Variability Mining: Consistent Semiautomatic
Detection of Product-Line Features

Christian Kastner, Alexander Dreiling, and Klaus Ostermann

Abstract—Software product line engineering is an efficient means to
generate a set of tailored software products from a common implementa-
tion. However, adopting a product-line approach poses a major challenge
and significant risks, since typically legacy code must be migrated toward
a product line. Our aim is to lower the adoption barrier by providing
semiautomatic tool support—called variability mining—to support de-
velopers in locating, documenting, and extracting implementations of
product-line features from legacy code. Variability mining combines prior
work on concern location, reverse engineering, and variability-aware type
systems, but is tailored specifically for the use in product lines. Our work
pursues three technical goals: (1) we provide a consistency indicator
based on a variability-aware type system, (2) we mine features at a
fine level of granularity, and (3) we exploit domain knowledge about the
relationship between features when available. With a quantitative study,
we demonstrate that variability mining can efficiently support developers
in locating features.

Keywords—Variability, reverse engineering, mining, feature, software
product line, LEADT, feature location.

1 INTRODUCTION

OFTWARE PRODUCT LINE ENGINEERING is an efficient

means to generate a set of related software products (a.k.a.
variants) in a domain from common development artifacts [4].
Success stories of software product lines report an order-of-
magnitude improvement regarding costs, time to market, and
quality, because development artifacts such as code and designs
are systematically reused [4], [49].

Variants in a product line are distinguished in terms of fea-
tures; domain experts analyze the domain and identify common
and distinguishing features, such as fransaction, recovery, and
different sort algorithms in the domain of database systems.
Subsequently, developers implement the product line such that
they can derive a variant for each feature combination; for
example, we can derive a database variant with transactions and
energy-saving sort mechanisms, but without recovery. Typically,
variant derivation is automated with some generator [17]. Over
the recent years, software product line engineering has matured
and is widely used in production [4], [49].

Despite this acceptance, adopting a product-line approach
is still a major challenge and risk for a company. Typically,
legacy applications already exist that must be migrated to

e C. Kistner is with the School of Computer Science at Carnegie Mellon
University; A. Dreiling is with the University of Magdeburg and Deutsche
Bank AG, Germany; K. Ostermann is with the Department of Mathematics
and Computer Science at Philipps University Marburg, Germany.

the product line. Often companies halt development of new
products for months in order to migrate from existing (isolated)
implementations toward a software product line [14]. Hence,
migration support seems crucial for the broad adoption of
product-line technology. Currently, even locating, documenting,
and extracting the implementation of a feature that is already
part of a single existing implementation is a challenge [25],
[28], [42], [43], [60].

Our aim is to lower the adoption barrier of product-line
engineering by supporting the migration from legacy code
toward a software product line. We propose a system that semi-
automatically detects feature implementations in a code base
and extracts them. For example, in an existing implementation
of an embedded database system, we might want to identify
and extract all code related to the transaction feature to make
transactions optional (potentially to create a slim and resource-
efficient variant, when transactions are not needed). We name
this process variability mining, because we introduce variability
into a product line by locating features and making them
variable. Variability mining is one important building block in
a larger research context of supporting product-line adoption for
legacy applications, others being reengineering of existing vari-
ability from if and #ifdef statements and from program deltas
(e.g., branches in a version control system) [21], [23], [35].

A main challenge of variability mining is to locate a
feature consistently in its entirety, such that, after location
and extraction, all variants with and all variants without this
feature work as expected. In our database example, removing
transactions from the system must introduce errors neither in
existing variants with transactions nor in new variants without
transactions. Unfortunately, full automation of the process
seems unrealistic due to the complexity of the task [8]; hence,
when locating a feature’s implementation, domain experts still
need to confirm whether proposed code fragments belong to the
feature. We have developed a semiautomatic variability-mining
tool that recommends probable code fragments and guides
developers in looking in the right location. It additionally
automates the tasks of documenting and extracting features.

Mining variability in software product lines is related to
research on concept/concern location [8], [19], [22], feature
identification [19], [53], reverse engineering and architecture
recovery [13], [20], impact analysis [3], [48], and many
similar fields. However, there is a significant difference in
that variability mining identifies the entire extent of optional
(or alternative) features for production use in a product line

instead of locating a concern for (one-time) understanding
or maintenance tasks. Detecting features in a product line
contributes additional opportunities and challenges, including
the following:

1) All variants generated with and without the feature must be
correct. We use well-typedness as a consistency indicator.

2) Features must be identified at a fine level of granularity,
because the results of the mining process are used to
extract the feature’s implementation.

3) Often, developers have domain knowledge about existing
features and their relationships. If available, this knowl-
edge can be used to improve the mining process.

We implemented and evaluated our variability-mining ap-
proach with a tool LEADT for Java code. In a quantitative
analysis, we identified 97 % of the code of 19 features in four
small product lines. All located features were consistent.

In summary, we contribute: (a) a process to semiauto-
matically locate, document and extract variable product-line
features in a legacy application, (b) a tool for Java code to
support the process, (c) a novel use of a variability-aware type
system as consistency indicator, (d) an extension of existing
concern-location techniques with domain knowledge and fine
granularity required in the product-line setting, and (e) a
quantitative evaluation with 19 features from 4 product lines.

2 VARIABILITY MINING

We define variability mining as the process of identifying
features in legacy code and rewriting them as optional (or
alternative) features in a product line. We assume that we extract
features from a single code base. However, it is not uncommon
that, before adopting a product-line approach eventually,
developers have already introduced variability in some ad-hoc
way that should be migrated as well. For example, developers
might have used a clone-and-own approach or branches in a
version control system, might have introduced variations with
command-line parameters or #ifdef directives. In such scenario,
other complementary migration and reengineering strategies
are necessary [1], [21], [23], [35]. Here, we focus only on
locating and extracting features from a single legacy-code base
(not from deltas between branches). It is difficult to quantify
how often locating variability in a single code base is needed in
practice. In academia, it is a standard approach to create case
studies [16], [25], [28], [42], [43], [58], [60]. From industry,
we have anecdotal evidence of similar adoption potential. We
do not claim that this adoption strategy is prevalent in practice,
but argue that it is a relevant building block in a larger tool
box.

Consider the following setting: A company has developed an
application and now wants to turn it into a product line. In the
product line, several features—that previously existed hidden in
the application—should become optional, so that stakeholders
can derive tailored variants of the application (with and without
these features). In a typical scenario, the company wants to sell
variants at different prices, wants to optimize performance and
footprint for customers that do not need the full feature set, or
wants to implement alternatives for existing functionality.

For illustration purposes, we use a trivial running example of
a stack implementation in Java, listed in Figure 1, from which

1 class Stack {

2 int size = 0;

3 Object[] elementData = new Object[maxSizel;
4 boolean transactionsEnabled = true;
5

6 void push(Object o) {

7 Lock 1 = lock();

8 elementData[size++] = o;

9 unlock(l);

10 3}

11 Object pop() {

12 Lock 1 = lock();

13 Object r = elementData[--size];
14 unlock(l);

15 return r;

}
17 Lock lock() {

18 if (!transactionsEnabled) return null;
19 return Lock.acquire();
20 }

21 void unlock(Lock lock) { /*...x/ }

22 String getLockVersion() { return "1.0"; }
23 }

24 class Lock { /*...x/ }

Fig. 1. Example of a stack implementation in Java with
feature locking (corresponding lines highlighted).

features and seeds
their dependencies

(variability model)

TR

domain expert

refactored product-line
implementation

o7 o
2 :

developer developer /
with tool support tool

located fragments

domain expert /
developer / tool

Fig. 2. The feature-mining process.

we want to extract the feature locking (highlighted), such that
we can generate variants with and without locking.

The variability-mining process consists of four steps as

illustrated in Figure 2:

1) A domain expert models the domain and describes the
relevant features and their relationship in a variability
model (the optional and independent feature locking in
our example).

2) A domain expert, a developer, or some tool identifies
initial seeds for each feature in the legacy code base.
Seeds are code fragments that definitely belong to the
feature, such as methods lock and unlock in our example.

3) For each feature, developers iteratively expand the iden-
tified code until they consider the feature consistent and
complete. Starting from known feature code, the developer
searches for further code that belongs to the same feature
(all highlighted code in our example).

4) In a final step, developers or tools rewrite (or extract)
the located code fragments, so variants with and without
these code fragments can be generated.

Of course, the process can be executed in an iterative and
interleaved fashion. For example, we could start mining a
single feature and later continue with additional features, we
could add additional seeds later, and we can expand several
features in parallel.

Within this process, we focus on the third step of finding

all code of a feature. The remaining steps are far from trivial,

but are already well supported by existing concepts and tools.
In contrast, actually finding the entire implementation of a
feature in legacy code currently is a tedious and error-prone
task, which we aim to ease with tool support that guides the
developer.

We envision a variability-mining tool that recommends code
fragments at which the developers should look next. The
recommendations are updated whenever additional information
is available, such as changes to features and their relationships,
seeds, or when developers expand the identified code fragments.

2.1

While we focus on the third step of finding feature code in
this article, we can reuse existing work for the remaining steps
of the variability mining process.

Deciding which features to extract (Step 1) is a typical
task in product-line engineering that requires communication
with many different stakeholders. The decision depends on
many influence factors, including many business and process
considerations discussed elsewhere [5], [7], [27], [49], [55],
[56]. Recently, She et al. even explored extracting variability
models from legacy code and other sources [54].

To determine seeds (Step 2), often developers or domain
experts can provide hints. Although they might not know
the entire implementation, they can typically point out some
starting points. Furthermore, search facilities, from simple tools
like grep to sophisticated information-retrieval mechanisms,
such as LSI [44], Portfolio [45], SNIFF [12], and FLAT? [53],
and analysis tools for configuration parameters [50] can
support determining seeds.

