most popular code attributes are size and complexity measures,
but also the fault density is used assuming the linear relationship between size
and faults. In the original study, this group of hypotheses includes the hypothe-

19



Table 5: Hypotheses 5a–e. For each hypothesis: correlation coefficients between
module size and various fault count measures

5a Total 5b Pre- 5c Post- 5d Pre- 5e Post-
Study Project Corr. number of release release release release

coeff. faults faults faults fault density fault density

Prev. Proj. 1 Pearson 0.38 0.37 0.44 –0.17 –0.15
repl. Proj. 2 Pearson 0.05 0.05 0.08 –0.22 –0.16
study Proj. 3 Pearson 0.62 0.60 0.65 –0.10 –0.02

Rel n Pearson 0.30 0.29 0.16 –0.16 –0.07
Spearman 0.49 0.49 0.3 –0.18 0.14

Rel n+1 Pearson 0.23 0.22 0.16 –0.19 –0.22
This Spearman 0.42 0.38 0.35 –0.18 –0.013
repl. Rel n+2 Pearson 0.06 0.02 0.15 –0.10 –0.23
study Spearman 0.39 0.29 0.37 –0.10 –0.15

Rel n+3 Pearson 0.37 0.35 0.38 –0.10 0.07
Spearman 0.29 0.27 0.3 –0.23 0.16

Rel n+4 Pearson 0.08 0.08 0.06 –0.10 –0.16
Spearman 0.14 0.15 0.099 –0.27 –0.31

sis that simple size metrics, such as Lines Of Code (LOC), are good predictors of
fault prone modules, faults and fault density (hypotheses H5a, H5b, H5c, H5d,
and H5e), and the hypothesis that the complexity metrics are better predictors
than simple size metrics (hypothesis H6). As in the previous replication study,
we were not able to test hypothesis H6 because of lack of relevant data.

Hypothesis 5a. Smaller modules are less likely to be failure-prone than
larger ones

In the previous replication study, hypothesis H5a was analyzed using the
correlation between the size of modules and total number of faults. The results
from the previous replication and this replication are presented in the fourth col-
umn of Table 5. In this replication we did not identify any correlation between
the total number of faults and the total volume, as correlation coefficients for all
five releases are low. Hence, this hypothesis is not supported. In the previous
replication study some correlation between the total number of faults and the
total LOC had been identified for Project 3. Mohaghegi and Conradi [26] iden-
tified weak correlation between total number of faults and the total LOC. The
correlation is also studied for the reused and non-reused components separately,
and strong correlation is identified for non-reused components.

Hypothesis 5b. Size metrics are good predictors of pre-release faults in a
module The correlation coefficients between the LOC and pre-release faults are
given in the fifth column of Table 5 for each analyzed release. The hypothesis
is not supported as the correlation coefficients are low. The same result could
be observed from the scatter plots presented in Figure 4(a). In the previous
replication, the correlation coefficients were very low and only for Project 3 a

20



moderate correlation is identified. Also, in the original study, no strong evidence
has been identified in favor to this hypothesis, and conclusions were based solely
on scatter plots, without examining the correlation coefficients. The study per-
formed by Wu et al. [40], also indicates that there is no relationship between
size and pre-release faults.

21



Lines of code

P
re

−
re

le
a

s
e

 f
a

u
lt
s

Rel n;
r=0.29, p<0.001

Lines of code

Rel n+1;
r=0.22, p=0.003

Lines of code

Rel n+2;
r=0.02, p=0.72

Lines of code

Rel n+3;
r=0.35, p=0.002

Lines of code

Rel n+4;
r=0.08, p=0.5

(a)

Lines of code

P
o

s
t−

re
le

a
s
e

 f
a

u
lt
s

Rel n;
r=0.16, p=0.006

Lines of code

Rel n+1;
r=0.16, p=0.028

Lines of code

Rel n+2;
r=0.15, p=0.023

Lines of code

Rel n+3;
r=0.38, p=0.001

Lines of code

Rel n+4;
r=0.063, p=0.60

(b)

