

City, University of London Institutional Repository

Citation: Zisman, A., Spanoudakis, G., Dooley, J. & Siveroni, I. (2013). Proactive and

reactive runtime service discovery: a framework and its evaluation. IEEE Transactions on
Software Engineering, 39(7), pp. 954-974. doi: 10.1109/tse.2012.84

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2467/

Link to published version: https://doi.org/10.1109/tse.2012.84

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Proactive and Reactive Runtime Service
Discovery: A Framework and its Evaluation
A. Zisman, G. Spanoudakis, J. Dooley, I. Siveroni

Abstract — The identification of services during the execution of service-based applications to replace services in them that are no longer
available and/or fail to satisfy certain requirements is an important issue. In this paper we present a framework to support runtime service
discovery. This framework can execute service discovery queries in pull and push mode. In pull mode, it executes queries when a need for
finding a replacement service arises. In push mode, queries are subscribed to the framework to be executed proactively, and in parallel with
the operation of the application, in order to identify adequate services that could be used if the need for replacing a service arises. Hence, the
proactive (push) mode of query execution makes it more likely to avoid interruptions in the operation of service-based applications when a
service in them needs to be replaced at runtime. In both modes of query execution, the identification of services relies on distance-based
matching of structural, behavioural, quality, and contextual characteristics of services and applications. A prototype implementation of the
framework has been developed and an evaluation was carried out to assess the performance of the framework. This evaluation has shown
positive results, which are discussed in the paper.

1 INTRODUCTION

Service-based applications are composed of loosely
coupled autonomous computer-based entities
owned by third parties known as services. These
services are combined to realize applications and
create dynamic business processes. Due to rapid
changes in market conditions and regulations, the
dynamic creation of business alliances and partner-
ships, and the need to assist with changing user
demands, it is necessary to provide ways of identi-
fying services that can fulfill specific functional and
quality characteristics of service-based applica-
tions. The identification of such services is known
in the literature as service discovery and has been an
important topic of research over the last few years.

Several approaches have been developed to
support service discovery, broadly classified as stat-
ic [20][24][30][47] and dynamic [10][13][38][48]

approaches. In static service discovery, services are
identified during the development of service-based
applications and bound to these applications prior
to execution. In dynamic (aka runtime) service dis-
covery, services are identified and bound to service-
based applications during the execution of the ap-
plications. This may be necessary in order to re-
place existing services in an application and allow
the application to continue its execution.

The need to replace services during the execution of a
service-based application may arise due to different cir-
cumstances such as (a) the unavailability or malfunction-
ing of a service used in the application; (b) changes in the
structure (i.e., interface), functionality, quality properties,
or the context of services used in the application that
make them no longer appropriate or the best option for
the role they fulfill; (c) changes in the context of an appli-
cation that can also make used services no longer appro-
priate or the best option for the role they fulfill; or (d) the
emergence of new services that can fulfill the role of an
existing service in an application in a better way than the
current service. In the above cases, the term “context”
signifies information about the operational environment
of an application or a service that changes dynamically
(e.g., location, workloads, network availability) and can
affect the adequacy of a service for an application.

The above circumstances give rise to a basic research
challenge, i.e., how to support service-based applications
when the services that they use disappear or stop func-
tioning as expected, as well as in the presence of continu-
ously changing contexts of both the applications and their

————————————————
• A. Zisman is with School of Informatics, City University London, North-

ampton Square, London EC1V 0HB, UK, E-mail: a.zisman@soi.city.ac.uk.

• G. Spanoudakis is with School of Informatics, City University London,
Northampton Square, London, EC1V 0HB, UK, E-mail:
G.E.Spanoudakis@city.ac.uk.

• J. Dooley is with School of Computer Science and Electronic Engineering,
University of Essex, Colchester CO4 3SQ, UK, E-mail: jpdool@essex.ac.uk.

• I. Siveroni is with School of Informatics, City University London, North-
ampton Square, London EC1V 0HB, UK, E-mail: sbbc287@soi.city.ac.uk.

2

services at runtime. Addressing this challenge requires a
dynamic and flexible identification of services during the
execution time of service-based applications.

Most of the current approaches for dynamic service
discovery support a classic pull mode of query execution.
This mode is often not effective. This is because the dis-
covery process is triggered only after the need for a new
service arises (as in case (a) above) and it may take con-
siderable time to complete, affecting the performance of
the application and its ability to produce acceptable “real
time” response to the user. It should also be noted that
pull mode discovery cannot identify better services (as in
case (d) above) before a problem with an existing service
that would trigger the execution of a query arises. Simi-
larly, for cases (b) and (c) above, pull mode discovery
would need to wait until the changes that made used ser-
vices be inadequate arise at runtime as in case (a). Alter-
natively, the pull mode of query execution would need to
be enhanced with mechanisms for polling regularly ser-
vice registries and/or context information resources to
identify changes that can lead to subsequent problems.
Such polling would consume significant computational
resources, as it would need to be executed at regular in-
tervals even if there is no need to do so (i.e., in the ab-
sence of service context changes, application environment
context changes, or emergence of new services).

Furthermore, existing approaches to service discovery
(with the exception of [48]) do not consider different
characteristics of the application such as structural, be-
havioural, quality, and contextual aspects, at the same
time when attempting to identify services.

To address the limitations of existing approaches, we
present a service discovery framework that supports
runtime service discovery based on complex queries that
can express flexible combinations of structural, behav-
ioural, quality, and contextual conditions. These queries
are specified in an XML-based query language, called
SerDiQueL. The framework assumes services that have
multi-faceted descriptions including service interface,
behaviour, quality, and context descriptions.

To support all cases (a) to (d) above and avoid the
drawbacks of traditional polling mechanisms, our
framework allows service discovery based on both reac-
tive (pull) and proactive (push) query execution modes.
Pull mode query execution is triggered in cases like (a)
above. In push mode, query execution is performed in
parallel to the execution of the application using pre-
subscribed queries. These queries are associated with spe-
cific services in an application and aim to maintain up-to-
date sets of candidate replacement services for these ser-
vices. In both modes, query execution is based on match-
ing and the computation of distances between query and
service specifications.

The work presented in this paper has been carried out as
part of a European research project focusing on the develop-
ment of service based grid applications (GREDIA [19]) and is
based on scenarios identified in different industrial domains
including media and banking. Previous work on our runtime
discovery framework has been presented in
[14][32][49][61][62]. The new version of the runtime
framework presented in this paper incorporates two main
extensions. The first of these extensions is the develop-
ment of an XML-based query language to support the
specification of service discovery queries of both push
and pull types, including the specification of service be-
havioural conditions in queries. The language for express-
ing behavioural query conditions was introduced to re-
place the specification of such conditions using BPEL in
earlier versions of the framework [62]. The new language
allows for the declarative specification of partial behav-
ioural conditions for services rather than requiring the
specification of complete procedural models of expected
service behaviour, as in the original version of the frame-
work, that that was cumbersome.

The second extension of the framework is the devel-
opment of a new behavioural matching process and the
use of a new behavioural distance for evaluating the be-
havioural conditions expressed in the new query lan-
guage. Furthermore, in this paper we give an integrated
description of the framework covering all its parts and
present the results of a thorough performance evaluation
of it. We also provide a critical comparison of the frame-
work in the context of related literature.

The remainder of this paper is structured as follows.
Section 2 presents descriptions of discovery scenarios that
will be used throughout the paper to illustrate the work
and an overview of how our discovery framework sup-
ports these scenarios. Section 3 describes the service dis-
covery query language of the framework. Section 4 pre-
sents the service discovery process supported by the
framework. Section 5 presents an evaluation of the ap-
proach. Section 6 discusses related work and, finally, Sec-
tion 7 presents conclusions and plans for of future work.

2 OVERVIEW
In this section, we present scenarios for runtime service
discovery and give an overall description of how our
framework can be used to address these scenarios.

2.1 Runtime service discovery scenarios
Various scenarios regarding runtime service discovery

can be identified in reference to a mobile service-based
application, called on-the-go-News.

on-the-go-News allows its users to request and receive
news from different media sites from their mobile phone.
To do so, the application offers services allowing users to:
(i) search for certain news topics on a mobile phone and
choose the source which they want to receive the news

from; (ii) display news about a topic from various
sources; (iii) create customized on-the-fly “magazines” or
with information from several different news sites; (iv)
flip through articles in a customized magazine from sev-
eral sources; (v) obtain and pay for the non freely availa-
ble information charging the amount in the user’s phone
bill at the end of the month, and (vi) see the new balance
of their phone bill after using the application for (v).

on-the-go-News uses an external service, called SSearch,
which searches different news sites to identify news
about specific topics, and another service, called SCustMag,
enabling the amalgamation of news and their customized
appearance in an on-the-fly magazine.

One runtime service discovery scenario can arise if af-
ter receiving a request for news on a specific topic, on-the-
go-News fails to contact SSearch due to the fact that the latter
service is unavailable (Case (a)). In this case, the applica-
tion will need to identify a new service to replace SSearch.
After the new service is identified and bound to on-the-go-
News, the user who issued the request will start receiving
the requested information from various sites.

A second scenario, may arise if a user who is interested
on having an on-the-fly magazine about climate change
on his mobile phone and created such a magazine using
SCustMag, starts getting a slow response from SCustMag as the
service is used by many different users simultaneously
(Case (b)). In such cases, an alternative service for SCustMag
with acceptable response time will need to be identified
and bound to on-the-go-News.

A third scenario arises when, whilst a user of on-the-go-
News is travelling by train, he looses access to the service
that displays and supports flipping through news, (i.e., a
service called SDisFlip) since SDisFlip cannot be accessed at his
current location. This change in the location of on-the-go-
News (Case c) requires searching for an alternative service
that could be used in the user’s current location.

A fourth scenario arises when a new service that al-
lows payments by debiting the user’s bank account and
credit card payments, instead of charging the user’s
phone bill becomes available (Case d). If flexibility in
payment is desirable in on-the-go-News, the new service
should be bound to the application.

2.2 Framework support
To support cases (a)-(d) above, on-the-go-News will

need to perform different types of runtime service dis-
covery. In case (a), there will be a need to discover a new
service following an exception at the point where the ap-
plication tries to call SSearch. In case (b), it will need to dis-
cover a new service to replace SCustMag when a deteriora-
tion of the performance of this service is detected. In case
(c), it will need to identify services that can only be used
when the device on which the application runs is at spe-

cific location(s). Finally, in case (d) it will need to identify
that a new service that can be used in it has emerged and
should be used, as it has a better fit with the service dis-
covery criteria, to enhance the overall level of service to
the user. The former three of these discovery scenarios
could be undertaken re-actively (i.e., after the
event/problem that signals the discovery need occurs) or
proactively in order to ensure minimal interruption of
service when the problem occurs. The discovery action
related to the fourth case (i.e., case (d)) needs to be taken
proactively as the emergence of a new service is not asso-
ciated with any problem in the operation of the service
based application.

Our framework enables service-based applications,
like on-the-go-News to address such runtime discovery
scenarios both in a reactive and a proactive manner with-
out having to incorporate code implementing the discov-
ery functionality required in each case. To achieve this, an
application must:

(i) register to the framework a list of service endpoints
that it wishes to use (and potentially replace) along
with one query for each such service that should be
used for discovering alternatives to it; and

(ii) call operations of the registered services through the
framework.

Actions (i) and (ii) are realized by an API that is avail-
able through the discovery framework. Action (i) must
take place at the start of each execution of the application
but will have no new effect, if it has already been execut-
ed previously.

At runtime when the application calls an operation of
a registered service, the framework accepts the call and
tries to call the relevant operation. If the service that pro-
vides the operation is not available and the second call
fails, the framework will attempt to respond to the appli-
cation request by calling a corresponding operation of an
alternative service. The operation to be called is deter-
mined by the execution of the query. More specifically, if
the query has been subscribed as a reactive (pull) mode
query, the framework will execute the query immediately
after the failed call to S and if it can find an alternative
service with a suitable operation it will call this operation.
If the query has been subscribed as a proactive (push)
mode query, the framework will have proactively execut-
ed the query and built a set of possible alternative ser-
vices for S by the time of the failed call1. Thus, if S is una-
vailable and the call fails, the framework will select the
best service in the already built alternative set of services
(say service S’), make a call to a corresponding operation
of S’, and respond back to the application when it receives

1 If a call is made so early that no proactive execution of the query has
taken place yet, the query will be executed reactively for the first time and
proactively from that point onwards.

