IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO. X, XXXXX 2015

BLISS: Improved Symbolic Execution by
Bounded Lazy Initialization with SAT Support

Nicolas Rosner, Jaco Geldenhuys, Nazareno M. Aguirre, Willem Visser, and Marcelo F. Frias

Abstract—Lazy Initialization (LI) allows symbolic execution to effectively deal with heap-allocated data structures, thanks to a
significant reduction in spurious and redundant symbolic structures. Bounded lazy initialization (BLI) improves on LI by taking
advantage of precomputed relational bounds on the interpretation of class fields in order to reduce the number of spurious structures
even further. In this paper we present bounded lazy initialization with SAT support (BLISS), a novel technique that refines the search for
valid structures during the symbolic execution process. BLISS builds upon BLI, extending it with field bound refinement and satisfiability
checks. Field bounds are refined while a symbolic structure is concretized, avoiding cases that, due to the concrete part of the heap and
the field bounds, can be deemed redundant. Satisfiability checks on refined symbolic heaps allow us to prune these heaps as soon as
they are identified as infeasible, i.e., as soon as it can be confirmed that they cannot be extended to any valid concrete heap. Compared
to LI and BLI, BLISS reduces the time required by LI by up to four orders of magnitude for the most complex data structures. Moreover,
the number of partially symbolic structures obtained by exploring program paths is reduced by BLISS by over 50 percent, with
reductions of over 90 percent in some cases (compared to LI). BLISS uses less memory than LI and BLI, which enables the exploration

of states unreachable by previous techniques.

Index Terms—Symbolic execution, lazy initialization, tight field bounds, Symbolic PathFinder

1 INTRODUCTION

DETERMINING to what extent a software artifact is correct
is among the most challenging problems in software
engineering. Traditional testing is a widely adopted
approach to guaranteeing software correctness, but its well-
known limitations threaten its effectiveness as a bug-finding
technique. Therefore, more thorough program analysis
techniques, which may offer greater levels of confidence
(often enhancing or complementing traditional testing) con-
stitute an important research topic.

One technique that offers better guarantees of correctness
is model checking [5]. Java PathFinder (JPF) [22] is a well-
known tool, based on this technique, that targets Java source
code and is capable of finding bugs in both sequential and
multithreaded programs. Moreover, through an extension
called Symbolic PathFinder (SPF) [17], [23], the tool is able
to automatically generate test cases, search for violations of
user-provided assertions or uncaught exceptions, handle
arithmetic constraints, complex data structures and rich
constraints on the program inputs.
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SPF combines symbolic execution [15] with model
checking and constraint solving. Symbolic execution, a
well-established program analysis technique, traverses the
different paths in a program using symbolic inputs.
Unlike the concrete states in JPF, states in SPF are symbolic.
Symbolic approaches to systematically exploring program
paths have proved effective for verification, as well as for
automated test input generation by solving the path con-
straints obtained during the exploration. When using
these symbolic approaches [2], [3], [6], [17], verifying code
that manipulates dynamically allocated data structures is
significantly more difficult than verifying code dealing
with basic data types (the traditional target of symbolic
execution). To effectively handle heap-allocated data
structures, SPF generalizes symbolic execution by intro-
ducing Lazy Initialization (LI) [14]: it constructs the heap as
the program paths are explored, and defers concretization
of symbolic heap object attributes as much as possible.

LI has two important properties. Firstly, it produces sym-
bolic heaps that are pairwise non-isomorphic. The number
of heaps over which a method must be symbolically exe-
cuted is greatly reduced by the elimination of symmetric
structures, while guaranteeing that no relevant states are
missed. Secondly, LI exploits any method precondition pro-
vided, by filtering out any heaps that violate it.

To improve symbolic execution, LI can be enhanced with
the use of precomputed, relational field bounds [11]. Intui-
tively, field bounds restrict the number of choices that LI
needs to consider when it is forced to concretize a part of
the heap. In [12] we realized this idea using translation of
annotated code (TACO) bounds [10] (which are discussed
in Section 2.2), introducing bounded lazy initialization (BLI)
and obtaining significant speedups with respect to LI.

In this paper we present a set of novel techniques that
build on LI and BLI. They incorporate bound refinement
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[refined bounded lazy initialization (RBLI)] and satisfiability
checks [bounded lazy initialization with SAT support (BLISS,
BLISSDB)]. In the former, field bounds are refined by
leveraging information from already-concretized fields; this
makes it possible to further prune the alternatives to be con-
sidered during symbolic execution. In the latter, auxiliary
satisfiability checks are employed to determine the feasibil-
ity of partially symbolic structures, forcing the symbolic
execution process to backtrack as soon as a partially sym-
bolic candidate is found impossible to extend.

BLISS, as these techniques are collectively called, allows
us to obtain speedups of more than 100X over LI in many
cases. For example, the analyses of the contains methods
from classes TreeSet and AviTree achieved speedups of 14X
and 188X over LI, respectively. Furthermore, our techniques
also provide advantages in the context of automated test
input generation, a task for which, as we mentioned, sym-
bolic execution is particularly effective [3]. Indeed, BLISS
can usually reduce the number of partially symbolic struc-
tures collected by over 50 percent, with reductions of over
90 percent in some cases, compared to LI Since these par-
tially symbolic structures must be fully concretized (using
SMT solving) to produce actual test inputs, and since BLISS
only removes spurious cases, the technique impacts test
input generation time while retaining the same coverage
obtained by LI For instance, for the above-mentioned
contains methods, the sets of partially symbolic structures
obtained by BLISS are 12.5 and 1.6 percent as large as the
ones obtained using LI, respectively.

The main contributions of this paper are:

1)  We introduce refined bounded lazy initialization, a
sound and complete optimization of BLI. RBLI
requires the existence of relational field bounds (as
introduced to SPF in BLI) and is often responsible for
most of the speedup observed.

2)  We introduce bounded lazy initialization with SAT
support, an additional optimization which builds
upon the existence of refined bounds as produced by
RBLI, and makes use of user-provided class repre-
sentation invariants. We show that BLISS is sound
and complete, and that it is often responsible for
most of the reduction in the number of partially sym-
bolic structures obtained during systematic path
exploration.

3) We optimize BLISS by caching SAT results. BLISS
typically produces a large number of short computa-
tions, and a significant portion of these can be reused
in later, related analyses. Hence, we cache SAT
results in a Redis [18] database, leading to an opti-
mized version that we call BLISSDB.

4)  We evaluate our techniques on a benchmark consist-
ing of 32 methods from six well-known collection
classes, and show that the combination of the techni-
ques can yield significant speedups as well as con-
siderable test suite size reduction.

This paper is organized as follows. Section 2 describes
SPF and briefly reviews our previous work on LI and BLI,
the existing techniques for symbolically executing code
that handles heap-allocated data structures. In Section 3
we present RBLI and prove its soundness and
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completeness. In Section 4 we introduce BLISS, prove its
soundness and completeness, and present BLISSDB. Sec-
tion 5 contains an evaluation of RBLI, BLISS and BLISSDB
on several implementations of collection classes, some of
which have been previously used to evaluate SPF. Lastly,
Section 6 discusses related work, and in Section 7 we pres-
ent our conclusions and proposals for further work.

2 SymBoLIC PATHFINDER AND (BOUNDED) LAZY
INITIALIZATION

Java PathFinder is a flexible tool for software analysis. Its
core is a virtual machine (VM) for Java byte code. Unlike a
standard Java VM, the JPF VM is capable of backtracking.
The tool identifies program statements that lead to alterna-
tive branches, and systematically explores those alterna-
tives. Besides branching that arises as a consequence of
thread scheduling, the main source of nondeterminism is
program inputs. When these inputs involve—for instance—
integer variables, this may lead to path explosion (often
called state space explosion).

Symbolic execution [15] collapses families of executions
by replacing concrete values with symbolic ones. Whenever
branching conditions are encountered in the program, con-
straints are collected to reflect the decisions that were taken;
the conjunction of constraints along one program path is
referred to as the path condition for that path. Such condi-
tions are checked for feasibility using constraint solvers
(typically SMT solvers), and when one is found to be infea-
sible, the underlying model checker driving the symbolic
execution backtracks and explores other paths. This system-
atic exploration of paths can be used for verification and
bug finding. Moreover, the path conditions obtained in the
exploration of program paths can be solved to find concrete
inputs that will drive an execution down the corresponding
paths, thus leading to a mechanism for automated white-
box test input generation.

In this paper we present improvements over existing
work for the symbolic analysis of code handling dynami-
cally allocated data structures. Therefore, in Section 2.1 we
summarize Lazy Initialization [14], the technique currently
used by SPF for exploring such data structures. In [12] we
introduced a first improvement over Lazy Initialization; in
order to discuss this technique (which is called bounded
lazy initialization) in Section 2.3, we first introduce in the
concept of TACO bounds in Section 2.2.

2.1 Lazy Initialization

For heap-allocated structures, SPF uses Lazy Initialization
[14]. LI keeps structures partially symbolic; if an object’s
attribute f is still symbolic, it will be made concrete when-
ever the execution of the program under analysis attempts
to access its value. This on-demand concretization explains
the “lazy” appellative of the algorithm. The concretization
process considers three possibilities: f is initialized with
null, f is initialized with a previously introduced concrete
object, or f holds a reference to a newly introduced con-
crete object whose attributes are all symbolic. These choices
are systematically explored by the underlying model
checker. A pseudocode description of LI is shown in
Algorithm 1, originally presented in [14]. Notice that the
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public class BinTree {
Node root;

}

public class Node {
Node left;
Node right;

}

Fig. 1. An implementation of heap-allocated binary trees.

code under analysis need not execute on a purely symbolic
structure; it may execute on an input that is partially sym-
bolic and for which symbolic parts are explored using LI
This same property holds for the techniques we will intro-
duce in further sections.