Lines of code

P
re

−
re

le
a

s
e

 f
a

u
lt
 d

e
n

s
it
y Rel n;

r=−0.16, p=0.006

Lines of code

Rel n+1;
r=−1.19, p=0.013

Lines of code

Rel n+2;
r=−0.10, p=0.15

Lines of code

Rel n+3;
r=−0.15, p=0.23

Lines of code

Rel n+4;
r=−0.10, p=0.364

(c)

Lines of code

P
o

s
t−

re
le

a
s
e

 f
a

u
lt
 d

e
n

s
it
y

Rel n;
r=−0.07, p=0.199

Lines of code

Rel n+1;
r=−0.222, p=0.003

Lines of code

Rel n+2;
r=−0.23, p<0.001

Lines of code

Rel n+3;
r=0.07, p=0.59

Lines of code

Rel n+4;
r=−0.16, p=0.175

(d)

Figure 4: Scatter plot showing relationship between: (a)LOC and pre-release
faults, (b)LOC and post-release faults, (c)LOC and pre-release fault density,
(d)LOC and post-release fault density

22



Hypothesis 5c. Size metrics are good predictors of post-release faults in a
module

Figure 4(b) presents scatter plots of size in LOC versus post-release faults.
From this figure, as from the correlation coefficients given in the sixth column of
Table 5, no support for this hypothesis is found. Similar results were obtained in
the original and previous replication studies, as well as in some other literature
[40]. On the other hand, the Alberg diagram in the original study, showing the
accumulated number of faults when the modules are ordered with respect to
the module size in LOC, reveals that size is a better predictor of fault-prone
modules than other considered metrics. In our case, such Alberg diagrams are
presented in Figure 5. It shows that in all releases, module size is not a good
predictor of fault proneness.

Hypothesis 5d. Size metrics are good predictors of a module’s pre-release
fault density

A number of studies have analyzed this hypothesis. The studies have found
that smaller modules have higher fault densities [3], [37], and that larger modules
also tend to have higher fault densities, leading to the conclusion that the module
has an optimal size regarding the fault density [22], [8]. However, El Emam
et al. [8] prescribed this to the mathematical artifact (plotting LOC against
1/LOC). Consequently, this hypothesis, as concluded in the previous replication,
represents a methodological threat, but is still reported for the completeness of
the replication. Koru et al. proposed an alternative analysis method without
the threat [19]. Despite that the measure would overstress such a relation, no
support was found for this hypothesis in the original study. The contradictory
observations have been noticed for the two analyzed releases. In the previous
replication study, the correlation analysis indicated a negative correlation but
since the association was low the analysis did not support this hypothesis either.
Similar results are obtained in this study, see scatter plots in Figure 4(c), the
correlation coefficients in Table 5. We may conclude that the linear relationship
between size and fault count is not always observable, although some general
indication that fault count increases with system size is noticed.

Hypothesis 5e. Size metrics are good predictors of a module’s post-release
fault density

Figure 4(d) presents this relationship for the five releases analyzed in this
paper and the correlation coefficients are given in the Table 5. As in the previous
hypothesis, the negative correlation is obtained and the relatively small value
of the coefficient does not support the hypothesis. Finally, we considered the
average fault densities of modules of similar size. Such analysis in the original
study replicates the same analysis by Basili and Perricone [3]. As in the original
study, the fault densities for modules grouped by size in Table 6 do not show
any regularity.

23



0 20 40 60 80 100
0

20

40

60

80

100

% of modules

%
 o

f 
a
c
c
u
m

u
la

te
d
 f
a
u
lt
s

ordered by all faults

odredred by LOC

Rel n

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

ordered by all faults

ordered by LOC

Rel n+1

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

ordered by all faults

ordered by LOC

Rel n+2

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

%
 o

f 
a
c
c
u
m

u
la

te
d
 f
a
u
lt
s

ordered by all faults

ordered by LOC

Rel n+3

0 20 40 60 80 100
0

20

40

60

80

100

% of modules

ordered by all faults

ordered by LOC

Rel n+4

Figure 5: Accumulated percentage of number of faults when modules are ordered
with respect to LOC.