4

a response from S’. Following this initial replacement, S’
will continue to be used in the place of S until an event
that makes it necessary to replace S’ occurs.

The query associated with a service S will be used to
identify alternative candidate services for S that could be
used anytime that a need to replace S within an applica-
tion arises, regardless of the exact event that signaled the
need for the replacement of S (e.g., failed call to an opera-
tion of S, deterioration of the performance of S, unavaila-
bility of S due to location changes).

Figure 1 shows the overall architecture of the runtime
service discovery framework, shortly referred to as RSDF
in the following, and its main components. These compo-

nents are an execution engine, a service requester, a service
matchmaker, a service listener, service and application context
servers, and a service registry intermediary.

The service requester orchestrates the functionality of-
fered by the other components in the framework. It re-
ceives a service request from a client service-based applica-
tion as well as context information about the services
and application environment, (b) prepares service queries
to be evaluated, (c) organises the results of a query into an
ordered set of matching services, (d) manages push query
execution mode subscriptions, (e) receives information
from listeners about new services that become available
or changes to existing services, and (f) invokes the other
components to execute a query.

Fig 1: Framework Architecture

Service-based applications make a call to a service through the execution engine. After receiving a request

Fig 2: UML representation of SerDiQueL

for a service, the execution engine retrieves the actual
service endpoint from the service requester and calls the
service. When the service replies, the execution engine
forwards the reply to the application.

The service matchmaker parses service discov-
ery queries and evaluates them against service
specifications in the various service registries (see
Sec. 4.1).

The service and application context servers (
and respectively) support the acquisition of con-
text information about the services and the applica-
tion environment, respectively. Both context serv-
ers accept subscriptions for specific types of context
information from the service requester and send
updates when changes in the context of services
and application occur. These two servers can be
deployed in different machines from the ones
where the application and services are deployed
and even implemented as services.

The service listener sends to the service re-
quester notifications about new services that be-
come available, or about changes in the descrip-
tions of existing services. This information is ex-
tracted from external service registries through
polling. The notifications are based on subscrip-
tions for specific types of information that the ser-
vice requester has made to the service listener. Fol-
lowing the notification of a new service, the service
requester evaluates whether the new service
matches with any of the queries and, if it does, the
requester notifies the service context server so that
the context conditions of the service can subse-
quently be observed.

Finally, RSDF incorporates a service registry in-
termediary supporting the use of different service
registries and the discovery of services stored in
them by providing an interface for accessing the
registries. The current implementation of RSDF
supports registries that are based on the faceted
service description scheme developed in the SeCSE
project [44]. In this scheme, a service is specified by
a set of XML facets representing different service
aspects, including (i) structural facets describing
the operations of services with their data types us-

ing WSDL [55], (ii) behavioural facets describing
behavioural models of services in BPEL [8], (iii)
quality of service facets describing quality aspects
of services represented in XML-based schemas, and
(iv) context facets describing the types of context
information that are available for a service and op-
erations.

3 SERVICE DISCOVERY QUERY LANGUAGE

A runtime service discovery query may contain different
criteria, namely: (i) structural criteria, describing the
interface of the required service; (ii) behavioural criteria,
describing the functionality of the required service; and
(iii) constraints, specifying additional conditions for the
service to be discovered. The latter conditions may refer
to quality aspects of the required service or interface
characteristics of services that cannot be represented by
the standardised forms of structural descriptions used in
the framework. Examples of constraints referring to
quality characteristics of services may concern the
maximum response time or cost to execute a certain
operation in a service. Sec. 3.3 provides examples of
additional structural constraints.

The constraints in a query can be contextual or non-
contextual. A contextual constraint is concerned with
information that changes dynamically during the
operation of the service-based application or the services
that the application deploys, while a non-contextual
constraint is concerned with static information. The
constraints can be hard or soft. A hard constraint must be
satisfied by all discovered services for a query and is used
to filter services that do not comply with them. Soft
constraints do not need to be satisfied by all discovered
services, but are used to rank candidate services.

To specify runtime service discovery queries, we have
developed an XML-based language, called SerDiQueL.
SerDiQueL allows the specification of all the structural,
behavioural, quality and contextual characteristics
required from the services to be discovered. An earlier
version of SerDiQueL was presented in [49]. The new
version of the language that we present in this paper
enables the specification of the required behaviour of a
service using behavioural conditions rather than a full
BPEL model of service behaviour as in the original
version.

Figure 2 gives an overall representation of SerDiQueL
as a UML class diagram. As shown in the figure, a
SerDiQueL query (ServiceQuery) has a unique identifier
(queryID) and a name, and is composed of one or more
elements describing different parameters for a query and
three other elements representing the structural,
behavioural, and constraint sub-queries.

A parameter element is defined by a name and a value.
Examples of parameters that can be currently used in a
query are the query (a) name, (b) type (dynamic or static),

6

(c) mode of execution (push or pull), (d) author, and (e)
distance threshold for selecting the set of candidate
replacement services (see Sec. 4). Below, we describe the
main constructs for specifying structural, behavioural,
and constraint sub-queries in SerDiQueL. However, a
detailed description of the XML schema of the language is
beyond the scope of this paper and can be found in [16].

In order to illustrate the use of SerDiQueL, let us
re-consider on-the-go-News, the service-based ap-
plication described in Sec. 2.1, and a service SPayment
that is used by on-the-go-News to take payments for
received news by transferring money from the us-
er’s bank account, after checking for the account’s
balance (SPayment is similar to PayPal [43]). If SPayment
becomes unavailable, a query would need to be ex-
ecuted to find an adequate replacement service for
SPayment. Let us assume that this query would need to
express the following discovery criteria:

(i) The service should authenticate its user before
allowing access to its functionality.

(ii) The service should be provided by “Banca Pop-
ulare di Sondrio” (POPSO).

(iii) The service should be available 24 hours a day,
and all the necessary actions for taking a pay-
ment should take no more than 5 seconds to be
executed.

3.1 Structural Sub-query
The structural sub-query describes the interface of the
required service. Structural sub-queries in SerDiQueL are
specified using WSDL [55]. The use of WSDL in this case
is due to its wide acceptance as a service interface de-
scription language. In addition, during runtime service
discovery, any replacement service that might be identi-
fied for an existing service in a service-based application
will need to conform to the interface of the existing ser-
vice. A structural sub-query in SerDiQueL is specified as
the WSDL specification of the service to be replaced.

Figure 3 shows an extract of a SerDiQueL query
(i.e., query Q1) for identifying services that could
replace service SPayment in “on-the-go-News”. As spec-
ified by the Parameter elements type, mode and
threshold in the query, Q1 is a dynamic type query
(i.e., a query that is executed at runtime) of push
mode, with a distance threshold of 0.8. For simplici-
ty and due to space limitations, Figure 3 does not
present the full structural sub-query that should be

used for finding a replacement for SPayment and in-
cludes only a part of it indicating the portType (i.e.,
the interface) required of adequate replacement
services, the messages used to interact with the op-
erations in this interface, and the structure of the
data included in these messages. It should be noted,
however, that the structural subquery in this case is
the WSDL description of SPayment.

3.2 Behavioural Sub-query

Behavioural sub-queries in SerDiQueL support the
specification of (a) the existence of required functionali-
ties in a service specification; (b) the order in which the
required functionalities should be executed by the ser-
vice; (c) dependencies between functionalities (e.g. a func-
tionality realized by an operation always requires the
existence of a functionality of another operation); (d) pre-
conditions; and (e) loops concerning execution of certain
functionalities. Behavioural sub-queries are expressed by
elements that are similar to temporal logic operators.

<?xml version="1.0" encoding="utf-8"?>

<tns:ServiceQuery …queryID="Q1" name="FindBankTransferService">

<tns:Parameter name="mode" value="PUSH" />

<tns:Parameter name="type" value="dynamic" />

<tns:Parameter name="threshold" value="0.8" />

<tns:StructuralQuery>

<definitions xmlns:tns="http://samples.otn.com"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/" …

 xmlns:format="http://schemas.xmlsoap.org/wsdl/formatbinding/" target

 Namespace="http://samples.otn.com">

 <types>

 <schema xmlns="http://www.w3.org/2001/XMLSchema" at

 tributeFormDefault="qualified" elementFormDefault="qualified" target

 Namespace="http://samples.otn.com">

 <complexType name="NoAccountIdExceptionType">

 <sequence> <any /> </sequence> </complexType>

 <complexType name="NotEnoughBalanceExceptionType">

 <sequence> <any /> </sequence> </complexType>

 </schema> </types>

 <!-- message declns -->

 <message name="LoginRequestMessage">

 <part name="userID" type="xsd:string" />

 <part name="password" type="xsd:string" /> </message>

 <message name="LoginResponseMessage">

 <part name="success" type="xsd:boolean" /> </message>

 <message name="TransferAmountRequestMessage">

 <part name="fromAccountID" type="xsd:string" />

 <part name="toAccountID" type="xsd:string" />

 <part name="amount" type="xsd:double" /> </message>

 <message name="TransferAmountResponseMessage">

 <part name="success" type="xsd:boolean" /> </message> …

 <!-- port type declns -->

 <portType name="PaymentService">

 <operation name="login">

 <input message="tns:LoginRequestMessage" name="LoginRequest" />

 <output message="tns:LoginResponseMessage"

 name="LoginResponse" /> </operation>

 <operation name="transferAmount">

 <input message="tns:TransferAmountRequestMessage"

 name="TransferAmountRequest" />

 <output message="tns:TransferAmountResponseMessage"

 name="TransferAmountResponse" /> </operation>

 </portType>

 </definitions>

</tns:StructuralQuery> . . .

Fig 3: Example of general and structural parts of SerDiQueL queries

As shown in Figure 2, a behavioural sub-query in Ser-
DiQueL can be composed of: (a) a requires element; (b) a
single condition, a negated condition, or a conjunction of
conditions; or (c) a sequence of expressions separated by
logical operators.

Requires elements are used to describe the ser-
vice operations that need to exist in service specifi-
cations. Every query must describe one or more
required service operations, represented by Mem-
berDescription elements in the query (MemberDe-

scription elements can be used in various conditions
and expressions in a query). A member element has
three attributes, namely (a) ID, indicating a unique
identifier for the member within a query; (b)
opName, specifying the name of an operation de-
scribed in the structural sub-query; and (c) syn-
chronous, indicating if the service operation needs
to be executed in a synchronous or asynchronous
mode in the service.

The existence of requires elements in service
specifications is verified as an initial step during the
execution of a behavioural sub-query rather than
during the evaluation of the conditions and expres-
sions of the query that use these elements. This op-
timizes the query execution process as there is no
need to evaluate any condition or expression of a
behavioural sub-query that refers to a non- existent
requires element.

Figure 4 shows the behavioural sub-query for
query Q1. As shown in the figure, Q1 includes Re-
quires elements expressing the requirement for the
existence of the following operations, in any re-
placement service, specified by MemberDescription
elements:

 login(userID:string, password:string):boolean

 credit(accountId:string, amount:double):balance

 transferAmount(fromAccountID:string, toAccou-
tID:string,

 amount:double):boolean

 debit(accountId:string, amount:double):balance

 getBalance(accountId:string):balance

 logout((userID:string):Boolean

As shown in Figure 2, a condition is defined as a
GuaranteedMember, OccursBefore, OccursAfter, Sequence, or
Loop element. A GuaranteedMember represents a member
element (i.e., a service operation) that needs to occur in all
possible traces of execution in a service. This element is
defined by the attribute IDREF that can reference requires,
sequence, or loop elements. OccursBefore and OccursAfter
elements represent the order of occurrence of two

8

member elements (i.e., Member1 and Member2). Note that
in some cases we may require OccursBefore(m1,m2) whilst
in other cases we may require OccursAfter(m1,m2), or
even need to differentiate an OccurBefore condition by
attributes such as immediate. Hence both the OccursBefore
and OccursAfter elements are needed. Furthermore, they
have two boolean attributes, namely the attributes
immediate and guaranteed. The first of these attributes
specifies if two operations need to occur in direct
sequence or if there can be other operations in between
them. The second attribute specifies if the two operations
need to occur in all possible execution traces of a service.

A Sequence element defines two or more members that
must occur in a service in the order represented in the
sequence. It has an identifier attribute that can be used by
the GuaranteedMember, OccursBefore, OccursAfter, Sequence,
and Loop elements. A Loop element specifies a sequence of
operations that is executed several times. It has a unique
identifier (attribute ID) and is defined as a statement that
references other identified elements (see element Body).