Regarding rewrites (Step 4), a simple form of rewriting
identified feature code for a product-line setting is to guard
located code fragments with conditional-compilation directives,
such as the C preprocessor’s #ifdef and #endif directives.
Experience has shown that this can usually be done with
minimal local rewrites of the source code [29], [58]. More
sophisticated approaches refactor the code base and move
feature code into a plug-in, an aspect, or a feature module of
some form [30], [42], [47]. In prior work, we have shown that
such refactoring can be even entirely automated, once features
are located in the source code [30].

Existing Support for Variability Mining

2.2 Product-Line Context and Design Goals

Finding all code of a feature (Step 3) is related to concern-
location techniques and code search engines (e.g., [8], [15],
[19], [22], [48], [52], [53]; see Sec. 5 for a more detailed
discussion). There is a huge design space for concern-location
approaches, many with goals overlapping with ours. In the
following, we describe the characteristics of our product-line
context and the corresponding design goals for our approach.

Binary and permanent mapping. In a product line, a
mapping between features and code fragments is used to drive
variant generation. That is, for a given feature selection, a
product-line generator automatically derives the corresponding
implementation by composing or removing code fragments
related to features [17].

The mapping needs to be binary in the sense that the mapping
between features and code fragments denotes a belongs-to
relationship, on which we can rely for variant generation. A
binary mapping can be used by the generator decide whether
to include or exclude a code fragment from a variant; it can
also be used as basis for refactorings (Step 4 in Fig. 2). In the
product-line context, we speak of annotations: a code fragment
is annotated with a feature. In contrast, a mere is-related-to
relationship, possibly with a weight, at method or class level
(e.g., “method push is likely related to the locking concern”)
is not sufficient for automated variant generation and must be
reduced to a binary decision by a developer.

The mapping is permanent in the sense that it is not just
mere documentation, but actually an integral part of the product
line’s implementation. Using the mapping between features and
code fragments during variant generation is a strong incentive
for developers to later update the mapping when evolving
the implementation, preventing erosion often associated with
documentation and architecture descriptions.

Due to the goal of binary and permanent mappings, our
process is incremental and relies heavily on developer feedback
to make the final decisions. However, it also characterizes
mining variability as a long-term investment.

Consistency. In a product-line context, whenever we extract
a feature, we expect that all variants generated with and
without that feature must execute correctly. This property
gives rise to a consistency indicator. When we locate a feature,
we need to continue mining, until the feature is located
consistently. As a lower bound for a consistency indicator,
we require that all variants compile, which we can determine
statically. Additionally, we could run a test suite or use some
validation or verification methods.

In this paper, we define that a feature is identified consistently
if all variants are well-typed. For example, if we annotated the
declaration of unlock in Figure 1, but not the corresponding
method invocations, then, variants without feature locking
would be ill-typed and, hence, inconsistent.

Note that consistency does not imply completeness. For
example, not annotating class Lock would be incomplete
but consistent: All variants compile; class Lock is just never
referenced in variants without locking.

Granularity. To achieve consistent and binary mappings,
we need to map code fragments at a fine level of granularity.
Feature implementations in product lines often consist of
small code fragments scattered over multiple classes and
methods [29], [40], [48]. This means that we need to be able
to annotate even individual statements as we did in Figure 1
(and possibly smaller code fragments).

Domain knowledge. In a product line, domain experts
may know some features and their relationship (see Step 1
above). Typical relationships between features are that one
feature requires another feature (implication) or that two
features are mutually exclusive. During variability mining,
we can exploit such information if available. For example,
after identifying feature locking, we could identify a mutually
exclusive feature snapshot isolation (not listed in Fig. 1);
during snapshot isolation’s identification we can restrict the

& list of
“rs recommendations

L
LE

- L
underlying
model

TC
recommendation
engines

manual decision

Fig. 3. Recommendation process (part of Step 3)

search space and exclude locking code.! Similarly, we can
exploit implications between features (including parent-child
relationships) to reduce the search space or to derive additional
seeds. For example, before identifying the locking feature, we
could have already identified a subfeature dynamicLocking
(ability to disable locking at runtime; Lines 4 and 18 in Fig. 1);
when subsequently identifying locking, we do not need to
identify these lines again and can even use them as seeds.

Knowing relationships between features is not necessary
for variability mining, but can improve results if available, as
we will demonstrate.> Describing domain knowledge about
variability in variability models and reasoning about it with
automated analysis techniques is state of the art in product-line
engineering [6], [27].

The four goals—binary and permanent mapping, consistency,
fine granularity, and exploiting domain knowledge about feature
dependencies—characterize our product-line context. In a sense,
variability mining is a process (Steps 1-4) based on concern-
location techniques (in Steps 2 and 3), tailored for the need
of product-line adoption and the information available in this
context.

3 RECOMMENDATION MECHANISM

To support Step 3 of the variability-mining process, we provide
tool support for consistently locating code fragments of a
feature. Unfortunately, a full automation of the mining process
is unrealistic, so involvement of domain experts is essential. Our
semiautomatic variability-mining tool recommends probable
code fragments. It guides developers in looking in the right
location.

We illustrate the recommendation process in Figure 3. Given
domain knowledge (features and their dependencies) and
previously located feature code (seeds), our tool builds an
internal model of the source code structures, features, and
their mappings. Based on that internal model, recommendation
engines recommend code fragments that the developer should
look at next. Our tool consolidates the recommendations into
one prioritized list. Now developers have to decide how to
proceed. Developers may reject or accept a recommendation

1. In a legacy application that was not developed as a product line, mutually
exclusive features are less common. They are typically encoded with dynamic
decisions, for example, with if-else statements or the strategy design pattern.
When migrating the legacy application toward a product line, we can replace
the dynamic decisions with compile-time feature selections. The exact process
is outside the scope of this paper, but it is important to notice that domain
knowledge about mutually exclusive features can be useful conceptually for
variability mining nevertheless.

2. Dependencies usually cover domain dependencies, but may also include
known implementation dependencies. Implementation dependencies between
features are often discussed as the optional-feature problem and avoided since
they reduce variability of the product line [33], [42].

(in a graphical frontend), may change the source code, or
may decide to end the location process. After each developer
interaction, our tool updates the recommendations to reflect
successfully located code fragments, rejected recommendations,
changed implementations, and updated domain knowledge.
Since variability mining is a form of concern location tailored
for software product lines, we combine existing complementary
approaches and enhance them in a product-line—specific way.
Each recommendation engine returns a list of recommendations
each with a corresponding priority w (range [0, 1], reflecting
how confident the tool is in the recommendation). Specifically,
we develop a mechanism based on a variability-aware type
system (to achieve consistency; Sec. 3.2) and combine it with
two complementary concern-location mechanisms, topology
analysis (Sec. 3.3) and text comparison (Sec. 3.4), known
from the literature. The three recommendation mechanisms
are complementary; we find more feature code than with each
mechanism in isolation, as we will exemplify with our example
(Sec. 3.5) and demonstrate empirically (Sec. 4). All mechanisms
are based on a variability model and a fairly common, but
fine-grained graph of the target program’s structure (Sec. 3.1).

3.1 Underlying Model

Before we describe the recommendation mechanisms, we
briefly introduce the underlying representation, which repre-
sents code elements, features, and relationships between them.

Code elements. To represent code fragments and their
relationships, we use a standard graph representation of the
source code’s structure and dependencies (working on the
code’s structure instead of textual lines of code). Whereas many
concern-location tools (such as Suade [52] and Cerberus [22])
use rather lightweight models and cover only entire methods
and fields, we need fine granularity at intraprocedural level,
as argued above. For Java, we model compilation units, types,
fields, methods, statements, local variables, parameters, and
import declarations (we discussed suitable granularity for
product lines in prior work [29], [40]; in languages other
than Java, we could chose similar structures [32]). Technically,
we automatically extract elements from abstract syntax trees
provided by Eclipse. We denote the set of all code elements
in a program as E.

Between these code elements, we extract relationships
(R C E x E). Containment relations describe the hierarchical
structure of the code base: a compilation unit contains import
declarations and types, a type contains fields and methods,
and a method contains statements. References cover method
invocations, field access, and references to types (as in the
return type of a method). Finally, usage relationships cover
additional relationships when two elements do not directly
reference each other, but are used together; examples are
assignments, instanceof expressions, and casts.

We extract code elements and relationships from the target
code. All relationships mentioned above are based on structural
information, type information, and control-flow graph from
a compiler frontend that are cheap and precise to compute
without data-flow analysis. Also, we explicitly exclude external
libraries and assume that the target code is well-typed (although
partial models would be possible if necessary [18]).

Features. Our product-line setting provides additional do-
main knowledge that we encode in our model. We describe
domain knowledge as a set of features F and relationships
between features, extracted from a variability model VM.
Although further analysis would be possible, we are interested
in two kinds of relationships, mutual exclusion (M C F x F)
and implications (==C F x F). As explained above, mutual
exclusion allows us to discard code fragments that already
belong to a mutually exclusive feature and implications (in the
form “feature f is included in all variants in which feature g is
included”) are useful to provide seeds and because we do not
need to reconsider code elements that are already annotated
with an implied feature. Implications are especially typical in
hierarchical decompositions, in which a child feature always
implies the parent feature. We denote the reflexive transitive
closure of = by =*. We can either model relationships directly
or exact them from other variability model notations (plenty
of modeling notations and efficient reasoning techniques have
been developed in the product-line community, usually using
SAT solvers [6], [46], [57]; in our implementation, we reuse
the feature-model editor and the reasoning techniques from
FeaturelDE [57]).

Annotations. Finally, we need to model annotations, that is,
the mapping between code elements and features. Annotations
relate code elements to features (A C E x F) when assigned by
a developer as seed or during the mining process. Additionally,
developers can explicitly mark a code fragment as not belonging
to the feature, denoted as negative annotation (N C E x F),
typically used to discard a recommendation in the mining
process.> Annotations are always propagated to all children of
a code element in the hierarchical code structure. Annotations
are used for variant generation in the product line (see binary
mapping above) and to derive recommendations, whereas
negative annotations are used solely as additional input for
our recommendation mechanism. Each code element can be
annotated with multiple features; in that case, the code element
is only included in variants in which all these features are
selected (equivalent to nested #ifdef directives). In contrast,
code used jointly by multiple features is annotated with a
separate feature required by the other features through an
implication (typically a common parent feature in the variability
model).

