
1

A Systematically Empirical Evaluation of
Vulnerability Discovery Models: a Study on

Browsers’ Vulnerabilities
Viet Hung Nguyen and Fabio Massacci

Abstract—A precise vulnerability discovery model (VDM) will provide a useful insight to assess software security, and could
be a good prediction instrument for both software vendors and users to understand security trends and plan ahead patching
schedule accordingly. Thus far, several models have been proposed and validated. Yet, no systematically independent validation
by somebody other than the author exists. Furthermore, there are a number of issues that might bias previous studies in the field.
In this work, we fill in the gap by introducing an empirical methodology that systematically evaluates the performance of a VDM in
two aspects: quality and predictability. We further apply this methodology to assess existing VDMs. The results show that some
models should be rejected outright, while some others might be adequate to capture the discovery process of vulnerabilities. We
also consider different usage scenarios of VDMs and find that the simplest linear model is the most appropriate choice in terms
of both quality and predictability when browsers are young. Otherwise, logistics-based models are better choices.

Index Terms—Software Security, Empirical Validation, Vulnerability Discovery Model, Vulnerability Analysis

F

1 INTRODUCTION

VULNERABILITY discovery models (VDMs) oper-
ate on known vulnerability data to estimate the

total number of vulnerabilities that will be reported
after the release of a software. Successful models can
be useful instruments for both software vendors and
users to understand security trends, plan patching
schedules, decide updates and forecast security in-
vestments in general.

A VDM is a parametric mathematical function
counting the number of cumulative vulnerabilities of
a software at an arbitrary time t. For example, if Ω(t)
is the cumulative number of vulnerabilities at time t,
the function of the linear model (LN) is Ω(t) = At+B
where A,B are two parameters of LN, which are
calculated from the historical vulnerability data.

Fig. 1 sketches a taxonomy of the major VDMs. It
includes Anderson’s Thermodynamic (AT) model [5],
Rescorla’s Quadratic (RQ) and Rescorla’s Exponen-
tial (RE) models [19], Alhazmi & Malaiya’s Logistic
(AML) model [1], AML for Multi-version [11], Weibull
model (JW) [10], and Folded model (YF) [24]. The
goodness-of-fit of these models, i.e. how well a model
could fit the numbers of discovered vulnerabilities, is
normally evaluated in each paper on a specific vulner-
ability data set, except AML which has been validated
for different types of application (i.e. operating system
[4], [3], browsers [22], web servers [2], [23]). Yet, no
independent validation by somebody other than the
authors exists. Furthermore, a number of issues might
bias the results of previous studies.

• Firstly, many studies did not clearly define what
a vulnerability is. Indeed different definitions

L
o
g
a

rit
h
m

ic

P
o
is

so
n

A
nd

er
so

n

T
he

rm
o

dy
na

m
ic

W
e
ib

u
ll

R
es

co
rla

E
xp

on
en

tia
l

A
lh

az
m

i-

M
al

ai
ya

 L
og

is
tic

A
M

L
fo

r
M

ul
ti

ve
rs

io
n

A
lh

az
m

i-

M
al

ai
ya

 E
ff

or
t-

ba
se

d

R
es

co
rla

Q
u

ad
ra

tic

Li
n

ea
r

F
ol

d
ed

SRGM: Software Reliability Growth Model

Linear
Models

S-Shape
Models

SRGM-based
Models

Time-based Models Effort-based

Models

Vulnerability Discovery Models

Fig. 1. Taxonomy of Vulnerability Discovery Models.

of vulnerability might lead to different counted
numbers of vulnerabilities, and consequently, dif-
ferent conclusions.

• Secondly, all versions of a software were con-
sidered as a single “entity”. Even though there
is a large amount of shared code, they are still
different by a non-negligible amount of code.

• Thirdly, the goodness-of-fit of the models was
often evaluated at a single time point (of writing
their papers) and not used as a predictor e.g., to
forecast data for the next quarter for instance.

A detail discussion about these issues is available later
in section §3.

In this paper we want to address these shortcom-
ings and derive a methodology that can answer two
basic questions concerning VDM: “Are VDMs adequate
to capture the discovery process of vulnerabilities?”, and
“which VDM is the best?”.

ar
X

iv
:1

30
6.

24
76

v1
 [

cs
.C

R
]

 1
1

Ju
n

20
13

2

Table 1
Performance summary of VDMs.

Model Performance

AT, RQ should be rejected due to low quality.
LN is the best model for first 12 months(∗).

AML is the best model for 13th to 36th month (∗).
RE, LP may be adequate for first 12 months (∗∗).
JW, YF may be adequate for 13th to 36th month(∗).

(∗): in terms of quality and predictability for next 3/6/12 months.
(∗∗): in terms of quality and predictability for next 3 months.

1.1 Contributions of This Paper

The contributions of this work are detailed below:
• We proposed an experimental methodology to

assess the performance of a VDM based on its
goodness-of-fit quality and predictability.

• We demonstrated the methodology by conduct-
ing an experiment analyzing eight VDMs, includ-
ing AML, AT, JW, RQ, RE, LP, LN, and YF on 30
major releases of four popular browsers Internet
Explorer (IE), Firefox (FF), Chrome and Safari.

• We presented an empirical evidence for the ad-
equacy of the VDMs in terms of quality and
predictability. The AT and RQ models are not
adequate; whereas all other models may be ade-
quate when software is young (12 months). How-
ever only s-shape models (AML, JW, YF) should
be considered when software is middle age (36
months) or older.

• We compared these VDMs (except AT and RQ) in
different usage scenarios in terms of predictabil-
ity and quality. The simplest model, LN, is more
appropriate than other complex models when
software is young and the prediction time span
is not too long (12 months or less). Otherwise,
the AML model is superior. These results are
summarized in Table 1.

The rest of the paper is organized as follows. Section
§2 presents terminology in our work. The research
questions are presented in section §3 and the proposed
methodology is described in section §4. Next, we
apply the methodology to analyze the empirical per-
formance of VDMs in all data sets in section §5. Then
in section §6, we discuss the threats to the validity of
our work. Finally, we review related work in section
§7, and conclude in section §8.

2 TERMINOLOGY

• A vulnerability is “an instance of a [human]
mistake in the specification, development, or con-
figuration of software such that its execution
can [implicitly or explicitly] violate the security
policy”[12], later revised by [18]. The definition
covers all aspects of vulnerabilities discussed in
[6], [7], [8], [20], see also [18] for a discussion.

• A data set is a collection of vulnerability data
extracted from one or more data sources.

• A release refers to a particular version of an ap-
plication e.g., Firefox v1.0.

• A horizon is a specific time interval sample. It
is measured by the number of months since the
released date, e.g., from month 1 to 12 months
after the release.

• An observed vulnerability sample (or observed sam-
ple, for short) is a time series of monthly cumu-
lative vulnerabilities of a major release since the
first month after release to a particular horizon.

• An evaluated sample is a tuple of an observed
sample, a VDM model fitted to this sample (or
another observed sample), and the goodness-of-
fit of this model to this sample.

3 RESEARCH QUESTIONS AND METHODOL-
OGY OVERVIEW

In this work, we address the following two questions:
RQ1 How to evaluate the performance of a VDM?
RQ2 How to compare between two or more VDMs?
We propose a methodology to answer these ques-

tions. The proposed methodology identifies data col-
lection steps and mathematical analyses to empirically
assess different performance aspects of a VDM . The
methodology is summarized in Table 2.

In order to satisfactorily answer the questions
above, we must address some biases that potentially
affected the validity of previous studies.

The vulnerability definition bias may affect the vul-
nerability data collection process. Indeed all previ-
ous studies reported their data sources, but none
clearly mentioned what a vulnerability is, and how
to count it. A vulnerability could be either an advi-
sory reported by a software vendor such as Mozilla
Foundation Security Advisory – MFSA, or a security
bug causing software to be exploited (reported in
Mozilla Bugzilla), or an entry in third-party vulnera-
bility databases (e.g., National Vulnerability Database
– NVD). Some entries may be classified differently by
different entities: a third-party database might report
vulnerabilities, but the security bulletin of vendors
may not classify them as such. Consequently, the
counted number of vulnerabilities could be widely
different depending on the different definitions.

Example 1 Fig. 2 exemplifies this issue. A security
flaw concerning the buffer overflow and use-after-free
of Firefox v13.0 is reported in three databases with
different number of entries: one MFSA entry (MFSA-
2012-40), three Bugzilla entries (744541, 747688, and
750066), and three NVD entries (CVE-2012-1947, CVE-
2012-1940, and CVE-2012-1941). The cross references
among these entries are illustrated as directional con-
nections. This figure raises a question “how many
vulnerabilities should we count in this case?”.