<tnsb:BehaviourQuery> <tnsb:Requires>

 <tnsb:MemberDescription ID="login" opName="login" … />

 <tnsb:MemberDescription ID="credit" opName="credit" … />

 <tnsb:MemberDescription ID="xfer" opName="transferAmount" … />

 <tnsb:MemberDescription ID="debit" opName="debit" … />

 <tnsb:MemberDescription ID="balance" opName="getBalance" …/>

 <tnsb:MemberDescription ID="logout" opName="logout" …/>

 </tnsb:Requires>

 <tnsb:Expression>

 <tnsb:Condition> <tnsb:GuaranteedMember IDREF="login" />

 </tnsb:Condition></tnsb:Expression>

 <tnsb:LogicalOperator operator="AND" />

 <tnsb:Expression> <tnsb:Condition> <tnsb:Sequence ID="pay">

 <tnsb:Member IDREF="credit" /> <tnsb:Member IDREF="xfer" />

 <tnsb:Member IDREF="debit" /> <tnsb:Member IDREF="balance" />

 </tnsb:Sequence> </tnsb:Condition>

 <tnsb:Condition>

 <tnsb:OccursBefore immediate="false" guaranteed="false">

 <tnsb:Member1 IDREF="login" /><tnsb:Member2 IDREF="pay" />

 </tnsb:OccursBefore> …</tnsb:BehaviourQuery>

Fig 4: Example of behavioural part SerDiQueL queries
Figure 4 shows examples of some condition

types. In particular,

(a) The operation login is defined as a Guaran-
teedMember element given that the user of the
bank service needs to be authenticated (i.e., login
operation needs to occur in all possible paths of
execution in the service).

(b) The operations credit, transferAmount, deb-
it, and balance need to be executed in this order
and, therefore, they are defined in a Sequence el-
ement.

(c) The operation login should be executed before
the sequence of operations in (b) specified in el-
ement OccursBefore.

In behavioural sub-queries, expressions are defined as
sequences of requires elements, conjunctions or
disjunctions of conditions, or nested expressions
connected by logical operators AND and OR (cf. Figure
2). The definition of requires elements within an
expression (E1) enables the specification of queries in
which the non-existence of requires elements in a service
should not invalidate its selection, if other expressions in
the sub-query that are disjointed with expression E1 (i.e.,
expressions connected to E1 by logical operator OR) are
satisfied by the service.

As we discussed previously, originally SerDiQueL
supported behavioural queries expressed in BPEL.
However, expressing the behaviour needed by a
service in BPEL turned out to be difficult, as it re-
quired the specification of complete behavioural
models of services, as opposed to, partial behav-
ioural conditions that services need to satisfy. It is,
for instance, easier to specify conditions requiring
that a replacement for SPayment service should have a
“credit” and a “debit” operation (Condition-1) and
that “credit” must always have been executed prior
to any execution of “debit” (Condition-2) rather than
specifying a full behavioural model of SPayment to ex-
press the same conditions. Also, in some instances,
the specification of a full behavioural model might
not be able to express the intended meaning of the
required behavioural conditions. In our example of
SPayment, for instance, specifying a BPEL process in
which there is a sequence of an invocation of the
“credit” operation followed by the invocation of a
“debit” operation in order to express Condition-2
would not be adequate as the query would disre-

gard services satisfying the condition, if these ser-
vices had behavioural models in which other opera-
tions could also be executed between the opera-
tions “credit” and “debit”. Due to these reasons,
BPEL is no longer used in the expression of behav-
ioural subqueries in RSDF.

3.3 Constraint Sub-query
As shown in Figure 2, a constraint sub-query in
SerDiQueL is defined as a single logical expression, or a
conjunction/disjunction of two or more logical
expressions, combined by logical operators AND and OR,
or a negated logical expression.

<tnsa:ConstraintQuery name="C1" type="HARD" contextual="false" …>

 <tnsa:LogicalExpression>

 <tnsa:Condition relation="EQUAL-TO"> <tnsa:Operand1>

 <tnsa:NonContextOperand facetName="Qos" facetType="QoS">

 //QoSCharacteristic[Name="Organisation"]/Constant …

 <tnsa:Operand2><tnsa:Constant type="STRING">POPSO

 </tnsa:Constant></tnsa:Operand2></tnsa:Condition>…

</tnsa:ConstraintQuery>

<tnsa:ConstraintQuery name="C2" type="SOFT" contextual="false" …>

 <tnsa:LogicalExpression>

 <tnsa:Condition relation="EQUAL-TO"> <tnsa:Operand1>

 <tnsa:NonContextOperand facetName="QoS" facetType="QoS">

 //QoSCharacteristic[Name="Availability"]/Metrics/

 Metric[Name="OpenTime"][Unit="Hours"]/MinValue

 </tnsa:NonContextOperand> </tnsa:Operand1>

 <tnsa:Operand2><tnsa:Constant type="NUMERIC">00:00

 </tnsa:Constant></tnsa:Operand2> </tnsa:Condition>

 <tnsa:LogicalOperator>AND</tnsa:LogicalOperator>

 <tnsa:LogicalExpression> <tnsa:Condition relation="EQUAL-TO">

 <tnsa:Operand1><tnsa:NonContextOperand facetName="QOS"

 facetype="QOS">//QoSCharacteristic[Name="Availability"]/Metrics/

 Metric[Name="OpenTime"][Unit="Hours"]/MaxValue

 </tnsa:NonContextOperand> </tnsa:Operand1> <tnsa:Operand2>

 <tnsa:Constant type="NUMERIC">24:00</tnsa:Constant>

 </tnsa:Operand2> </tnsa:Condition> </tnsa:LogicalExpression>

 </tnsa:LogicalExpression></tnsa:ConstraintQuery>

Fig 5: Example of non-contextual constraints for query Q1

Query constraints have four attributes: (a) name,
specifying the name of the constraint; (b) type, indicating
whether the constraint is hard or soft; (c) weight,
specifying the significance of the constraint as a real
number in the range [0.0, 1.0]; and (d) contextual,
indicating whether the constraint refers to a contextual or
non-contextual feature of a service. The weight of a
constraint is used to prioritise it against other soft
constraints when inexact matches are found in query
evaluation. A constraint sub-query whose contextual
attribute is true contains ContextOperand elements. When
this attribute is set to false, the query may only contain
NonContextOperand elements.

A logical expression is defined as a condition, or
logical combination of conditions, over elements or
attributes of service specifications or context aspects of
operations.

Conditions are defined as relational operations
expressing comparisons between the values of two
operands (operand1 and operand2). The supported
comparisons are specified by elements expressing the
relational operations equalTo, notEqualTo, lessThan,
greaterThan, lessThanEqualTo, greaterThanEqualTo and
notEqualTo (see [16]). These operations have the normal
respective meanings for comparisons between their
operands. The operands can be non-contextual operands,
contextual operands, arithmetic expressions, or constants.

A non-contextual operand (i.e., an element of type
NonContextOperand) has information about the name
and the type of the service specification facet from which
the operand’s value will be retrieved during the
constraint evaluation, and an XPath expression indicating
elements and attributes in the service specification facet.
The evaluation of this XPath expression will provide the
value of the non-contextual operand during the
evaluation of the enclosing constraint. Hence, constraints
can be specified against any element or attribute of any
facet in the description of a service in a registry.

Figure 5 shows examples of non-contextual con-
straint sub-queries for query Q1 above. The con-
straint sub-query C1 in the figure, for example, is a
hard non-contextual constraint expressing that the
provider of the new service should be POPSO, as
described in the element Organisation of facet QoS
which describes information about the provider of
the service.

The second constraint sub-query (C2) in Figure 5 is a
soft non-contextual constraint representing the fact that
the service to be identified needs to be available 24 hours
a day. As shown in Figure 5, this constraint has a weight
of 0.5 and is represented by the conditions that verify if
the opening time hours specified in the facet QoS has a
minimum value of 00:00 and a maximum value of 24:00.

10

This is specified by a conjunction of two
LogicalExpression elements with their respective XPath
expression contents and constant sub-elements.

As shown in Figure 2, a contextual operand (i.e., an
element of the type ContextOperand) indicates the
operations that can be invoked to provide context
information at runtime (aka context operations). A
contextual operand describes the semantic category of a
context operation instead of its exact signature. This
category is represented by the sub-element
ContextCategory. The reference to operation categories
rather than exact signatures is due to the fact that context
operations may have different signatures across different
services even if they exist to provide context information
of the same type. Thus, when evaluating context
conditions it should be possible to invoke such
operations, despite their different signatures, in order to
obtain the same type of context information for different
services and evaluate the contextual constraints.

A ContextCategory element represents the se-
mantic category of an operation, instead of its actu-
al signature. A ContextCategory is defined as a con-
dition about the description of the category of the
operation. This description is included in a context
facet associated with the operation. The context
facet makes reference to an ontology document. To
express the condition, the ContextCategory in a que-
ry contains an XPath expression referencing an el-
ement in the ontology document. The condition is a
relational condition between the value of this ele-
ment and a constant. The language can support dif-
ferent ontologies for describing context operation
categories since it does not make any assumption of
the structure and meaning of the ontologies used,
apart from the fact that the ontologies need to be
described in XML. The evaluation of the query veri-
fies if a candidate service has a context operation
with a semantic category that satisfies the condi-
tion.

A contextual operand is further defined by: (a) an
attribute specifying the name of the service opera-
tion associated with the operand (serviceOpera-
tionName), and (b) an attribute specifying the iden-
tifier of a service that provides this operation (ser-
viceID). The value of the latter attribute is specified
when the context operand provides the
specification of a context operation of a known
service. This is normally the case when the context
operation is associated with a service-based
application for which the value of a context aspect
of the application needs to be dynamically
identified during the evaluation of a query (e.g.,
location of a mobile device application). In this case,

attribute serviceID refers to the service-based
application. Otherwise, the value of serviceID is
“any”.

<tnsa:ConstraintQuery name="C3" contextual="true" type="SOFT" …>

 <tnsa:LogicalExpression>

 <tnsa:Condition relation="LESS-THAN-EQUAL-TO"><tnsa:Operand1>

 <tnsa:ContextOperand serviceOperatioName="transferAmount">

 <tnsa:ContextCategory relation="EQUAL-TO"><tnsa:Category1>

 <tnsa:Document location="http://eg.org/CoDAMoS_Extended.xml"

 type="ONTOLOGY" /> </tnsa:Category1>

 <tnsa:Category2> <tnsa:Constant type="STRING">

 GREDIA_RELATIVE_TIME</tnsa:Constant> </tnsa:Category2>

 ...<tnsa:Operand2><tnsa:Constant type="STRING">

 SECONDS-5</tnsa:Constant></tnsa:Operand2></tnsa:Condition>

</tnsa:LogicalExpression></tnsa:ConstraintQuery

Fig 6: Example of contextual constraint for query Q1

Figure 6 shows an example of a soft contextual
constraint (C3) for query Q1 about the payment
processing time. This constraint specifies that any
candidate payment service, i.e., services that match
operation transferAmount, needs to have a context
operation classified in the category GRE-
DIA_RELATIVE_TIME in the ontology
http://eg.org/CoDAMoS_Extended.xml, and the re-
sult of executing this operation has to be less or
equal to SECONDS-5 for the service to be consid-
ered.

Arithmetic expressions define computations over
the values of elements or attributes in service speci-
fications or context information. They are defined
as a sequence of arithmetic operands or other nest-
ed arithmetic expressions connected by arithmetic
operators (plus, minus, multiply, and divide opera-
tors). The operands can be contextual, non-
contextual, constants, or functions.

A function supports the execution of complex
computation over a series of arguments. The results

of these computations are numerical values that can
be used as an operand in an arithmetic expression.
The schema for arithmetic expressions and func-
tions is available at [16].

4 SERVICE DISCOVERY PROCESS
The service discovery process realized in RSDF can
execute queries in pull or push mode. The pull
mode of query execution is performed to identify
services (i) that are initially bound to a service-
based application and their replacement candidate
services, (ii) as a first step in the push mode of que-
ry execution, (iii) due to changes in the context of
an application environment, or (iv) when a client
application requests a service to be discovered. The
push mode is performed when a service in an appli-
cation needs to be replaced due to any of cases (a)-
(d) described in Sec. 1. The matching process fol-
lowed in the pull and push mode of query execution
is described below.

4.1 Query Matching Process
Matching between queries and services is executed
in two stages: the filtering stage and the ranking
stage.

In filtering stage, only the hard non-contextual
constraints of a query are evaluated against service
specifications and the candidate services that com-
ply with these constraints are identified. The reason
for filtering out all the services that do not satisfy
hard non-contextual constraints is to optimise sub-
sequent computations.