To consider annotations across multiple features, including
available domain knowledge about relationships between
features (M and =), we introduce the extent and the exclusion
of a feature:

o The extent of a feature f is the set of all elements for which
we know, from annotations or from domain knowledge,
that they belong to f directly or indirectly. An element is
in the extent of f, if it is annotated with f or with any
feature implied by f.

e The exclusion of a feature f is the set of all elements
for which we know, from negative annotations or domain

3. An annotation always maps a feature to an element. If only part of the
element belongs to the feature (e.g., a statement in a method or part of an
expression in an if statement), only those subelements are annotated. If the
used granularity does not expose them as separate elements, the user needs to
rewrite the source code as explored elsewhere [31].

knowledge, that they cannot be annotated with f. An
element is in the exclusion of f, if (1) there is a negative
annotation with f or any feature implied by f or (2) it is
annotated with a feature that is mutually exclusive to f.
All code elements that belong neither to the extent of f nor to
its exclusion are undecided yet and are candidates for further
mining of f.*
We define the extent and exclusion of a feature as

extent(f) = {e |(e,f) € AL}

exclusion(f) = {e |(e,f) € N} U U extent(g)
(g,flemM

where A_. = {(e,f)l(e,g) € A,g =* f} and N =
{(e,f)l(e,g) € N, f =* g} are the closures of A and N with
respect to implications.

All recommendation mechanisms use these definitions of
extent and exclusion; hence, they automatically reason about
negative annotations and dependencies between features as well.
This is the key mechanism to incorporate domain knowledge
into recommendations. Like negative annotations, the extent
and exclusion of a feature improve recommendations, but are
not used for deciding which code fragments to include when
generating a variant. When generating variants, we use only
annotations (A).

We use the definitions in the remainder of this section to
illustrate each recommendation mechanism. In particular, we
model each recommendation as a tuple (e, f,w): code element
e € E recommended for feature f € F with priority w € [0, 1].
Each recommendation mechanisms returns a set of prioritized
recommendations: recommend C E x F x [0, 1].

3.2 Type System

The type system is our key recommendation mechanism
and was the driving factor behind our variability-mining
approach. The type system ensures consistency, works at
fine granularity, and incorporates domain knowledge about
relationships between features.

The underlying idea is to look up references within the prod-
uct line’s implementation as a type system does—references
such as from method invocation (source) to method declaration
(target), from variable access (source) to variable declaration
(target), and from type reference (source) to type declaration
(target). We look up references using the relationships R in our
model (both at intraprocedural and interprocedural level). If the
target of such a reference is annotated with a feature f, but the
source of the reference is not part of the extent of f, the type
system issues a highly prioritized recommendation to annotate
the source—otherwise there are variants without f that include
the source but not the target of the reference, hence resulting in
a type error (i.e., a violation of our consistency criterion). For
example, if method declaration lock in our running example

4. In principle, inconsistent annotations are possible. For example, extent (f)
and exclusion(f) overlap if a code element is annotated with two mutually
exclusive features. Recommendations by the variability-mining tool will not
lead to such inconsistencies, but a developer could provoke them manually
(by adding incorrect annotations or changing dependencies in the variability
model). Our tool could issue a warning in case that happens, so a developer
can fix the annotations manually.

(target element) is annotated with feature locking whereas the
corresponding method invocation in Line 7 (source element)
is not annotated, a variant without feature locking would result
in a method invocation that cannot be resolved.’

Already when first experimenting with early versions of the
type system over five years ago, we found using type errors
for variability mining almost obvious. When annotating a
code fragment, say method lock in Figure 1, with a feature,
the type system immediately reports errors at all locations
at which lock is invoked without the same feature annotation
(Lines 7 and 12 in Fig. 1). We would then look at these errors
and decide to annotate the entire statements Lock [= lock(),
which immediately leads to new type errors regarding local
variable / (Lines 9 and 14)—note how the type system detects
errors even at the fine grained intraprocedural level. This way,
with only the type system, we incrementally fix all type errors
with additional annotations (or by rewriting code fragments
if necessary). With all type errors fixed, we have reached—by
our definition—a consistent state.

With the type system, we locate feature code (not common
code) similar to a low-tech approach: Starting with a compiling
implementation that includes the feature, we would comment
out all known feature code and compile the remaining imple-
mentation. The Java compiler would report type errors regarding
unresolvable method invocations and similar errors. We could
then comment out (or rewrite) the corresponding locations as
well, until the remaining code without the feature compiles
(i.e., until we reached consistency). All code we commented
out in the process belongs to the feature. Having a type system
integrated as a recommender of a variability-mining process
improves over the low-tech approach as it can quickly and
incrementally recommend additional code fragments, switch
between features, and reason about multiple features (and their
relationships) at the same time.

We have already implemented such variability-aware type
systems for Java and C in prior work (and, for a subset,
formally proved that it ensures well-typedness for all variants
of the product line) [31], [36]. For variability mining, we
reimplemented these checks as recommendation mechanism.

Note how we include domain knowledge about feature
relationships by using the extent of a feature, which includes
all code elements annotated with implied features: If method
declaration and invocation are annotated by different features
X and Y, we do not issue a type error if the invocation’s feature
X implies the declaration’s feature Y.

We assign the highest priority 1 to all recommendations of
the type system, because these recommendations have to be
followed in one form or the other to reach a consistent state.
Still, in isolation, the type system is not enough for variability
mining. It ensures consistency, but is usually insufficient to
reach completeness; more on this in Section 3.5.

5. In fact, type checking is more complicated when language features such
as inheritance, method overriding, method overloading, and parameters are
involved. Also feature dependencies beyond implications can be considered.
For such cases, we adjusted the type system’s lookup functions and check
implications between the variability model and annotations using a SAT solver.
To understand the recommendation mechanism, the simple model described
here is sufficient; for details, we refer the interested reader to our formal
discussions in [31].

Conceptually, we can formalize our type checker as a
function that takes the type relationships R in a program and
returns recommendations with priority 1 for all code elements e
and features f that are referenced by other annotated elements:

recommendrs = {(e,f,1) | (e,e’) ER A
e ¢ extent(f) N\ e’ € extent(f)}

3.3 Topology Analysis

Next, we adopt Robillard’s topology analysis [52] and ad-
just it for the product-line setting (fine granularity, domain
knowledge). The underlying idea of topology analysis is to
follow the graph representation of the system from the current
extent to all structural neighbors, such as called methods,
structural parents, or related variables in an assignment. Then,
the algorithm derives priorities and ranks the results using
the metrics specificity and reinforcement. The intuition behind
specificity is that elements that refer to (or are referred from)
only a single element are ranked higher than elements that refer
to (or are referred from) many elements. The intuition behind
reinforcement is that elements that refer to (or are referred
from) many annotated elements are ranked higher; they are
probably part of a cluster of feature code.

The algorithm follows all relationships R in our model. For
example, it recommends a method such as lock in Figure 1,
when the method is mostly invoked by annotated statements
(reference relationship in R); it recommends a local-variable
declaration such as / in Figure 1, when the variable is only
assigned from annotated code elements (usage relationship in
R); and it recommends an entire class, when the class contains
mostly annotated children (containment relationship in R).

We calculate the priority with weight.,, closely following
Robillard’s algorithms. We adapt it only for the product-
line setting: First, we determine relationships at all levels of
granularity supported by our model (i.e., down to the level of
statements and local variables), whereas Robillard considered
methods and fields only. Second, we consider relationships
between features (domain knowledge, if available) by using
the entire extent of a feature (which includes annotations
of implied features, cf. Sec. 3.1) instead of only directly
annotated code fragments. In addition, we reduce the priority of
a recommendation if an element refers to (or is referred from)
elements that are known as not belonging to the target feature
(negative annotations) or that belong to mutually excluded
features: We simply calculate the priority regarding all excluded
elements exclusion(f) and subtract the result from the priority
regarding the extent:

recommendry = {(e, f,w) le € neighbors(extent(f)),
w = weight, (e, extent(f)) — weight, (e, exclusion(f))}

The definition of weight,, can be found in the appendix.

3.4 Text Comparison

Finally, we use text comparison to derive recommendations be-
tween declarations of methods, fields, local variables, and types.
Text comparison is not restricted to neighboring elements as our
type system and the topology analysis are. The general idea is to

tokenize declaration names [11] and to calculate the importance
of each substring regarding the feature’s vocabulary. The vocab-
ulary of a feature consists of all tokens in extent(f). Intuitively,
if many annotated declarations contain the substring “lock” (and
this substring does not occur often in exclusion(f)), we rec-
ommend also other code fragments that contain this substring.

We use an ad-hoc algorithm to calculate a relative weight
for every substring in our vocabulary. We count the relative
occurrences of each substring (i.e., occurrences of a token
divided by the overall number of tokens) in declarations in
extent(f) and subtract the relative occurrences in exclusion(f).
That is, negative annotations and annotations of mutually
exclusive features (see definition of exclusion above) give
negative weights to words that belong to unrelated features.
By using extent(f) and exclusion(f), we again consider do-
main knowledge for calculating recommendation priorities (if
available).

We implemented our own mechanisms, because it was
sufficient to experiment with an additional text-based recom-
mendation mechanism. Our simple implementation was already
able to improve recommendations. Nevertheless, for future
versions, we intend to investigate tokenization, text comparison,
and information retrieval more systematically and potentially
use ontologies and additional user input to characterize a
feature’s vocabulary more accurately.

recommendrc =
{(e, f, weight (e, vocb(extent(f)), vocb(exclusion(f))))}

Additional explanations for weight - and vocb can be found
in the appendix.