Algorithm 1. Pseudocode of the Lazy Initialization
algorithm.

if (f in uninitialized) then
if (f is reference field of type T) then
nondeterministically initialize f to
1. null
2. anew object of class T (with uninitialized fields)
3. an object created during a prior
initialization of a field of type T
if (method precondition is violated) then
backtrack();
end
end
if (f is primitive field) then
initialize f to a new symbolic value of appropriate type
end
end

Fig. 2b shows some of the alternatives explored by the LI
algorithm when executing the traverse algorithm from
Fig. 2a on a binary tree, with binary trees defined by classes
BinTree and Node as shown in Fig. 1. Executing traverse on
structure 1 from Fig. 2b reaches the branching condition
“right != null”. Therefore, field right must be concret-
ized. This leads to the generation of structures 2-4 in Fig. 2b.
Let us continue with structure 4. Upon execution of the
statement “right.traverse();” on this structure, the
recursive invocation of traverse leads us, once again, to the
concretization of N1.right. This time, 4 alternatives are gen-
erated. Notice that amongst these structures, some are
clearly invalid due to the presence of loops (this is the case
for instance for structures 3, 6 and 7). In order to prune such
invalid structures at an early stage, LI resorts to precondi-
tions. We discuss below what preconditions are, and how
they are applied during LI.

2.1.1  Preconditions and Lazy Initialization

A precondition for a method m is a condition that is
assumed to be true before the execution of m. Such condi-
tions are used by the class designer/programmer to char-
acterize those input states in which the method is expected
to behave as intended. For example, the method for tra-
versing a binary tree depicted in Fig. 2a requires the input
structure to be a binary tree, and in particular, to be non-
null and acyclic, since the algorithm might otherwise per-
form a null dereference or get stuck in an infinite loop. In
object-oriented programming, one part of a method’s

\requires isBinTree();
public void traverse() {
if (right != null{
right.traverse();

if (left I= null){
left.traverse();

Fig. 2. Method traverse on binary trees, and some of the structures gen-
erated by LI along its symbolic execution.

precondition is usually the representation invariant of the
method’s parameters (including that of the implicit this
object on which the method is executed). A representation
invariant, also called class invariant, is a condition that
accompanies a class, which must be established by its con-
structors and preserved by its public methods. Thus, such
invariants characterize properties of valid instances of the
class. For instance, for heap-allocated binary trees, the
representation invariant would specify that the structure is
indeed a tree (acyclic, with every node having exactly one
parent except for the root).

Besides being useful as program documentation, repre-
sentation invariants (and, more generally, preconditions)
can be reflected programmatically as imperative routines
that check whether the invariant or precondition holds.
Imperative representation invariants are usually referred to
as repOK routines.

As explained in [14], and as illustrated in Algorithm 1, LI
requires an imperative precondition for the program or
method under test. But not just any precondition will work
properly with LI: the average repOK routine, for instance, is
not necessarily prepared to deal with the fact that it might
run into parts of the structure that are still symbolic. In other
words, LI assumes the existence of an imperative precondi-
tion that has been properly adapted to deal with partially
symbolic structures. We shall refer to such preconditions as
hybrid, since they can be applied to structures involving
both concrete and symbolic values.

A hybrid precondition could be a straightforward
adaptation of the original concrete precondition: one that
attempts to detect ill-formed structures, but returns true
as soon as it runs into a symbolic value that it does not
know how to handle. Of course, it could also be a much
more sophisticated routine, carefully designed by the
user with symbolic execution in mind—for instance, one
that backtracks whenever symbolic values are found, and
tries to detect ill-formedness later on. This raises an
important trade-off. The former approach is a simple
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public boolean acyclicConcrete () {
Set<BinTreeNode> visited = new HashSet<BinTreeNode >();
List<BinTreeNode> pending = new ArrayList<BinTreeNode >();
BinTreeNode root = this.root;
visited .add(root);
pending .add (root);
while (!pending.isEmpty ()) {
BinTreeNode node = pending.remove (0);
BinTreeNode left = node.left;
if (left != null) {
if (!visited.add(left)) {
return false;

pending .add(left);

BinTreeNode right = node.right;
if (right != null) {
if (!visited.add(right)) {
return false;

pending.add(right);
}

return true;

}

public boolean acyclicHybrid () {
if (this == SYMBOLIC_BinTree)
return true;

Set<BinTreeNode> visited = new HashSet<BinTreeNode >();
List<BinTreeNode> pending = new ArrayList<BinTreeNode >();
BinTreeNode root = this.root;
if (root == SYMBOLIC_BinTreeNode)

return true;

visited .add(root);
pending .add(root);
while (!pending.isEmpty()) {

BinTreeNode node = pending.remove (0);

BinTreeNode left = node.left;

if (left != null & left != SYMBOLIC_BinTreeNode) {

if (!visited.add(left)){
return false ;

pending.add(left);

}

BinTree right = node.right;
if (right != null & right != SYMBOLIC_BinTreeNode) {
if (!visited.add(right)){
return false;

}
pending.add(right);
}

return true;

}

Fig. 3. A concrete precondition and its hybrid counterpart.

over-approximation that may return false positives,
which could slow down the analysis, but it has the enor-
mous advantage of being fully automatic. The latter
approach, on the other hand, is more specific, less prone
to false positives and thus potentially more scalable, but
it requires expert human intervention and bears consider-
able risk of introducing new errors. Ensuring that a hand-
crafted hybrid precondition is correct with respect to the
original concrete one would become a nontrivial problem
on its own right. This is why we chose the former (i.e., to
systematically derive a conservative hybrid precondition
from an available concrete one) as our default course of
action, and for experimental evaluation. For example,
Fig. 3 shows an acyclicConcrete method that checks
whether a fully concrete structure is acyclic, and a hybrid
version thereof, acyclicHybrid, which will admit partially
symbolic structures. The hybrid version includes special
constants and associated boilerplate code in order to han-
dle symbolic values from each of the types involved.
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There are some limitations to what can be pruned using
hybrid preconditions. These limitations stem from the fact
that LI only sets the values of accessed fields of reference
types. Primitive-typed fields, however, obtain their values
from the solutions to path conditions, which are computed
by constraint solvers. Unfortunately, these primitive values
usually cannot be used within hybrid preconditions. To
illustrate this fact, let us enrich our BinTree class with an
int field named key, and consider again method traverse
from Fig. 2a, enriching its precondition with a new con-
straint that requires the root’s key to have value 0. Recall
that hybrid preconditions are used to prune symbolic execu-
tion, by forcing the process to backtrack when a symbolic
instance is found not to be obtainable from an initial heap
satisfying the hybrid precondition. Since traverse does not
access field key, the constraint solver may assign arbitrary
values to root.key. In particular, if it were to assign a non-
zero value to said field, this would lead to pruning a valid
partially symbolic tree, as well as all of its concretizations,
thus turning LI into an incomplete technique.

One might argue that, rather than using the constraints
on primitive values to prune symbolic execution, such con-
straints could be used to enhance path conditions, thus nar-
rowing the space of solutions found by constraint solvers.
However, let us recall that preconditions are imperative in
this context, and therefore cannot be directly conjoined with
path conditions. One way of “conjoining” imperative pre-
conditions with path conditions is by sequentially compos-
ing the imperative precondition with the program under
analysis. Although this does achieve the desired goal of
integrating the constraints on the primitive values into the
path conditions, it severely hinders scalability: in the code
resulting from such a composition, the imperative precondi-
tion “prefix” will typically force an enumeration of all valid
concrete (or nearly concrete) instances prior to the execution
of the routine under analysis, which defeats the purpose of
symbolically executing said routine.

Yet another alternative would be to require a declarative
precondition to be provided, so that it can be directly con-
joined with path conditions. This approach has serious dis-
advantages as well. If the whole declarative precondition is
included in each and all path conditions, their sizes are sub-
stantially increased, making them exceed the capabilities of
the constraint solver sooner, thus diminishing scalability. If,
instead, the path conditions are solved before symbolic exe-
cution, so that they need not be carried along all symbolic
paths, then we end up, as in the aforementioned case, enu-
merating all valid concrete (or nearly concrete) instances.

2.2 TACO and Field Bounds

TACO [10], [11] is a tool for bounded program verification
that targets Java code annotated with JML [9] contracts. In
order to verify the correctness of a Java program, i.e., that
it does not violate its contract and does not raise
unhandled exceptions, it requires the engineer to provide
a scope, which consists of a maximum number of iterations
and object instances for the classes involved. It then checks
the correctness of the program within the provided
scope—that is, it checks that no execution involving at
most as many objects and iterations as prescribed by the
scope can violate the contract or raise an unhandled
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Fig. 4. Object labeling according to TACO’s symmetry breaking.

exception. To achieve this, TACO translates the program
and its declarative specification into a propositional for-
mula, which is solved using off-the-shelf SAT-solvers.
Essentially, satisfying valuations of the resulting formula
correspond to program executions violating the program
specification; thus, unsatisfiability of the formula means
that the program is correct within the given scope. Notice
that these declarative specifications most times include a
declarative representation invariant, which is part of the
method precondition.

In TACO, the encoding of bounded program correctness
as a satisfiability problem involves characterizing heap
states as relations. Given a class C, a class field f of type C’
defined in C' can be represented in a given program state as
a total function f mapping object references from C to C'.
Notice that properties of the state, including the maximum
number of objects of each class (i.e., the scope), may make
some tuples of C' x C' infeasible as part of field f. In particu-
lar, if the state is assumed to satisfy constraints (e.g., the
states prior to the execution of the code under analysis are
assumed to satisfy a precondition), all tuples corresponding
to ill-formed structures will necessarily be absent from f in
that state. Furthermore, if symmetry breaking is imposed by
enforcing a canonical ordering on the way references are
stored in the heap model (see [11] for a careful introduc-
tion), then structures that do not comply with this canonical
ordering are dismissed, and the number of tuples allowed
in the relations that bound the fields can be significantly
reduced. TACO field bounds capture precisely these feasi-
ble cases. A field bound for a field f of type C' — (' is a sub-
set Uy C C x (', such that every tuple ¢ that is not U; cannot
correspond to the contents of f in any valid instance of C
within scope k. By valid instance we mean an instance that
satisfies the corresponding specification and symmetry-
breaking constraints associated with the field. Essentially,
tuples that are absent from the upper bound U; are infeasi-
ble, i.e., are guaranteed not to belong to any valid instance.
Note that C'x C" is a field bound for a field f of type
C — (', although it is not necessarily the tightest possible
bound (i.e., the one containing the smallest possible subset
of tuples). The tighter a bound, the better, since it provides
more information about infeasible cases for the correspond-
ing field. While a thorough description of our symmetry-
breaking process is given in [10], we emphasize that the
induced canonical ordering labels object identifiers in accor-
dance with a breadth-first traversal of the memory heap.
Fig. 4 shows how a singly-linked list and a binary tree are
labeled. It is also worth mentioning that TACO field
bounds, that is, those that were automatically computed

e root C {NO, null}
o left C {(NO, null), (NO, N1), (N1, null), (N1, N2), (N1, N3),
(N2, null), (N2, N3), (N3, null)}
o right C {(NO, null), (NO, N1), (N0, N2), (N1, null),
(N1, N2), (N1,N3), (N2, null), (N2, N3), (N3, null)}
(a)

e root C {NO, null}

o left C {(NO, null), (NO, N1), (N1, null), (N1, N3),
(N2, null), (N3, null)}

o right C {(NO, null), (NO, N2), (N1, null), (N1, N3),
(N2, null), (N3, null) }

(b)

Fig. 5. Tight relational bounds automatically computed by TACO for
binary trees (a) and for complete binary trees (b), using a scope of up to
4 nodes.

using the approach put forward in [10], are the tightest pos-
sible bounds for the data structures that were studied in
[10] (which include those analyzed in this paper): they
exclude every tuple that can be proved infeasible for the
corresponding class invariants and scopes.