The ranking stage and has three substages. In the
first of these substages, the structural and behav-
ioural parts of a query are evaluated against the
services maintained by the filtering stage and a
structural-behavioural partial distance between
each of these services and the query is computed. In
the second substage, the soft non-contextual con-
straints of the query are evaluated against each
candidate service and a soft non-contextual partial
distance is computed for each such service. Finally,
in the third substage, the contextual constraints of
the query are evaluated against the candidate ser-

vices and a contextual partial distance is computed
for each candidate service. At the end of the ranking
stage, the partial distances computed for each ser-
vice are aggregated into an overall distance and on-
ly services whose distance to the query is below a
certain threshold are maintained. The distance
threshold is specified in the query as the value of
the query element Parameter and a default thresh-
old of 0.5 is used if the query does not specify a
threshold.

It should be noted that a query is executed by the
framework only if it contains a structural sub-
query. This is necessary, as services cannot be iden-
tified for a running application unless their inter-
face is known. All other parts of a query, however,
can be omitted and if they are, the respective stages
in matching are not executed.

The overall distance between a service S and a
query Q is computed according to the following
formula:

OD(Q,S) =
 (wi*DStr_Beh(Q,S)+wj*DNCC(Q,S)+wk*DCC

(Q,S))/ (wi+wj+wk)

In this formula,
 DStr_Beh(Q,S) is the structural_behavioural partial

distance between a query and a service;
 DNCC(Q,S) is the soft non-contextual constraint partial

distance between a query and a service;
 DCC(Q,S) is the contextual constraint partial distance

between a query and a service; and
 wi, wj, wk are weights with values between [0, 1]

representing different priorities for the various partial
distances.

Structural and Behavioural Matching

The structural and behavioural evaluation of a que-
ry against services is executed by comparing opera-
tions in the structural sub-query with operations in
the WSDL specifications of services. Following this,
the behavioural part of a query is matched with the
BPEL (behavioural) specifications of services. In
this process, a match between a service and a query
is found only if for each operation in the query
(Qop), the service has an operation which has the

12

same name as Qop, input parameters whose data
types are supertypes of the types of the input pa-
rameters of Qop, an output parameter whose type
is a subtype of Qop’s output. This is because when
these conditions hold, the input information as-
sumed for invoking Qop will cover the input infor-
mation needed by Sop and the output information
produced by Sop will cover the output information
expected by Qop. Furthermore, the service must
have a behavioural model satisfying all the behav-
ioural conditions of the query. Given that the above
conditions are satisfied by a service S, a structur-
al_behavioural distance between it and the query Q
(DStr_Beh (Q,S)) is also computed to enable the rank-
ing of S with respect to other services that satisfy
the same conditions. This distance is computed by
the formula:

 DStr_Beh (Q,S) = MIN(∑

≤

≤

≤

To illustrate the computation of the structural
distance, consider a query operation Qop’:
Search(news:News):string. The input parameter
news of this operation has a composite data type
News consisting of the attributes topic:string, peri-
od:date, and area:string. Consider also a service op-
eration Sop’:Search(searchnews:News):string with
an input parameter, called searchnews, of a compo-
site type News consisting of the attributes sub-
ject:string, period:date, region:string, and
size:integer. Figure 7 shows the data type graphs for
the input and output parameters of the query and
service operations and the mapping that the match-
ing process of RSDF has detected between these
graphs. The structural distance between Qop’ and
Sop’ is dS(Qop’,Sop’) = (0.5+0.25+0)/3 = 0.25, since

 dLing(Qop’,Sop’) = 0.5 (i.e., the aggregate distance
between strings “Search” and “Search”; and be-
tween strings “news” and “searchnews”)

 din(Qop’,Sop’) = ¼ = 0.25 (the edge size in the
graph of Sop’ has no matching edge in the graph of
Qop’)

 dout(Qop’,Sop’) = 0 (the output parameters in Qop’
and Sop’ are both of type string).

In RSDF, structural distances are computed for each
possible pair of an operation in a query Q and an
operation in a service S.

After computing the structural distance for each
pair of query and service operations, RSDF identi-
fies all the possible mappings between the opera-
tions in Q and operations in S in which each opera-
tion in Q (Qopi) is mapped onto a single operation
in S (Sopj). For example, given two query operations
(QopA, QopB) and two service operations (SopA, SopB),
the following combinations of mappings would be
examined:

{QopA:SopA, QopB:SopA}, {QopA:SopA, QopB:SopB},
 {QopA:SopB, QopB:SopA}, {QopA:SopB, QopB:SopB}

For each of these mappings, RSDF computes the
behavioural distance between the mapped service
and query operations (dB(Qopi, Sopj)). This distance

is calculated based on comparisons of paths repre-
senting the behavioural sub-query and behavioural
service specification. The behavioural distance be-
tween Qop and Sop is computed as:

 dS(Qop,Sop)=0, when the path of the behavioural
sub-query that contains Qop can be matched with
a path in the state machine of a service;
 dS(Qop,Sop)=1, otherwise.

More specifically, the behaviour matching is exe-
cuted by transforming the BPEL behavioural speci-
fications of each service into a state machine SSM
and the behavioural sub-query into another state
machine QSM, and verifying if each path in QSM can
be matched with a path in SSM. The transformation
of BPEL specifications into state machines is de-
scribed below.

Fig 7: Example of data type graphs

When a path representing the behavioural sub-query
can be matched with a path in the state machine of a ser-
vice, the behavioural distance for each pair of mappings
of query and service operations in these paths is set to
zero (i.e., dB(Qopi, Sopj) = 0). Otherwise, the behavioural
distance for each pair of mappings of query and service
operations in these paths is set to one (dB(Qopi, Sopj) = 1).
As an example, consider an operation Qop1 defined as a
GuaranteedMember condition in the behavioural sub-query
of Q and mapped to a service operation Sop1 in one of the
possible operation mappings. This condition is satisfied
by the state machine of S, if Sop1 exists in all possible
paths of this state machine. In this case, dB(Qop1, Sop1) = 0.
Otherwise, dB(Qop1, Sop1) = 1.

As another example, consider a Sequence condition in
the behavioural sub-query Q with operations Qop2, Qop3

String Date String

String String News

String Date String

searchnews

topic period area

output output news

subject period region

IGsearch IGsearch

OGsearch

News

OGsearch

14

and Qop4. Suppose that Qop2, Qop3, and Qop4 are
mapped to service operations Sop2, Sop3, and Sop4, re-
spectively in one of the operation mappings. The above
Sequence condition is satisfied by the state machine of ser-
vice S, if Sop2, Sop3, and Sop4 exist in this order in a path
of the state machine. In this case,
dB(Qop2,Sop2)=dB(Qop3,Sop3)=dB(Qop4,Sop4)=0. If there is no
path with Sop2, Sop3, and Sop4 appearing in this order,
dB(Qop2,Sop2)=dB(Qop3,Sop3)=dB(Qop4,Sop4)=1.

After computing the structural and behavioural dis-
tances for all pairs of query and service operations in all
possible operation mappings and calculating
dSB(Qopi,Sopj) for each pair of operations, the framework
selects the mapping that has the minimal value for the
sum of dSB(Qopi,Sopj) for all the pairs of query and service
operations, divided by the number of operations in the
query, as specified by the formula for DStr_Beh(Q,S) above.

In order to illustrate these computations, consider a
simple query Q2 with two required operations:

 credit(accountId:string, amount:double):balance

 debit(accountId:string, amount:double):balance

and a behavioural condition stating that the operation
credit needs to be executed before the operation debit.

Consider also a service SBankNew having the three opera-
tions below and the state machine shown in Figure 8.

 Op1 = credit(accountId:string, amount:double):balance

 Op2 = debit(accountId:string, amount:double):balance

 Op3 = getBalance(acountId:string, date-time:double)

Fig 8: State Machine of service SBankNew

For this example there are 49 possible combina-
tions of mappings of operations in Q2 and transi-
tions in the state machine of SBankNew. Figure 9
shows some of these combinations of mappings. In
the figure, combinations C1 to C8 have structur-
al_behavioural distance (DSB) equal to zero, and
combinations C9 and C10 of mappings have struc-
tural_behavioural distance not equal to zero. The
other combinations are not shown here due to
space limitations.

C1={credit:(S1→S2), debit:(S3→S4), DSB =0.0};

C2={credit:(S1→S2), debit:(S4→S4), DSB =0.0};

C3={credit:(S1→S2), debit:(S4→S2), DSB =0.0};

C4={credit:(S1→S2), debit:(S4→S1), DSB =0.0};

C5={credit:(S1→S1), debit:(S3→S4), DSB =0.0};

C6={credit:(S1→S1), debit:(S4→S4), DSB =0.0};

C7={credit:(S1→S1), debit:(S4→S2), DSB =0.0};

C8={credit:(S1→S1), debit:(S4→S1), DSB =0.0};

C9={credit:(S1→S2), debit:(S2→S3),
DSB=0.0834};

C10={credit:(S3→S4),debit:(S2→S3), DSB
=0.67};

Fig 9: Structural_behavioural distances for all combinations

The behavioural distances for the mappings in C1
to C9 are zero, since in these combinations the
mapping of the query operation onto state transi-
tions guarantee the order specified by the behav-
ioural condition in the query. More specifically, in
C1, the query operation credit is mapped to service
operation labelling the transition S1→S2, the query
operation debit is mapped to service operation la-
belling the transition S3→S4, and S1→S2 occurs be-
fore S3→S4. Similar situations occur in combina-
tions C2-C8, and C9 (in them credit is mapped to
S1→S2, debit is mapped to S2→S3, and S1→S2 oc-
curs before S3→S4). In C10, however, the behav-
ioural distance is set to 1 since the transitions
mapped to credit and debit query operations do not
preserve the order specified by the behavioural
condition of the query. For example, in C10 credit is
mapped to transition S3→S4 that is labeled by a
service operation that occurs after the transition
S2→S3 which is labeled by the service operation to
which query operation debit is mapped.

The calculation of the structural_behavioural dis-
tance for each mapping is computed by the formula
dSB = (dS + dB)/2. The structural_behavioural dis-
tance (DSB) for each combination is taken as the to-
tal of all the dSB values in the mappings in that com-
bination divided by the number of query opera-
tions.

Soft Non-Contextual Constraint Matching

The evaluation of soft non-contextual constraints is
executed by evaluating constraint expressions in
the constraint sub-queries against service specifica-
tion facets (see Sec. 3). This evaluation takes place
by retrieving the values of the XPath expressions
from service specification facets and evaluating the
arithmetic, relational and logical expressions that
define the constraint using these values. The result
of this evaluation is a binary value indicating
whether the constraint is satisfied (1) or not (0).
Based on the evaluation of individual constraints, a
soft non-contextual constraint partial distance
(DNCC(Q,S)) is also calculated between a query Q and
each service S. The calculation of this distance is
based on the function:

 DNCC(Q,S) = ∑i wi *D(Ci)/ ∑ wi

where

 Ci is a soft non-contextual constraint in Q (1 ≤ i ≤ n; n is
the number of soft non-contextual constraints in Q);
 wi is the weight in [0,1] indicating the significance

of the constraint Ci in Q; and

 D(Ci) equals 0 when Ci is satisfied by service S and
1 when Ci is not satisfied by service S

Contextual Constraint Matching

The evaluation of contextual constraints is based on
the approach described in [49]. This approach as-
sumes that a service or the individual operations of
it may have one or more context operations associ-
ated with them that can be invoked at runtime to
provide information that changes dynamically and
frequently. Following this approach, the contextual
constraints in SerDiQueL are specified as logical
combinations of conditions over the return values
of context operations of services. Then, during the
evaluation of contextual constraints, RSDF identi-
fies the relevant context operations, invokes them,
and uses their return values to check if the condi-
tions of the context constraint are satisfied or not.

The context operations associated with a service
are specified by context facets. More specifically, a

context facet specifies the context operations of a
service by listing the operation and its semantic
category. This category is defined in reference to
some context ontology. Whilst the description of
categories in RSDF can be based on different types
of ontologies (as long as they are specified in XML),
in the current implementation of RSDF, we have
used an extended version of the CODAMOS ontology
[9].