3

Table 2
Methodology overview.

Step 1 Acquire the vulnerability data
DESC. Identify the vulnerability data sources, and the way to count vulnerabilities. If possible, different vulnerability sources

should be used to select the most robust one. Observed samples then can be extracted from collected vulnerability data.
INPUT Vulnerability data sources.

OUTPUT Set of observed samples.
CRITERIA

CR1 Collection of observed samples
• Vulnerabilities should be counted for individual releases (possibly by different sources).
• Each observable sample should have at least 5 data points.

Step 2 Fit the VDM to observed samples
DESC. Estimate the parameters of the VDM formula to fit observed samples as much as possible. The χ2 goodness-of-fit test is

employed to assess the goodness-of-fit of the fitted model based on criteria CR2.
INPUT Set of observed samples.

OUTPUT Set of evaluated samples.
CRITERIA

CR2 The classification of the evaluated samples based on the p-value of a χ2 test.
• Good Fit: p-value ∈ [0.80, 1.0], a good evidence to accept the model. We have more than 80% chances of generating

the observed sample from the fitted model.
• Not Fit: p-value ∈ [0, 0.05), a strong evidence to reject the model. It means less than 5% chances that the fitted

model would generate the observed sample.
• Inconclusive Fit: p-value ∈ [0.05, 0.80), there is not enough evidence to neither reject nor accept the fitted model.

Step 3 Perform goodness-of-fit quality analysis
DESC. Analyze the goodness-of-fit quality of the fitted model by using the temporal quality metric which is the weighted ratio

between fitted evaluated samples (both Good Fit and Inconclusive Fit) and total evaluated samples.
INPUT Set of evaluated samples.

OUTPUT Temporal quality metric.
CRITERIA

CR3 The rejection of a VDM.
A VDM is rejected if it has a temporal quality lower than 0.5 even by counting Inconclusive Fits samples as positive (with
weight 0.5). Different periods of software lifetime could be considered:

• 12 months (young software)
• 36 months (middle-age software)
• 72 months (old software)

Step 4 Perform predictability analysis
DESC. Analyze the predictability of the fitted model by using the predictability metric. Depending on different usage scenarios,

we have different observation periods and time spans that the fitted model supposes to be able to predict. This is described
in CR4.

INPUT Set of evaluated samples.
OUTPUT Predictability metric.

CRITERIA
CR4 The observation period and prediction time spans based on some possible usage scenarios.

Observation Prediction
Scenario Period (months) Time Span (months)

Plan for short-term support 6–24 3
Plan for long-term support 6–24 12
Upgrade or keep 6–12 6
Historic analysis 24–36 12

Step 5 Compare VDM
DESC. Compare the quality of the VDM with other VDMs by comparing their temporal quality and predictability metrics.
INPUT Temporal quality and predictability measurements of models in comparison.

OUTPUT Ranks of models.
CRITERIA

CR5 The comparison between two VDM
A VDM vdm1 is better than a VDM vdm2 if:

• either the predictability of vdm1 is significantly greater than that of vdm2,
• or there is no significant difference between the predictability of vdm1 and vdm2, but the temporal quality of vdm1

is significantly greater than that of vdm2.
The temporal quality and predictability should have their horizons and prediction time spans in accordance to criteria
CR3 and CR4. Furthermore, a controlling procedure for multiple comparisons should be considered.

4

MFSA

Bugzilla

NVD

MFSA-2012-40

CVE-2012-1940

CVE-2012-1941

744541

747688

750066

CVE-2012-1947

A buffer-overflow flaw is reported in one entry of MFSA, three entries of
Bugzilla, and three entries of NVD. There are cross-references among entries
(arrow-headed dotted lines). So, how many vulnerabilities should we count?

Fig. 2. The problem of counting vulnerabilities in
Firefox.

0 10 20 30 40

0
50

10
0

15
0

20
0

25
0

●●●●●

●●
●●

●●●●●●●

●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●●●
●

●●●
●●

●●

●●
●●●●●●●

●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●
●●●●

●

Months since released date

C
um

ul
at

iv
e

nu
m

be
r

of
 v

ul
ne

ra
bi

lit
ie

s

●●●●●

●●
●●

●●●●●
●●

●●
●

●●
●●

●
●●

●●●
●●●●●●●●●●●●●●●●

●●
●●●●

●● FF 1.0
FF 1.5
FF 1.0−1.5

This shows the cumulative vulnerabilities of Firefox v1.0, v1.5, and v1.0-v1.5
as a single entity. The “global” entity exhibits a trend that is not present in
the “individual” versions.

Fig. 3. Global vs individual vulnerability trends for
Firefox.

The multi-version software bias affects the count of
vulnerability across releases. Some studies (e.g., [22],
[23]) considered all versions of software as a single
entity, and counted vulnerabilities for this entity. Our
previous study [13] has shown that each Firefox ver-
sion has its own code base, which may differ by
30% or more from the immediately preceding one.
Therefore, as time goes by, we can no longer claim
that we are counting the vulnerabilities of the same
application.

Example 2 Fig. 3 visualizes this problem in a plot of
the cumulative vulnerabilities of Firefox v1.0, Firefox
v1.5, and Firefox v1.0-1.5 as a single entity. Clearly, the
function of the “global” version should be different
from the functions of the individual versions.

The overfitting bias, as name suggested, concerns
the ability of a VDM to explain history in hindsight.
Previous studies took a snapshot of vulnerability data,
and fitted this entire snapshot to a VDM. This made
a brittle claim of fitness: the claim was only valid at
the time vulnerabilities were collected. It explained
history but did not tell us anything about the future.
Meanwhile, we are interested in the ability of a VDM
to be a good “law of nature” that is valid across
releases and time and to some predict extent the
future.

4 METHODOLOGY DETAILS

This section discusses the details of our methodology
to evaluate the performance of a VDM.

4.1 Step 1: Acquire the Vulnerability Data
The acquisition of vulnerability data consists of two
sub steps: Data set collection, and Data sample extraction.

During Data set collection, we identify the data
sources to be used for the study (as they may not
equally fit to the task). We can classify them as
follows:
• Third-party advisory (TADV): is a vulnerability

database maintained by a third-party organi-
zation (not software vendors) e.g., NVD, Open
Source Vulnerability Database (OSVDB).

• Vendor advisory (ADV): is a vulnerability database
maintained by a software vendor, e.g., MFSA,
Microsoft Security Bulletin. Vulnerability infor-
mation in this database could be announced from
third-party, but it is always validated before being
announced as an advisory.

• Vendor bug tracker (BUG): is a bug-tracking
database, usually maintained by vendors.

For our purposes, the following features of a vul-
nerability are interesting and must be provided:
• Identifier (id): is the identifier of a vulnerability

within a data source.
• Disclosure date (date): refers to the date when a

vulnerability is reported to the database1.
• Vulnerable Releases (R): is a list of releases affected

by a vulnerability.
• References (refs): is a list of reference links to other

data sources.
Not every feature is available from all data sources. To
obtain missing features, we can use id and refs to link
across data sources and extract the expected features
from secondary data sources.

Example 3 Vulnerabilities of Firefox are reported
in three data sources: NVD2, MFSA, and Mozilla
Bugzilla. Neither MFSA nor Bugzilla provides the
Vulnerable Releases feature, but NVD does. Each MFSA
entry has one or more links to NVD and Bugzilla.
Therefore, we could to combine MFSA and NVD,
Bugzilla and NVD to obtain the missing data.

We address the vulnerability definition bias by tak-
ing into account different definitions of vulnerability.
Particularly, we collected different vulnerability data
sets with respect to these definitions. We also address
the multi-version issue by collecting vulnerability data

1. The actual discovery date might be significantly earlier than
that.

2. Other third party data sources (e.g., OSVDB, Bugtraq, IBM
XForce) also report Firefox’s vulnerabilities, but most of them
refer to NVD by the CVE-ID. Therefore, we consider NVD as a
representative of third-party data sources.

5

Table 3
Formal definition of data sets.