24



Table 6: Average number of faults/fault densities for Release n, n+1, n+2, n+3,
n+4

Rel n n+1 n+2 n+3 n+4

Size f/FD f/FD f/FD f/FD f/FD
[kLOC]

< 5 167/3.44 78/3.53 72/3.53 22/3.50 14/4.78
5 − 10 83/2.97 55/3.59 76/2.94 25/2.45 14/5.22
10 − 15 24/3.07 23/2.62 28/1.93 12/1.41 16/7.40
15 − 20 12/3.41 11/2.03 13/1.50 9 /2.35 14/6.50
> 20 16/1.05 12/0.73 27/0.54 3/4.58 13/1.04

5.4 Hypotheses about the quality in terms of fault densi-
ties

Publishing of benchmarking measures enables definition of standards for guiding
the software process improvement activities. In the original and the previous
replication study, the only hypothesized benchmarking measure was the fault
density: between the subsequent testing phases within the project (H7) and
between the same testing phases of different projects (H8). The same analysis
is performed in this replication study. Some partial results have already been
reported by Galinac Grbac and Huljenić [11].

Hypothesis 7. Fault densities at corresponding phases of testing and op-
eration remain roughly constant between subsequent major releases of software
system

The fault densities were calculated as the ratio of the total number of faults
divided by the total volume of code. This ratio is calculated for each testing
phase separately, in our case these are FT, ST and SI, and the results are
given in Table 7. Observing the results we can conclude that the fault densities
for the phases of testing remain in the same order of magnitude, although it
varies up to a factor of four between releases. Moreover, the consistent results
are obtained in five analyzed projects, indicating that the process is stable
and repeatable. This is an interesting result, since the organization has been
changed over the projects. Furthermore, if we compare our results with previous
studies, then we can notice that the FT fault densities in releases analyzed in
this replication are similar to the FT fault densities of projects analyzed in the
previous replication, and ST fault densities are similar to the ST fault densities
of the releases analyzed in the original study. As in the previous studies, based
solely on observing the results presented in the table, we found support for this
hypothesis (see Table 7).

Hypothesis 8. Software systems produced in similar environments have
broadly similar fault densities at similar testing and operational phases

The order of magnitude decrease in fault density between pre-release and

25



Table 7: H7: Fault densities at three phases of testing

Study Project FT ST SI OP CAT

Orig. Rel n 3.49 2.60 0.07 0.20 -
study Rel n+1 4.15 1.82 0.43 0.20 -

Prev. Proj 1 0.7 0.2 - - 0.03
repl. Proj 2 1.2 0.5 - - 0.07
study Proj 3 0.4 0.2 - - 0.07

Rel n 0.71 1.7 0.20 - -
This Rel n+1 0.55 1.15 0.71 - -
repl. Rel n+2 0.38 0.68 0.65 - -
study Rel n+3 0.58 1.74 0.20 - -

Rel n+4 1.30 2.17 0.83 - -

post-release faults is observed in all three studies (see Table 8). In our study
we considered only SI faults, so that the post-release fault density is probably
higher than reported in the table. Overall fault density is in line with best
practices reported in other studies [10]. However, comparing the results across
different projects using small sample of projects may give misleading conclu-
sions. In previous replication, two application projects looks more similar than
the application and platform projects. In this study, the fault densities at sim-
ilar testing phases of different projects are more similar to one another than
compared to other studies. Wu et al. [40] obtained consistent results for fault
densities measured in seven projects. The pre-release fault densities are in the
range 1.95–10.16 and post-release failure densities 0.013–0.824.