An example of a context facet is shown in Figure
10. As shown in the facet, the service operation
transferAmount is associated with the context oper-
ation getTime whose semantic category is GRE-
DIA_RELATIVE_TIME in the CODAMOS ontology.
This facet will be used whilst evaluating the contex-
tual constraint C3 of query Q1 (see Figure 6). In
particular, RSDF will check the facet of service
“21764851280153632” to see if it has a context op-
eration with the same semantic category as the one
specified in the constraint sub-query (i.e., GRE-
DIA_RELATIVE_TIME). In this case, the context op-
eration getTime has this category. Thus, RSDF will
invoke it and use its return value to evaluate the
condition of C3.

<LanguageSpecificSpecification>
 <FacetType>Context</FacetType> . . .
 <FacetSpecificationData>
 <serviceOperationContexts service="21764851280153632">
 <serviceOperation>transferAmount</serviceOperation>
 <context>
 <contextServiceOperation>
 <contextServiceId>2176</contextServiceId>
 <contextOperationName>getTime</contextOperationName>
 </contextServiceOperation>
 <timeValidity> <validTime>5</validTime> <unit>minutes</unit>
 </timeValidity>
 <contextOperationCategory>
 <ontology>http://…/CoDAMoS_Extended.xml</ontology>
 <categoryExpression>
 /rdf:RDF/owl:Class[@rdf:ID='GREDIA_RELATIVE_TIME']
 </categoryExpression>
 </contextOperationCategory>
 </context>
 </serviceOperationContexts>...</FacetSpecificationData>
</LanguageSpecificSpecification>

Fig 10: Example of context facet

The evaluation of each contextual constraint re-
sults in a binary value indicating whether the con-
straint is satisfied or not and the computation of the
contextual constraint partial distance between a
query Q and a service S (DCC(Q,S)) is evaluated us-
ing the same formula as in the case of non-context
constraints (see formula for DNCC).

Transformation of BPEL into State Machines

16

The state machine that is used by the RSDF frame-
work is based on transition tuples (t-tuples) speci-
fied as

 t(service, initial-state, action, destination-state)

where

 service is the logical name of the service whose
behaviour is specified by the state machine;
 initial-state is the state from which the transition

originates;
 action is the action that triggers the transition;
 destination-state is the state to which the transi-

tion will result.

The above representation denotes that if in the
initial-state the service becomes aware of an event
requesting the execution of the action associated
with the transition, it will execute the action and
move to the destination-state. The action associated
with a transition may be of one of the following
types:

 receive action: a communication action signifying
that the service has received a message requesting
the execution of an operation.
 send action: a communication action signifying

that the service sends a message notifying the re-
sults of the execution of an operation.
 τ action: an internal action undertaken by the ser-

vice that cannot be interpreted by an external ser-
vice partner (e.g., an automatic transition which is
not triggered by any event or a call to a third party
operation).
 assign action: an action that assigns a value to a

service variable.
 cond action: an action which checks if a condition

associated with a transition is satisfied in order to
allow the transition to take place.
 after action: an action that forces the service to

undertake a transition after a specific time period
following the time at which it arrived at the initial-
state.

Based on the above representation, the main ele-
ments of a BPEL specification are transformed into
state machines as discussed below.

 Invoke/receive: Invoke and receive are BPEL activ-
ities which invoke an operation in a partner link
(service) of a BPEL process and receive a message
requesting the execution of an operation, respec-
tively. These constructs are mapped to transitions
triggered by send and receive actions, respectively.
 Pick/onMessage/onAlarm: This activity contains
an ordered list of one or more event and activity
pair. Pick makes a BPEL process wait for the occur-
rence of one of these events and then perform the
activity associated with it as soon as it occurs. A
pick may define two types of events: (i) message
events, which signify the arrival of a message; and
(ii) alarm events that set a timer. This activity is
translated into a path of a state machine that has
one state s immediately before pick and multiple
transitions triggered by event receive actions origi-
nating from s. Each of these transitions represents
the different message that they may receive and is
followed by a transition representing the activity
that follows the receipt of the event. The timeout
onAlarm is mapped to a transition triggered by an
after action.
 Flow: This activity in BPEL specifies a set of paths
in the process that should be executed concurrent-
ly. The state machine that is generated for flow ac-
tivities contains concurrent transition paths repre-
senting the full graph of possible sequences of tran-
sitions when the BPEL process takes a new step in
one parallel partition.
 Switch: This activity in BPEL specifies an ordered
list of one or more conditional branches that in-
clude other activities. The conditional branches are
considered in sequential order and the activity(ies)
of the first branch whose condition becomes true is
executed. In the case where no condition holds true,
a default branch can be specified. This activity is
mapped to a number of transitions from a current
state triggered by cond actions, which specify the
condition of the particular branch of execution.

 While: This BPEL activity is used to specify that a
group of other activities will be executed iteratively
for as long a condition associated with the activity
remains true. A while activity is translated into a
fragment in a state machine that has a choice state
s0 preceding the while test and two outgoing tran-
sitions triggered by cond actions. The first of these
transitions corresponds to the case where the con-
dition c of the loop is satisfied and has the form < _,
s0,cond(c), b0> where b0 is the state from which the
first activity of the loop can be executed. The second
transition has the form < _, s0, !cond(c), sn> where
sn signifies the state of the process after the execu-
tion of the loop. The body of the loop is a sub-
machine that has one initial state b0 and one final
state sn-1 that is the origin of transition t to the
original state of the loop, which is automatically
triggered after sn-1 is reached (we call t an "auto-
matic" transition). This transition signifies the
move to the state where the satisfiability of the
condition of the While activity has to be checked
again.

The transformation approach used in the
framework has some limitations. These include the
inability to create state machine representations for
faultHandlers and link constructs in BPEL process-
es. There are also limitations in processing WSDL
specifications accompanying a BPEL process. In
particular, XSD Schema import statements are cur-
rently not supported and prefix names for
namespaces have to be unique across the WSDL
specification.

Discussion

The matching process implemented by RSDF ac-
commodates a certain degree of flexibility whilst
ensuring that any returned service operation can
replace, at least at an interface level, the service op-
eration for which it was discovered. This is because
the matching process guarantees that the types of
the input and output parameters of the new opera-
tion are subtypes and supertypes of the types of the

input and output parameters of the operation that
will be replaced, respectively. Furthermore, all the
returned service operations are guaranteed to satis-
fy the behavioural conditions and the hard con-
straints set in the query. Hence it is guaranteed that
the service-based application that will use the new
operation will be able to provide the data required
for its invocation (as it was already able to use the
previous operation). It will also be able to accept
the data produced by the new operation that corre-
sponded to the structure of the output types of the
old operation. The framework also produces a
mapping between the types of the parameters of
the old and new operations to enable developers
understand (offline) the structure of the new opera-
tion.

Currently, RSDF assumes that the behaviour of
services is described in BPEL within service regis-
tries and, hence, when a SerDiQueL query is evalu-
ated, it retrieves and translates such descriptions
into a state machine and then checks if the behav-
ioural conditions in a SerDiQueL query are satisfied
by this state machine. It should be noted, however,
that other languages for describing service behav-
iour in service registries could be supported (e.g.,
UML), as long as the descriptions of service behav-
iour that are expressible in these languages could
be translated into a state machine.

It should also be noted that although our frame-
work can support discovery based on different
types of service descriptions, its approach is modu-
lar and can work even for services with incomplete
faceted descriptions. More specifically, the minimal
requirement for a service is to have a structural
(WSDL) description and, in such cases, the frame-
work executes only the structural part of queries
and computes only the structural distances. Then
subject to the availability of further facets in a ser-
vice description (e.g. BPEL, QoS descriptions, con-
text providing operations), the framework will per-
form the additional types of matching that it sup-
ports.

18

This modularity is necessary for coping with cas-
es of incomplete service descriptions. Nevertheless,
as discovery takes place at runtime the framework
needs to ensure that any discovered services will be
usable in the system at the interface level. Hence, it
only considers services that have a structural de-
scription and always performs structural matching.

Our approach does not use formal ontologies to
support the structural and behavioural matching.
Instead, it uses WordNet. The use of WorldNet gives
matching some flexibility when names of opera-
tions, parameters and attributes of parameter types
are not exactly the same. Although WordNet is not a
formal ontology and does not include axiomatic
specifications of concepts, it includes semantic rela-
tionships between concepts represented by words
(e.g., synonyms, part of relations). The use of
WordNet does not require the annotation of service
specifications with ontologies and the creation of
the dictionary/ontology itself. This is the main rea-
son for not using formal ontologies for structur-
al/behavioural matching.

4.2 Pull and Push Query Execution
In the pull mode of query execution, the service re-
quester of RSDF (see Sec. 2.2) invokes the service
matchmaker to execute a query. The service
matchmaker executes the query and maintains ser-
vices whose distance from the query does not ex-
ceed a specific threshold. The set of maintained ser-
vices is sorted in ascending distance order and re-
turned to the client application for further action.

In the push mode of query execution, the client
application subscribes to RSDF the services it de-
ploys and a query Q for each of them. Based the
subscribed query for each service S, RSDF initially
retrieves a set of services Set_S that could replace S
(if necessary) by executing the query as in the pull
mode and, subsequently, maintains an up-to-date
version of Set_S as changes in the descriptions and
context of the services and/or their application’s
environment are notified to it. Set_S includes only
services whose overall distance from the query

subscribed for S does not exceed a given threshold
and is sorted in ascending distance order.

It should be noted, however, that although Set_S
includes candidates that could replace S, the re-
placement of S in the application does not take
place right after the first or subsequent modifica-
tions of Set_S. This is because an immediate re-
placement might be inappropriate. In cases, for ex-
ample, where the service S is executing some trans-
action on behalf of the application, at the time when
a new better service is found, no replacement
should take place. In RSDF, the decision to stop the
execution of the application in order to replace a
service for which a better alternative service has
been found is based on replacement policies. Poli-
cies are associated with the different functional
roles that are assumed by services in the applica-
tion and specify if the service that is currently
bound to a role should be replaced immediately
when a better service is found, after the termination
of a specified computation, or after the application
terminates.

The push mode service discovery process that
maintains the set Set_S of candidate replacement
service for a given service S covers four different
cases. These are cases where: (a) S becomes mal-
functioning or unavailable (Case A); (b) there are
changes in the structure, functionality, quality or
context of any service in Set_S or S (Case B); (c)
there are changes in the context of the application
environment (Case C); or (d) new services become
available or existing services have their characteris-
tics modified (Case D). In the following, we discuss
the push execution mode for each of these cases.

Case A: In this case, the service S is replaced by
the first service S’ in Set_S. By virtue of the process
of maintaining this set, S’ is guaranteed to have the
smallest distance to query Q associated with S. Fol-
lowing the replacement, S’ is removed from Set_S.

Case B: Suppose S’ is a service that is currently
bound to the application or another service in its
associate replacement Set_S. This case arises when

new versions of the structural, functional, quality,
or context facets of S’ become available in a service
registry. When a change in some characteristic of S’
occurs, the new versions of the changed facets or
service context information are evaluated against
query Q to verify if S’ still matches the query. The
new overall distance between Q and S’ is also calcu-
lated. If S’ is a candidate replacement service in
Set_S, it remains in it only if the new distance be-
tween S’ and Q is below the threshold distance. Also
the relevant position of S’ in Set_S might change due
to the new distance. Following this, if S’ becomes
the best replacement service in Set_S, S’ will replace
S when the relevant replacement policy allows it. If
S’ is the service currently deployed by the applica-
tion, but is no longer the best option according to its
new distance from Q, it will be replaced by the first
service in Set_S as soon as the replacement policy
permits the change. Furthermore, if the new dis-
tance between S’ and Q makes S’ a non eligible
member of Set_S, S’ will be removed from Set_S and
its subscription will be removed from RSDF. Also a
new replacement service for S’ in Set_S will be lo-
cated.

Case C: In this case, a value in a context con-
straint in query Q is modified and a new query Q’
needs to be created to reflect the new context value.
The service S that is currently bound to the applica-
tion needs to be evaluated against the new context
constraint in Q’. If S does not match the new query
Q’, the services in Set_S will be evaluated against Q’
and a new version of Set_S may be generated. This
is necessary for identifying the service S’ in Set_S
with the best fit to Q’ and bound it to the application
so that it can continue its execution, whilst trying to
find new services that match Q’ from the service
registries. Note that S’ might not have the best fit
with Q’ given all available services in the registry.
However, the use of the best service S’ in the cur-
rent Set_S in this case is acceptable as it will allow
the application to continue. Moreover, the context
constraints are soft constraints used for ranking
services with respect to queries, rather than filter-
ing them out. Following the use of S’, RSDF will do

an exhaustive search in registries (pull mode) to
update Set_S based on Q’. The same exhaustive
search will be used if no service in the current Set_S
matches Q’. Following, the update of Set_S, if a new
service in it is better than S’, it will replace S’ sub-
ject to the replacement policy.