Data set Definition

NVD(r) {nvd ∈ NVD|r ∈ Rnvd}
NVD.Bug(r) {nvd ∈ NVD|∃b ∈ BUG : r ∈ Rnvd ∧ idb ∈ refsnvd}
NVD.Advice(r) {nvd ∈ NVD|∃a ∈ ADV : r ∈ Rnvd ∧ ida ∈ refsnvd}
NVD.NBug(r) {b ∈ BUG|∃nvd ∈ NVD : r ∈ Rnvd ∧ idb ∈ refsnvd}
Advice.NBug(r) {b ∈ BUG|∃a ∈ ADV,∃nvd ∈ NVD : r ∈ Rnvd

∧idb ∈ refsa ∧ idnvd ∈ refsa ∧ clustera(idb, idnvd)}
Note: Rnvd, refsnvd denote the vulnerable releases and references of an en-
try nvd, respectively. ida, idb, idnvd denote the identifier of a, b, and nvd.
clustera(idb, idnvd) is a predicate checking whether idb and idnvd are located
next together in the advisory a.

for individual releases. Table 3 shows different data
sets that we have considered in our study. They are
combinations of three types of data sources : third-
party (i.e. NVD as a representative), vendor advisory,
and vendor bug tracker. The English descriptions of
these data sets for a release r are as follows:
• NVD(r): a set of NVD entries which claim r is

vulnerable.
• NVD.Bug(r): a set of NVD entries which are con-

firmed by at least a vendor bug report, and claim
r is vulnerable.

• NVD.Advice(r): a set of NVD entries which are
confirmed by at least a vendor advisory, and
claim r is vulnerable. Notice that the advisory
report might not mention r, but later releases.

• NVD.Nbug(r): a set of vendor bug reports con-
firmed by NVD, and r is claimed vulnerable by
NVD.

• Advice.NBug(r): a set of bug reports mentioned
in an advisory report of a vendor. The advisory
report also refers to at least an NVD entry that
claims r is vulnerable.

For Data sample extraction, we extract observed sam-
ples from collected data sets. An observed sample is a
time series of (monthly) cumulative vulnerabilities of
a release. It starts from the first month since release
to the end month, called horizon. A month is an
appropriate granularity for sampling because week
and day are too short intervals and are subject to
random fluctuation. Additionally, this granularity was
used in the literature.

Let R be the set of analyzed releases and DS be the
set of data sets, an observed sample (denoted as os)
is a time series defined as follows:

os = TS(r, ds, τ) (1)

where:
• r ∈ R is a release in the evaluation;
• ds ∈ DS is the data set where samples are

extracted;
• τ ∈ Tr = [τ rmin, τ

r
max] is the horizon of the

observed sample, in which Tr is the horizon range
of release r.

In the horizon range of release r, the minimum value
of horizon τ rmin of r depends on the starting time

of the first observed sample of r. Here we choose
τ rmin = 6 for all releases so that all observed samples
have enough data points for fitting all VDMs. The
maximum value of horizon τ rmax depends on how
long the data collection period is for each release.

Example 4 IE v4.0 was released in September, 19973.
The first month was on 31 October, 1997. The first ob-
served sample of IE v4.0 is a time series of 6 numbers
of cumulative vulnerabilities for the 1st, 2nd, . . . , 6th

months. Since the date of data collection is on 01
July 2012, IE v4.0 have been released for 182 months,
and therefore has 177 observed samples. Hence the
maximum value of horizon (τ IEv4.0max) is 182.

4.2 Step 2: Fit a VDM to Observed Samples

We estimate the parameters of the VDM formula by
a regression method so that the VDM curve fits an
observed sample as much as possible. We denote the
fitted curve (or fitted model) as:

vdmTS(r,ds,τ) (2)

where vdm is the VDM being fitted; os = TS(r, ds, τ) is
an observed sample from which the vdm’s parameters
are estimated. (2) could be shortly written as vdmos.

Example 5 Fitting the AML model to the NVD data
set of Firefox v3.0 at the 30th month, i.e. the observed
sample os = TS(FF3.0,NVD, 30), generates the curve:

AMLTS(FF3.0,NVD,30) =
183

183 · 0.078 · e−0.001·183·t + 1

Fig. 4 illustrates the plots of three curves
AMLTS(r,NVD,30), where r is FF3.0,FF2.0, and FF1.0.
The X-axis is the number of months since release, and
the Y-axis is the cumulative number of vulnerabilities.
Circles represent observed vulnerabilities. The solid
line indicates the fitted AML curve.

In Fig. 4, the distances of the circles to the curve
are used to estimate the goodness-of-fit of the model.
The goodness-of-fit is measured by the Pearson’s Chi-
Square (χ2) test, which is a common test in the litera-
ture. In this test, we measure the χ2 statistic value of
the curve by using the following formula:

χ2 =

τ∑
t=1

(Ot − Et)2

Et
(3)

where Ot is the observed cumulative number of vul-
nerabilities at time t (i.e. tth value of the observed
sample); Et denotes the expected cumulative number
of vulnerabilities which is the value of the curve at
time t. The χ2 value is proportional to the differences

3. Wikipedia, http://en.wikipedia.org/wiki/Internet Explorer,
visited on 24 June 2012.

http://en.wikipedia.org/wiki/Internet_Explorer

6

0 5 10 15 20 25 30

5
0

1
0
0

1
5
0

2
0
0

Firefox 3.0/nvd

Observed
AML [Fit]

0 5 10 15 20 25 30

5
0

1
0
0

1
5
0

Firefox 2.0/nvd

Observed
AML [Inconclusive]

0 5 10 15 20 25 30

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

Firefox 1.0/nvd

Observed
AML [Not Fit]

A = 0.001

B = 183

C = 0.078

A = 4.7e-4

B = 235.4

C = 0.037

A = 0.002

B = 117.1

C = 0.107

Month Since Release

C
u

m
ul

at
iv

e
V

u
ln

er
ab

ili
ti

es

p-value = 0.0001p-value = 0.417p-value = 0.993

A,B,C are three parameters in the formula of the AML model: Ω(t) = B

BCe−ABt+1
(see also Table 4)

Fig. 4. Fitting the AML model to the NVD data sets for Firefox v3.0, v2.0, and v1.0.

between the observed values and the expected values.
Hence, the larger χ2, the smaller goodness-of-fit. If
the χ2 value is large enough, we can safely reject the
model. In other words, the model statistically does
not fit the observed data set. The χ2 test requires
all expected values should be at least 5 to ensure
the validity of the test [17, Chap. 1]. If there is any
expected value is less than 5, we need to combine
some first months to increase the expected value i.e.
increase the starting value of t in (3) until Et ≥ 5.

The conclusion about whether a VDM curve statis-
tically fits an observed sample relies on the p-value
of the test, which is derived from χ2 value and the
degrees of freedom (i.e. the number of months minus
one). Semantically, the p-value is the probability that
we falsely reject the null hypothesis when it is true (i.e.
error Type I: false positive). The null hypothesis here
is: “there is no statistical difference between observed and
expected values.” which means that the model fits the
observed sample. Therefore, if the p-value is less than
the significance level α of 0.05, we can reject a VDM
because there is less than 5% chances that this fitted
model would generate the observed sample.

In contrast, to accept a VDM, we exploit the power
of the χ2 test which is the probability of rejecting the
null hypothesis when it is false. Normally, ‘an 80%
power is considered desirable’ [15, Chap. 8]. Hence
we accept a VDM if the p-value is greater than or equal
to 0.80. We have more than 80% chances of generating
the observed sample from the fitted curve. In all other
cases, we should neither accept nor reject the model
(inconclusive fit).

The criteria CR2 in Table 2 summarizes the way by
which we assess the goodness-of-fit of a fitted model
based on the p-value of the χ2 test.

In the sequel, we use the term evaluated sample to
denote the triplet composed by an observed sample,
a fitted model, and the p-value of the χ2 test.

Example 6 In Fig. 4, the first plot shows the AML

model with a Good Fit (p-value = 0.993 > 0.80),
the second plot exhibits the AML model with an
Inconclusive Fit (0.05 < p-value = 0.417 < 0.80), and
the last one denotes the AML model with a Not Fit
(p-value = 0.0001 < 0.05).

There are also other statistic tests for goodness-of-
fit, for instance the Kolmogorov-Smirnov (K-S) test,
and the Anderson-Darling (A-D) test. The K-S test is
an exact test; it, however, only applies to continuous
distributions. An important assumption is that the
parameters of the distribution cannot be estimated
from the data. Hence, we cannot apply it to perform
the goodness-of-fit test for a VDM. The A-D test is
a modification of the K-S test that works for some
distributions [17, Chap. 1] (i.e. normal, log-normal, ex-
ponential, Weibull, extreme value type I, and logistic
distribution), but some VDMs violate this assumption.

4.3 Step 3: Perform Goodness-of-Fit Quality Anal-
ysis
To address the overfitting bias, we introduce the
goodness-of-fit quality (or quality, for short) that mea-
sures the overall number of Good Fits and Inconclusive
Fits among different samples. In contrast, previous
studies considered only one observed sample which
is the one with the largest horizon in their experiment.