The relationship between fault densities were analyzed across two sequen-
tial system releases within product family with respect to the module reuse by
Mohagheghi and Conradi [26]. Reused modules had lower fault density then
non-reused ones. In that sense, the variation in fault densities between releases
might be caused by the level of reusing the software modules. Similar results
were obtained by Ostrand and Weyker [29] when analyzing fault density for new
and older files, and the result was that the fault densities tend to decrease as
the system matures.

5.5 Results in open source projects

Open source software (OSS) is becoming an alternative to closed source soft-
ware in many applications, and fault data are easily accessible. Consequently, a
growing trend in empirical studies in the field of OSS is aiming to approximate
industrial software and provide some generalization of results that would pro-
vide stronger basis for software engineering community [32]. However, the OSS
development process may be very different from a closed source process. The
OSS is mostly evolutionary developed and module sizes can vary dramatically

26



Table 8: H8: Fault densities pre- and post-release

Study Project Pre-release Post-release All

Orig. Rel n 6.09 0.27 6.36
study Rel n+1 5.97 0.63 6.60

Prev. Proj 1 0.90 0.03 0.93
repl. Proj 2 1.70 0.07 1.77
study Proj 3 0.60 0.07 0.67

Rel n 2.41 0.20 2.61
This Rel n+1 1.70 0.71 2.41
repl. Rel n+2 1.06 0.65 1.71
study Rel n+3 2.32 0.20 2.52

Rel n+4 3.47 0.83 4.30

between successive product releases, built by a number of developers (often vol-
unteers), with no explicit system level and detailed design, and without any
plan and schedule [25]. The majority of testing is left to its users and the devel-
opment process lacks a systematic approach to quality improvements [20]. The
OSS are mostly object-oriented systems written in C++ or Java programming
languages. Here we summarize empirical results on OSS related to the four
groups of hypotheses.

G1. Pareto distribution of faults. This is widely investigated in OSS projects
and very consistent results are obtained. Bugzilla data for the Java Development
Kit component of Eclipse OSS project: 20–82 [9], Apache server 2.0: 20–60 [6],
Eclipse 3.0 for files: 20–63 in pre-release and 20–60 in post–release, and Eclipse
3.0 for packages: 20–60 in pre–release and 20–64 post–release [41].

G2. Persistence of faults. The usefulness of early fault data to predict late
fault data was also confirmed by OSS data. Zimmermann et al. [43] obtained
significant and high correlation coefficients (0.907 for files and 0.921 for pack-
ages) meaning that the files/packages having high pre-release defect count will
most likely also have high post-release defect counts. The study performed on
Eclipse 2.0, 2.1 and 3.0 projects by Shihab et al. [35] again confirms these re-
sults, and even found evidence that the pre-release defects are one of the most
stable predictors across analyzed releases.

G3. Effects of module size and complexity on fault proneness. Using code
metrics for defect prediction has been widely investigated and no support has
been found in favor to this hypothesis.In the Eclipse 3.0 project, the Spearman
correlation coefficients for the relationship LOC and pre-release/post-release
faults was 0.407/0.420 (for files) and 0.461/0.419 (for packages) [43]. Similar
results were obtained for the McCabe complexity measures. The LOC measure
is identified as the most significant and most stabile predictor of post-release
defects across three Eclipse projects analyzed [35].