Case D: This case arises when new services ap-
pear in registries for the first time or descriptions
of existing services in registries that were not
matching a query Q before change (the latter ser-
vices are not covered by Case C since, as they are
not members of Set_S, the changes in their charac-
teristics will not be notified to RSDF through the
existing subscriptions for Set_S). Once RSDF is noti-
fied of new or updated service descriptions, it eval-
uates them against query Q for each service S de-
ployed in the application. Depending on the result
of this evaluation, the new/updated service may
become member of Set_S or even replace S in the
application, subject to the criteria of the replace-
ment policy for S.

In the approach, the replacement policy used in Cases
(A)-(D) described above takes into consideration the posi-
tion of a service S that may need to be replaced with re-
spect to the current execution point of the service-based
application. More specifically, the replacement policy
considers the cases in which changes need to be per-
formed so that the application can continue its operations;
changes can wait to be performed after the current execu-
tion of the application; and no changes are required. For a
replacement policy, the approach considers three differ-
ent positions, namely:

(i) not_in_path: when service S in not in the cur-
rent execution path of the application; S ap-
pears in a different branch of the application’s
execution path or before the current point in
the execution path;

(ii) current: when service S is in the current execu-
tion point of the application;

(iii) next_in_path: when service S is in the current
execution path of the application, and will be
invoked some time in the future.

20

When the position of a service S to be replaced is
not_in_path, S is marked for replacement when S is
accessed in a future execution of the application;
when the position of S is current, S needs to be re-
placed; when the position of S is next_in_path, S is
marked to be replaced when S is accessed in the
current execution.

It should be noted that notifications about
changes in services S’ falling in Case B are dealt
with according to their priority. More specifically,
the service matchmaker maintains three notifica-
tion queues – a high, medium and low priority
queue – and notifications for services bound to the
application are placed at the end of the high priority
queue, notifications for services in some replace-
ment set (Set_S) are placed in the medium priority
queue, and notifications for other services are
placed in the low priority queue (i.e., the queue of
new services). Also, the services with notifications
in the high and medium priority queues are marked
as “unsafe” in order to prevent the application from
using them before the notifications that have ar-
rived for them are processed. Furthermore, if a no-
tification N’ arrives for a service for which there is
already an earlier notification N in the same
queue which has not been processed yet, the fac-
ets identified in N’ are added to those of N in the
queue rather than appending N’ to the end of the
queue. Hence, all the unprocessed notifications of
a service are merged.

Matchmaker processes notifications from lower
priority queues only if there are no notifications in
higher priority queues. This heuristic ordering of
processing ensures that: (a) notifications regarding
the services which are currently bound to the appli-
cation and are the most critical for it are processed
first, (b) notifications for candidate replacement
services which will enable timely operational re-
placement of services will be processed next, and
(c) notifications for new services that can only lead
to optimizations will be processed last. This is a
measure for dealing with high frequency service

emergence and/or update rates, which can stress
the resources of RSDF.

An approach for executing changes in a service-
based application can be performed by stopping the
system, making the necessary changes, and resum-
ing the system [2]. Other approaches use binding
partner links during execution time of the system
[23]; proxy services as placeholders for the services
in a composition, instead of having concrete ser-
vices referenced in the system [3][27]; or even an
adaptation layer based on aspect oriented pro-
gramming with information about alternative ser-
vices [36]. In this framework, we use proxy services
to support changes in the service-based application
during execution time and, therefore, avoiding
changes in the original application specification.
More specifically, RSDF maintains a record associat-
ing the logical references to services within an ap-
plication with pointers to the actual services used
and when a call is made by the application the logi-
cal reference is resolved to the actual endpoint
where the service can be called.

5 EVALUATION
To evaluate RSFD, we have performed a set of ex-
periments whose objective was to measure and an-
alyse the performance of both pull and push modes
of query execution given queries incorporating
structural, behavioural, non-contextual, and contex-
tual conditions.

This evaluation has not focused on other criteria
for assessing information retrieval techniques (as
runtime service discovery), notably the recall and
precision of the retrieval (discovery) algorithm. The
reason for not focusing on such criteria is that the
matching algorithms which are deployed by our
approach (i.e., structural, behavioural and con-
straint matching) ensure that the services returned
by a query always satisfy the minimum set of condi-
tions, which are necessary for being able to be used
as substitutes of services already deployed by a sys-
tem.

In particular, as we discussed in Sect. 4.1, the
service operations which are returned by a query
are guaranteed to have the same name with the op-
erations required by a query, and input/output pa-
rameters whose types are subtypes/supertypes of
the types of the input/output parameters of the
query operations. Hence, no inaccuracies that pre-
vent substitutability may arise at the interface level.
Furthermore, all the returned service operations
are guaranteed to satisfy the behavioural conditions
and the hard constraints set in the query. Hence, the
only possibility of an inaccuracy in query results is
to use a query, which does not specify correctly the
conditions about the interface, behavior and other
characteristics of acceptable services. Evaluating
whether the discovery queries are correctly speci-
fied would be beyond the technical core of the dis-
covery framework, which is the focus of this paper.

5.1 Experimental Setup
In the experiments, we used a registry of 60 services.
Each service was described in terms of a structural
(WSDL), behavioural (BPEL), quality (XML-based), and
context (XML-based) facet, with a total of 240 service
facets in the registry. The structural specifications of
the 60 services had a mixture of four, five, and six oper-
ations with a total of 300 operations for all the 60 ser-
vices. The complexity of the operations varied with op-
erations containing one, two, or three input parame-
ters, and all operations with one output parameter.

The services used in the experiments had been col-
lectively selected and built by the industrial partners in
the GREDIA project [19]. The services came from dif-
ferent service providers and were concerned with dif-
ferent domains including: (a) online banking, (b) online
media channels, (c) online retailing, (d) Internet
searching, and (e) travel planning and booking.

The evaluation was incremental using three dif-
ferent subsets of the registry having 20, 40 and 60
services, respectively. The incremental evaluation
was adopted in order to analyse whether the in-
crease in the number of services affects the query
execution time. In the case of query execution in
push mode, we also used threshold values to guar-

antee that the set of up-to-date candidate services
always contained ten services. The execution time
of each query was calculated as the average across
five different executions of it using a Pentium 1.2
GHz machine with 1.24 GB RAM.

Table 1: Types of queries used in the experiment

Q1 Structural

Q2 Structural and behavioural

Q3 Structural, behavioural, and soft non-contextual constraint

Q4 Structural, behavioural, soft non-contextual, and contextual
constraints

In the experiments, we used four different que-
ries from the “on-the-go-News” application scenario
that were created as variants of query Q1 presented
in Figures 3, 4, 5, and 6 without hard constraint.
The queries included different types of discovery
criteria, which are summarized in Table 1. More
specifically, the queries used in the experiment
were composed of a structural sub-query with the
WSDL specification of SPayment (see Figure 3) with six
operations; a behavioural sub-query with the condi-
tions shown in Figure 4 and described in Sect. 3.2; a
soft non-contextual constraint as shown in Figure 5;
and a soft contextual constraint as shown in Figure
6. Hard constraints were not used in the queries
since they could filter out services before ranking
and, therefore, artificially reduce the query execution
time. In the experiments, we considered the weights
associated with the partial distances in the overall
distance function and the weights in the structural
distance (see Sect. 4.1) with values 1.

5.2 Performance Results

Table 2 and 3 summarise the results of the evalua-
tion. In particular, Table 2 presents the execution
time of different queries in pull mode and the aver-
age time required for retrieving services from the
registry, for different sizes of registries. Table 3
presents a breakdown of the total query execution
time into the time required for retrieving services

22

from the registry, and structural, behavioural soft
non-context constraint and context constraint
matching of query Q4. All times in Tables 2 and 3
are in milliseconds. Furthermore, for the results in
Tables 2 and 3, all the services in a registry of a giv-
en size n were evaluated against all the criteria of
each query in order to ensure that the evaluation
time measured for different types of criteria was
not affected by the order of criteria evaluation.

Table 2: Pull mode execution times for the different queries (in msec)

of Services 20 40 60

Registry Retrieval 14025 24615 35170

Q1 763 1392 2057

Q2 14828 27431 39936

Q3 15022 27781 40464

Q4 22547 42768 63924

As shown in Tables 2 and 3, the time to retrieve
services from the registry was substantial in con-
trast to the time taken to execute the different
matchings. This is because the eXist database [17]
that was used to implement the registry has a low
data retrieval performance. The use of the proactive
push query execution mode of RSDF alleviated this
problem as replacement services are selected in
parallel to the execution of an application from an
up-to-date set of candidate services, as discussed
below and shown in Table 4. Moreover, except in
the case of changes in the context of an application
environment, the set of candidate services has a
reduced number of services when compared to an
entire service registry.

Table 2 shows that the total execution time for all
the different queries increased linearly with the ad-
dition of more services in the registry. Table 3
shows that the execution time for different types of
matching criteria also increased linearly as the
number of services in the registry increased in all
cases. The experiment also showed that the time
required for behavioural matching was substantial-
ly higher than the time required for the other types
of matching. This is because in behavioural match-

ing, a behaviour path in a query needs to be evalu-
ated against all the paths in the state machine of
each service, and all possible combinations of map-
pings between query and service operations need
to be considered.

Table 3: Pull mode execution times for each matching criteria and
registry retrieval (in msec)

of Services 20 40 60

Registry retrieval 14025 24615 35170

Structural matching 763 1392 2057

Behavioural matching 14065 26039 37879

Non-Context

constraint matching 194 350 528

Context

constraint matching 7525 14987 23459

Total 36572 67383 99093

As shown in Table 3, the time required for non-contextual
constraint matching was smaller than the time required for
each of the other types of matching. This time was also signif-
icantly lower than the time required for matching contextual
constraints. This was because in non-contextual constraint
matching, the non-contextual condition in a query is evaluat-
ed against facets in the registry by comparing elements re-
trieved by evaluating XPath expressions. In the case of con-
textual matching, however, the computation is more expen-
sive as it requires the invocation of context operations at
runtime in order to obtain the context values for evaluating
the context conditions in queries.

Table 4 presents the results of the push mode execution of
query Q4 including the time needed to: (a) prepare the set of
candidate services for a subscribed query (i.e., Set_S) at the
initial stage in the process, as discussed in Sec. 4.2 and (b)
identify a new service for replacing a service S in the service-
based application due to (i) unavailability of S, (ii) availability
of a new service, or (iii) changes in the service bound to the
application. The table presents the time required for execut-
ing Q4 in five different times for each of the cases (i), (ii) and
(iii) (i.e., runs R1 to R5) and the average time across the five
runs in each case. The events for cases (i), (ii) and (iii) were
created by simulation.

As shown in Table 4, the time of identifying a service in
cases (i), (ii), and (iii) is very small in contrast with the time
of identifying a service in pull query execution mode (com-
pare the values in Total row in Table 3 for 20, 40, and 60 ser-

vices in the registry and the values in the Avg column in Table
4). Also, the initial time required for building the set of candi-
date services Set_S for a given service and query in the push
execution mode is comparable to the time needed for execut-
ing a query in pull mode (compare the time values for the
part of Table 4 concerned with “Prepare candidate services”
with the respective values in Table 3) . It should be appreciat-
ed that in the case of push mode, the initial phase for building
Set_S is performed only once for a given service and query
and in parallel to the execution of the application. Thus, the
time needed for identifying a service in cases (i), (ii) and (iii)
are the ones shown in the last three rows of Table 4.

Table 4: Times for executing Q4 in push mode of execution (in msec)

 #

Ser.

Reg.

Re-
trieval

Struct. Beh. Non-
context

Context Total

Prepare

candidate
services

20 13703 703 13547 172 3453 31609

40 24172 1328 25845 344 4437 56219

60 33812 2078 37843 516 3906 78313

 R1 R2 R3 R4 R5 Avg

Unavailable (i) 109 110 78 93 157 109.4

New Service (ii) 1687 1782 1672 2015 1984 1828

Service change (iii) 1797 1781 1672 1656 1656 1712.6

Furthermore, someone should consider the longer term
cost of the two modes of query execution. More specifically,
assuming that the service associated with query Q4 becomes
unavailable X times, in the pull mode of query execution the
total cost of service discovery required to identify replace-
ment services using Q4 will be X*36572 milliseconds (for 20
services), X*67383 milliseconds (for 40 services) and
X*99093 milliseconds (for 60 services). In contrast, in the
push query execution mode, the respective total times will be
X*109.4 (see the average time needed for case (ii) across the
different runs of Q4). Similar gains arise in the cases where a
new service becomes available (X*1828) or there is a change
in a service description (X*1712). The magnitude of gains
becomes even more substantial as in the push query execu-
tion mode the above activities are executed in parallel to the
application.