3.5 Putting the Pieces Together

For each code element, we derive an overall recommendation
priority w, by merging the priorities wrg, Wy, and wre of
the three complementary recommendation mechanisms for this
code fragment (we assume a priority of 0 if a recommendation
engine does not recommend this code fragment). Following
Robillard [52], we use the operator x5y = x+y—x-y to merge
priorities in a way that gives higher priority to code fragments
recommended by multiple mechanisms; the operator yields
a result that is greater than or equal to the maximum of its
arguments (in the range [0, 1]). For an element recommended
by all three mechanisms, we calculate the overall priority
based on the three priorities of the respective recommendations:
W, = Wrg b wpy & wre.

To illustrate the complementary nature of the three compari-
son mechanisms, consider our initial stack example in Figure 1
once more.

o The type system recommends many code fragments
that are critical by definition, because they must be
annotated (or rewritten) to achieve consistency. In our
example, the type system recommends the invocations
of method lock in Lines 7 and 12 with priority 1, once
the corresponding method declaration (Lines 17-20) is
annotated; the invocation would also be identified by the
topology-analysis mechanism and text comparison, but
with lower confidence.

« In contrast, the type system would not be able to identify
the field declaration of transactionsEnabled in Line 4,
because removing the reference without removing the
declaration would not be a type error; it just results in
dead code.® In this case, also text comparison would fail
without additional ontologies, because it would not detect
the semantic similarity between the tokens transaction
and locking. Nevertheless, topology analysis contributes a
recommendation, because the field is only referred to from
annotated code fragments leading to a high reinforcement
score.

« Finally, neither type system nor topology analysis would
recommend the method declaration getLockVersion that
is part of the interface but never called from within the
implementation; here, our text comparison provides a
suitable recommendation.

This example illustrates the synergies of combining the three
complementary recommendation mechanisms, where each
mechanism can recommend additional code fragments that
another mechanism might not find. In addition, our tool is
extensible; so, we could easily integrate additional recommen-
dation mechanisms, for example recommendations based on
dynamic execution traces or data-flow properties.

4 EVALUATION

Our goal is to evaluate to which degree recommendations from
our tool guide developers to consider code fragments that are
actually part of a feature’s implementation.’

4.1

We have implemented our variability-mining solution—system-
dependency model, type system, topology analysis, and text
comparison—as an Eclipse plug-in called LEADT (short for
Location, Expansion, And Documentation Tool) for Java, on
top of our product-line environment CIDE [29]. LEADT reuses
CIDE’s infrastructure for variability modeling and reasoning
about dependencies, for the mapping between features and
code fragments, and for extraction facilities, once code is
annotated (see Sec. 2.1). Code elements and their relationships
are extracted from Eclipse’s standard JDT infrastructure.
LEADT and CIDE are available online at http://fosd.net/ and
can be combined with other tools on the Eclipse platform.
Product-line developers using LEADT follow the four steps
outlined in Section 2 (Fig. 2):
1) Modeling features and their relationships (as far as known)
in CIDE’s variability-model editor.
2) Manually annotating selected seeds, possibly with the help
of other tools in the Eclipse ecosystem.
3) Expanding feature code, possibly following LEADT’s
recommendations. LEADT provides a list of prioritized

Implementation

6. Technically, the field is unused code but not dead in the sense that a
compiler would report, because the field is visible outside the class and is
part of the class’ interface.

7. Initially, we considered also a comparison with other concern-location
tools (see Sec. 5). However, since the tools were designed for different settings
and use different levels of granularity, such comparison would always be
biased by the setting and the different goals of the individual tools.

recommendations for each feature. Developers are free
to explore and annotate any code (or undo annotations
in case of mistakes), but will typically investigate the
recommendations with the highest priority and either
annotate a corresponding code fragment or discard the
recommendation by adding a negative annotation (or even
annotate the code fragment with a different feature). After
each added annotation, LEADT immediately updates the
list of recommendations. Since LEADT can only judge
consistency but not completeness, developers continue
until they determine that a feature is complete. We will
discuss reasonable stop criteria below.

4) Rewriting the annotated code (optional), possibly using
CIDE’s facilities for automated exports into conditional
compilation and feature modules [30].

Again, the process supports iteration and interleaving. Devel-
opers can stop at any point, add a feature or dependency, undo
a change, rewrite the source code, or continue expanding a
different feature. In each case, LEADT updates its internal
model on the fly and provides recommendations for the current
context.

4.2 Case Studies

Before quantitatively evaluating the quality of LEADT’s
recommendations, we briefly summarize experience from two
qualitative case studies. First, using a think-aloud protocol, we
observed a developer while he mined variability in the database
management system HyperSQL (160000 lines of Java code).
Second, replicating a previous decomposition, we performed
variability mining for four features from the diagramming
application ArgoUML (305000 lines of Java code). To us, the
case studies serve two purposes: (a) they provide insights in
how developers interact with LEADT in practice and (b) they
informally explore benefits and limitations of variability mining.
Even though we attempt to take a neutral approach, case studies
provide insights into individual cases and are not suited or
meant as objective generalizable evaluation.

In the HyperSQL case study, we observed how a developer
interacts with the tool during variability mining, mining three
features with 248 to 2819 lines of code over four hours.
The developer, an experience PhD student in databases, was
familiar with the domain, but not with the particular code base.
We could observe that the developer easily understood the
recommendation mechanism and appreciated tool support for
such repetitive tasks. He quickly trusted the recommendations.
He mostly followed the recommendations but looked also at the
broader context of recommended code, sometimes using also
the search function within a file. He still always came back to
the recommendations eventually. In the process he refactored 5
local code fragments. As most interesting insights in usability
we learned that we should provide functionality to postpone
the decision on a recommendation that is currently not obvious
and to sort recommendations not only by priority but also by
locality, so that a user can investigate all recommendations
within a file before jumping to the next file.

In the ArgoUML case study, we had a different focus. We
selected ArgoUML because it was previously decomposed

manually by others [16] and because it allowed us to explore
variability mining at large scale. Without looking at the previous
decomposition beyond feature names, we extracted four features
with up to 1245 annotations and up to 37 649 lines of code. In
the process, we made errors, reverted changes, and continued
without problems; during the mining process, we switched back
and forth between features as convenient and refactored 4 code
fragments. In an ex-post analysis, comparing to the previous
manual decomposition, we discovered that we identified exactly
the same set of elements for one feature and a superset for the
other three features. It is not always easy to draw the line when
code should belong to a feature, and different domain experts
could defend different opinions. All additional code that we
identified was left as dead code in the previous decomposition
(for which topology analysis and text comparison provide
recommendations, see Sec. 3.5). That is, depending on the
interpretation, we found more feature code or made a different
judgment; we argue that our tool-supported decomposition
yielded a better result. More details on both case studies,
including a closer analysis of the differences between our and
the previous decomposition, can be found in an accompanying
technical report [34].

To check consistency, we compiled all resulting variants. In
addition, we also executed the applications and their existing
test suites on selected variants. All variants were well-typed
(i.e., consistent) and all tested variants passed all test cases,
except for test cases that specifically addressed the removed
feature (for example, 141 out of 1192 test cases in ArgoUML
referred to activity diagrams and could not be executed when
the feature was not selected).

Although the case studies provide some interesting insights
about how developers use our tool, it is difficult to measure
the quality, impact, or completeness of recommendations
objectively. Different developers may have different opinions
about the scope of a feature, which again might easily be
influenced by a wide range of observer-expectancy effects.
Such human influence can easily lead to biased results and
reduce internal validity. Therefore, we restricted our report of
the case studies here to the essential experience and focus on
a controlled quantitative evaluation that we describe next.

4.3 AQuantitative Evaluation

To evaluate the quality of LEADT’s recommendations quantita-
tively, we measure recall and precision in a controlled setting.
Recall is the percentage of found feature code, compared to
the overall amount of feature code in the original implementa-
tion. Precision is the percentage of correct recommendations
compared to the number of inspected recommendations.

4.3.1 Study Setup and Measurement

The critical part of an experiment measuring recall and
precision is to find a suitable oracle that defines ground truth
for the correct mapping between code fragments and features.
An incorrect oracle would lead to incorrect results for both
recall and precision.

To combat experimenter’s bias, we do not design the oracle
ourselves or rely on domain experts that might be influenced

by the experimental setting. Instead, to find oracles, we
followed two strategies: (a) we searched for programs that
were previously decomposed by other researchers and (b)
we use existing product lines, in which the original product-
line developers already established a mapping between code
fragments and features using #ifdef directives (independently
of our analysis). In existing product lines, we use the code
base without any annotations as starting point to re-discover
all features.

Our strategies exclude experimenter bias, but limit us in
our selection of oracles. Already in concern-location research,
realistic and reliable oracles are rare [19]; in the product-line
context existing oracles are even harder to find. We cannot
simply use any large scale Java application, as we did when
locating new features in HyperSQL (see case studies), because
they do not have oracles available. Similarly, we cannot use any
previous case studies that were created with an early version
of the type system in CIDE, such as BerkeleyDB [29]. The
resulting trade-off between internal validity (excluding bias)
and external validity (many and large studies) is common
for decisions in experimental design. Even though that meant
resorting to comparably small systems with only few domain
dependencies, after our case studies, we decided to emphasize
internal validity in our quantitative evaluation.

After selecting the oracles, the evaluation proceeds as follows,
following the process illustrated in Figure 2. As first step, we
create a variability model in LEADT, reusing the names and
dependencies from the oracle. As second step, we add seeds
for each feature (see below). The third step performs the actual
iterative expansion process, one feature at a time: We take the
recommendation with the highest priority (in case of equal
priority, we take the recommendation that suggests the larger
code fragment). If, according to the oracle, the recommended
code fragment belongs to the feature, we add an annotation;
otherwise, we add a negative annotation.® We iteratively repeat
this process until there are no further recommendations or
until we reach some stop criteria (see below). Instead of
actually extracting code in a fourth step, we determine recall
by comparing the resulting annotations with the oracle and
precision by comparing the numbers of correct and incorrect
recommendations. Finally, we continue the process with the
next feature.