In order to illustrate TACO field bounds, consider again
binary trees, as defined in Fig 1. The representation invari-
ant for this structure, which is expected to be part of the pre-
condition of any method handling binary trees, requires the
heap structure starting at the root to be a tree. Symmetry
breaking forces tree node reference labels to be assigned in
breadth-first order. Suppose that the scope is 4 (i.e., we only
consider trees containing at most 4 nodes). The tightest pos-
sible field bounds for fields root, left and right are shown in
Fig. 5a, and are exactly those computed by TACO. Notice
that the binary tree illustrated in Fig. 4 satisfies the con-
straints (valid tree, with nodes labeled in breadth-first
order, and within scope 4); the tuples in the bounds that are
involved in this tree are highlighted in Fig. 5a.

Clearly, for a given scope, the tightest field bounds are
determined both by symmetry breaking and by the class
invariant. Therefore, if we considered a stronger class
invariant, the corresponding field bounds would be more
restrictive (that is, they would contain fewer tuples). Con-
tinuing with our example, if we used a stronger class
invariant, for instance, one characterizing complete binary
trees (complete up to the penultimate level, and such that
nodes on the last level are located as far to the left as possi-
ble), then the corresponding bounds would be the ones
given in Fig. 5b.

2.3 Bounded Lazy Initialization

Bounded lazy initialization [12] is an optimization of LI that
leverages the availability of TACO bounds. Essentially,
TACO bounds are used to reduce the number of alternatives
that need to be explored during symbolic execution, avoid-
ing the generation of some of the structures that LI would
produce. Instead of being labeled with object identifiers,
nodes in partially symbolic structures are labeled with sets
of object identifiers, in accordance with the bounds. Given a
partially symbolic structure S and a node N in S whose label
is a set Iy of identifiers, this set intuitively denotes the set of
object identifiers that could potentially be assigned to node
N in a concrete structure extending S. Naturally, in each
concrete structure, a single identifier is assigned. But, since
TACO picks identifiers in a canonical way that is consistent
with a breadth-first traversal of the structure, a node may
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left right left right

null null null null null null
(a) (b)

Fig. 6. Shifting of node identifiers due to null values in the BFS traversal.

receive different identifiers in different structures depend-
ing, for instance, on the number of null values found before
N along the traversal. Fig. 6 shows a pair of concrete binary
trees. Each node is assigned an identifier picked from the
set {NO,N1,N2} under the constraint that the BFS traversal
of the trees must produce a sorted sequence (we assume
NO < N1 < N2). Note that, in Fig. 6a, the rightmost node
has been assigned identifier N2; this is the only possibility
that respects the BFS traversal. In Fig. 6b, the rightmost
node is assigned identifier N1. This is due to the presence of
null as the left subtree of the root node, which shifts the
available node identifiers.

Root nodes receive as their label set their correspond-
ing field bounds, without null. Field bounds are also
involved in the definition of labels for non-root nodes.
Given a node N with label Iy, we define its target label set
through field f as the set label(N,f) characterized by the
following expression:

label(N,f) = | | J n.Us | = null,

nely

where U; is the field bound for f. Notice that null is never
part of the label set of a node. This is because only concrete
nodes are assigned label sets, and the label corresponds to
the identifiers that this node may receive. When the value of
attribute f for node N has to be concretized following the
BLI algorithm, we consider the following alternatives:

N.f is set to null,

N.f points to an existing concrete node N if the latter
has a label set that has a nonempty intersection with
label(N, f), or

e N.f points to a newly introduced concrete node N’

whose label is defined as label(N, f) if the latter set is
nonempty.

The cases in which pruning takes place are the second
and the third. Let us describe this in more detail. As we
said, the label set associated with a node captures the alter-
native identifiers that the node may adopt. When a previ-
ously introduced node N, is being considered as the f field
of another node N;, this case only makes sense as an option
if the label set of N, has some intersection with the possible
values reachable from N,’s label set through f, according to
the bounds. Similarly, when a node’s label set is empty, it
means that no identifier can be assigned, which deems the
extension infeasible. Algorithm 2 shows the pseudocode of
the BLI algorithm. Notice how the alternatives for the ini-
tialization of fields with previously visited nodes is
reduced in this algorithm, compared with LI
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o)
Piale

\requires isBinTree();

public void traverse(){
if (right != null{

right.traverse();

}
if (left = null){
left.traverse(); 5
}
) Ieﬂnght

‘ null

left righl

Fig. 7. Some of the structures generated by BLI during execution of
method traverse.

Fig. 7 shows how the generation of structures from Fig. 2
is carried out in the context of BLI when the bound for
binary trees (Fig. 5a) is considered. In the example we begin
with the heap root labeled {NO} (the other possibility being
for the root to be null). When accessing field right, BLI only
generates structures 2 and 4. Structure 3 is never generated
because the label for the root node (set {NO}) and the set
label(NO, right) (set {N1,N2}) do not intersect. A similar rea-
soning explains why structures 6 and 7 are not generated.
Notice that in these cases we have only prevented the gener-
ation of structures that would be deemed redundant by LI
as well upon execution of the precondition. We have only
saved the time that would have been spent in the execution
of the precondition.

Algorithm 2. Pseudocode for the bounded lazy initializa-
tion algorithm.

if (f is uninitialized) then
if (f is reference field of type T) then
nondeterministically initialize f to
1. null
2. anew object n of class T (with uninitialized fields)
and label(n) := label(this,f),
if label(this,f) is nonempty
3. an object x created during a prior
initialization of a field of type T
such that label(this).intersects(label(x))
if (method precondition is violated) then
backtrack();
end
end
if (f is primitive field) then
initialize f to a new symbolic value of appropriate type
end
end

BLI may also prune subtrees that would not be pruned
by LL Let us consider structure 4 from Fig. 2. If we now
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Fig. 8. A version of structure 4 extracted from Fig. 2, labeled using
bounds for complete binary trees.

use bounds for complete binary trees (see Fig. 5b), an
accordingly labeled version of structure 4 is shown in
Fig. 8. Notice that LI would extend structure 4 to generate
structure 8, and would even attempt further extensions.
Instead, since label(N2,right) = (), the only possibility for
concretizing N2.right according to BLI is to assign null.
Therefore, a unique extension, namely, structure 5, will be
produced by BLL

BLI is sound and complete with respect to LI, provided
that field bounds are correct (they only exclude infeasible
tuples). BLI's soundness and completeness with respect to
LI mean that a valid structure (one that satisfies the existing
class invariant), is generated by BLI if and only if it is gener-
ated by LI [12].

Theorem 1. Let M be a method under analysis. A valid structure
S is generated along the symbolic execution of method M using
LI if and only if it is generated along the symbolic execution of
M using BLL

Proof. =) Let us assume S is not generated via BLI and let
us arrive at a contradiction. As discussed above, there
are two situations in which S may be discarded by BLIL,
namely,

e the concretization of N.fis a new node whose label

set is empty, or

e the concretization of N.f is a previously intro-

duced node whose label set does not intersect

label(N, ).
Regarding the first case, since S is pruned by BLI,
there is a symbolic execution step in which the concret-
ization of attribute f from node N leads to a new node
N using LI, but label(N,f) =@ and S is pruned using
BLI. But, since bounds are correct and S is a valid
structure, (N,N’) € Ur and therefore label(N,f) #0 (a
contradiction).

Regarding the second case, let S) be a symbolic struc-
ture whose concretization using LI leads to .S, and such
that it is discarded by BLI when node N is made to point
to a previously existing node N’ with label(N, f) disjoint
from the label set of N'. Notice that for an arbitrary node
Ng in Sy, its label set is the set of node identifiers that can
be assigned to node Ny along BFS traversals of full con-
cretizations of Sy. Let LSy and LS, be the label sets for
nodes N and N/, respectively. Since S is a valid structure,
let ng, ny be the identifiers assigned to nodes N and N’ in
the BFS traversal of S, respectively. Clearly, ny € LS
and n; € LS. Also, in S, ng.f =ny. Thus, (ng,n) € Us.
But then, n; € label(N,f) and label(N,f)NLS; #0 (a
contradiction).

<) Trivial (since BLI is more restrictive than LI). O

Ight
left ; ; right  left ! lright

(D LD €

(a)

Fig. 9. A binary tree and an extension generated by BLI, yet pruned by
RBLI.

3 REFINED BOUNDED LAZY INITIALIZATION

Refined bounded lazy initialization is the first technique
that we introduce in this paper, building upon BLI. We will
show that the proposed technique is sound and complete,
and will also set the basis for the experimental evaluation
that will be reported in Section 5.

Notice that the number of structures generated by BLI
during concretization is directly related to its label set. A
label set containing fewer identifiers would usually pro-
duce fewer candidate structures. Let us consider the
binary tree depicted in Fig. 9a. Let N denote the node
whose label is the set {N1,N2}. According to the bounds
for binary trees (see Fig. 5a), label(N, right) = {N2, N3}.
Since {N1,N2} N {N2,N3} # (), the structure depicted in
Fig. 9b is generated when attribute right is concretized fol-
lowing BLI (as well as when LI is used). In the remaining
parts of this section we will argue that the generation of
such candidates may be safely prevented.