G4. Quality in terms of fault densities. OSS software quality is investigated

27



Table 9: Summary of hypotheses in the original study, previous replication and
this replication study

Hypothesis Original Study Previous replication This replication
study study

1a Few modules contain Confirmed (20–60) Confirmed Confirmed
most faults (pre-release) (20–63; 20–70; (20–67; 20–66; 20–77;

20–70) 20–63; 20–80)
1b Few faulty modules No support (20–30) No support No support
constitute most of the (20–38; 20–25; (20–32; 20–29; 20–22;
size (pre-release) 20–39) 20–26; 20–23)
2a Few modules contain Confirmed (10–80; 10–100) Confirmed Confirmed
most faults (post-release) (10–63; 10–74; (20–81; 20–61; 20–58;

10–59) 20–76; 20–81)
2b Few faulty modules No support; strong evidence of No support No support
constitute most of the a converse hypothesis (100–32; 100–41; (20–27; 20–27; 20–25;
size (post-release) (100–12; 60–6) 100-70) 20–26; 20–22)
3 High fault incidence Limited support Strong support Strong support
in FT implies the same in ST (50–25; 50–37) (50–40; 50–39; (50–54; 50–53; 50–63;

50–38) 50–62; 50–48)
4 High fault incidence No support – strongly rejected Support Confirmed
pre-release implies the (93–0; 77–0) (36–0; 29–0; (26–0; 10–0; 3–0;
same post-release 13–0) 25–0; 2–0)
5a LOC is a good predictor No support Varying support No support
of faults
5b LOC is a good predictor Limited support Varying support No support
of pre-release faults
5c LOC is a good predictor No support Varying support No support
of post-release faults
5d LOC is a good predictor No support No support No support
of pre-release fault density
5e LOC is a good predictor No support No support No support
of post-release fault density
6 Complexity metrics are good No (for cyclomatic complexity), N/A N/A
predictors of faults some week support for specific metric
7 Fault densities are constant Limited support Support Limited support
between releases or projects
8 Fault densities are similar Confirmed Confirmed Confirmed
in similar environments

a lot in the relation to the quality of the closed software systems, but still
with limited empirical basis for making such comparisons. The major OSS
software releases, Apache server and Mozilla, were analyzed in relation to five
projects developing software from the telecommunication domain [25]. The
results indicate that pre-release fault density in the analyzed OSS software is
lower than in the commercial software, and the post-release fault densities are
higher in OSS then in the commercial software. A replication of this study [7]
performed for OSS version of the Unix project, confirmed that the fault densities
of OSS system are comparable to the fault densities of commercial systems.

6 Discussion

In this section, we discuss results of the complete study, and their consistency
to the original and previous replication summarized in Table 9, having in mind
the difference in the context in which the studies are performed.

The three studies were all performed on closed proprietary software in the

28



telecommunication domain. However, the studies differ in having analyzed dif-
ferent products, products of different size, and the analysis covering different
sample sizes, with different ranges in module size, programming language, and
organization of development work. Although not completely described, we con-
sider the development process having similar characteristics in these environ-
ments. The quality assurance process of all three studies could be analyzed and
measured in the way that is explained in the original study, so no major differ-
ences have been identified in that sense. Still there are substantial differences
between the processes, for example, with respect to iterativeness. In light of
this, the consistent results across the different constexts may be considered a
surprise.

All three studies give consistent answers to the first set of hypothesis (H1a–
b, H2a–b). A minority of modules contain a majority of faults. This is true
for both pre-release and post-release faults. In neither case, this is caused by
an uneven distribution of module sizes, hence it is not due to this minority of
modules comprising any substantially larger share of the total size. The original
study provided limited support for the hypothesis (H3) that fault-prone mod-
ules in function test also are fault-prone in system test. Both replications give
strong support for the hypothesis, and hence we conclude that the same mod-
ules tend to be fault-prone across those test phases. The hypotheses regarding
pre- versus post-release (H4) was not supported by the original study, but both
replications support that the same modules tend to be fault-prone both before
and after release. Numerous prediction models have been proposed to identify
fault-prone modules based on code metrics, like size and complexity. Neither of
these three studies provide any consistent results of such metrics as predictors of
fault proneness. At most, size have been shown to explain 40% of the variation.
Hence the hypotheses about fault proneness prediction (H5a–e) are rejected,
since size is not a sufficient predictive factor. Fault densities, finally (H7–8) are
concluded to be of the same magnitude of size between releases and across en-
vironments. Still there are variations of a factor of four between releases within
the same phase. Prediction models may not be built across different environ-
ments, but must be calibrated to specific contexts, and even so be quite error
prone.