Finally, the results in Table 4 show that the time to identify
a service due to unavailability (case (i)) of a service is smaller
than the time to identify a service due to changes in a service
(case (iii)) or the time to evaluate a new service that becomes
available (case (ii)). This is because cases (ii) and (iii) require
the re-execution of the query in order to calculate its distance

with the changed/new service, whilst in case (i) a replace-
ment service is taken from Set_S.

Note that, Table 4 presents no results related to changes
in the context of the application environment. In this case, a
new query must be created and evaluated against all the ser-
vices in the registry. Therefore, the time to identify a service
to replace an existing service in this case is equivalent to the
time to execute a query in pull mode.

5.3 Discussion

Overall, the results of our experiments demonstrate that
RSDF has promising performance since (a) the query execu-
tion time in both pull and push modes of execution increases
linearly with the size of the service registry, and (b) the use of
push query execution mode results in considerable perfor-
mance gains, making this mode a pragmatic and realistic ap-
proach for runtime service discovery. Moreover, the experi-
ments have demonstrated that the performance gains with
the push mode of query execution and the proactive ap-
proach for identifying candidate replacement services in par-
allel to the execution of a service-based application provide a
good support for continuously changes in service-based ap-
plications with respect to the various circumstances de-
scribed in the paper.

The results of the experiments reported in Sect. 5.2 above
are similar to the results of an earlier, albeit smaller scale,
experiment that was reported in [62] and in which we had
investigated the time required for executing structural, be-
havioural, contextual and non-contextual SerDiQueL queries
in pull mode. More specifically, both experiments demon-
strated the same relative costs of the executions of different
parts of a query (i.e., the behavioural conditions are the most
expensive to execute followed by structural and contextu-
al/non contextual conditions). Both experiments have also
demonstrated that the time taken to retrieve services
from the registry was significantly larger than the
time taken to execute the different types of match-
ings and that the execution time of each type of the structur-
al, behavioural, non contextual and contextual matching in-
creases linearly with the size of the registry. In the experi-
ments we conducted in this paper, we have also investigated
the time for executing queries in push mode and have
demonstrated the gains that arise from this mode of execu-
tion. Gains from the execution of queries in push mode were
also reported in [32], although a direct comparison with the
results of this papers cannot be made as in [32], different

24

querying scenarios and service data sets were used due to the
need to incorporate service monitoring in the experiment.

Overall, further experimentation is needed to confirm our
initial findings and investigate the performance of RSDF in
different scenarios of context and service updates (e.g.,
high/medium/low frequency updates of service descriptions
and context conditions).

It should also be noted that although proactive service
discovery is essential for achieving efficient service re-
placement at runtime, it might also result in inefficient
utilization of resources. This would happen in cases
where proactively discovered services get replaced in the
buffer set without being used. Over a time period T, the
efficiency of resource utilization with proactive discovery
can be measured by the formula:

In this formula, SRRR is the service request replace-
ment rate; SRUR is the service registry update rate; tmatch
is the average time required to match a query with a ser-
vice; and tinit-RS is the time needed to build the initial copy
of RS (tinit-RS=Rinit × tmatch, where Rinit is the number of ser-
vices in the service registry at the time of the initial build
of RS).

Efficient resource utilization arises when SRRR ≥ SRUR
+ Rinit/T or when SRRR ≥ SRUR as T increases and, there-
fore, the factor Rinit/T tends to zero. This means that the
service replacement request rate must be higher or at least
equal to the service registry update rate. Establishing
whether the service request replacement rate is greater
than or equal to the service registry update rate would
require a long-term study. However, it is not unrealistic
to expect that SRRR ≥ SRUR holds in the long term.

6 RELATED WORK
Several approaches have been developed to support
service discovery. Semantic matchmaking ap-
proaches constitute a significant category of them,
based on explicit representation of semantics and
logic reasoning [1][7] [28][30]. The METEOR-S [1]
system, for example, adopts a constraint driven
service discovery where service requests are inte-
grated into the composition process of a service-
based application and [28] uses logic based approx-
imate matching and IR techniques. The work in [7]
considers composition fragments to support service

composition and reuse. It uses description logic to
identify fragments and semantic matchmaking of
fragments and goals to support the discovery pro-
cess. Note, however, that these approaches do not
consider dynamic service discovery, neither sup-
port push mode query execution.

Other approaches for service discovery consider
graph transformation rules [24], or behavioural
matching [20] [35][47]. The work in [24] is limited
since it cannot account for changes in the order or
names of the parameters. In [47], the authors use
service behaviour signatures to improve service
discovery. The works in [21] and [48] describe
functional and quality characteristics of compo-
nents and services as aspects and discovery is
based on a formal analysis and validation of these
descriptions. In [47] a query language based on first-
order logic that focuses on properties of behavior sig-
natures is used to support the discovery process. The
work in [35] advocates the use of behavioral specifica-
tions represented in BPEL for service discovery in or-
der to resolve ambiguities between requests and ser-
vices, and uses a tree-alignment algorithm to identify
matchings between requests and services. However,
none of the above approaches supports proactive ser-
vice discovery as ours. In [15] the authors propose a
requirement-centric approach to support modeling,
discovery, and selection of web-services. In this ap-
proach, the discovery process is based on keyword
matching. The selection process is based on formal
concept analysis in which services with common QoS
properties are grouped together and organized into
concept lattices.

In [56] the authors propose a monitorable con-
tract model to support dynamic monitoring of busi-
ness process and proactive detection of contract
violations. The proactive detection is based on the
use of guards of monitoring constraints that con-
sider actions that have occurred, actions that have
not occurred but are expected to occur, and actions
that should not occur in the future. Other ap-
proaches have been proposed to support adapta-
tion and changes in service-based applications in a

reactive [2][3][18][26][31] or proactive way
[11][25][29][34][53].

The reactive approaches propose changes in ser-
vice composition based on pre-defined policies [3],
self-healing of compositions based on detection of
exceptions and repair using handlers [18], context-
based adaptation of compositions using negotiation
and repair actions [2], and key performance indica-
tor (KPI) analysis and use of adaptation strategies
based on KPI fulfillment [26]. The work in [18], ad-
vocates a model-based to support repair of faulty
activities in service-based processes. The approach
uses repair actions and plans that are generated by
considering constraints of the process structure
and dependencies among data.

The proactive approaches use semi-Markov
models for prediction of performance failures and
support self-healing of service compositions [11],
event monitoring and machine learning techniques
for prediction and prevention of SLA violations
[29], testing techniques to anticipate problems in
service-based applications and trigger adaptation
requests [34][53], cross-layered adaptation strate-
gies for software and infrastructure layers [22].

Several approaches have also been proposed to
support context awareness in service discovery
[6][10] [42][58]. In [10], context information is rep-
resented by key-value pairs attached to the edges of
a graph representing service classifications. This
approach does not integrate context information
with behavioural and quality matching and, context
information is stored explicitly in a service reposi-
tory that must be updated following context chang-
es. In [6] queries, services, and context information
are expressed in ontologies. The approach in [4]
focuses on user context information (e.g. location
and time) and uses it to discover the most appro-
priate network operator before making phone calls.
The work in [58] locates components based on con-
text-aware browsing. The above context-aware ap-
proaches support simple conditions regarding con-
text information in service discovery, do not fully
integrate context with behavioural criteria in ser-

vice discovery, and have limited applicability since
they depend on the use of specific ontologies for the
expression of context conditions.

Another group of approaches have been pro-
posed to support service selection based on trust
and reputation of services [12][33][51][54][57]. In
[12] users are responsible for providing ratings and
expectation values on QoS attributes. The approach
described in [57] uses a reputation manager to cal-
culate reputation scores and assumes that service
consumers will provide QoS requirements, weights
to be associated to the reputation score, QoS scores,
and ratings to assess the services. In [51] the au-
thors describe an approach to service selection
based on the user’s perception of the QoS attributes
rather than the actual attribute values. The work in
[33] does not provide ways of checking whether the
same feedback in different websites is used more
than once. The QoS-based service selection and
ranking solution in [54] supports prediction of fu-
ture quality of web services. The authors introduce
a mechanism to avoid unfair ratings based on statis-
tical analysis of the reports from users.

Query languages, other than SerDiQueL, have also
been proposed to support services discovery
[4][40][41][59]. These include BP-QL[4], a visual
query language for BPEL. SerDiQueL also supports
querying BPEL specifications. However, our work
differs from BP-QL since it supports the specifica-
tion of structural, quality, and contextual conditions
in the query, and the behavioural conditions can be
matched against other types of behavioural service
specifications. The query language proposed in [41]
is used to support composition of services based on
user’s goals. NaLIX[59], a language for querying
XML databases based on natural language, has also
been applied to service discovery. Keyword-based
retrieval underpins some service registries availa-
ble on the Internet (e.g. seekda [45] and servicefind-
er [46]). These approaches enable also discovery
through service categories and the use of tags.
These search modalities are easy to use and useful
in design time service discovery but cannot offer
the matching precision that is required in runtime

26

service discovery that is executed to support auto-
matic service replacement in applications. USQL
(Unified Service Query language) [40] is an XML-
based language enabling discovery based on syntac-
tic, semantic, and quality of service search criteria
that has some similarity to SerDiQueL. SerDiQueL,
however, is more complete since it supports the
specification of behavioral criteria for the services
to be discovered, as well as context characteristics
of services and application environments.

In summary, most of the proposed approaches
support service discovery based on limited sets of
service criteria and in reactive (pull) mode of query
execution. Unlike them, RSDF supports proactive
dynamic service discovery based on a flexible and
comprehensive set of service and application crite-
ria including not only structural and quality con-
straints but also functional and contextual charac-
teristics. It also supports pull and push service dis-
covery, resulting in more efficient service replace-
ment during the execution of an application. Our
approach uses fine grain quantification of similari-
ties between queries and services based on distance
measures.

In reference to our previous work on dynamic
service discovery, the framework presented in this
paper extends the work in [49] by introducing a
new language for the specification of behavioural
conditions in service discovery queries, and the
work in [62] by introducing a new way of compu-
ting behavioural distances for the behavioural part
of queries. As discussed earlier, the new query lan-
guage allows the declarative specification of condi-
tions regarding the behaviour of services as op-
posed to the procedural BPEL specifications used in
earlier versions. Also the new algorithm for the
computation of the behavioural distance verifies if
the path representing behavioural conditions in the
query can be matched to a path in the state machine
representing the behavioural specification of a ser-
vice by considering the semantic of the conditions
(i.e., elements) used in the behavioural sub-query.
In [62], the behavioural distance was computed by
comparing state machines representing BPEL speci-

fications of queries and services; verifying if the
transition paths of the query state machine could be
transformed into transition paths in the service
state machine; and computing a penalty for trans-
formations that were not exact. We should note that
the new version of the framework that has been
presented in this paper supports the execution of
queries expressed in earlier versions except from
their behavioural parts of queries.

Given that in registries there are often services
that have no behavioural descriptions, in [32] we
investigated the possibility of using a monitor com-
ponent to verify the satisfiability of behavioural and
contextual properties of services, expressed in Ser-
DiQueL, against messages exchanged between ser-
vice-based applications and their deployed services.
A proof-of-concept implementation of this approach
was presented in [32] but the experimental evalua-
tion indicated deterioration in the performance of
query execution when monitoring is used to verify
behavioural subqueries.

7 CONCLUSIONS AND FUTURE WORK
In this paper we have presented a proactive frame-
work for dynamic service discovery, in which can-
didate services to replace existing services in a ser-
vice-based application are identified in parallel to
the execution of these applications. Our framework
supports service discovery in both pull and push
modes of query execution due to (a) unavailability
or malfunctioning of services, (b) changes in the
structure, functionality, quality, or context of the
services, (c) changes in the context of the applica-
tion environment, or (d) availability of new ser-
vices.

The pull mode of query execution is performed
by searching service registries to identify services
to be bound to an application. The push mode of
query execution is based on subscribed services
and queries, as well as up-to-date sets of candidate
services. In both pull and push query execution
modes, a service is matched against a query based
on computation of distances between query and

service specifications. The framework uses complex
queries expressed in an XML-based query language
named SerDiQueL. The language allows the repre-
sentation of structural, behavioural, quality, and
contextual characteristics of services and applica-
tions.