A closer look at the reason why the structure depicted
in Fig. 9b was generated shows that if identifier N1 were
not part of the label for node N (i.e., if the label for node
N was {N2}), then label(N,right) would be {N3}. There-
fore, since {N2} N{N3} =), the structure would not be
generated. Recalling the explanation from Section 2.3 for
having sets of identifiers (rather than just identifiers) as
labels, we note that in a binary tree that respects the sym-
metry breaking imposed by TACO, node NO.right may be
assigned identifiers N1 or N2. But, since identifier N1 has
been already assigned to a different node prior to N in
the breadth-first search traversal of the structure, it can
be removed in this partially symbolic structure from set
{N1,N2}.

The refinement technique that we propose consists of
performing a breadth-first traversal of the structures until
the first symbolic value in the search is found. Let us denote
by posBFS(N,.S) the position of an arbitrary node N in the
breadth-first traversal of the structure S, prior to the first
symbolic node. We know that identifiers in N’s label that
differ from posBFS(N, S) may be removed.

Algorithm 3 shows the refinement algorithm. It
returns a boolean value, indicating whether the (possi-
bly) refined structure is still valid, or became redundant
due to the refinement. Lines 22-25 show how the labels
for concrete nodes, prior to the first symbolic node in
breadth-first traversal, are set. Lines 19-21 show that if
the current label of a node does not contain its only
valid position, then the structure is spurious and can be
removed. Algorithm 4 shows the pseudocode for the
RBLI algorithm. Notice how this algorithm builds over
BLI, by enabling the systematic path exploration to
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backtrack when the current partially symbolic structure
is found to be spurious.

Algorithm 3. The heap refinement algorithm.

1 boolean refineHeap(Heap h)

2 Set(HeapNode) roots = h.getRoots();

3 if (not roots.isEmpty()) then

4 Queue(HeapNode) pending = new List(HeapNode)();
5 Set(HeapNode) visited = new Set(HeapNode)();

6 for (HeapNode hn : roots) do

7

8

pending.add(r);
visited.add(r);
9 end
10 int currlndex = 1;
11 boolean foundSymbolic = false;
12 while (not pending.isEmpty() and not foundSymbolic) do
13 HeapNode hn = pending.remove();
14 if (isSymbolic(hn)) then
15 foundSymbolic = true;
16 return true;
17 else
18 if (not isNull(hn)) then
19 if (not h.getLabel(hn).contains(currlndex)) then
20 return false;
21 end
22 LabelSet Is = new LabelSet();
23 Is.add(currIndex);
24 h.setLabel(hn, 1s);
25 currlndex++;
26 for (Field f : hn.getFields()) do
27 HeapNode n = hn.getFieldValue(hn, f);
28 if (isSymbolic(n) or visited.add(n)) then
29 pending.add(n);
30 end
31 end
32 end
33 end
34 end
35 end
36 return true;
37 end

Algorithm 4. Pseudocode for the Refined Bounded Lazy
Initialization (RBLI) algorithm.

if (f is uninitialized) then
if (f is reference field of type T) then
nondeterministically initialize f to
1. null
2. anew object n of class T (with uninitialized fields)
and label(n) := label(this,f)
3. an object x created during a prior
initialization of a field of type T
such that label(this).intersects(label(x))
if (method precondition is violated || IrefineHeap
(currentHeap)) then
backtrack();
end
end
if (f is primitive field) then
initialize f to a new symbolic value of appropriate type
end
end

The following theorem shows that RBLI is sound and

complete with respect to LI

Theorem 2. RBLI is sound and complete with respect to LI, i.e., a

valid (with respect to the concrete imperative precondition)
structure is produced by RBLI if and only if it is produced by LI.

Proof. Soundness is straightforward. Since RBLI differs

from BLI in that the former incorporates a process for
bound refinement, RBLI cannot produce instances that
are not produced by BLI. Since BLI is sound with respect
to LI, RBLI is sound with respect to LI as well.

The proof of completeness of RBLI with respect to LI is
based on the fact that every concrete node N in a sym-
bolic structure .S has as a label a set that contains all the
identifiers that can be assigned to N along BFS traversals
of any fully concrete extension of S. Since our approach
is based on the assumption that correct field bounds are
used, we can assume that RBLI executes on symbolic
structures that satisfy the above condition, to show that
RBLI does not prune valid structures.

Let Sy be a symbolic structure. Let N; be the concrete
node in Sy in position ¢ in the BFS traversal of Sj. Let LS;
be the label set for node N;, and let RLS; be the refined
label set for N; produced by RBLI. Let us suppose that
there exists a valid fully concrete structure S that extends
Sy that will not be generated due to discarding 5. Also,
let us suppose N; ¢ RLS, (thus pruning the valid struc-
ture 5). Certainly, N; € LS; due to the completeness of
BLI with respect to LI. Then, since RBLI differs from BLI
only in bound refinement, N; must have been removed
from RLS; during refinement. Recall that the refinement
process stops as soon as a symbolic node is reached.
Thus, the fact label set LS; was refined implies N; must
occur in a fully concrete prefix of the BFS traversal of
structure Sj.

Let posBFS(N;, S) be the index of node N; in the BFS
traversal of structure S.

e If i < posBFS(N;,S), then node N; appears in a
smaller BFS traversal position in .S, than its final
BFS position in S. Since what differentiates .S
from S is the concretization of symbolic values,
node N; must appear in a previous BFS position
in Sy due to the concretization of a symbolic value
in Sy that occurs before N; in the breadth-first tra-
versal. But then, since there is a symbolic value
prior to N; in the BFS traversal of S, LS; is not
refinable, i.e., RLS; = LS;. This contradicts the
fact that N; € LI; and N; g RLS;.

e If i >posBFS(N;,S), then we have a node in a
structure whose label is strictly greater than its
BFS position, contradicting the symmetry-break-
ing predicates, which force a breadth-first canoni-
cal reference assignment for structures. O

The completeness of RBLI (as well as the completeness of

BLI) with respect to LI indicates that the technique will only
prune redundant structures. As mentioned before, this
means not just that the systematic exploration of feasible
paths will be more efficient, but also that, if the resulting
path conditions are solved to build test suites, the suites
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public static void main(String[] args) {
TreeSet X = new TreeSet();
X = (TreeSet) Debug.makeSymbolicRef ("X”, X);

try {
if (X != null)
X.bfsTraverse ();
} catch (Throwable t) {}

Fig. 10. A “main” method driving the SPF analysis of method
bfsTraverse.

obtained by RBLI and BLI may be smaller than those
obtained by LI, resulting in fewer test cases. Thanks to com-
pleteness, the test cases that will not be part of suites built
using BLI or RBLI, or any other of the techniques to be intro-
duced in this paper, will be redundant with respect to the
concrete precondition of the method under analysis, and
therefore also spurious. As it will be shown in Section 5,
bound refinement often provides most of the observed
speedups of our techniques over LL

4 BLISS AnD BLISSDB

Bounded lazy initialization with SAT support is the second
main contribution of this paper. BLISS extends RBLI with a
mechanism for pruning partially symbolic structures as
soon as their concretization is determined to be infeasible,
i.e., they cannot possibly be concretized to become a valid
fully concrete structure. This is achieved by searching for
concretizations of partially symbolic structures using the
corresponding preconditions (e.g., data structure class
invariants), and resorting to SAT solving. When no concreti-
zation exists for a given partially symbolic structure, it can
be safely discarded in the symbolic execution process. Since
these SAT solver invocations are costly, we introduce an
optimization of BLISS called BLISSDB in which SAT call
verdicts are cached in a database and reused across differ-
ent analyses. This section introduces BLISS, and then
describes the BLISSDB optimization.

BLISS prunes redundant partially symbolic structures
that could not be pruned by the previously introduced tech-
niques. To this end, BLISS conjoins the declarative class
invariant with a propositional description of the concrete
part of the structure; since no constraints are imposed on
the symbolic parts of the structure, a SAT-solver call allows
us to determine whether there is a way to concretize the
parts that still remain symbolic in order to obtain a fully
concrete structure. This high-level intuition will be made
precise in this section.

To illustrate BLISS, let us consider a somewhat more
complex example than the previously shown one (binary
trees). Fig. 10 shows a main program used as a driver for
the symbolic execution of a breadth-first traversal of a red-
black tree. Red-black trees are balanced binary search trees.
They are used as the implementation of class TreeSet in
package java.util.collections, and satisfy the following con-
straints, which constitute their class invariant:

rbtl:  the tree is a binary search tree,

rbt2:  each node has a color, which can be red or black,
rbt3:  the tree root is black,

rbt4:  no two consecutive nodes in a path can be red, and
rbt5:  all the paths from the root to a leaf contain the

same number of black-colored nodes.

Fig. 11. A partially symbolic red-black tree that is considered valid by LI
and BLI (a), and its RBLI-refined version (b), also considered valid by
RBLI, but pruned by BLISS.

Consider the partially symbolic red-black tree depicted in
Fig. 11a, which is generated during the symbolic execution
of method bfsTraverse. Let us discuss why this tree cannot
be colored in a way that satisfies the class invariant, which
is reasonable to assume would be part of the precondition
for bfsTraverse. First, condition rbt1 forces the root node to
be black. The coloring of root.left deserves some analysis. If
root.left is red, then root.left.right must be red too in order to
satisfy condition rbt5. But this leads to a violation of condi-
tion rbt4. Therefore, root.left must be black. However, since
all the paths from the root to a leaf node must contain the
same number of black nodes, they must all have exactly two
black nodes (one of them being the root node). It is then
impossible to give a valid coloring to the right subtree (the
reader should convince him/herself of this by looking for a
valid coloring).

Even though the tree in Fig. 11a is redundant, due to
our discussion in Section 2.1.1, this tree would be gener-
ated during the execution of LI. Moreover, the node label-
ing, computed according to the TACO bounds for red-
black trees with up to six nodes, shows that this tree will
also be generated by BLI. It will even be generated by
RBLI, as illustrated by Fig. 11b, which shows the same
tree after refinement has been applied to the node labels.
Unlike LI, BLI and RBLI, BLISS would recognize the
infeasibility of Fig. 11a via a satisfiability check on the
structure, pruning it and consequently not considering it,
nor any of its extensions.