7 Conclusion

We report a second replication study of Fenton and Ohlsson’s study from the
late 1990’s [10]. The study is as close as it can be more than 10 years later,
aiming for a literal replication. Further, parts of the study originate from the
late 1970’s [3]. We also conduct the analysis in light of the first replication,
from 2007 [2]. We study four groups of hypotheses, as defined by Fenton and
Ohlsson [10]: i) Pareto principle of fault distribution, ii) persistence of faults,
iii) effects of module size and complexity on fault proneness, and iv) quality in
terms of fault densities.

In conclusion, the Pareto principle is clearly confirmed in this replication,

29



which makes it worthwhile to try to identify fault-prone modules and spend
un-evenly distributed efforts on testing different parts of the system. Modules
identified to be fault-prone in one phase tend to be so in subsequent phases,
paving the way for the first set of candidates to focus on. Size related predictors,
on the other hand, are not given any support for being good enough to identify
fault-prone modules. Finally, the fault density across releases and environments
is of the same magnitude, but still varies a lot with factors not under control in
the current studies.

References

[1] C. Andersson and P. Runeson, ”A Spiral Process Model for Case Studies
on Software Quality Monitoring – Method and Metrics,” Softw. Process
Improv. Pract., vol. 12, no. 2, pp. 125-140, Mar./Apr. 2007.

[2] C. Andersson and P. Runeson, ”A Replicated Quantitative Analysis of
Fault Distributions in Complex Software Systems,” IEEE Trans. Softw.
Eng., vol. 33, no. 5, pp. 273–286, May 2007.

[3] V.R. Basili and B.T. Perricone, ”Software Errors and Complexity: an Em-
pirical Investigation,” Commun. ACM, vol. 27, no. 1, pp. 42–52, Jan. 1984.

[4] B.T. Compton and C. Withrow, ”Prediction and Control of ADA Software
Defects,” J. Syst. Softw., vol. 12, no. 3, pp. 199–207, July 1990.

[5] M. D’Ambros, M. Lanza, and R. Robbes, ”Evaluating Defect Predic-
tion Approaches: a Benchmark and an Extensive Comparison,” Empirical
Softw. Eng., vol. 17, no. 4–5, pp. 531–577, Aug. 2012.

[6] G. Denaro and Mauro Pezzè, ”An Empirical Evaluation of Fault-Proneness
Models,” Proc. 24th Internat. Conf. on Softw. Eng. (ICSE ’02), pp. 241–
251, May 2002.

[7] T.T. Dinh-Trong and J.M. Bieman, ”The FreeBSD Project: A Replication
Case Study of Open Source Development,” IEEE Trans. Softw. Eng., vol.
31, no. 6, pp. 481–494, June 2005.

[8] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S.N. Rai, ”The
Optimal Class Size for Object-Oriented Software,” IEEE Trans. Softw.
Eng., vol. 28, no. 5, pp. 494–509, May 2002.

[9] M. English, C. Exton, I. Rigon, and B. Cleary, Fault Detection and Pre-
diction in an Open-Source Software Project,” Proc. 5th Internat. Conf.
on Predictor Models in Softw. Eng. (PROMISE ’09), pp. 17:1–17:11, May
2009.

[10] N.E. Fenton and N. Ohlsson. ”Quantitative Analysis of Faults and Failures
in a Complex Software System,” IEEE Trans. Softw. Eng., vol. 26, no. 8,
pp. 797–814, Aug. 2000.

30



[11] T. Galinac Grbac and D. Huljenić, ”Defect Detection Effectiveness and
Product Quality in Global Software Development,” Product-Focused Softw.
Process Improv. (PROFES ’11), Lect. Notes in Computer Sci., vol. 6759,
pp. 113–127, June 2011.