Let OS = {TS(r, ds, τ)|r ∈ R ∧ ds ∈ DS ∧ τ ∈ Tr} be
the set of observed samples, the overall quality of a
model vdm is defined as the weighted ratio of the
number of Good Fit and Inconclusive Fit evaluated
samples over the total ones, as shown bellow:

Qω =
|GES|+ ω · |IES|

|ES|
(4)

where:
• ES = {〈os, vdmos, p〉 |os ∈ OS} is the set of eval-

uated samples generated by fitting vdm to ob-
served samples;

7

• GES = {〈os, vdmos, p〉 ∈ ES|p ≥ 0.80} is the set of
Good Fit evaluated samples;

• IES = {〈os, vdmos, p〉 ∈ ES|0.05 ≤ p < 0.80} is the
set of Inconclusive Fit evaluated samples;

• ω ∈ [0..1] is the inconclusiveness contribution factor
denoting that an Inconclusive Fit is ω times less
important than a Good Fit.

Example 7 If we fit the AML model to 3, 895 observed
samples of the four browsers IE, Firefox, Chrome, and
Safari. For 1, 526 times AML is a Good Fit, and for
1, 463 times AML is an Inconclusive Fit. The overall
quality of AML is:

Qω=0 =
1, 526

3, 895
= 0.39

Qω=1 =
1, 526 + 1, 463

3, 895
= 0.77

Qω=0.5 =
1, 526 + 0.5 · 1, 463

3, 895
= 0.58

To calculate the χ2 test we refit the model each and
every time. So this means that we have 1, 526 different
parameters A, B and C for each good fit curve (see
Fig. 4).

The overall quality metric ranges between 0 and 1.
The quality of 0 indicates a completely inappropriate
model, whereas the quality of 1 indicates a perfect
one. This metric is a very optimistic measure as we are
essentially “refitting” the model as more data become
available. Hence, it is the upper bound value of the
VDM quality.

The factor ω denotes the contribution of an incon-
clusive fit to the overall quality. A skeptical analyst
would expect ω = 0, which means only Good Fits are
meaningful. Meanwhile an optimistic analyst would
set ω = 1, which mean an Inconclusive Fit is as good
as a Good Fit. The optimistic choice ω = 1 is usually
adopted by the proposers of each model in previous
studies in the field while assessing the VDM quality.
The effect of the ω factor on the overall quality metrics
is illustrated in Fig. 5 showing the variation of the
overall quality of two models AML and AT with
respect to ω. We do not know whether an Inconclusive
Fit is good or not because the observed samples do
not provide enough evidence. Hence, the choice of
ω = 0.5 may be considered a good balance. During
our analysis we use ω = 0.5; any exception will be
explicitly noted.

The overall quality metric is sensitive to brittle
performance in time. A VDM could produce a lot of
Good Fits evaluated samples for the first 6 months, but
almost Not Fits at other horizons. Unfortunately, the
metric did not address this phenomenon.

To avoid this unwanted effect, we introduce the
temporal quality metric which represents the evolu-
tion of the overall quality over time. The temporal
quality Qω(τ) is the weighted ratio of the Good Fit

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inconclusiveness contribution factor (ω)

Qω of AML
Qω of AT

T
he

 o
ve

ra
l q

ua
lit

y
 Q

ω

Fig. 5. The variation of the overall quality Qω with
respect to the ω factor.

and Inconclusive Fit evaluated samples over total ones
at the particular horizon τ . The temporal quality is
formulated in the following equation:

Qω(τ) =
|GES(τ)|+ ω · |IES(τ)|

|ES(τ)|
(5)

where:
• τ ∈ T is the horizon that we observe samples, in

which T ⊆
⋃
r∈R Tr is the subset of the union of

the horizon ranges of all releases r in evaluation;
• ES(τ) = {〈os, vdmos, p〉 |os ∈ OS(τ)} is the set of

evaluated samples at the horizon τ ; where OS(τ)
is the set of observed samples at the horizon τ of
all releases;

• GES(τ) ⊆ ES(τ) is the set of Good Fit evaluated
samples at the horizon τ ;

• IES(τ) ⊆ ES(τ) is the set of Inconclusive Fit
evaluated samples at the horizon τ ;

• ω is the same as for the overall quality Qω .
To study the trend of the temporal quality Qω(τ),

we employ the moving average technique which is
commonly used in time series analysis to smooth
out short-term fluctuations and highlight longer-term
trends. Intuitively each point in the moving average
is the average of some adjacent points in the original
series. The moving average of the temporal quality is
defined as follows:

MAQωk (τ) =
1

k

k∑
i=1

Qω(τ − i+ 1) (6)

where k is the window size. The choice of k changes the
spike-smoothening effect: higher k, smoother spikes.
Additionally, k should be an odd number so that
variations in the mean are aligned with variations in
the data rather than being shifted in time.

Example 8 Fig. 6 depicts the moving average for
the temporal quality of AML and AT models. In this
example, we choose a window size k = 5 because the
minimum horizon is six (τ rmin = 6), so k should be
less than this horizon (k < τ rmin); and k = 3 is too
small to smooth out the spikes.

4.4 Step 4: Perform Predictability Analysis
The predictability of a VDM measures the capability
of predicting future trends of vulnerabilities. This

8

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Horizon (τ)

Te
m

po
ra

l q
ua

lit
y

 Q
ω

=0
.5
(τ

)

AML

Qω=0.5(τ)
MAk=5

Qω (τ)

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Horizon (τ)
Te

m
po

ra
l q

ua
lit

y
 Q

ω
=0

.5
(τ

)

AT

Qω=0.5(τ)
MAk=5

Qω (τ)

Dotted lines are the temporal quality with ω = 0.5, solid lines are the moving
average of the temporal quality with the window size k = 5.

Fig. 6. An example about the moving average of the
temporal quality of AML and AT models.

essentially makes a VDM applicable in practice. The
calculation of the predictability of a VDM has two
phases, the learning phase and the prediction phase. In
the learning phase, we fit a VDM to an observed sam-
ple at a certain horizon. In the prediction phase, we
evaluate the qualities of the fitted model on observed
samples in future horizons.

We extend (5) to calculate the prediction quality.
Let vdmTS(r,ds,τ) be a fitted model at horizon τ . The
prediction quality of this model in the next δ months
is calculated as follows:

Q∗ω(τ, δ) =
|GES∗(τ, δ)|+ ω · |IES∗(τ, δ)|

|ES∗(τ, δ)|
(7)

where:
• ES∗(τ, δ) =

{〈
TS(r, ds, τ + δ), vdmTS(r,ds,τ), p

〉}
is

the set of evaluated samples at the horizon τ+δ in
which we evaluate the quality of the model fitted
at horizon τ (vdmTS(r,ds,τ)) on observed samples
at the future horizon τ + δ. We refer to ES∗(τ, δ)
as set of evaluated samples of prediction;

• GES∗(τ, δ) ⊆ ES∗(τ, δ) is the set of Good Fit
evaluated samples of prediction at the horizon
τ + δ;

• IES∗(τ, δ) ⊆ ES∗(τ, δ) is the set of Inconclusive Fit
evaluated samples of prediction at the horizon
τ + δ.

• ω is the same as for the overall quality Qω .

Example 9 Fig. 7 illustrates the prediction qualities
of two models AML and AT starting from the horizon
of 12th month (τ = 12, left) and 24th month (τ = 24,
right), and predicting the value for next 12 months
(δ = 0 . . . 12). White circles are prediction qualities of
AML, and red (gray) circles are those of AT.

As we can see from Fig. 7 the ability of a model
to predict data decreases with time. It is therefore
useful to identify some interesting prediction time
spans (such as next 6 months) that can be used for
pairwise comparison between VDMs. To this extent,
we identify some different scenarios by which we

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

τ = 12

Prediction time span (δ)

P
re

di
ct

io
n

qu
al

ity
 Q

ω
=0

.5
*

(1
2,

δ)

● ●
●

●

●

●

●
●

●
●

● ● ●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●
● ●

● ●
● ● ●

● ●

●

●
●

●

● ●
●

●
● ● ●

●
●

●

●

AML
AT

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

τ = 24

Prediction time span (δ)

P
re

di
ct

io
n

qu
al

ity
 Q

ω
=0

.5
*

(2
4,

δ)

● ● ● ● ●

●

●

●
●

●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●

●

●

AML
AT

Fig. 7. The prediction qualities of the AML and AT
model at some horizons.

specify the duration of data observation and the pre-
diction time span. Other scenarios may be identified
depending on the application or the readers’ interest:

• Plan for short-term support: the data observation
period may vary from 6 months to the whole
lifetime. We are looking for the ability to predict
the trend in next quarter (i.e. 3 months) to plan
the short-term support activities e.g., allocating
resources for fixing vulnerabilities.

• Plan for long-term support: we would like to pre-
dict a realistic expectation for bug reports in the
next 1 year to plan the long-term activities.