To perform BLISS satisfiability checks we use a declarative
precondition for the method under analysis, which must be
provided by the user. For instance, for method bfsTraverse,
the precondition would be the red-black tree class invariant
applied to the method’s parameter, expressed in a language
such as JML [4]. Fig. 12 presents a fragment of such an
invariant.

In order to perform the above described satisfiability
checks, we automatically translate the method’s declarative
precondition to a SAT-solving problem using the TACO tool.
We combine the propositional translation of the declarative
precondition with a characterization of the partially sym-
bolic structure whose feasibility we want to check. To this
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invariant root!=null ==> root.color== BLACK;
invariant
(\forall Node n;
\reach(root, Node, left).has(n);
((n.color == RED && n. left !=
n.left.color == BLACK) &&
(\forall Node x;
\reach(n.left, Node, left).has(x);
x.key < n.key) &&
(\forall Node x;
\reach(n.right, Node,
x.key > n.key) &&

null) ==>

left ). has(x);

B ®A O®AA®AAB®O®NA

*/“'

Fig. 12. A fragment of the JML class invariant for TreeSet.

end, BLISS uses a mapping called povars (for “propositional
variables”) whose key set is made of triples of the form:

(sourceHeapNode, field, target HeapNode)

and whose values are variable numbers in the DIMACS
[25] CNF encoding of the propositional formula that
results from the translation of the declarative precondi-
tion. Intuitively,

pvars.get((s,f,t)) = v

means that v is the variable that encodes the fact that field f
maps the source heap node s to the target heap node ¢. For
efficiency reasons to be discussed in Section 5.3, the analysis
is simplified if we consider nodes s and ¢ whose label sets
are singletons. Note that this naturally happens in the fully
concrete prefixes of the BFS traversal of a heap, after RBLI
has been applied. Therefore, we apply BLISS after RBLI, in
order to benefit from these fully concrete prefixes. BLISS
makes use of SAT-solving under assumptions, a common
SAT-solver feature that allows one to call the solver repeat-
edly on the same CNF instance, each time passing as param-
eter a different set of assumptions (literals that will be
assumed to hold during the analysis). BLISS performs a BFS
traversal of the heap and generates the assumptions to be
used during that analysis. Algorithm 5 presents BLISS's tra-
versal process. Note that, at its core, it collects as assump-
tions the fully concrete prefixes of the BFS traversal of the
partially symbolic structure. For our refined sample struc-
ture in Fig. 11b, the SAT-solver would solve the proposi-
tional translation of the declarative class invariant under
the following assumptions:

pvars.get((No, left, N1)), pvars.get({No, right, Na)),

puars.get((Ny, left, null)), pvars.get({Ny,right, N3)),

puars.get((No, left, null)), pvars.get((Na, right, Ny)),

puars.get((Ns, left, null)), pvars.get({Ns, right, null)),
puars.get((Ny, left, N5)).

Algorithm 6 shows the pseudocode of the BLISS algo-
rithm, where the use of the processHeapWithSolver rou-
tine is indicated. Notice again that this algorithm builds over
RBLI, adding a new condition under which the systematic
path exploration is forced to backtrack, namely, when the
current partially symbolic heap is found to be spurious by a
SAT query. Also, processHeapWithSolver is executed
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after refineHeap, therefore operating on the already refined
label sets of the nodes in the partially symbolic heap.

Algorithm 5. Assumptions computation in BLISS.

1 boolean processHeapWithSolver(Heap h)

2 Node root = getRoot(h);

3 if (not isSymbolic(root) and not isNull(root)) then

4 Queue(Node) pending = new LinkedList(Node)();

5 HashSet(Node) visited = new HashSet(Node);

6 HashSet(Integer) assumptions = new HashSet(Integer);
7 pending.add(root);

8 visited.add(root);

9 While (not pending.isEmpty()) do

10 Node src = pending.remove();

11 if (not isSymbolic(src) and not isNull(src)) then
12 for (String fn : classFieldNames) do

13 Node target = pointsThroughField(src, fn);
14 assumptions.add(pvars(src, fn, target));

15 if (visited.add(target)) then

16 pending.add(target)

17 end

18 end

19 end

20 end

21 boolean verdict = solver.isSatisfiable(assumptions);
22 return verdict;

23  end

24 - return true;

25 end

Algorithm 6. Pseudocode of the BLISS algorithm.

if (fis uninitialized) then
if (f is reference field of type T) then

nondeterministically initialize f to

1. null

2. anew object n of class T (with uninitialized fields)
and label(n) := label(this,f)

3. an object x created during a prior
initialization of a field of type T
such that label(this).intersects(label(x))

if (method precondition is violated || IrefineHeap(currentHeap) ||

IprocessHeapWithSolver(currentHeap)) then
backtrack();

end
end
if (f is primitive field) then
initialize f to a new symbolic value of appropriate type
end
end

BLISS satisfiability checks serve, in many situations, the
same purpose that preconditions/class invariants on par-
tially symbolic structures serve during LI, i.e., to rule out par-
tially symbolic structures that cannot be extended to a valid
concrete structure. However, BLISS improves upon precon-
ditions under various aspects. First, preconditions must be
generalized to deal with symbolic structures. This task has to
be manually carried out by the engineer, who has to attempt
to algorithmically decide if a partially symbolic structure is
concretizable from the already concretized part of the struc-
ture. Typically, this approach is limited in the way it refers to
symbolic portions of the partially symbolic structure, and is
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dependent on how well the engineer is able to “generalize”
the concrete precondition/class invariant to symbolic struc-
tures. Second, preconditions or imperative class invariants
do not take the scope—that is, the number of available nodes,
loop iterations, and so on—into consideration. Satisfiability
checks based on the translation of declarative class invari-
ants, on the other hand, can predicate on symbolic portions
of the structure straightforwardly (essentially, via existential
quantification), and are able to draw conclusions based on
the scope, which is a necessary part of every satisfiability
check, as in the previous example.

On the other hand, using BLISS needs some additional
effort in comparison with LI and our previously introduced
extensions: it requires the engineer to provide a declarative
invariant. We shall elaborate on this fact in Section 5.4.

As the following theorem states, BLISS is sound and
complete (assuming equivalence of the declarative and pro-
cedural invariants) with respect to LI. When we refer to the
equivalence with the procedural class invariant we mean
with respect to the one that operates on fully concrete struc-
tures, and not the hybrid one. The latter is a more general
and weaker version of the former.

Theorem 3. BLISS is sound and complete with respect to LI, i.e.,
a valid structure is produced by BLISS if and only if it is pro-
duced by LI, provided that, for the class under analysis, the
declarative class invariant used by BLISS is equivalent to the
imperative class invariant on which the hybrid invariant used
by LI is based.

Proof. BLISS extends RBLI with satisfiability checks on par-
tially symbolic structures. Notice that these checks are
only used for pruning, so BLISS cannot generate any
structure that RBLI would not generate. Then, since RBLI
is sound with respect to LI, BLISS is also sound with
respect to LI

Now let us prove completeness. Let S be a valid struc-
ture generated by LI within scope k, but rejected by BLISS
for the same scope. It certainly is not rejected due to bound
refinement, since RBLI is complete with respect to LI
Then, its generation by BLISS has been prevented due to
satisfiability checks. That is, there must exist a partially
symbolic structure S such that S extends 5, and BLISS
found S’ to be redundant. Since the encoding of declara-
tive class invariants and partially symbolic structures
employed by BLISS is sound and complete with respect to
bounded verification (cf. [11]), the encoding of S’ being
infeasible implies that there is no concrete structure within
scope k that extends S’ and satisfies the declarative class
invariant. But, since S extends ., it is within scope k and
satisfies the concrete imperative class invariant, it must be
the case that the declarative and imperative invariants are
not equivalent, contradicting our hypothesis. O

Satisfiability checks usually take substantially more time
than concrete executions of the kind that LI performs when
executing an imperative hybrid repOK or precondition on
partially symbolic structures. Thus, BLISS SAT checks will
be worthwhile only if the number of structures pruned
thanks to these checks is greater than those pruned by
hybrid precondition checking in LI, so that the cost of SAT
checks pays off with respect to considering a significantly

larger number of structures (those generated if only precon-
ditions on symbolic structures are employed). The level of
pruning provided by BLISS depends on the strength of the
corresponding class invariant, and on the method under
analysis and how it traverses the structure. We will show in
Section 5 that, in our case studies, BLISS improves the anal-
ysis time in 25 (out of 32) methods with respect to LI. More-
over, BLISS allowed us to analyze a method, namely
AvlTree.bfs, using scope 20, whereas LI runs out of memory
in scope 13 (cf. Table 3).

Again, as for the case of RBLI, since BLISS helps in
reducing the number of partially symbolic structures col-
lected while systematically exploring path conditions, it
provides significant advantages in automated test input
generation considering test suites built by concretizing
the collected partially symbolic structures. Furthermore,
since BLISS is sound and complete with respect to LI,
only redundant cases are dismissed by the technique,
ensuring that we retain exactly the same coverage
obtained by using standard SPF with LI. As our experi-
ments show (cf. Table 10), in some cases we achieve
reductions of up to 99.8 percent on the number of par-
tially symbolic structures produced using LI. As we will
show in the experimental evaluation section, among the
techniques introduced in this paper, BLISS is the one
responsible for most of the reductions in the number of
partially symbolic structures obtained during systematic
path exploration.

Unlike LI and our previously introduced techniques
BLI and RBLI, BLISS introduces additional SAT checks
during SPF’s symbolic execution. One might wonder what
the advantage could be of using these additional SAT
checks, considering the fact that SPF already uses SMT-
solving to prune the search space by solving path condi-
tions. However, note that, while the SMT checks per-
formed internally by SPF have a complexity that depends
on the structure of the program under analysis (since
these are used to solve individual path conditions), the
additional SAT checks performed by our technique are
completely independent of the program structure—they
only depend on the program’s precondition and scope.
Since preconditions/invariants on data structures usually
involve quantifiers and reachability constraints, we con-
sider that this separation of concerns positively contrib-
utes to the performance of the approach.