A prototype tool has been implemented to illus-
trate and evaluate the framework. The evaluation
has focused on the execution time of the retrieval
process and has shown promising results (linear
increase of discovery time with respect to service
registry size and significant gains from the use of
push mode query execution).

Planned future work on RSDF will be aimed at in-
tegrating it with active service registries [52],
which can push information about new services and
service updates to clients, in order to eliminate the
need for polling that is currently performed by the
RSDF service listeners. We are also planning to ex-
tend service registry intermediaries to support oth-
er types of service registries and evaluate the effi-
ciency of RSDF under different scenarios of changes
in context and service information at runtime, as
discussed at the end of Sect. 5.

Current work focuses on investigating the use of
other forms of adaptation of service-based applica-
tions as, for example, replacing malfunctioning or
unavailable services by compositions of services
and/or changing the structure of the service work-
flow in a service-based application. This work fo-
cuses on expressing and checking security condi-
tions about individual services during the discovery
process, as part of SerDiQueL. Other extensions of
the current work investigates the use of the service
discovery approach to support adaptation of sevice-
based applications based on QoS prediction tech-
niques, analysis of dependencies between service
operations, and the possibility of compensanting
QoS and behavipoural violations by other opera-
tions in the composition yet to be executed. We are
also investigating the development of tools on the
top of RSDF that would allow system developers to

specify and check the correctness of SerDiQueL
queries.

REFERENCES
[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven

Web Service Composition in METEOR-S, 2nd Int. Conf. on Services
Computing, 2004.

[2] D. Ardagna, M. Comussi, E. Musi, B. Pernici, P. Plebani. PAWS: A
Framework for Executing Adaptive Web-Service Processes. IEEE
Software, 24 (6), 2007.

[3] L. Baresi, C, Ghezzi, S. Guinea. Towards Self-Healing Compositions
of Services. Studies in Comp. Intel., v. 42, Springer 2007.

[4] L. Baresi, E. Di Nitto, C. Ghezzi, and S. Guinea. A Framework for the
Deployment of Adaptable Web Service Compositions. Service Ori-
ented Computing and Applications J., 1(1), 2007.

[5] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business
Processes. 32nd Int. Conf. on Very Large Data Bases, 2006.

[6] F. Bormann, et al, Towards Context-Aware Service Discovery: A
Case Study for a new Advice of Charge Service, 14th IST Mobile and
Wireless Communications Summit, June 2005.

[7] C. Bouhini, F. Lecue, N. Mehandjiev, O. Boissier. Discovery and
Selection of Web Services Fragments for Re-Composition. IEEE
Int. Conf. on Service-Oriented Computing and Applications (SOCA
2010), 2010.

[8] BPEL4WS.http://www128.ibm.com/developerworks/library/spe
cification/ws-bpel/

[9] CoDAMoS. www.cs.kuleuven.ac.be/cwis/research/distrinet/

 projects/CoDAMoS/ontology/

[10] S. Cuddy, M. Katchabaw, and H. Lutfiyya. Context-Aware Service
Selection Based on Dynamic and Static Service Attributes. IEEE
Int. Conf. on Wireless and Mobile Computing, Networking and
Communications, 2005.

[11] Y. Dai, L. Yang, B. Zhang. QoS-Driven Self-Healing Web
Service Composition Based on Performance Prediction. Journal
of Computer Science and Technology, 24(2), March 2009.

[12] V. Deora, J. Shao, W.A.Gray, N. J. Fiddian. A Quality of Service
Management Framework Based on User Expectations. 1st Int.
Conf. on Service Orienting Computing, 2003.

[13] C. Doulkeridis, N. Loutas, and M. Vazirgiannis. A System Architec-
ture for Context-Aware Service Discovery. Electronic Notes of
Theoretical Computer Science 146(1): 101-116 (2006).

[14] J. Dolley, A. Zisman, G. Spanoudakis. Runtime Service Discovery
for Grid Applications. In Grid Technology for Maximizing Collabo-
rative Decision Management and Support: Advancing Effective
Virtual Organizations, 2009.

[15] M. Driss, N. Moha, Y. Jamoussi, J.M. Jezequel, H.H.B. Ghezala. A
Requirement-Centric Approach to Web Service Modeling, Discov-

http://www.soa4all.eu/file-upload.html?func=startdown&id=243
http://www.soa4all.eu/file-upload.html?func=startdown&id=243

28

ery and Selection. 8th Int. Conf. on Service Oriented Computing,
2010.

[16] DSD. Dynamic Service Discovery Framework Project,
http://www.soi.city.ac.uk/~zisman/DSD_Project

[17] eXist. http://exist.sourceforge.net

[18] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni. Exception
Handling for Repair in Service-Based Processes. IEEE Transac-
tions on Software Engineering, 36(2), 2010.

[19] GREDIA project. http://www.gredia.eu.

[20] D. Grirori, J.C. Corrales, and M.Bouzeghoub. Behavioral Match-
ing for Service Retrieval, Int. Conf. on Web Services, 2006.

[21] J. Grundy and G. Ding. Automatic Validation of Deployed J2EE
Components Using Aspects. IEEE 16th Int. Conf. on Automated
Software Engineering, 2001.

[22] S. Guinea, G. Kecskemeti, A. Marconi, and B. Wetzstein. Multi-
layered Monitoring and Adaptation. 9th Int. Conf. on Service Ori-
ented Computing, December 2011.

[23] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ
and RDF to OWL: The Making of A Web Ontology Language, J. of
Web Semantics, 1(1), 7-26, 2003.

[24] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic
Location of Services, Eur. Semantic Web Conf., 2005.

[25] N. Jun, Z. Bin, Z. Xiamgyu, Z. Zhiliang, L. Dancheng. Two-
Stage Adaptation for Dependable Service-Oriented System. Int.
Conf. on Service Sciences, 2010.

[26] R. Kazhamiakin, B. Wetztein, D. Karastoyanova, M. Pistore,
and F. Leymann. Adaptation of Service-based Applications
Based on Process Quality Factor Analysis. ServiceWave 2009.

[27] J. Kim, J. Lee, B. Lee. Runtime Service Discovery and Reconfigura-
tion using OWL-S based Semantic Web Service. 7th IEEE Int. Conf.
on Computer and Information Technology, 2007.

[28] M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Ser-
vice Discovery with OWLS-MX, Int. Conf. on Autonomous Agents
and Multiagent Systems, 2006.

[29] P. Leitner, A. Michlmayr, F. Rosenber, and S. Dustdar.
Monitoring, Prediction and Prevention of SLA Violations in
Composite Services. IEEE Int. Conf. on Web Services, 2010.

[30] L. Li and I. Horrock. A Software Framework for Matchmaking
based on Semantic Web Technology, WWW Conference Work. on
E-Services and the Semantic Web, 2003.

[31] K.J Lin, J. Zhang, Y. Zhai, and B. Xu. The Design and
Implementation of Service Process Reconfiguration with End-
to-end QoS Constraints in SOA. Journal of Service Oriented
Computing and Applications, vol 4, 2010.

[32] K. Mahbub, G. Spanoudakis, and A. Zisman. A Monitoring Ap-
proach for Runtime Service Discovery, Automated Software Engi-
neering Journal, 18(2): 117-161, 2011.

[33] L. Meng, Z. Junfeng, W. Lijie, C. Sibo, and X. Bing. CoWS: An Inter-
net-Enriched and Quality-Aware Web Services Search Engine.
IEEE Int. Conf. on Web Services, 2011.

[34] A. Metzer, O. Sammodi, K. Pohl, M. Rzepka. Towards Pro-
active Adaptation with Confidence Augumenting Service
Monitoring with Online Testing, Software Engineering for
Adaptive and Self-managing Systems, South Africa, May 2010.

[35] R. Mikhaiel and E. Stroulia. Interface- and Usage-aware Service
Discovery, 4th Int. Conf. on Service Oriented Computing, 2006.

[36] O Moser, F. Rosenberg, S. Dustdar. Non-Intrusive Monitoring
and Service Adaptation for WS-BPEL. 17th Int. World Wide
Web Conference, 2008.

[37] J. Morato, M.A. Marzal, J. Llorens, and J. Moreiro. WordNet Applica-
tion, 2nd Global Wordnet Conference, 2004.

[38] H. Niu and Y. Park. An Execution-based Retrieval of Object-
Oriented Components. 37th ACM Southeast Reg. Conf., 1999.

[39] OCL. http://www.omg.org/docs/ptc/03-10-14.pdf

[40] M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos. Discover-
ing Web Services in JXTA Peer-to-Peer Services in a Unified Man-
ner. 4th Int. Conf. on Service Oriented Computing, 2006

[41] M. Papazoglou, M. Aiello, M. Pistore, J. Yang. XSRL: A Request
Language for web services, citeseer.ist.psu.edu/575968.html

[42] P. Pawar and A. Tokmakoff. Ontology-based Context-aware ser-
vice discovery for pervasive environments, IEEE Int. Work. On
Service Integration in Pervasive Environment, June, 2006

[43] PayPal. http://www.paypal.com

[44] SECSE Project. http://secse.eng.it

[45] Seekda, http://webservices.seekda.com/

[46] Servicefinder, http://demo.service-finder.eu/search

[47] Z. Shen and J. Su. Web Service Discovery based on Behavior Signa-
tures. 3rd Int. Conf. on Service Computing, 2005.

[48] S. Singh, J. Grundy, J. Hosking, J. Sun. An Architecture for De-
veloping Aspect-Oriented Web Services, 3rd Eur. Conf. in Web Ser-
vices, 2005.

[49] G. Spanoudakis, K. Mahbub, and A. Zisman. A Platform for Context-
Aware Run-time Service Discovery, 2007 IEEE Int. Conf. on Web
Services, 2007

[50] G. Spanoudakis and A. Zisman. Discovering Services during Ser-
vice-based System Design using UML, IEEE Transactions of Soft-
ware Engineering, 36(3): 371-389, 2010

[51] A. Srivastava and P. G. Sorenson. Service Selection based on cus-
tomer Rating of Quality of Service Attributes. IEEE Int. Conf. on
Web Services, 2010.

[52] M. Treiber and S. Dustdar, Active web service registries, IEEE
Internet Computing, 11(5): 66–71, 2007

[53] D. Tosi and G. Denaro and M. Pezzè. Towards Autonomic
Service-Oriented Applications. Int. Journal of Autonomic
Computing (IJAC), 2009, pp. 58—80

[54] L.Vu,M.Hauswirth,andK.Aberer. QoS based Service Selection
and Ranking with Trust and Reputation Management. Proc. of
the Cooperative Information System Conf., 2005.

[55] WSDL. http://www.w3.org/TR/wsdl

[56] L. Xu and M.A. Jeusfeld. A Concept for Monitoring of Electronic
Contracts. 15th Conf. on Advanced Information Systems Engineer-
ing (CAiSE’03), Austria, June 2003.

[57] Z. Xu, P. Martin, W. Powley, and F. Zulkernine. Reputation-
Enhanced QoS-based Web Services Discovery. IEEE Int. Conf. on
Web Services, 2007.

[58] Y. Ye and G. Fischer. Context-Aware Browsing of Large Compo-
nent Repositories. 16th Int. Conf. on Automated Software Engi-
neering, 2001.

[59] L.Y. Yunyao, H. Yanh, and H. Jagadish,. NaLIX: an Interactive
Natural Language Interface for Querying XML, SIGMOD 2005.

[60] A. Zisman, K. Mahbub, and G. Spanoudakis. A Service Discov-
ery Framework Based on Linear Composition, IEEE 2007 Int.
Service Computing Conference, 2007.

[61] A. Zisman, G. Spanoudakis, and J. Dooley. Proactive Runtime
Service Discovery, 2008 Int. Service Computing Conf. 2008.

[62] A. Zisman, G. Spanoudakis, and J. Dooley. A Framework for
Dynamic Service Discovery, Int. IEEE Conf. on Automated
Software Engineering, 2008.

	1 Introduction
	2 Overview
	2.1 Runtime service discovery scenarios
	2.2 Framework support

	3 Service Discovery Query Language
	3.1 Structural Sub-query
	3.3 Constraint Sub-query

	4 Service Discovery Process
	4.1 Query Matching Process
	4.2 Pull and Push Query Execution

	5 Evaluation
	5.1 Experimental Setup

	6 Related Work
	7 Conclusions and Future Work
	References