[12] O. Gómez, N. Juristo, and S. Vegas, ”Replication Types in Experimental
Disciplines,” Proc. ACM-IEEE Internat. Symp. on Empirical Softw. Eng.
and Measurement (ESEM ’10), 2010.

[13] L. Hatton, ”Reexamining the Fault Density-Component Size Connection,”
IEEE Softw., vol. 14, no. 2, pp. 89–97, Mar. 1997.

[14] J.M. Juran, Quality Control Handbook, New York: McGraw-Hill, 1974.

[15] N. Juristo and S. Vegas, ”The Role of Non-Exact Replications in Software
Engineering Experiments,” Empirical Softw. Eng., vol. 16, no. 3, pp. 295–
324, June 2011.

[16] M. Kaâniche and K. Kanoun, ”Reliability of a Commercial Telecommu-
nications System,” Proc. 7th Internat. Symp. on Softw. Reliability Eng.
(ISSRE ’96), pp. 207–212, Oct./Nov. 1996.

[17] B.A. Kitchenham, ”The Role of Replications in Empirical Software Engi-
neering – a Word of Warning,” Empirical Softw. Eng., vol. 13, no. 2, pp.
219–221, Apr. 2008.

[18] A.G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew, ”Theory
of Relative Defect Proneness,” Empirical Softw. Eng., vol. 13, no. 5, pp.
473–498, Oct. 2008.

[19] A.G. Koru, D. Zhang, K. El Emam, and H. Liu, ”An Investigation into the
Functional Form of the Size-Defect Relationship for Software Modules,”
IEEE Trans. Softw. Eng., vol. 35, no. 2, pp. 293–304, Mar. 2009.

[20] A.G. Koru, D. Zhang, and H. Liu, ”Modeling the Effect of Size on Defect
Proneness for Open-Source Software,” Proc. 3rd Internat. Workshop on
Predictor Models in Softw. Eng. (PROMISE ’07), ICSE 2007 Companion,
pp. 115–124, May 2007.

[21] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ”Benchmarking Clas-
sification Models for Software Defect Prediction: A Proposed Framework
and Novel Findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
July 2008.

[22] Y.K. Malaiya and J. Denton, ”Module Size Distribution and Defect Den-
sity,” Proc. 11th Internat. Symp. on Softw. Reliability Eng. (ISSRE ’00),
pp. 62–71, Oct. 2000.

[23] T. Menzies, J. Greenwald, and A. Frank, ”Data Mining Static Code At-
tributes to Learn Defect Predictors,” IEEE Trans. Softw. Eng., vol. 33, no.
1, pp. 2–13, Jan. 2007.

31



[24] J. Miller, ”Replicating Software Engineering Experiments: a Poisoned
Chalice or the Holy Grail,” Inf. Softw. Technol., vol. 47, no. 4, pp. 233–244,
Mar. 2005.

[25] A. Mockus, R.T. Fielding, and J.D. Herbsleb, ”Two Case Studies of Open
Source Software Development: Apache and Mozilla,” ACM Trans. Softw.
Eng. Methodol., vol. 11, no. 3, pp. 309–346, July 2002.

[26] P. Mohagheghi and R. Conradi, ”An Empirical Investigation of Software
Reuse Benefits in a Large Telecom Product,” ACM Trans. Softw. Eng.
Methodol., vol. 17, no. 3, pp. 13:1–13:31, June 2008.

[27] J.C. Munson and T.M. Khoshgoftaar, ”The Detection of Fault-Prone Pro-
grams,” IEEE Trans. Softw. Eng., vol. 18, no. 5, pp. 423–433, May 1992.

[28] N. Ohlsson and H. Alberg, ”Predicting Fault-Prone Software Modules in
Telephone Switches,” IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 886–894,
Dec. 1996.