The above described technique requires a significant
number of satisfiability checks—a priori, one per each
partially symbolic structure found along the symbolic
execution process. If we consider the workflow that users
typically employ when performing bounded analyses of
the kind offered by Symbolic PathFinder, we note that a
large number of those checks can be reused. An engineer
using a bounded verification tool will generally want to
check a property for increasingly large scopes: he or she
would begin by checking a property for some small
scope, so as to ensure termination within reasonable time,
and then perform checks for larger and larger scopes, in
order to gain greater confidence in the validity of the
property (until eventually reaching a scope where the
tool needs more time or space than available). Thus,
when checking a property for a scope k, we may find it
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( [ useful to reuse any equivalent satisfiability checks that
J might already have been performed on prior analyses for
et ont tef & scopes smaller than k.
As an example, consider again the structure in Fig. 9a.
Q BLISS would check this structure’s feasibility before
v i extending it, when performing symbolic execution for a
e 6 a ) given scope, say, 3. Note that if instead of 3, the scope is
ot ot o Cight 4 (or any other number greater than 3), the structure in
Fig. 9a will still be feasible under this new scope. This is
the case due to two facts. Firstly, scopes are non strict in
our analyses, in the sense that checking a property « for a
LU scope k corresponds to verifying whether « holds or not
for all inputs whose size is at most k (as opposed to strict
(@ (b) analysis, which would check the property for inputs of
size exactly k). Secondly, (correct) TACO field bounds are

monotonic with respect to scope incrementation, as the
following theorem shows.

null null null null  null null

Fig. 13. A partially symbolic red-black tree redundant in scope 6, and a
valid concrete extension in scope 8.

TABLE 1
Analysis Time and Speedup for Class TreeSet (All Techniques)

Method Technique S07 S08 509 510 S11 S12 S13 S14 S15 S16 517 518 519 520

bfs LI 00:05  00:17  00:58 03:37 13:43 53:43 179:10 OOM
BLI 00:03  00:11  00:31 02:15 09:33 39:25 OOM
RBLI 00:01  00:04 00:11 00:38 02:29 09:50 39:28 OOM
BLISS 00:01 00:02 00:03 00:06 00:12 00:29 01:13 03:05 07:45  20:02 55:38 OOM
BLISSDB ~ 00:01 00:02 00:03 00:05 00:10 00:23 00:56 02:15 05:13  12:58 OOM
Speedup  5X 8X 19X 43X 82X 140X 188X 00 00 00 00
dfs LI 00:02  00:05 00:19 01:13 05:44 OOM
BLI 00:01  00:02 00:06 00:26 02:16 OOM
RBLI 00:00 00:02 00:04 00:16 01:17 08:03 27:38 OOM

BLISS 00:01  00:04 00:11 00:58 05:06 23:21 135:14 TO
BLISSDB  00:01 00:04 00:12 01:10 05:24 22:41 103:26  485:27 TO

Speedup  2X 2X 4X 4X 4X %) o0 o0
repOK LI 03:34 22:46 150:44 OOM
BLI 01:58 15:58 78:49 OOM
RBLI 00:55 06:38  24:10 194:17 OOM
BLISS 00:17 00:49 01:57 05:39 22:21 96:36 OOM
BLISSDB  00:17 00:49 01:56 05:30 22:11 98:37 OOM
Speedup 12X 27X 77X 00 00 00
contains LI 00:05 00:12  00:29 01:07 02:39 06:11 14:35 32:54 75:11 174:47 OOM
BLI 00:01 00:02 00:02 00:05 00:12 00:28 01:06 02:37 06:02 13:57 32:37  OOM
RBLI 00:01 00:02 00:02 00:05 00:12 00:28 01:08 02:38 06:07  14:10 33:03 74:17 OOM

BLISS 00:01  00:02  00:02 00:05 00:13 00:31 01:15 02:54 06:52  16:21 38:15  88:54  204:01 OOM
BLISSDB  00:01 00:02  00:02 00:05 00:13 00:30 01:12 02:49 06:32  15:21 35:47  83:00 190:06 OOM

Speedup  5X 12X 14X 13X 13X 13X 13X 12X 12X 12X 00 00 00
add LI 03:50 23:47 150:57 OOM

BLI 02:17 17:02 81:.03 OOM

RBLI 01:12  07:19 25:35  200:55 OOM

BLISS 00:33  01:30 03:32 09:13 31:01 118:22 OOM

BLISSDB  00:34 01:31 03:30  09:04  30:40 119:10 OOM

Speedup  6X 15X 43X 00 00 00
remove LI 01:55 07:35 30:11  112:00 417:00 OOM

BLI 00:54 04:22  11:12 53:17 235:39 OOM

RBLI 00:53 04:18 10:56  53:33  237:13 OOM

BLISS 00:55 04:34 11:57 59:04 OOM
BLISSDB  00:54 04:24  11:02 OOM OOM

Speedup  2X 1X 2X 2X 1X
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TABLE 2
Analysis Time and Speedup for Class TreeMap (All Techniques)
Method  Technique S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13
trace_L1 LI 00:00 00:00 00:01 00:04 00:16 00:57 03:29 12:44 47:03 173:20 OOM
BLI 00:00 00:00 00:00 00:02 00:03 00:17 01:30 06:43 15:58 76:21 OOM
RBLI 00:00 00:00 00:00 00:02 00:03 00:18 01:25 06:31 15:40 74:34 323:47 OOM
BLISS 00:00 00:00 00:00 00:02 00:03 00:17 01:28 06:49 16:56 81:28 373:01 OOM
BLISSDB 00:00 00:00 00:00 00:02 00:03 00:18 01:26 06:41 15:37 76:16 342:54 OOM
Speedup X 1X 2X 5X 3X 2X 1X 3X 2X o9
trace L2 LI 00:00 00:14 01:25 07:58 41:30 205:21
BLI 00:02 00:15 00:29 04:03 07:50 72:00 OOM
RBLI 00:02 00:14 00:29 03:23 07:11 60:33 OOM
BLISS 00:02 00:14 00:29 03:24 07:15 57:32 OOM
BLISSDB 00:02 00:15 00:30 03:28 07:22 57:08 OOM
Speedup 0.5X 1X 2X 2X 5X 3X
trace L3 LI 00:49 08:04 73:13 OOM
BLI 00:50 08:03 21:46 OOM
RBLI 00:49 08:11 21:43 OOM
BLISS 00:49 08:02 21:46 215:34 OOM
BLISSDB 00:49 08:07 21:52 216:03 OOM
Speedup 1X 1X 3X 00

Theorem 4. Let C be a class and f a field in it, of type C'. Let U}
and U™ be TACO field bounds for f for scopes k and k +1,
respectively. Then, U} is contained in U},

Proof. Let ¢ be a tuple in U}. Since TACO bounds are the
tightest for a corresponding class and scope, there must
exist a valid structure c of class C' within scope k, such
that (c, c.f) = . Since ¢ is a valid structure within scope k,
it is also a valid structure within scope k + 1. Therefore,
by the correctness of TACO bounds, (¢, c.f) must belong
to Ui, ie., t € U, O

The above observation involves only the satisfiable
cases: whenever a symbolic structure is found to be feasi-
ble for scope k, it will also be feasible for scopes greater
than k. However, the same situation does not hold for
unsatisfiable cases. A symbolic structure may be redun-
dant due to scope restrictions, but its concretization may
become feasible if larger scopes were used. For instance,
Fig. 13a is redundant as a partially symbolic red-black
tree when the scope is 6. This is because there are already
six concrete nodes; hence, all possible extensions concret-
ize symbolic references to the null value. This leads to a
tree that is a concretization of the tree in Fig. 11a, which
we already discussed was not concretizable as a red-black
tree. Fig. 13b, on the other hand, depicts an appropriately-
colored concrete extension of the tree in Fig. 13a. This
means that the tree in Fig. 13a is feasible in scope 8. There-
fore, infeasibility in a given scope does not necessarily
promote to larger scopes. The BLISSDB technique consists
then of an optimization to BLISS, that takes advantage of
previous SAT computations by caching the results for sat-
isfiable cases. Algorithm 7 shows BLISSDB's traversal pro-
cess. Essentially, BLISSDB is the same as Algorithm 6, but
instead of calling processHeapWithSolver, it calls
processHeapWithSolverDB, which caches satisfiable
results.

In Section 5 we will discuss experimental results. It is our
experience that depending on the SMT and SAT solvers
being used, BLISSDB can produce a 2X speedup over BLISS.

Algorithm 7. Assumptions computation in BLISSDB.
1 boolean processHeapWithSolverDB(Heap h)

2 Node root = getRoot(h);
3 if (not isSymbolic(root) and not isNull(root)) then
4 Queue(Node) pending = new LinkedList(Node)();
5 HashSet(Node) visited = new HashSet(Node);
6 HashSet(Integer) assumptions = new HashSet(Integer);
7 pending.add(root);
8 visited.add(root);
9 while (not pending.isEmpty()) do
10 Node src = pending.remove();
11 if (not isSymbolic(src) and not isNull(src)) then
12 for (String fn : classFieldNames) do
13 Node target = pointsThroughField(src, fn);
14 assumptions.add(pvars(src, fn, target));
15 if (visited.add(target)) then
16 pending.add(target);
17 end
18 end
19 end
20 end
21 boolean verdict;
22 if (foundSatisfiable.get(assumptions)) then
23 verdict = true;
24 else
25 verdict = solver.isSatisfiable(assumptions);
26 if (verdict) then
27 foundSatisfiable.add(assumptions);
28 end
29 end
30 return verdict;
31 end

32 return true;
33 end
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TABLE 3
Analysis Time and Speedup for Class AvITree (All Techniques)