With this process, we exclude all human influence. With
the oracle, we emulate a developer that always makes perfect
decisions for the given recommendations, thus eliminating the
problem of human judgment errors and misinterpretations of

8. Actually, mirroring human behavior (experienced in HyperSQL and
others), when a specific recommendation is correct, we also look at the
directly surrounding code elements and annotate the largest possible connected
fragment of feature code. For example, if the tool correctly recommends a
statement and the oracle indicates that the entire method belongs to the feature,
we assume that a developer would notice this and annotate the entire method.
Technically, we recursively consider siblings and parents of the recommended
code element up to compilation-unit level. In addition to the described “greedy”
approach, we measured also a conservative one in which we annotate only the
recommended element. Compared to the conservative approach, our greedy
approach improves overall recall from 84 to 97 %, decreases precision from
65 to 42 %, and requires 3.7 times less iterations. We argue that the greedy
approach is more realistic; hence, we do not further discuss results from the
conservative approach.

recommendations. While this is not entirely realistic (external
validity), it makes measurement objective, repeatable, and
automatable.

There are different strategies to determine seeds. To exclude
experimenter bias, we use a conservative strategy based on an
existing tool—the information retrieval engine of FLAT? [53]
(essentially a sophisticated text search; cf. Sec. 5). To determine
a single seed per feature, we start a query with the feature’s
name (assuming the name reflects the domain abstraction).
FLAT? returns a list of methods and fields, of which we use
the first result that is correct according to our oracle (a field, a
method, or all feature code inside a found method). We discuss
the influence of different or more seeds in Section 4.3.4.

Deciding when to stop the mining process for a feature (stop
criterion) is difficult, as the developer cannot compare against
an oracle. Possible indicators for stopping are (a) low priority
of the remaining recommendations and (b) many incorrect
recommendations in a row. In our evaluation, we stop the
mining process after ten consecutive incorrect recommendations.
We discuss alternative stop criteria in Section 4.3.4.

To understand the subtleties of our metrics for recall and
precision, it is important to keep the evaluation process in
mind. The tool always recommends a single code element at a
time, but potentially at different granularity, such as an entire
class or a single statement. In our process, deciding whether a
recommendation is correct is a binary decision, there is no
partial credit for recommending a class of which only two
statements belong to a feature. Since developer decisions are
emulated to be objective, the process will always annotate
a subset of the oracle’s feature code, never too much. We
measure recall in lines of code, based on the original layout of
the source code, which generally follows the Java conventions
in all projects. In contrast, we measure precision by counting
recommendations considered in our iterative process: Which
percent of recommendations was accepted as correct before
the stop criterion has been reached. The exact definitions are:

Lines of code annotated when stop criterion reached

Recall =

Lines of code annotated in the oracle

Correct recommendations

Precision =
All recommendations investigated before stop criterion

4.3.2 Oracles

We selected four different oracles developed by others, cov-
ering academic and industrial systems, and covering systems
developed with and without product lines in mind.

« Prevayler. The open-source object-persistence library Pre-
vayer (8009 lines of Java code, 83 files) was not originally
developed as a product line, but has been manually de-
composed into features at least three times [25], [42], [S8].
Prevayler makes a perfect oracle for variability mining,
because all previous decompositions agree almost perfectly
on the extent of each feature and because Prevayler
was not developed as a product line. We use a version
that was annotated, independent of our variability-mining
research, by de Oliveira at the University of Minas Gerais,
Brazil (PUC Minas) with five features: Censor, Gzip,
Monitor, Replication, and Snapshot, with the dependency

Feature Size Mining Results

Project Feature LOC FR FI IT Recall Prec.
Prevayler Censor 105 (1%) 10 5 32 100% 41%
Gzip 165 2%) 4 4 27 100% 18%
Monitor 240 3%) 19 8 53 100% 42%
Replication 1487 (19%) 37 28 64 100% 67 %
Snapshot 263 3%) 29 5 47 81% 46%
MobileM. Copy Media 79 2%) 18 6 33 97% 26%
Sorting 8 Q2% 20 6 36 9% 46%
Favourites 63 1% 18 6 31 100% 43%
SMS Transfer 714 (15%) 26 14 44 100% 62%
Music 709 (15%) 38 16 51 9% 59%
Photo 493 (11%) 35 13 55 9% 49%
Media Transfer 153 3%) 4 3 25 99% 13%
Lampiro Compression 5155 (12%) 33 20 42 100% 66%
TLS Encryption 86 (0%) 13 6 24 81% 29%
Sudoku Variable Size 4 2%) 5 4 24 100% 29%
Generator 172 (9 %) 9 7 29 98% 42%
Solver 445 (23%) 40 12 46 100% 58%
Undo 39 Q% 5 4 29 100% 21%
States 171 9%) 26 7 43 9% 52%

LOC: lines of code (and percentage of feature code in project’s code base);
FR: Number of distinct code fragments; FI: Number of files; IT: Number of iterations

TABLE 1
Feature characteristics and mining results.

Censor— Snapshot. In the search for additional oracles,
we investigated several manual decompositions of other
projects (including AgroUML discussed above), but none
of them had similar quality; none were verified or repeated
independently.

« MobileMedia. Developed from scratch as medium-size
product line at the University of Lancester, UK with
4653 lines of Java ME code (54 files) [24], MobileMedia
contains six features, Photo, Music, SMS Transfer, Copy
Media, Favourites, and Sorting, with the following de-
pendencies: Photo \/ Music and SMS Transfer — Photo.’
We added a feature Media Transfer and the dependency
Media Transfer < (SMS Transfer \/ Copy Media) to
the variability model, which are used later to annotate
code common to the two transfer features (which is
implemented in the original implementation with #ifdef
SMS || Copy). Unfortunately, FLAT® would not find any
feature code for Media Transfer, but thanks to domain
knowledge about feature dependencies, we could mine it
without seeds (cf. Sec. 4.3.4). Despite being a medium-
sized academic case study, MobileMedia makes a suitable
oracle, because its Java ME code is well maintained
and peer reviewed [24] and used in many other studies.
The analyzed version was implemented with conditional
compilation; so, we derived a base version by removing
all preprocessor directives.

« Lampiro. The open-source instant-messaging client Lam-
piro, developed by Bluendo s.r.l. with 44584 lines of

9. Source code: http://mobilemedia.cvs.sf.net, version 6_0OO, last revision
Oct. 2009. We use the feature names published in [24], which abstract
from the technical feature names used for implementation, just as a domain
expert would. For example, it uses “Music” instead of the implementa-
tion flag “includeMMAPI”. Furthermore, we added a missing dependency
SMSTransfer — Photo to the variability model, which we detected
in prior work [31].

10

Java ME code (147 files),'° provides variability using con-
ditional compilation, like MobileMedia. Of ten features,
we selected only two: Compression and TLS Encryption
(without dependencies), because the remaining features
were mere debugging features or affected only few code
fragments in a single file each (finding a seed would
be almost equivalent to finding the entire extent of the
feature). Lampiro is interesting as oracle for an industrial
product line, in which features were implemented by the
original developers with conditional compilation.

o Sudoku. The small Sudoku implementation (1975 lines of
Java code, 26 files), result of a student project at the Uni-
versity of Passau in Germany, contains five features: States
(for saving and restoring games), Undo, Solver, Generator,
and Variable Size. The project was designed and imple-
mented as a product line, but using a composition-based
approach [2], from which we reconstructed a common base
version and corresponding annotations. Despite the small
size, we selected Sudoku for a particular characteristic
of its implementation: the features have dependencies
and incrementally extend each other. Specifically, there
are the following dependencies: Generator — Solver,
Solver — Undo, and Undo — States.

In Table 1, we list some statistics regarding lines of code,
code fragments and affected files for each of the 19 features, to
give an impression of their complexity and their scattered nature.
Overlapping between features (corresponding to nested #ifdef)
is quite common, but unproblematic; we simply need to locate
such code fragments for each feature. All oracles are available
(e.g., for replication or comparison) in LEADT’s repository.

4.3.3 Variability-Mining Results

In Table 1, we list the number of iterations (i.e., number of
considered recommendations) and the measured recall and
precision for each feature. On average, we could locate 97 %
of all code per feature, with an average precision of 42 %. The
results are stable, independent of the kind of oracle (academic
vs. industrial, legacy application vs. existing product line).

The high recall shows that we can find most features

almost entirely, even with our conservative single seed per
feature. Although not all features have been located entirely, all
identified features are still consistent; we successfully compiled
all variants (40 in MobileMedia, 24 in Prevayler, 4 in Lampiro,
and 10 in Sudoku). When manually investigating all missing
feature code, we found that it is usually not connected to the
remaining feature code. Specifically we found the following
common scenarios:

o Connected only by string literal. In MobileMedia, menu
options and event processing are connected only by string
literals: An event loop dispatches events depending on
the caption of the menu option. For example, although
our algorithm recommended the event processing code
for “Copy” in feature Media Transfer, it did not find the
corresponding button declaration with the same string
literal. In principle our text-comparison recommender

10. http://lampiro.bluendo.com/; Lampiro version 9.6.0 (June 19th, 2009)
available at http://lampiro.googlecode.com/svn/!svn/bc/30/trunk/.

could handle such cases, but it currently compares only
identifiers, no literals.

Extended interface. In several cases a feature adds addi-
tional functionality to the public interface of the program,
which might be called by other programs using the code as
library. The corresponding methods are never called from
within the feature or from any other code in the program.
For example, in feature Snapshot in Prevayler, the feature
stores an extra value in a field and provides three additional
public methods to the database’s API. Although the field
is initialized by feature code, the priority was too low to
be detected before our stop criterion. Similarly, feature
Generator in Sudoku adds a public method setInitial which
makes internal program state shared by all variants mutable
to external users.