• Upgrade or keep: the data observation period is
short (at from 6 to 12 months). We are looking on
what is going to happen in next 6 months. For
example to decide whether to keep the current
system or to go over the hassle of updating it.

• Historic analysis: the data observation period is
long (2 to 3 years), we are considering what
happens for extra support in the next 1 year.

We should assess the predictability of a VDM not
only along the prediction time span, but also along
the horizon to ensure that the VDM is able to con-
sistently predict the vulnerability data in an expected
period. To facilitate such assessment we introduce the
predictability metric which is the average of prediction
qualities at a certain horizon.

The predictability of the curve vdmos at the horizon
τ in a time span of ∆ months is defined as the average
of the prediction quality of vdmos at the horizon τ and
its ∆ consecutive horizons τ +1, τ +2, ..., τ +∆, as the
following equation shows:

Predictω(τ,∆) = ∆+1

√√√√ ∆∏
δ=0

Q∗ω(τ, δ) (8)

where ∆ is the prediction time span.
In (8), we use the geometric mean instead of the

arithmetic mean. The temporal quality is a normalized
measure so using the arithmetic mean to average such
values might produce a meaningless result, whereas
the geometric mean behaves correctly [9].

9

4.5 Step 5: Compare VDM

This section addresses the second research question
RQ2. The comparison is based on the quality and
the predictability of VDMs. The base line for the
comparison is that: the better model is a better one
in forecasting changes. Hereafter, we discuss how to
compare VDM:

Given two models vdm1 and vdm2, the comparison
between vdm1 and vdm2 could be done as below:

We compare the predictability of vdm1 and that of
vdm2. Let ρ1, ρ2 be the predictability of vdm1 and vdm2,
respectively.

ρ1 = {Predictω=0.5(τ,∆)|τ = 6..τmax, vdm1}
ρ2 = {Predictω=0.5(τ,∆)|τ = 6..τmax, vdm2}

(9)

where the prediction time span ∆ could follow the cri-
teria CR4; τmax = min(72,maxr∈R τ

r
max). We employ

the one-sided Wilcoxon rank-sum test to compare
ρ1, ρ2. If the returned p-value is less than the signif-
icance level α = 0.05, the predictability of vdm1 is
stochastically greater than that of vdm2. It also means
that vdm1 is better than vdm2. If p-value ≥ 1 − α, we
conclude the opposite i.e. vdm2 is better than vdm1.
Otherwise we have not enough evidence either way.

If the previous comparison is inconclusive, we retry
the comparison using the value of temporal quality of
the VDMs instead of the predictability. We just replace
Qω=0.5(τ) for Predictω=0.5(τ , ∆) in the equation (9),
and repeat the above activities.

When we compare models i.e. we run several hy-
pothesis tests, we should pay attention on the fami-
lywise error rate which is the probability of making
one or more type I errors. To avoid such problem,
we should apply an appropriate controlling procedure
such as the Bonferroni correction. In the case above,
the significance level by which we conclude a model
is better than another one is divided by the number
of tests performed.

Example 10 When we compare one model against
other seven models, the Bonferroni-corrected signifi-
cance level is: α =0.05 /7 ≈ 0.007.

The above comparison activities are summarized in
the criteria CR5 (see Table 2).

5 AN ASSESSMENT ON EXISTING VDMS

We apply the above methodology to assess the perfor-
mance of eight existing VDMs (see also Table 4). The
experiment evaluates these VDMs on 30 releases of
the four popular web browsers: IE, Firefox, Chrome,
and Safari. Here, only the formulae of these models
are provided. More detail discussion about these mod-
els as well as the meaning of their parameters are
referred to their corresponding original work.

Table 4
The VDMs in evaluation and their equation.

This table presents the list of VDMs and their equation in the alphabetical
order. The meaning of each parameter should be found in original work of
each model.

Model Equation

Alhazmi-Malaiya Logistic (AML) Ω(t) =
B

BCe−ABt + 1

Anderson Thermodynamic (AT) Ω(t) =
k

γ
ln(t) + C

Joh Weibull (JW) Ω(t) = γ(1− e−
(
t
β

)α
)

Linear (LN) Ω(t) = At+ B

Logistic Poisson (LP) Ω(t) = β0 ln(1 + β1t)

Rescorla Exponential (RE) Ω(t) = N(1− e−λt)

Rescorla Quadratic (RQ) Ω(t) =
At2

2
+ Bt

Younis Folded (YF) Ω(t) =
γ

2

[
erf

(
t− τ
√

2σ

)
+ erf

(
t+ τ
√

2σ

)]

Note: erf() is the error function, erf(x) =
2
√
π

∫ x

0

e
−t2

dt

Table 5
Vulnerability data sources of browsers.

Data Source Category Apply for

National Vulnerability Database (NVD) TADV All browsers
Mozilla Foundation Security Advisory (MFSA) ADV Firefox
Mozilla Bugzilla (MBug) BUG Firefox
Microsoft Security Bulletin (MSB) ADV IE
Apple Knowledge Base (AKB) ADV Safari
Chrome Issue Tracker (CIT) BUG Chrome

5.1 Data Acquisition

Table 5 presents the availability of vulnerability data
sources for the browsers in our study. For each data
source, the table reports the name, the category (see
also §4.1), and the browser that the data source main-
tains vulnerability data. We use NVD as a represen-
tative third-party data source due to its popularity in
past studies. This makes our work comparable with
previous ones.

Table 6 reports data sets collected for this experi-
ment (see also Table 3 for the classification). In total,
we collected 96 data sets for 30 major releases. In the
table, we use the bullet (•) to indicate the availability
of data sets. In these collected data sets, we extracted
a total of 4, 063 observed samples.

Table 6
Collected data sets.

Bullets (•) indicate available data sets. Dashes (—) mean there is no data
sources available to collect the data sets.

Releases NVD NVD.Bug NVD.Advice NVD.NBug Advice.Nbug Total
Datasets

Chrome 12(v1.0–v12.0) • • — • — 36
Firefox 8(v1.0–v5.0) • • • • • 40
IE 5(v4.0–v8.0) • — • — — 10
Safari 5(v1.0–v5.0) • — • — — 10

Total 30 96

10

5.2 The Applicability of VDMs

We ran model fitting algorithms for these observed
samples by using R v2.13. Model fitting took about
82 minutes on a dual-core 2.73GHz Windows machine
with 6GB of RAM yielding 32, 504 curves in total.

5.2.1 Goodness-of-Fit Analysis for VDMs
Table 7 reports the goodness-of-fit of existing VDMs
on the largest horizons of browser releases, using
the NVD data sets. In other words, we use following
observed samples to evaluate all models:

OSNVD = {TS(r,NVD, τ rmax)|r ∈ R}

where R is the set of all releases mentioned in Table 6.
Table 7 provides a view that previous studies often
used to report the goodness-of-fit for their proposed
models. To improve readability, we report the cat-
egorized goodness-of-fit based on the p-value (see
CR2) instead of the raw p-values. In this table, we
use a check mark (X), a blank, and a cross (×) to
respectively indicate a Good Fit, an Inconclusive Fit, and
a Not Fit. Cells are shaded accordingly to improve the
visualization effect. The table shows that two models
AT and RQ have a very high ratio of Not Fit (0.9 and
0.7, respectively); whereas, all other models have their
ratio of Not Fit less than 0.5. We should observe that
this is a very large time interval and some systems
have long gone into retirement. For example, FF v2.0
vulnerabilities are no longer sought by researchers.
They are a byproduct of research on later versions.

To have a more realistic picture, we also study the
temporal quality. The inconclusiveness contribution
factor ω is set to 0.5 as described in CR3. Fig. 8
exhibits the moving average (windows size k = 5)
of the Qω(τ). The dotted vertical lines marks horizon
12 (when software is young), and 36 (when software
is middle-age). We cut the temporal quality at horizon
72 though we have more data for some systems (e.g.,
IE v4, FF v1.0). It is because that after 6 years software
is very old, the vulnerability data reported for such
releases might be not reliable, and might overfit the
VDMs. The dotted horizon line at 0.5 is used as a base
line to assess VDMs.

Clearly from the temporal quality trends in Fig. 8
both AT and RQ models should be rejected since
their temporal quality always sinks below the base
line. Other models may be adequate when software is
young (before 12 months). The AML and LN models
look better than other models in this respect.

When software is middle-age (between 12 and 36
months), the AML model is still relatively good.
JW and YF improve when approaching month 36th

though JW get worse after month 12th. The quality of
both LN and LP worsen after month 12th, and sink
below the base line when approaching month 36th. RE
is almost below the base line after month 15th. Hence,
in the middle-age period, AML, JW, and YF models

Table 7
A potentially misleading results of overfitting VDMs in
the largest horizon of browser releases, using NVD

data sets

The goodness of fit of a VDM is based on p-value in the χ2 test. p-value <
0.05: not fit (×), p-value ≥ 0.80: good fit (X), and inconclusive fit (blank)
otherwise. It is calculated over the entire lifetime.