Method Technique  S07 508 509 510 S11 512 513 S14 515 516 517 518 519 520

bfs LI 00:05 00:16 00:55  03:22  12:43  49:00 OOM
BLI 00:01 00:07 00:16  00:35 01:16  09:52 60:03 OOM
RBLI 00:00 00:01 00:04  00:09 00:14 00:44 03:23 15:54 73:22 OOM
BLISS 00:00 00:01 00:02  00:03 00:05 00:10 00:22 00:50 01:47 03:56  08:08 16:12 29:25 OOM
BLISSDB  00:00 00:01 00:02 00:03 00:05 00:09 00:20 00:42 01:26 02:56 05:36  10:01 17:09 36:33
Speedup  5X 16X 27X 37X 152X 326X 00 00 00 00 00 0 [ 00
dfs LI 00:03 00:10 00:34  02:03 0823 OOM
BLI 00:01 00:04 00:07  00:14 0027 03:53 22:30 OOM
RBLI 00:00 00:01 00:03 00:06  00:13 01:18 08:30 OOM
BLISS 00:00 00:01 00:03 00:05 00:10 01:38 14:04 90:10 476:05 TO
BLISSDB  00:01 00:02 00:03  00:06 00:10 03:18 20:53 111:53  561:25
Speedup  3X 10X 11X 24X 50X 00 00 0 00
repOK LI 01:18 03:49 10:51 29:50 8210 223:34 OOM
BLI 01:03 03:44 10:18  27:19 71:33 21925 OOM
RBLI 00:33 02:01 06:32 17:42  37:45 11042 OOM
BLISS 00:29 01:25 03:28  07:34 16:23  38:52 103:02 264:35 OOM
BLISSDB  00:28 01:24 03:24 07:36  16:25  38:26 104:18 258:11 OOM
Speedup  2X 2X 3X 3X 4X 5X () 0
contains LI 00:05 00:12 00:29  01:07 02:42 06:16 14:26 32:46 74:51 OOM
BLI 00:00 00:01 00:01 00:01  00:01 00:02 00:05 00:12 00:28 01:08  01:05 01:06 01:07 02:36
RBLI 00:00 00:01 00:01 00:01 00:01 00:02 00:05 00:12 00:28 01:06 01:06  01:07 01:06 02:39
BLISS 00:00 00:01 00:01 00:01 00:01  00:02 00:05 00:13 00:30 01:11 01:13  01:13  01:14 03:02
BLISSDB  00:00 00:01 00:01 00:01 00:01 00:02 00:05 00:13 00:29 01:11 01:13  01:07 01:08 02:54
Speedup  5X 12X 29X 67X 162X 188X 173X 163X 160X 0 00 00 00 00
insert LI 18:28 91:16 OOM
BLI 02:03 23:45 30:43  30:36. 30:45 OOM
RBLI 01:44 18:37 26:14 26:15  26:07 OOM
BLISS 01:42 19:00 26:30  26:16 26:32 OOM
BLISSDB  01:44 18:57 26:34 26:06 26:27 OOM
Speedup 10X 3X 00 00 oo
remove LI 117:33 OOM
BLI 25:18 443:50 OOM
RBLI 18:42 OOM
BLISS 18:01 OOM
BLISSDB  18:02 OOM
Speedup  6X 00

5 [EVALUATION

Before getting into the description of the experimental
results, note that each of the presented techniques builds
over the previous ones: BLI extends LI, RBLI extends BLI,
BLISS extends RBLI, and BLISSDB extends BLISS. Since all
the techniques are sound and complete with respect to LI,
only spurious paths (and the corresponding partially sym-
bolic structures) are removed by our techniques. Also, each
technique introduces further pruning over the previous

The BLI, RBLI, BLISS and BLISSDB algorithms described
in the previous sections were incorporated into the standard
distribution of Symbolic PathFinder and compared with the
already-implemented LI algorithm. To assess these algo-
rithms, we used a benchmark consisting of 32 methods
from the following data structures:

e LinkedList: An implementation of the AbstractList
abstract datatype based on circular doubly-linked
lists, taken from the java.util package. We consider

one, since each one incorporates some new element (com-
pared with the corresponding previous technique) to decide
the infeasibility of a path/symbolic structure. However, it is
not obvious whether these mechanisms pay off from an effi-
ciency point of view, since a particular pruning technique
could be too costly while only removing a small number of
spurious paths/symbolic structures. In this section we eval-
uate this issue, i.e., whether the techniques introduced in
this paper are worthwhile.

methods repOK (which checks that the structure is
actually a well-formed doubly-linked circular list),
add (which appends the given element at the end of
the list), contains (which returns true if the list con-
tains a given element), and remove (which removes
the element stored in a certain position in the list).
Note that this class is implemented using a cyclic
structure, which shows the suitability of the techni-
ques for such structures as well.
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TABLE 4
Analysis Time and Speedup for Class BinomialHeap (All Techniques, Methods bfs, dfs and repOK)
Method Technique S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
bfs LI 00:59 03:33 12:52 48:40 171:59 TO
BLI 00:18 00:59 03:11 11:38 42:49 140:52 520:12 TO
RBLI 00:01 00:02 00:05 00:13 00:39 01:20 01:36 02:11 02:40 03:40 07:31
BLISS 00:00 00:00 00:01 00:01 00:01 00:01 00:01 00:02 00:02 00:03 00:03
BLISSDB  00:00 00:00 00:00 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:02
Speedup 59X 213X 772X 2,920X 10,319X  >36,000X >36,000X >>36,000 36,000 >35536,000 >355>18,000
dfs LI 00:49 02:44 09:07 30:53 103:15 338:52 TO
BLI 00:08 00:15 01:00 02:01 08:59 25:45 50:12 111:33 247:05 476:14 TO
RBLI 00:05 00:12 00:34 01:40 04:47 13:55 45:23 97:10 190:02 374:59 TO
BLISS 00:08 00:23 01:06 03:40 10:18 32:07 98:17 224:52 450:17 TO
BLISSDB  00:10 00:29 01:22 03:53 09:43 28:51 81:16 167:02 486:43 TO
Speedup  9X 13X 16X 18X 21X 24X >13X >6X >>3X >1X
repOK LI 00:25 00:46 01:24 02:34 04:44 08:28 15:13 27:21 50:08 87:44 156:38
BLI 00:10 00:17 00:24 00:41 01:04 01:36 02:02 02:30 03:04 03:45 06:23
RBLI 00:09 00:15 00:21 00:36 01:01 01:31 01:55 02:19 02:46 03:25 05:31
BLISS 00:09 00:15 00:21 00:36 00:58 01:33 01:56 02:23 02:53 03:28 05:45
BLISSDB  00:09 00:15 00:20 00:35 00:58 01:32 01:51 02:15 02:41 03:11 05:30
Speedup  2X 3X 4X 4X 4X 5X 8X 12X 18X 27X 28X
extractMin LI 00:31 00:58 01:38 00:34 00:50 01:49 02:41 04:15 07:00 12:22 20:53
(bug find)  BLI 00:16  00:29 00:38 00:18 00:19 00:55 00:58 01:01 01:03 01:34 01:52
RBLI 00:15 00:27 00:35 00:17 00:19 00:53 01:57 00:58 01:01 01:31 01:46
BLISS 00:15 00:28 00:35 00:16 00:17 00:55 00:56 00:57 00:59 01:31 01:44
BLISSDB  00:15 00:27 00:35 00:16 00:16 00:54 00:56 00:57 00:59 01:31 01:42
Speedup  2X 2X 2X 2X 3X 2X 2X 4X 7X 8X 12X

e BinTree: An implementation of binary trees. We con-
sider methods bfs (for breadth-first search traversal
of a tree), dfs (for depth-first search traversal of a
tree), repOK (which checks that the structure is actu-
ally a tree), and count (which counts the number of
nodes in a tree).

e TreeSet: An implementation of the Set abstract data-
type based on red-black trees, taken from the java.util
package. We consider methods for breadth-first search
traversal (bfs), depth-first search traversal (dfs), repOK
(which tests whether the structure is a valid TreeSet),
method contains, which searches a TreeSet for a given
element, and methods add and remove, which insert
and remove elements, respectively.

e TreeMap: A red-black-tree-based implementation of
the SortedMap abstract datatype, taken from pack-
age java.util, and used in [16]. The class includes
methods containsKey, print (which traverses the
underlying red-black tree), put and remove. Unlike
TreeSet, where Symbolic PathFinder is used to ana-
lyze isolated methods, for this class we follow the
procedure adopted in [16], which consists in analyz-
ing sequences of method invocations of increasing
length.

e AviTree: An AVL-tree-based implementation of the
Map abstract datatype, used first as a case study in
[6], and also used in [10], [11]. This implementation
includes methods for bfs and dfs traversals, as well
as contains, insert and delete. An appropriate
repOK method characterizing valid AVL trees is
included as well.

e BinomialHeap: This class is a binomial heap imple-
mentation of the Heap abstract datatype, and is one of
the case studies discussed in [16]. It includes methods
for bfs and dfs traversals, a corresponding repOK, and
methods insert, extractMin and remove. We analyze
these methods in isolation. Additionally, as in [16], we
also consider sequences of method invocations of
increasing length. These sequences include invoca-
tions of methods insert, findMinimum, extractMin,
delete and decreaseKey. Method extractMin contains
a nontrivial, real-world bug, which was found in [10];
we will use this method both as a driver guiding the
execution of BLISS, and also to determine whether
BLISS can improve the analysis time required to find
that bug using LI