Independent change. Feature Photo changes the label of
a menu option from “Exit” to “Back” by reassigning the
caption in an extra constructor statement. The changed
caption then triggers different behavior in the event loop
(a different interaction mode with dialogs). There is
no visible trace in the source code that could map the
constructor statement to the feature; not even the assigned
string “Back” gives a hint.

Investigating the missing feature code, we found that it is
usually not connected to the remaining feature code (dead code
of the feature or isolated methods) or connected only by string
literals (text comparison currently only compares definitions
not literals).

At first sight, the precision of our approach appears to be
quite low. However, considering our goal to guide developers
to probable candidates, the results illustrate that following
recommendations by LEADT is by far better than searching
at random (which would yield a precision equal to the relative
amount of feature code shown in the LOC column; differences
are strongly significant according to a r-test for paired samples).
In addition, keep in mind that our stop criterion demands
at least ten incorrect recommendations, because developers
would not necessarily know that they found the entire feature
after few correct steps. For example, the 29 % precision of
feature Variable Size results from four correct recommendations,
which find the entire feature code, followed by 10 incorrect
recommendations to reach the stop criterion. Not considering
the last ten incorrect recommendations would improve the
overall average precision from 42 to 76 %.

4.3.4 Further Measures

Beyond our default setting, we investigated the influence of
several parameters more closely. Due to space limitations, we
provide only a brief overview and omit details.

Influence of domain knowledge. Although not directly
visible from Table 1, domain knowledge about dependencies
between features can have a significant impact on the results of
the mining process.!! The influence of knowing dependencies

11. The influence of domain knowledge about mutually exclusive features
conceptually also has an influence. However, we could not evaluate that
influence in our setup, because none of the oracles had mutually exclusive
features. Also, mining mutually exclusive features typically requires to rewrite
code fragments during the mining process, which does not fit with our
automated evaluation in which we excluded all human experimenter bias.

11

7 TATCH{TS,TATC g, Type System

08 4 {TA} {TS, TA} : .
_° TS, T¢) TA: Topology Anglyms
g 061 Xrg TC: Text Comparison
% 04
8 X(Ts}

0.2

0.0 -

[T T T T 1
00 02 04 06 08 1.0

avg. precision

Fig. 4. Combining recommendation mechanisms.

becomes apparent when mining features in isolation or in a
different order. For features without dependencies, the order
does not influence the results at all, but for features with
dependencies it does. We selected the order in Table 1 such
that, in case of a dependency A — B, feature A is mined before
B. As explained in Sections 2 and 3.1, known dependencies
can increase the extent (or exclusion) of a feature and improve
the mining results. The influence is visible for all features
with dependencies. Mining those features in isolation leads
to lower precision for Snapshot (34 %), Photo (33 %), States
(30 %), Undo (12 %), and Solver (35 %) and leads to lower
recall for States (68 %). In addition, for features implied from
other features, we can yield similar results without providing
seeds at all. This was especially convenient for feature Media
Transfer, for which we could not determine seeds with FLAT?,
but which we could still mine because of known dependencies.

Importance of the recommendation mechanisms. The rec-
ommendation mechanisms contribute to the results to different
degrees. By rerunning the evaluation in different configurations,
we explored different combinations of the recommendation
mechanisms and plot the resulting average recall and precision
over all case studies in Figure 4. Especially type system and
text comparison are not effective on their own. As predicted in
Section 3.5, the mechanisms are complementary—combining
them improves performance.

Although we cannot provide a fair direct comparison to
other concern-location tools (since the tools were developed
for different purposes and evaluated with different measures,
the setup would always introduce bias toward one solution), the
comparison of recommendation mechanisms gives an insight
into conceptual differences between tools that use different
recommendation mechanisms (see Sec. 5).

For instance just using the type system achieves only a com-
parably low recall; it benefits significantly from combination
with other recommenders. A simple low-tech approach that
relies purely on compiler errors while removing feature code
(see Sec. 3.2) would achieve a similarly poor performance
as the type system in isolation. The dead code found in a
prior manual decomposition of our ArgoUML case study (see
Sec. 4.2) can be interpreted as confirmation.

We might interpret the results as showing that topology
analysis and text comparison are sufficient and that the type
system contributes very little beyond them. This would however
discard a noticeable quality difference hidden in the aggregated
numbers: Recommendations of the type system are made with

higher confidence and are always actionable. The type system
in isolation nearly reaches a precision of 100 %, limited only
by incorrectly recommending code of dependent features (that
is, for feature f with f = c, the system recommends a not-
yet-annotated code fragment that actually belongs to a feature
c; a developer would probably recognize the problem and
annotate the code with the correct feature). In the context of
our mechanically evaluated quantitative study, the type system’s
higher precision has only a minimal effect when combined with
topology analysis, because the type system issues a smaller
number of recommendations (101 recommendations, 19 % of
all recommendations) and because the topology analysis makes
similar recommendations eventually. Still, we conjecture that
the different recommendation confidence influences developers
when reasoning about a given recommendation, because
the type system’s high-confidence recommendations typically
represent obvious cases violating the consistency criterion that
are easy to decide.

More or other seeds. In principle, the selection of seeds can
have a strong influence on the performance of the variability-
mining process. However, we found that already with a single
seed, we can achieve very good results. In addition, we found
that the results are quite stable when selecting other seeds.
Using the second, third, fourth, or fifth search result from
FLAT?, instead of the first, hardly changes the result. Only few
seeds from FLAT? (about one out of ten) lead to a significantly
worse result, otherwise recall is mostly the same and also
precision deviates only slightly. Using the five first results
combined as seed, yields similar or slightly better results than
those in Table 1. Also handpicking larger seeds, as a domain
expert might do, leads to a similar recall, usually found in
less steps. This shows that the recommendation mechanisms
are quite efficient finding connected fragments of feature code,
almost independent of where the mechanisms start.

Stop criterion. Finally, we have a closer look at the stop
criterion. Note that we selected our stop criterion before our
evaluation; although we could determine a perfect criterion
ex-post, we could not generalize such criterion. In Figure 5, we
plot the average recall and precision for mining all 19 features
with different stop criteria. We can observe that up to five
incorrect recommendations in a row are quite common and
should not stop the mining process, whereas continuing after
more than eight incorrect recommendations hardly improves
recall further (at the cost of lowered precision). In addition,
we checked an alternative stop criterion based on the priority
of the next recommendation. We can observe that only looking
at recommendations with the highest priority 1.0 already is
sufficient for 70 % recall, but even recommendations with
priority 0.3 contribute to the mining process. Of course a
combination of both criteria is possible, but we conclude that
already the simple “10 consecutive incorrect recommendations”
seems to be a suitable (slightly conservative) stop criterion.

4.4 Threats to Validity

Our case studies explore feature mining in a realistic setting,
but may be biased regarding the experimenter’s and subject’s
decisions and knowledge about the system. Hence, we do not

12

1.0 o 1.0
0.8 1 0.8 M
0.6 0.6
0.4 0.4
0.2 0.2 | avg-recal
—&— avg. precision
0.0 - 0.0 -
T T T T T 1 T 1 T T T 71T 1
0 5 100 15 20 25 1.0 0.8 0.6 0.4
unsuccessful recommendations priority bound

Fig. 5. Alternative Stop Criteria.

attempt to generalize, but interpret the results as encouraging
experience report only.

In our quantitative evaluation, we attempted to maximize
internal validity and exclude bias as far as possible by selecting
neutral oracles. Regarding external validity, the selection of
four rather small oracles with few features each still does
not allow generalizing to other software systems. Furthermore,
the selection of some existing product lines as oracles could
introduce new bias: Potentially, because the system was
already implemented as a product line, it might use certain
implementation patterns for product lines. We are not aware
of any confounding pattern in the analyzed systems though
and results of all case studies, including Prevayler, align well.
None of our oracles contained mutually exclusive features. We
determined small seeds conservatively and mechanically using
FLAT?, which may not reflect a developer’s strategy, and we
set an artificial stop criteria, but evaluated the impact of each.
Also, in our evaluation setting, we emulated developers to
always make perfect decisions, greedily annotating the largest
possible code fragments but not too much (see above), whereas
in practice developers will sometimes make mistakes and revert
annotations.

Regarding internal and construct validity, the common
measures recall and precision both depend on the quality of the
oracles. We have carefully selected oracles as discussed above
(e.g., Prevayler was decomposed several times independently),
but the oracles may still contain errors. Our definition of
recall measures lines of code of Java code (default formating)
instead of counting structural elements. Lines of code are
more intuitive to interpret than measures of the codes internal
hierarchical structure. Because our tool works on code elements
(see Sec. 3.1) but our recall metric measures lines of code,
technically, there is the possibility for inaccuracy in which
multiple code fragments share a single line, of which only
some are annotated. This corner case never occurred in our
evaluation.

5 RELATED WORK

Variability mining is related to asset mining, architecture
recovery, concern location, and their related fields; it tries
to establish stable traceability links to high-level features
for extraction and variant generation and combines several
existing approaches. However, variability mining is tailored
to the specific challenges and opportunities of product lines
(consistency indicator, fine granularity, domain knowledge).

The process of migrating features from legacy applications
to a product line is sometimes named asset mining [5], [7],
[55], [56]. Whereas we focus on technical issues regarding
locating, documenting, and extracting source code of a feature,
previous work on asset mining focused mostly on process and
business considerations: when to mine, which features to mine,
or whom to involve. Therefore, they weight costs, risks, and
business strategy, and conduct interviews with domain experts.
Their process and business considerations complement our
technical contribution.

Architecture recovery has received significant attention [20].
Architecture recovery extracts traceability links for redoc-
umentation, understanding, maintenance, and reuse-related
tasks; usually with a long-term perspective. It typically creates
traces for coarse-grained components and can handle different
languages. Fine-grained location of features is not in the scope
of these approaches.