[29] T.J. Ostrand and E.J. Weyuker, ”The Distribution of Faults in a Large
Industrial Software System,” Proc. ACM SIGSOFT Internat. Symp. on
Softw. Testing and Analysis (ISSTA ’02), pp. 55–64, July 2002.

[30] K. Petersen and C. Wohlin, ”Context in Industrial Software Engineering
Research,” Proc. 3rd Internat. Symp. on Empirical Softw. Eng. and Mea-
surement (ESEM ’09), pp. 401–404, Oct. 2009.

[31] L. M. Pickard, B. A. Kitchenham and P. Jones, ”Combining Empirical
Results in Software Engineering” Information and Software Technology vol.
40, no. 14, pp. 811–821, 1998.

[32] B. Robinson and P. Francis, ”Improving Industrial Adoption of Software
Engineering Research: a Comparison of Open and Closed Source Software,”
Proc. ACM-IEEE Internat. Symp. on Empirical Softw. Eng. and Measure-
ment (ESEM ’10), pp. 21:1–21:10, Sept. 2010.

[33] P. Runeson, M.C. Ohlsson, and C. Wohlin, ”A Classification Scheme for
Studies on Fault-Prone Components,” Product-Focused Software Process
Improvement (PROFES ’01), Lect. Notes in Computer Sci., vol. 2188,
pp.341–355, Sept. 2001.

[34] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in
Software Enginering: Guidelines and Examples, Wiley, 2012.

[35] E. Shihab, Z.M. Jiang, W.M. Ibrahim, B. Adams, and A.E. Hassan, ”Un-
derstanding the Impact of Code and Process Metrics on Post-Release De-
fects: a Case Study on the Eclipse Project,” Proc. ACM-IEEE Internat.
Symp. on Empirical Softw. Eng. and Measurement (ESEM ’10), pp. 4:1–
4:10, Sept. 2010.

32



[36] F.J. Shull, J.C. Carver, S. Vegas, and N. Juristo, ”The Role of Replications
in Empirical Software Engineering,” Empirical Softw. Eng., vol. 13, no. 2,
pp. 211–218, Apr. 2008.

[37] R.W. Selby and V.R. Basili, ”Analyzing Error-Prone System Structure,”
IEEE Trans. Softw. Eng., vol. 17, no. 2, pp. 141–152, Feb. 1991.

[38] R.S. Chhillar and Nisha, ”Empirical Analysis of Object-Oriented Design
Metrics for Predicting High, Medium and Low Severity Faults Using Mal-
lows,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 6, pp. 1–9, Nov. 2011.

[39] B. Turhan, T. Menzies, A.B. Bener, and J. Di Stefano, ”On the Relative
Value of Cross-Company and Within-Company Data for Defect Predic-
tion,” Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, Oct. 2009.

[40] S. Wu, Q. Wang, and Y. Yang, ”Quantitative Analysis of Faults and Fail-
ures with Multiple Releases of Software,” Proc. 2nd ACM-IEEE Internat.
Symp. on Empirical Softw. Eng. and Measurement (ESEM ’08), pp. 198–
205, Oct. 2008.

[41] H. Zhang, A. Nelson, and T. Menzies, ”On the Value of Learning from De-
fect Dense Components for Software Defect Prediction,” Proc. 6th Internat.
Conf. on Predictive Models in Softw. Eng. (PROMISE ’10), pp. 14:1–14:9,
Sept. 2010.

[42] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, ”Cross-
Project Defect Prediction: a Large Scale Experiment on Data vs. Domain
vs. Process,” Proc. 7th Joint Meeting European Softw. Eng. Conf. and the
ACM SIGSOFT Symp. Foundations of Softw. Eng. (ESEC/FSE ’09), pp.
91–100, Aug. 2009.

[43] T. Zimmermann, R. Premraj, and A. Zeller, ”Predicting Defects for
Eclipse,” Proc. 3rd Internat. Workshop on Predictor Models in Softw. Eng.
(PROMISE ’07), pp. 9:1–9:7, May 2007.

33