Firefox Chrome IE Safari

1 1.5 2 3 3.5 3.6 4 5 1 2 3 4 5 6 7 8 9 10 11 12 4 5 6 7 8 1 2 3 4 5

AML × × × X X × × X × X × X × X
AT ×
JW × × X X X X X × × × × X X × X × X × × × × ×
LN × × × X × × × × × × × × X × × × ×
LP × × X X X X X × × × × × × × X × × X × × × ×
RE × × X X X X X × × × × × × × X × × X × × × ×
RQ × × × × × X × × × × × × × × × × × × X × × × × ×
YF × × X X X X X X X X X X X X × X X X × X × × × ×

may turn to be adequate; LN and LP are deteriorating
but might be still considered adequate; whereas RE
should clearly be rejected.

When software is old (36+ months), AML, JW, and
YF deteriorate and go below the base line at month
48th (approximately); other models also collapse be-
low the base line.

Fig. 9 summarizes the distribution of VDM tempo-
ral quality in three period: software is young (before
12 moths), software is middle-age (13 to 36 months),
and software is old (37 to 72 months). The red hori-
zonal line at 0.5 is the base line. We additionally
colour these box plots according to the comparison
between the corresponding distribution and the base
line as follows:
• white: the distribution is significantly greater

than the base line;
• dark gray: the distribution is significantly less

than the base line (we should reject the models
outright);

• gray: the distribution is not statistically different
from the base line.

The box plots clearly confirm our observation in Fig. 8.
Both AT and RE models are all significantly below the
base line. AML, JW, and YF modes are significantly
above the base line when software is young and
middle age, and not statistically different from the
base line when software is old. LN and LP models are
significantly greater than the base line when software
is young, but they deteriorate for middle-age soft-
ware, and significantly collapse below the base line
for old software.

In summary, our quality analysis shows that:
• AT and RQ models should be rejected.
• All other models may be adequate when software

is young. Only s-shape models (i.e. AML, YW, YF)
might be adequate when software is middle-age.

• No model is good when the software is too old.

5.2.2 Predictability Analysis for VDMs
From the previous quality analysis, AT and RQ mod-
els are low quality, and they should not be considered

11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AML

Horizon

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AT

Horizon
M

A
5(

q)

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

JW

Horizon

M
A

5(
q)

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LN

Horizon

M
A

5(
q)

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LP

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RE
M

A
5(

q)

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RQ

M
A

5(
q)

12 24 36 48 60 72

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

YF

M
A

5(
q)

12 24 36 48 60 72

The X-axis is the number of months since release (i.e. horizon τ). The Y-axis is the value of temporal quality. The solid lines are the moving average of
Qω=0.5(τ) with window size k = 5. The dotted horizontal line at 0.5 is the base line to assess VDM. Vertical lines are the marks of the horizons of 12th

and 36th month.

Fig. 8. The trend of temporal quality Qω=0.5(τ) of the VDMs in first 72 months.

Te
m

p
o

ra
l Q

u
a

lit
y

0.0

0.2

0.4

0.6

0.8

AML AT JW LN LP RE RQ YF

●

●

●

●

●
●

●

●

●

● ●

●

●

Young (12 months)

AML AT JW LN LP RE RQ YF

●

●

●
●

●

● ●

●

●

●

Middle Age (36 months)

AML AT JW LN LP RE RQ YF

●

●

●

●

●

●
●

●

Old (72 months)

A horizonal line at value of 0.5 is used as the base line to justify temporal
quality. Box plots are coloured with respect to the comparison between the
corresponding distribution and the base line: white - significantly above the
base line, gray - no statistical difference, dark gray - significantly below the
base line (i.e. rejected).

Fig. 9. The temporal quality distribution of each VDM
in different periods of software lifetime.

for all periods of software lifetime. Hence, we exclude
these models from the predictability analysis. Further-
more, since no model is good when software is too
old, we analyze the predictability of these models only
for the first 36 months since the release of a software.
This period is still a large time if we consider that
most recent releases live less than a year.

Fig. 10 reports the moving average (windows size
equals 5) for the trends of VDMs’ predictability along
horizons in different prediction time spans. The dot-
ted horizonal line at value of 0.5 is the base line to
assess the predictability of VDMs (as same as the
temporal quality of VDMs).

When the prediction time span is short (3 months),
the predictability of LN, AML, JW, and LP models is
above the base line for young software (12 months).
When software is approaching month 24th, though

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●
● ●

●
●

● ●
● ● ● ●

● ● ● ●
● ● ● ●

●
● ● ● ●

●

12 18 24 30 36

∆=3 months

Horizon(τ)

P
re

di
ct

0.
5(

τ,
∆)

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ●

● ●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

AML
JW

LN
LP

RE
YF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●
●

●

●

●
●

●
● ● ● ● ● ● ● ●

● ● ●
●

● ● ●
●

●

12 18 24 30 36

∆=6 months

Horizon(τ)
P

re
di

ct
0.

5(
τ,

∆)

● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●
●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

AML
JW

LN
LP

RE
YF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●
●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

12 18 24 30 36

∆=12 months

Horizon(τ)

P
re

di
ct

0.
5(

τ,
∆)

● ● ● ● ● ● ●
● ●

●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ●

●
●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ●
● ● ●

● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
● ● ● ● ● ● ● ● ●

● ●
● ●

●

●

AML
JW

LN
LP

RE
YF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
● ●

●
●

●

●
● ●

● ●
●

● ●
● ● ●

● ●
● ●

●
●

●
● ● ●

12 18 24 30 36

∆=24 months

Horizon(τ)

P
re

di
ct

0.
5(

τ,
∆)

● ● ● ● ● ● ●
● ●

●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

●
● ●

●
●

● ● ● ●
● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ●
●

● ●

●
● ● ●

●
●

●

●

●
●

● ● ●

● ● ●

●

●

● ● ●

●

●
● ● ● ●

●

●

AML
JW

LN
LP

RE
YF

A horizonal line at value of 0.5 is the base line to assess the predictability.

Fig. 10. The predictability of VDM in different prediction
time spans (∆).

decreasing the predictability of LN is still above the
base line, but goes below the base line after month
24th. The LP model is no different with the base line
before month 24th, but then also goes below the base
line. In contrast, the predictability of AML, YF and JW
are improving with age. They are all above the base
line until the end of the study period (month 36th.
Therefore, only s-shape models (AML, YF, and JW)
may be adequate for middle-age software.

For the medium prediction time span of 6 months,
only the LN model may be adequate (above the
base line) when software is young, but becomes in-

12

adequate (below the base line) after month 24th. In
the meanwhile S-shape models are inadequate for
young software, but are improving quickly later. They
may be all adequate after month 18th and keep this
performance until the end of the study period.

When the prediction time span is long (i.e. 12
months), all models (except LN) sink below the base
line for young software. The LN model is not signif-
icantly different from the base line. In other words,
no model could be adequate for young software in
this prediction time span. After month 18th, the AML
model goes above the base line, and after month 24th,
all s-shape models are above the base line. Hence
they may be all adequate. Their performances are
somewhat unchanged for the remain period.

When the prediction time span is very long (i.e. 24
months) no model is good enough as all models sink
below the base line.

In summary, our predictability analysis shows that:
• For a short prediction time span (i.e. 3 months),

the predictability of LN, AML, and LP models
may be adequate for young software. Hence they
could be considered for the scenario Plan for
short-term support. When software is approaching
middle-age, s-shape models (AML, JW, YF) are
better than others.

• For a medium (i.e. 6 months) and long (i.e.
12 month) prediction time spans, only the pre-
dictability of the LN model may be adequate
for young software. And therefore this model
could be appropriate the purpose of the scenarios
Upgrade of keep and Plan for long-term support.
When software is approaching middle-age, only
s-shape models (AML, JW, YF) may be adequate
and might be considered for planning the long-
term support and for studying historical trends
(i.e. scenario Historic analysis).

• For a very long prediction time span (i.e. 24
months), no model has a good enough pre-
dictability.

5.3 Comparison of Existing VDMs

The comparison between VDMs follows Step 5. In-
stead of reporting tables of p-values, we visualize the
comparison result in terms of directed graphs where
nodes represent models, and connections represent
the order relationship between models.

Fig. 11 summarizes the comparison results between
models in different settings of horizons (τ) and pre-
diction time spans (∆). A directed connection from
two models determines that the source model is better
than the target model in terms of either predictability,
or quality, or both. The line style of the connection
depended on the following rules:
• Solid line: the predictability and quality of the

source is significantly better than the target’s.