Work on aspect mining searches crosscutting concerns in the
source code and aims to extract them into separate aspects [38].
In the location phase, aspect mining often focuses more on
finding repeating structures in the source code (homogeneous
crosscutting, clone detection), though it also employs concern-
location techniques (see below). Once concerns are identified,
the extraction is similar to our approach, and in fact, we could
use existing aspect-oriented refactorings [47] as subsequent
rewrite techniques as mentioned in Sec. 2.1.

Code search engines like Google Code Search and more
sophisticated tools, such as LSI [44], Portfolio [45], SNIFF [12],
and FLAT? [53] use various techniques to find code fragments
related to a user query. Developers may search for code
fragments in different context, for example, when trying to
understand a code fragment, when searching for a reusable
code fragment for a specific problem, or when identifying code
of a specific concern. Sophisticated code search engines use
information retrieval techniques often enhanced by reasoning
about the underlying structure of a code fragment and about
its context, similarly to some of our recommendation engines;
McMillan et al. provide a good overview of different technical
approaches [45]. Overall, code search engines typically return
(a list of) individual code fragments (‘snippets’), which often
are a starting point for further investigation. In contrast, the
goal of variability mining is to find the entire extent of a feature,
typically consisting of many code fragments, as described in
Sec. 2.2, wherein code search engines may be a good starting
point to determine seeds. In our evaluation, we used FLAT® as
neutral seed generator.

There is a vast amount of research on (semi-)automatic
techniques to locate concerns, features, or bugs in source code,
known as concept assignment [8], concern location [22], feature
location [53], impact analysis [48], or similar. Throughout the
paper, we have used the term concern location to refer to all
of these related approaches. A typical goal is to understand
an (often scattered) subset of the implementation for a
maintenance task. Examples are locating the code responsible
for a bug or determining the impact of a planned change.
Similar to architecture recovery, concern location approaches
establish traceability links between the implementation and
some concepts that the developer uses for a specific task.

13

Many different techniques for concern location exist: there
are static [8], [48], [52] as well as dynamic [15], [59] and
hybrid [22], [53] techniques, and techniques that employ textual
similarity [22], [53] as well as techniques that analyze static
dependencies or call graphs [8], [22], [45], [48], [52] and
program traces [15], [22], [53], [55]. Many approaches work
at method granularity [22], [45], [52], [53], but also fine-
grained approaches have been investigated [48], [59]. For a
comprehensive overview, see recent surveys [15], [19]. Many
approaches complement ours and can be extended for a product-
line setting. Due to space restrictions, we focus on four static
concern-location approaches that are closely related to our
approach: Suade, JRipples, Cerberus, and Gilligan.

We adopted Robillard’s fopology analysis in Suade [52] for
variability mining. Topology analysis uses static references
between methods and fields to determine which other code ele-
ments might belong to the same concern. Suade uses heuristics,
such as “methods often called from a concern’s code probably
also belong to that concern,” and derives a ranking of potential
candidates. As explained in Section 3.3, we extended Suade’s
mechanism with domain knowledge and use a more fine-grained
model to include also statements and local variables.

Petrenko and Rajlich’s ripple analysis in JRipples similarly
uses a dependency graph to determine all elements related to
given seeds [48]. A user investigates neighboring edges of the
graph manually and incrementally (investigated suggestions can
lead to new suggestions). JRipples lets the user switch between
different granularities from class level down to statement level.
In that sense, JRipple’s granularity matches that of variability
mining, but JRipple has no notion of consistency or domain
knowledge.

Cerberus combines different techniques including execution
traces and information retrieval, but introduces an additional
concept called prune-dependency analysis to find the complete
extent of a concern [22]. Prune-dependency analysis assigns
all methods and fields that reference code of a concern to
that concern. For example, if a method invokes transaction
code, this method is assigned to the transaction concern
as well. The process is repeated until concern code is no
longer referenced from non-concern code. Gilligan combines
a similar prune-dependency analysis with Suade’s topology
analysis [26]. Gilligan is tailored specifically for reuse
decisions, to locate and copy code excerpts from legacy code.
This scenario is similar but requires different decisions. A
key decision in Gilligan is when not to follow a dependency
and replace a method call with a stub in the extracted code.
For instance, if the code of a located concern calls a library
function, the Gilligan user decides whether the library should
be extracted together with the concern’s code or whether
to extract incomplete code, which will be completed in the
context where the extracted code will be reused. In contrast,
in a product line, we would decide whether the library should
be always included as part of the common base program or
whether it should belong to the feature code (in which case
no other nonfeature code is allowed to call the library). When
considering only a single concern at a time, prune-dependency
analysis in Cerberus and Gilligan is similar to a simple form
of our variability-aware type system (and similar to a low-tech

approach depending on compiler errors, see Sec. 3.2). However,
our type system is more fine-grained and additionally considers
domain knowledge about relationships between features.

Beyond traditional concern-location techniques, CIDE+ is
the closest to our variability-mining concept [58]. In parallel to
our work, the authors pursued the same goals of finding feature
code at fine granularity in a single code base. They even built
upon the same tool infrastructure (CIDE [29]). In contrast to our
approach, they solely use a type-system-like mechanism, along
the lines of Cerberus’ prune-dependency analysis [22], but do
not connect their work with additional concern-location tech-
niques and do not exploit knowledge about feature dependen-
cies. Instead, they focus more on automation and propose few
but large change sets, whereas we provide many atomic recom-
mendations to developers. They have evaluated their approach
measuring precision and recall on Prevayler and AgroUML, but
the reported numbers are not comparable, because CIDE+ uses
a different interaction model and large seeds (> 80 % of the
feature code for most features in Prevayler, instead of a single
field or method as seed in our work). In Section 4.3.4, we
have shown how our integration of concern-location techniques
(a) yields better results than using only a type system and
(b) renders the process less fragile to the selection of seeds.

Instead of a tool comparison, we evaluated different con-
ceptual strategies in Section 4.3.4 (Fig. 4). A low-tech manual
approach iteratively using only compiler errors would probably
be less convenient (see Sec. 3.2) and achieve a result concep-
tually similar {TS}, but would require many invocations of
the compiler in different steps and different variants. CIDE+
is conceptually equivalent to that approach but essentially
automates the manual interaction with the compiler. Suade is
conceptually similar to {TA} and Gilligan to {TS, TA}.

Finally, there have been many efforts of migrating legacy
applications to product lines. Where we start with a single
legacy application and identify features that have already
been implemented but not made optional, others have focused
on reengineering existing variability from program deltas
(e.g., branches in version control systems) [21], [23] and
reengineering existing variability from #ifdef directives [1],
[35]. We argue that variability mining is one important
complementary building block in a larger tool set of adoption
and migration strategies for product-line technology in the
presence of legacy applications.

6 CONCLUSION

Software product lines are of strategic value for many compa-
nies. Because of a high adoption barrier with significant costs
and risks, variability mining supports a migration scenario
in which features are extracted from a legacy code base, by
providing semiautomatic tool support to locate, document, and
extract features. Although we use existing concern-location
techniques, we tailor them to the needs of software product lines
(consistency indicator, fine granularity, domain knowledge). We
have demonstrated that variability mining can effectively direct
a developer’s attention to a feature’s implementation.

In future work, we intend to explore synergies with further
recommendation mechanisms. Especially, it would be inter-

14

esting to investigate recommendation engines based on data-
flow and information-flow properties that have been recently
explored for product lines [9], [10], [41]. Our evaluation
setup also enables to study robustness of our approach
against incorrect user inputs, especially incorrect decisions
on a recommendation. Another interesting direction is to use
consistency criteria beyond well-typedness, such as running
test suites or verifying specifications for all variants, which
could exploit recent approaches to symbolically execute tests
in all variants of a product line [37], [39], [51].

ACKNOWLEDGMENTS.

We are grateful to Norbert Siegmund for sharing his experience
with HyperSQL, to Eyke Hiillermeier for hints regarding
measures in our experiment, and to Paolo Giarrusso, Sven
Apel, and the anonymous reviewers for helpful comments on
prior drafts of this paper. Kister and Ostermann’s work was
supported in part by ERC grant #203099. Dreiling’s work was
supported by the Metop Research Institute.

REFERENCES

[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan. Can We
Refactor Conditional Compilation into Aspects? In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 243-254. 2009.
S. Apel, C. Kistner, and C. Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 221-231. 2009.

R. S. Arnold. Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 1998.

J. Bayer, J.-F. Girard, M. Wiirthner, J.-M. DeBaud, and M. Apel.
Transitioning Legacy Assets to a Product Line Architecture. In Proc.
Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE), pages 446-463. 1999.

D. Benavides, S. Seguraa, and A. Ruiz-Cortés. Automated Analysis
of Feature Models 20 Years Later: A Literature Review. Information
Systems, 35(6):615-636, 2010.

J. Bergey, L. O’Brian, and D. Smith. Mining Existing Assets for Software
Product Lines. Technical Report CMU/SEI-2000-TN-008, SEI, 2000.
T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The Concept
Assignment Problem in Program Understanding. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 482—498. 1993.

E. Bodden. Position Paper: Static Flow-Sensitive & Context-Sensitive
Information-flow Analysis for Software Product Lines. In Workshop on
Programming Languages and Analysis for Security (PLAS), 2012.

C. Brabrand, M. Ribeiro, T. Tolédo, and P. Borba. Intraprocedural
Dataflow Analysis for Software Product Lines. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 13-24. 2012.

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving the
Tokenisation of Identifier Names. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP), pages 130-154. 2011.

S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A Search Engine for Java
Using Free-Form Queries. In Proc. Int’l Conf. Fundamental Approaches
to Software Engineering, pages 385—400. 2009.

E. J. Chikofsky and J. H. C. II. Reverse Engineering and Design Recovery:
A Taxonomy. IEEE Software, 7:13—-17, 1990.

P. Clements and C. W. Krueger. Point/Counterpoint: Being Proactive
Pays Off/ Eliminating the Adoption Barrier. IEEE Software, 19(4):28-31,
2002.

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke.
A Systematic Survey of Program Comprehension through Dynamic
Analysis. IEEE Trans. Softw. Eng. (TSE), 35(5):684-702, 2009.

M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting Software
Product Lines: A Case Study Using Conditional Compilation. In Proc.
European Conf. on Software Maintenance and Reengineering (CSMR),
pages 191-200. 2011.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley, 2000.

(2]

(6]

(7]
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

B. Dagenais and L. Hendren. Enabling Static Analysis for Partial Java
Programs. In Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 313-328. 2008.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature Location in
Source Code: A Taxonomy and Survey. Journal of Software: Evolution
and Process, 25(1):53695, 2012.

S. Ducasse and D. Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. [EEE Trans. Softw. Eng. (TSE), 35:573—
591, 2009.

S. Duszynski, J. Knodel, and M. Becker. Analyzing the Source Code of
Multiple Software Variants for Reuse Potential. In Proc. Working Conf.
Reverse Engineering (WCRE), pages 303-307. 2011.

M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc. CERBERUS:
Tracing Requirements to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis. In Proc. Int’l Conf. Program
Comprehension (ICPC), pages 53-62. 2008.

D. Faust and C. Verhoef. Software Product Line Migration and
Deployment. Software: Practice and Experience, 33(10):933-955, 2003.
E. Figueiredo et al. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 261-270. 2008.

I. Godil and H.-A. Jacobsen. Horizontal Decomposition of Prevayler.
In Proc. IBM Centre for Advanced Studies Conference, pages 83—100.
2005.

R. Holmes, T. Ratchford, M. Robillard, and R. Walker. Automatically
Recommending Triage Decisions for Pragmatic Reuse Tasks. In Proc.
Int’l Conf. Automated Software Engineering (ASE), pages 397-408. 2009.
K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, SEIL, 1990.

C. Kistner, S. Apel, and D. Batory. A Case Study Implementing Features
Using Aspect]. In Proc. Int’l Software Product Line Conference (SPLC),
pages 223-232. 2007.

C. Kistner, S. Apel, and M. Kuhlemann. Granularity in Software Product
Lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 311-320.
2008.

C. Kistner, S. Apel, and M. Kuhlemann. A Model of Refactoring
Physically and Virtually Separated Features. In Proc. Int’l Conf.
Generative Programming and Component Engineering (GPCE), pages
157-166. 2009.

C. Kistner, S. Apel, T. Thiim, and G. Saake. Type Checking Annotation-
Based Product Lines. ACM Trans. Softw. Eng. Methodol. (TOSEM),
21(3):Article 14, 2012.

C. Kistner, S. Apel, S. Tryjillo, M. Kuhlemann, and D. Batory.
Guaranteeing Syntactic Correctness for all Product Line Variants: A
Language-Independent Approach. In Proc. Int’l Conf. Objects, Models,
Components, Patterns (TOOLS EUROPE), pages 175-194. 2009.

C. Kistner, S. Apel, S. S. ur Rahman, M. Rosenmiiller, D. Batory, and
G. Saake. On the Impact of the Optional Feature Problem: Analysis and
Case Studies. In Proc. Int’l Software Product Line Conference (SPLC),
pages 181-190. 2009.

C. Kistner, A. Dreiling, and K. Ostermann. Variability Mining with
LEADT. Technical Report 01/2011, Department of Mathematics and
Computer Science, Philipps University Marburg, 2011.

C. Kastner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages
805-824. 2011.

C. Kistner, K. Ostermann, and S. Erdweg. A Variability-Aware Module
System. In Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). 2012.

C. Kistner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel,
and K. Ostermann. Toward Variability-Aware Testing. In Proc. GPCE
Workshop on Feature-Oriented Software Development (FOSD), pages
1-8, 2012.

A. Kellens, K. Mens, and P. Tonella. A Survey of Automated Code-Level
Aspect Mining Techniques. Transactions on Aspect-Oriented Software
Development, 5490(1V):143-162, 2007.

C. H. P. Kim, S. Khurshid, and D. Batory. Shared Execution for
Efficiently Testing Product Lines. In Proc. Int’l Symp. Software Reliability
Engineering (ISSRE), pages 221-230. 2012.

J. Liebig, S. Apel, C. Lengauer, C. Kistner, and M. Schulze. An Analysis
of the Variability in Forty Preprocessor-Based Software Product Lines.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 105-114. 2010.

15

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

J. Liebig, A. von Rhein, C. Kistner, S. Apel, J. Dorre, and C. Lengauer.
Scalable Analysis of Variable Software. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
2013. to appear.

J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of
Legacy Applications. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 112—121. 2006.

R. Lopez-Herrejon, L. M. Mendizabal, and A. Egyed. Requirements
to Features: An Exploratory Study of Feature-Oriented Refactoring. In
Proc. Int’l Software Product Line Conference (SPLC), pages 181-190.
2011.

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An Information
Retrieval Approach to Concept Location in Source Code. In Proc.
Working Conf. Reverse Engineering (WCRE), pages 214-223. 2004.

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio:
Finding Relevant Functions and Their Usage. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 111-120. 2011.

M. Mendonga, A. Wasowski, and K. Czarnecki. SAT-based Analysis of
Feature Models is Easy. In Proc. Int’l Software Product Line Conference
(SPLC), pages 231-240. 2009.

M. P. Monteiro and J. M. Fernandes. Towards a Catalog of Aspect-
Oriented Refactorings. In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pages 111-122. 2005.

M. Petrenko and V. Rajlich. Variable Granularity for Improving Precision
of Impact Analysis. In Proc. Int’l Conf. Program Comprehension (ICPC),
pages 10-19. 2009.

K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

A. Rabkin and R. Katz. Static Extraction of Program Configuration
Options. In Proc. Int’l Conf. Software Engineering (ICSE), pages 131—
140. 2011.

E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using Symbolic
Evaluation to Understand Behavior in Configurable Software Systems.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 445-454. 2010.
M. P. Robillard. Topology Analysis of Software Dependencies. ACM
Trans. Softw. Eng. Methodol. (TOSEM), 17(4):1-36, 2008.

T. Savage, M. Revelle, and D. Poshyvanyk. FLAT®: Feature Location
and Textual Tracing Tool. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 255-258. 2010.

S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse
Engineering Feature Models. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 461-470. 2011.

D. Simon and T. Eisenbarth. Evolutionary Introduction of Software
Product Lines. In Proc. Int’l Software Product Line Conference (SPLC),
pages 272-282. 2002.

C. Stoermer and L. O’Brien. MAP — Mining Architectures for Product
Line Evaluations. In Proc. Working Conf. Software Architecture (WICSA),
page 35. 2001.

T. Thiim, D. Batory, and C. Kistner. Reasoning about Edits to Feature
Models. In Proc. Int’l Conf. Software Engineering (ICSE), pages 254-264.
2009.

M. T. Valente, V. Borges, and L. Passos. A Semi-Automatic Approach
for Extracting Software Product Lines. IEEE Trans. Softw. Eng. (TSE),
38(4):737-754, 2012.

N. Wilde and M. C. Scully. Software Reconnaissance: Mapping Program
Features to Code. Journal of Software Maintenance: Research and
Practice, 7(1):49-62, 1995.

C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in
Middleware Systems. In Proc. Int’l Conf. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 188-205. 2004.

APPENDIX

We

calculate weight,(e,X) where X is a set of relevant

elements (either the extent or the exclusion of f) as follows:

weight,, (e, X) =

e,e’) € R}
e’,e) € R}
)

1+ |targets(e) N X| |sources(e) N X|
|targets(e)|

targets(e) = {e’|(
(

sources(e) = {e'|

|sources(e)|

Functions targets and sources determine the neighboring
elements in the program structure (relation R). The weight

is high if a large percentage of sources and targets are within
the set of relevant elements X (i.e., already annotated elements
or elements known to be in conflict). In each fraction, the
denominator describes specificity and tends to lower the
priority if there are many neighboring elements, whereas the
numerator describes reinforcement and increases the priority if
many neighboring elements are already in the set of relevant
elements. The two fractions account for incoming and outgoing
relationships in R. See [52] for a detailed explanation.
Function voch of the text-comparison mechanism can be
explained conceptually as follows: It receives a set of code
elements and tokenizes their names and removes stop words. It
counts how often each token occurs, relative to the total number
of tokens. Subsequently, weight~ compares the tokens of a
code element with the weighted tokens in both vocabularies:

weight (e, v1,v2) = Z (vi(t) —va(t)) - p(t)

tEtokenize(e)

v(t) denotes the lookup of the relative frequency of a token
in a vocabulary and p is a weight that we use to give lower
priorities for shorter tokens (0 for length 1, .33 for length 2,
.67 for length 3, and 1 for all longer tokens in our evaluation).
The function cuts off values below 0 and above 1. Since both
vocabularies typically have many tokens with comparably low
weights priorities given by the text-comparison mechanisms
tend to be rather low, which reflects the low confidence we
have in this mechanism.

Christian Késtner Christian Késtner is an assis-
tant professor in the School of Computer Science
at Carnegie Mellon University. He received his
PhD in 2010 from the University of Magdeburg,
Germany, for his work on virtual separation of
concerns. For his dissertation he received the
prestigious Gl Dissertation Award. His research
interests include correctness and understanding
of systems with variability, including work on
implementation mechanisms, tools, variability-
aware analysis, type systems, feature interac-
tions, empirical evaluations, and refactoring.

1 7
/))
7))

M

Alexander Dreiling Alexander Dreiling received
a Master’s degree in Business Information Sys-
tems from Otto-von-Guericke University Magde-
burg, Germany in 2010. His research focused
on variability and software product lines, feature-
oriented software development, and feature lo-
cation. Alexander Dreiling currently works as
Assistant Vice President at Deutsche Bank AG,
Group Technology, in post merger integration
projects as project manager.

16

Klaus Ostermann Klaus Ostermann is a profes-
sor of computer science at the Philipps University
of Marburg, Germany. His main research inter-
ests are in programming languages and software
engineering for modular software development.