AML LP RE

YFJW

LN

(a) Young software, short term
prediction (τ = 6..12,∆ = 3)

AML

RE

YF

JW

LN

LP

(b) Young software, medium
term prediction

(τ = 6..12,∆ = 6)

AML YF

JW

LN LP

RE

(c) Young software, 1 year
prediction (τ = 6..12,∆ = 12)

AML YF LN

JW

RE

LP

(d) Middle-age software, short
term prediction

(τ = 12..24,∆ = 03)

AML

LN

YF

JW

LP

RE

(e) Middle-age software, 1
year prediction

(τ = 12..24,∆ = 12)

AML JW YF LP LNRE

(f) Old software, 1 year prediction
(τ = 24..36,∆ = 12)

A directed connection from two nodes determines that the source model is
better than the target one with respect to their predictability (dashed line),
or their quality (dotted line), or both (solid line). A double cirlce marks the
best model. RQ and AT are not shown as they are the worst models.

Fig. 11. The comparison results among VDMs in some
usage scenarios.

Table 8
Suggested models for different usage scenarios.

Observation Prediction
Scenario Period Time Span Model(s)

Plan for short-term support 6–12 3 LN
12–24 3 AML

Plan for long-term support 6–12 12 LN
12–24 12 AML

Upgrade or keep 6–12 6 LN
Historic analysis 24–36 12 AML

Note: the unit is month.

• Dashed line: the predictability of the source is
significantly better than the target.

• Dotted line: the quality of the source is signifi-
cantly better than the target.

By term significantly, we means the p-value of the
corresponding one-side Wilcoxon rank-sum test is less
than the significance level. We apply the Bonferroni
correction to control the multi comparison problem,
hence the significance level is: α = 0.05/5 = 0.01.

According to the figure, Table 8 suggests model(s)
for different usage scenario described in the criteria
CR4 (see Table 2).

In short, when software is young, the LN model is the
most appropriate choice. This is because the vulnerability
discovery is linear. When software is approaching middle-
age, the AML model becomes superior.

6 THREATS TO VALIDITY

Construct validity includes threats affecting the way

13

we collect vulnerability data and the way we gener-
ate VDM curves with respect to the collected data.
Following threats in this category are identified:
• Bugs in data collector. Most of vulnerability

data are available in HTML pages. We have
developed a web crawler to extract interesting
feature from HTML page, and also XML data.
The employed technique is as same as the one
discussed in [14]. The crawler might be buggy
and could generate errors in data collection. To
minimize such impact, we have tested the crawler
many times before collecting the data. Then by
randomly checking the collected data, when an
error is found we corrected the corresponding
bug in the crawler and recollected the data.

• Bias in bug-to-nvd linking scheme. While col-
lecting data for Advice.Nbug, we apply some
heuristic rules to link a bug to an NVD entry
based on the relative position in the MFSA report.
We manually checked many links for the rele-
vant connection between bug reports and NVD
entries. All checked links were found to be con-
sistent. Some errors might still creep in this case.

• Bias in bug-affects-version identification. We do
not have a complete assurance that a security
bug affects to which versions. Consequently, we
assume that a bug affects all versions mentioned
in the linked NVD. This might overestimate the
number of bugs in each version. To mitigate the
problem, we estimate the latest release that a bug
might impact, and filter all vulnerable releases
after this latest. Such estimation is done thank
to the mining technique discussed in [21]. We
further discuss these types of errors in NVD in
[16]. These errors only affect the fitness of models
over the long term so only valuations after the 24
or 36 months might be affected.

• Error in curve fitting. From the collected vul-
nerability, we estimate the parameters of VDMs
by using the Nonlinear Least-Square technique
implemented in R (nls() function). This might
not produce the most optimal solution and may
impact the goodness-of-fit of VDMs. To mitigate
this issue, we additionally employed a commer-
cial tool i.e. CurveExpert Pro4 to cross check the
goodness-of-fit in many cases. The results have
shown that there is no difference between R and
CurveExpert.

Internal validity concerns the causal relationship be-
tween the collected data and the conclusion drawn
in our study. Here, we have identified the following
threats that might bias our conclusion.
• Bias in statistics tests. Our conclusions are based

on statistics tests. These tests have their own
assumptions. Choosing tests whose assumptions

4. http://www.curveexpert.net/, site visited on 16 Sep, 2011

are violated might end up with wrong conclu-
sions. To reduce the risk we carefully analyzed
the assumptions of the tests to make sure no
unwarranted assumption was present. We did
not apply any tests with normality assumptions
since the distribution of vulnerabilities is not
normal.

External validity is the extent to which our conclusion
could be generalized to other scenarios. Our experi-
ment is based on the vulnerability data of some major
releases of the four most popular browsers covering
almost all market shares. Therefore we can be quite
confident about our conclusion for browsers in gen-
eral. However, it does not mean that our conclusion is
valid for other types of application such as operating
systems. Such validity requires extra experiments.

7 RELATED WORK

Anderson [5] proposed a VDM (a.k.a. Anderson Ther-
modynamic, AT) based on reliability growth models,
in which the probability of a security failure at time t,
when n bugs have been removed, is in inverse ratio to
t for alpha testers. This probability is even harder for
beta testers, λ times more than alpha testers. However,
he did not conduct any experiment to validate the
proposed model. Our results show that this model is
not appropriate. This is a first evidence that reliability
and security obey different laws.

Rescorla [19] also proposed two mathematical mod-
els, called Linear model (a.k.a Rescorla Quadratic, RQ)
and Exponential model (a.k.a Rescorla Exponential, RE).
He has performed an experiment on four versions
of different operation systems (i.e. Windows NT 4.0,
Solaris 2.5.1, FreeBSD 4.0 and RedHat 7.0). In all
cases, the goodness-of-fit of these two models were
inconclusive since their p-value ranged from 0.167 to
0.589. Rescorla discussed many shortcomings of NVD,
but his study heavily relied on it nonetheless.

Alhazmi and Malaiya [1] proposed another VDM
inspired by s-shape logistic model, called Alhazmi
Malaiya Logistic (AML). The intuition behind the
model is to divide the discovery process into three
phases: learning phase, linear phase and saturation phase.
In the first phase, people need some time to study the
software, so less vulnerabilities are discovered. In the
second phase, when people get deeper knowledge of
the software, much more vulnerabilities are found. In
the final phase, since the software is out of date, peo-
ple may lose interest in finding new vulnerabilities.
So cumulative vulnerabilities tend to stable. In [1],
the authors validated their proposal against several
versions of Windows (i.e. Win 95/98/NT4.0/2K) and
Linux (i.e. RedHat Linux 6.1, 7.1). Their model fitted
Win 95 very well (p-value ≈ 1), and Win NT4.0 (p-
value = 0.923). For other versions, their own validation

http://www.curveexpert.net/

14

showed that the AML model was inconclusive (i.e. the
p-value ranged from 0.054 to 0.317).

In another work, Alhazmi and Malaiya [3] com-
pared their proposed model with Rescorla’s [19] (RE,
RQ) and Anderson’s [5] (AT) on Windows 95/XP and
Linux RedHat Linux 6.2, Fedora. The result shows
that their logistic model has a better goodness-of-fit
than others. For Windows 95 and Linux 6.2, as the
vulnerabilities distribute along s-shape-like curves,
only AML is able to fit it (p-value=1), whereas all other
models fail to match the data (p-value ≤ 0.05). For
Windows XP, the story is different. RQ turns to be the
best one with p-value= 0.97, while AML poorly match
the data (p-value=0.147).

Woo et al [22] carried out an experiment with
AML model on three browsers IE, Firefox and
Mozilla. However, it is unclear which versions of
these browsers were analyzed. Most likely, they did
not distinguish between versions. As discussed in
section §3 (e.g., Example 2), this could largely bias
their final result. In their experiment, IE has not been
fitted, Firefox was fairly fitted, and Mozilla was good
fitted. From this result, we could not conclude any
thing about the performance of AML. In another
experiment, Woo et al [23] validated AML against
two web servers: Apache and IIS. Also, they did not
distinguish between versions of Apache and IIS. In
this experiment, AML has demonstrated a very good
performance on vulnerability data (p-value = 1).

Kim et al [11] introduced the Multiple-Version Dis-
covery Model (MVDM) which is the generalization
of AML. The MVDM separated the cumulative vul-
nerabilities of a version into several fragments where
the first fragment captured the vulnerabilities affect-
ing this version and past versions, and the other
fragments are the shared vulnerabilities of this ver-
sion and future versions. The MVDM basically is
the weighted aggregation of individual AML model
in these fragments. The weights are determined by
the ratios of shared code between this version and
future ones. The goodness-of-fit of MVDM has been
compared with AML in two versions of Apache and
two version of MySQL. As the result, both AML and
MVDM were well fitted against the data (p-value ≥
0.99). MVDM might be better but the difference was
quite negligible.

Joh et al [10] proposed a VDM based on the Weibull
distribution. The proposed model was also compared
with the AML model in two versions of Windows (XP,
Server 2007) and two versions of Linux (RedHat Linux
and RedHat Enterprise Linux). In that evaluation, the
goodness-of-fit of the proposed model was compared
with the AML model.

Younis et al [24] exploited the Folded distribution
to model the discovery of vulnerabilities. The authors
also compared the proposed model with the AML
model in different types of application (Windows 7,
OSX 5.0, Apache 2.0.x, and IE8). The reported results

showed that the new model is better than the AML
in the cases when the learning phase is not present.

8 CONCLUSION

Vulnerability discovery models have the potential to
help us in predicting future vulnerability trends. Such
predictions could help individuals and companies to
adapt their software upgrade and patching schedule.
However, we have not seen any method to systemati-
cally assess these models. Hence, in this work we have
proposed an empirical methodology for VDM valida-
tion. The methodology is built upon the analyses on
the goodness-of-fit, and the predictability of VDM at
several time points during the software lifetime. These
analyses rely on two quantitative metrics: quality and
predictability.

We have applied this methodology to conduct an
empirical experiment to assess eight VDMs (i.e. AML,
AT, LN, JW, LP, RE, RQ, and YF) based on the vulner-
ability data of 30 major releases of four web browsers:
IE, Firefox, Chrome, and Safari. Our experiment has
revealed that:
• AT and RQ models should be rejected since their

quality is not good enough.
• For young software, the quality of all other mod-

els may be adequate. Only the predictability of
LN is good enough for short (i.e. 3 months and
medium (i.e. 6 months) prediction time spans,
other models however is not good enough for
latter time span.

• For middle-age software, only s-shape models
(i.e. AML, JW, and YF) may be adequate in terms
of both quality and predictability.

• For old software, no model is good enough.
• No model is good enough for predicting results

for a very long period (i.e. 24 months in the
future).

In conclusion, for young releases of browsers (6 – 12
months old) it is better to use a linear model to estimate the
vulnerabilities in the next 3 – 6 months. For middle age
browsers (12 – 24 months) it is better to use an s-shape
logistic model.

In future, it is interesting to replicate our experi-
ment in other kinds of software, for instance operating
systems and server-side applications. Based on that,
a more comprehensive assessment about the VDMs
will be more solid.

REFERENCES

[1] Omar Alhazmi and Yashwant Malaiya. Modeling the vulnera-
bility discovery process. In Proceedings of the 16th IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE’05),
pages 129–138, 2005.

[2] Omar Alhazmi and Yashwant Malaiya. Measuring and
enhancing prediction capabilities of vulnerability discovery
models for Apache and IIS HTTP servers. In Proceedings of
the 17th IEEE International Symposium on Software Reliability
Engineering (ISSRE’06), pages 343–352, 2006.

15

[3] Omar Alhazmi and Yashwant Malaiya. Application of vul-
nerability discovery models to major operating systems. IEEE
Transactions on Reliability, 57(1):14–22, 2008.

[4] Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray. Security
vulnerabilities in software systems: A quantitative perspective.
In Sushil Jajodia and Duminda Wijesekera, editors, Data and
Applications Security XIX, volume 3654 of LNCS, pages 281–
294. 2005.

[5] Ross Anderson. Security in open versus closed systems - the
dance of Boltzmann, Coase and Moore. In Proceedings of Open
Source Software: Economics, Law and Policy, 2002.

[6] William A. Arbaugh, William L. Fithen, and John McHugh.
Windows of vulnerability: A case study analysis. IEEE Com-
puter, 33(12):52–59, 2000.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl Landwehr. Basic concepts and taxonomy of dependable
and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004.

[8] Mark Dowd, John McDonald, and Justin Schuh. The art of
software security assessment. Addision-Wesley publications,
2007.

[9] Philip J. Fleming and John J. Wallace. How not to lie with
statistics: the correct way to summarize benchmark results.
Communication of the ACM, 29(3):218–221, 1986.

[10] HyunChul Joh, Jinyoo Kim, and Yashwant Malaiya. Vul-
nerability discovery modeling using Weibull distribution. In
Proceedings of the 19th IEEE International Symposium on Software
Reliability Engineering (ISSRE’08), pages 299–300, 2008.

[11] Jinyoo Kim, Yashwant Malaiya, and Indrajit Ray. Vulnerability
discovery in multi-version software systems. In Proceeding
of the 10th IEEE International Symposium on High Assurance
Systems Engineering, pages 141–148, 2007.

[12] Ivan Victor Krsul. Software Vulnerability Analysis. PhD thesis,
Purdue University, 1998.

[13] Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen.
After-life vulnerabilities: A study on firefox evolution, its
vulnerabilities and fixes. In Proceedings of the 2011 Engineering
Secure Software and Systems Conference (ESSoS’11), 2011.

[14] Fabio Massacci and Viet Hung Nguyen. Which is the right
source for vulnerabilities studies? an empirical analysis on
mozilla firefox. In Proceedings of the International ACM Workshop
on Security Measurement and Metrics (MetriSec’10), 2010.

[15] Steve McKillup. Statistics Explained: An Introductory Guide for
Life Scientists. Cambridge University Press, 2005.

[16] Viet Hung Nguyen and Fabio Massacci. The (un) reliability
of nvd vulnerable versions data: an empirical experiment
on google chrome vulnerabilities. In Proceeding of the 8th
ACM Symposium on Information, Computer and Communications
Security (ASIACCS’13), 2013.

[17] NIST/SEMATECH. e-Handbook of Statistical Methods, 2012.
http://www.itl.nist.gov/div898/handbook/.

[18] Andy Ozment. Improving vulnerability discovery models:
Problems with definitions and assumptions. In Proceedings of
the 3rd Workshop on Quality of Protection, 2007.

[19] Eric Rescorla. Is finding security holes a good idea? IEEE
Security and Privacy, 3(1):14–19, 2005.

[20] Fred B. Schneider. Trust in cyberspace. National Academy Press,
1991.

[21] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller.
When do changes induce fixes? In Proceedings of the 2nd
International Working Conference on Mining Software Repositories
MSR(’05), pages 24–28, May 2005.

[22] Sung-Whan Woo, Omar Alhazmi, and Yashwant Malaiya.
An analysis of the vulnerability discovery process in web
browsers. In Proceedings of the 10th IASTED International
Conferences Software Engineering and Applications, 2006.

[23] Sung-Whan Woo, HyunChul Joh, Omar Alhazmi, and Yash-
want Malaiya. Modeling vulnerability discovery process in
Apache and IIS HTTP servers. Computer & Security, 30(1):50 –
62, 2011.

[24] Awad Younis, HyunChul Joh, and Yashwant Malaiya. Mod-
eling learningless vulnerability discovery using a folded dis-
tribution. In Proceeding of the Internaltional Conference Security
and Management (SAM’11), pages 617–623, 2011.

APPENDIX

A replication guide of this work could be found
online at https://wiki.science.unitn.it/security/doku.
php?id=vulnerability discovery models. Also, you
can find all required materials (e.g., tools, scripts, and
data) to rerun the experiment.

Viet Hung Nguyen He is a PhD student in computer science at
University of Trento, Italy under the supervision of professor Fabio
Massacci since November 2009. He received his MSc and BEng
in computer science and computer engineering in 2007 and 2003.
Currently, his main interest is the correlation of vulnerability evolution
and software code base evolution.

Fabio Massacci

http://www.itl.nist.gov/div898/handbook/
https://wiki.science.unitn.it/security/doku.php?id=vulnerability_discovery_models
https://wiki.science.unitn.it/security/doku.php?id=vulnerability_discovery_models

	1 Introduction
	1.1 Contributions of This Paper

	2 Terminology
	3 Research Questions and Methodology Overview
	4 Methodology Details
	4.1 ??: Acquire the Vulnerability Data
	4.2 ??: Fit a VDM to Observed Samples
	4.3 ??: Perform Goodness-of-Fit Quality Analysis
	4.4 ??: Perform Predictability Analysis
	4.5 ??: Compare VDM

	5 An Assessment on Existing VDMs
	5.1 Data Acquisition
	5.2 The Applicability of VDMs
	5.2.1 Goodness-of-Fit Analysis for VDMs
	5.2.2 Predictability Analysis for VDMs

	5.3 Comparison of Existing VDMs

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References
	Appendix
	Biographies
	Viet Hung Nguyen
	Fabio Massacci