The analysis consisted both in systematically exploring

program paths for the above structures and methods, and col-
lecting the corresponding partially symbolic structures that
would need to be concretized via SMT-solving to build test
suites. Notice that since our techniques are sound and com-
plete with respect to LI, although the sets of structures col-
lected with different techniques may differ in size, the
corresponding test suites will be the same for all techniques
(our techniques only remove redundant cases). Analyzing
our techniques both on heavily constrained structures (such
as red-black trees, where tight bounds are smaller) and on
less constrained structures (such as binary trees or linked
lists) is relevant for a number of reasons. First, the number of
partially initialized structures generated using bounded lazy
initialization and the extensions presented in this paper
strongly depend on the cardinality of the field bounds.
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TABLE 5
Analysis Time and Speedup for Class BinomialHeap (All Techniques, Remaining Methods)
Method Technique S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12
insert LI 00:00 00:00 00:01 00:10 01:09 07:03 41:36 243:03 TO
BLI 00:00 00:00 00:00 00:02 00:19 02:20 16:16 21:27 22:58 175:17 178:14 OOM
RBLI 00:00 00:00 00:00 00:02 00:16 02:20 16:32 21:49 23:13 172:55 175:57 OOM
BLISS 00:00 00:00 00:00 00:01 00:11 01:43 11:28 16:37 17:35 135:10 136:12 OOM
BLISSDB 00:00 00:00 00:00 00:01 00:11 01:42 11:25 16:20 17:52 131:25 136:09 OOM
Speedup 1X 1X 1X 10X 6X 4X 3X 14X >33X >4X >>4X
delete LI 00:00 00:00 00:01 00:23 07:13 129:06 OOM
BLI 00:00 00:00 00:01 00:13 04:50 80:44 OOM
RBLI 00:00 00:00 00:00 00:05 02:37 56:53 OOM
BLISS 00:00 00:00 00:00 00:05 01:46 34:39 500:29 OOM
BLISSDB 00:00 00:00 00:00 00:05 01:47 35:53 OOM
Speedup 1X 1X 1X 4X 4X 3X 00
extractMin LI 00:00 00:00 00:00 00:03 00:44 10:20 135:08 OOM
BLI 00:00 00:00 00:00 00:01 00:23 04:59 60:16 297:53 OOM
RBLI 00:00 00:00 00:00 00:00 00:13 04:35 57:40 289:32 OOM
BLISS 00:00 00:00 00:00 00:00 00:12 03:45 45:20 223:15 OOM
BLISSDB 00:00 00:00 00:00 00:00 00:12 03:45 45:54 222:45 OOM
Speedup 1X 1X 1X 3X 3X 2X 2X 00
trace_L1 LI 00:00 00:00 00:04 00:49 11:39 183:29 OOM
BLI 00:00 00:00 00:02 00:22 07:03 112:03 OOM
RBLI 00:00 00:00 00:01 00:10 03:58 77:53 OOM
BLISS 00:00 00:00 00:01 00:10 02:45 50:08 OOM
BLISSDB 00:00 00:00 00:01 00:10 02:48 49:50 OOM
Speedup 1X 1X 4X 4X 4X 3X
trace_L2 LI 00:02 00:33 09:13 174:40 OOM
BLI 00:02 00:07 02:58 60:29 OOM
RBLI 00:02 00:07 01:46 27:56 OOM
BLISS 00:02 00:07 01:36 23:43 OOM
BLISSDB 00:02 00:07 01:36 23:37 OOM
Speedup 1X 4X 5X 7X
trace L3 LI 00:47 16:26 OOM
BLI 00:47 03:12 136:58 OOM
RBLI 00:47 03:25 77:47 OOM
BLISS 00:47 03:16 68:12 OOM
BLISSDB 00:47 03:16 68:51 OOM
Speedup 1X 5X o0

Second, in the BLISS technique both the cost of performing
SAT checks and the corresponding pruning depend on the
strength of the class invariant. Class BinTree is particularly
interesting because, unlike the other classes in our bench-
mark, its adapted “hybrid” class invariant can precisely deter-
mine the infeasibility of partially symbolic structures. Under
these circumstances, TACO bounds will not contribute, either
by producing significant analysis speedups or by reducing
the number of collected partially symbolic structures for test
generation, when compared with those produced by LI. This
is experimentally confirmed in Tables 6 and 10.

5.1 Experimental Setup

Throughout this section times are presented following the
pattern mmm: ss. “TO” (timeout) means failure to complete
the analysis within 10 hours. “OOM” (out of memory) indi-
cates failure to complete due to exhaustion of the 4 GB of
JVM heap memory. TACO field bounds were not recom-
puted as part of the experiments for this paper. Instead, the

databases of previously computed TACO bounds for the
data structures involved in the experiments were reused.
Computing field bounds, as put forward in [10], requires
checking, via SAT-solving, the feasibility of each tuple in
the corresponding field’s semantic domain. Thus, a large
number of SAT queries, which depend on the scope, must
be performed. However, these checks are all independent
from one another, and thus lend themselves to paralleliza-
tion. Indeed, the approach proposed in [10] to compute tight
field bounds uses a cluster. The paper includes the time
required to compute bounds for the classes used in this
paper, using a cluster of 16 identical quad-core PCs (64 cores
total), each featuring two Intel Dual Core Xeon processors
running at 2.67 GHz, with 2 MB (per core) of L2 cache and
2 GB (per machine) of main memory. Such hardware is
older and significantly slower than the one used in this
paper (to be described in the next paragraph). The time may
be significant (for instance, for red-black trees with up to 20
nodes it took 40:37, and for AVL trees with up to 20 nodes it
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TABLE 6
Analysis Time and Speedup for Class BinTree (All Techniques)
Method Technique S05 S06 S07 S08 S09 S10 S11 S12 S13 S14
bfs LI 00:00 00:01 00:02 00:05 00:15 00:42 03:51 OOM
BLI 00:00 00:00 00:01 00:03 00:11 00:43 02:46 OOM
RBLI 00:00 00:00 00:01 00:02 00:06 00:17 01:00 03:42 OOM
BLISS 00:00 00:00 00:01 00:03 00:10 00:38 02:44 OOM
BLISSDB 00:00 00:01 00:02 00:04 00:13 00:52 03:06 OOM
Speedup 1X 1X 2X 2X 2X 2X 3X 00
dfs LI 00:00 00:00 00:01 00:04 00:11 00:57 03:44 OOM
BLI 00:00 00:00 00:01 00:03 00:11 00:43 02:46 OOM
RBLI 00:00 00:00 00:01 00:03 00:09 00:25 01:35 06:20 26:53 OOM
BLISS 00:00 00:00 00:01 00:03 00:10 00:38 02:44 OOM
BLISSDB 00:00 00:01 00:01 00:06 00:26 01:30 08:07 OOM
Speedup 1X X X X 1X 2X 2X 00 00
repOK LI 00:00 00:01 00:03 00:10 00:34 02:03 07:40 OOM
BLI 00:00 00:01 00:03 00:09 00:30 01:46 06:37 24:17 OOM
RBLI 00:00 00:01 00:03 00:08 00:24 01:22 04:48 OOM
BLISS 00:00 00:01 00:03 00:09 00:29 01:43 06:28 OOM
BLISSDB 00:00 00:01 00:04 00:13 00:45 02:41 09:45 OOM
Speedup 1X 1X X X 1X X X 00
count LI 00:00 00:00 00:01 00:04 00:13 00:53 03:43 OOM
BLI 00:00 00:00 00:01 00:03 00:10 00:27 01:48 07:30 OoOM
RBLI 00:00 00:00 00:01 00:03 00:08 00:23 02:08 OOM
BLISS 00:00 00:00 00:01 00:04 00:13 00:45 03:58 OOM
BLISSDB 00:00 00:01 00:02 00:05 00:24 01:23 08:01 OOM
Speedup 1X 1X X 1X 1X 2X 2X 00

took 168:23 to compute the TACO bounds). Still, since
bounds are used in the analysis of all methods in a class,
and even across tools (these same bounds were used in
TACO [11] and MUCHO-TACO [19] analyses), these
bound computation times are amortized. For instance,
red-black tree bounds for scope 20 were used in three
methods in [11], in three methods in [19], and in nine
methods (from classes TreeSet and TreeMap) in this

paper. For each method in this paper we used the bounds
along the analysis with BLI, RBLI, BLISS and BLISSDB.
Therefore, these specific bounds were used 42 times. This
makes the total time (40:37) contribute 00:58 to each analy-
sis, which does not significantly alter the speedups
achieved. Regarding the bound computation for class
AvlTree, the TACO bounds for scope 20 were used in four
methods in [11], in three methods in [19], and in six

TABLE 7
Analysis Time and Speedup for Class LinkedList (All Techniques)
Method Technique S10 S11 S12 S13 S14 Sl S16 S17 S18 S19 S20
repOK LI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
BLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
RBLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
BLISS 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:01 00:01 00:01
BLISSDB 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:01  00:01
Speedup 1X 1X X 1X 1X X 1X 1X X 1X 1X
add LI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
BLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
RBLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
BLISS 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00  00:00
BLISSDB 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
Speedup 1X 1X X 1X 1X X 1X 1X 1X 1X 1X
remove LI 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16  00:18
BLI 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16  00:18
RBLI 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16  00:18
BLISS 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:14 00:16  00:19
BLISSDB 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16  00:19
Speedup 1X 1X X 1X 1X X 1X 1X 1X 1X 1X
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TABLE 8
Methods, Best Technique and Maximum Speedup
Method Best technique Speedup
BinHeap.bfs BLISS/BLISSDB 36,000X
AvlTree.bfs BLISSDB 326X
TreeSet.bfs BLISSDB 188X
AvlTree.contains BLI/RBLI/BLISS/BLISSDB 188X
TreeSet.repOK BLISSDB 77X
AvlTree.dfs BLISS/BLISSDB 50X
TreeSet.add BLISSDB 43X
BinHeap.insert BLISSDB 33X
BinHeap.repOK RBLI 28X
BinHeap.dfs RBLI 24X
TreeSet.contains BLI/RBLI/BLISS/BLISSDB 14X
BinHeap.extractMin(Bug)  BLISS 12X
AvlTree.insert BLISS 10X
BinHeap.trace L2 BLISSDB 7X
AvlTree.remove BLISS 6X
TreeMap.trace L2 RBLI 5X
TreeMap.trace L1 BLI/RBLI/BLISS/BLISSDB 5X
AvlTree.repOK BLISSDB 5X
BinHeap.trace L3 RBLI/BLISS 5X
TreeSet.dfs RBLI 4X
BinHeap.trace L1 BLISS 4X
BinHeap.delete RBLI/BLISS/BLISSDB 4X
TreeMap.trace_L3 RBLI 3X
BinHeap.extractMin RBLI /BLISS/BLISSDB 3X
BinTree.bfs RBLI 3X
TreeSet.remove BLI/RBLI 2X
BinTree.dfs RBLI 2X
BinTree.count BLI/RBLI 2X
BinTree.repOK RBLI 1X
LinkedList.repOK LI/BLI/RBLI/BLISS/BLISSDB 1X
LinkedList.add LI/BLI/RBLI/BLISS/BLISSDB 1X
LinkedList.remove LI/BLI/RBLI/BLISS/BLISSDB 1X

methods in this paper (each one of the latter using the
bounds during BLI, RBLI, BLISS and BLISSDB analyses).
Thus, the total bound computation time in this case
(168:23), contributes 5:26 to each of the 31 performed anal-
yses. Again, adding this time to our analysis times has a
minor impact on most experiments.

All new experiments reported in this paper were run on
an Intel Core i7-2600 processor with a 3.40 GHz clock speed
and 8 GB DDR3 RAM, running Linux 3.2.0. All times are
wallclock times as provided by SPF. 4 GB of heap memory
were allocated for the Java virtual machine.

5.2 Experimental Results

Tables 1, 2, 3, 4, 5, 6, and 7 report the analysis times for tech-
niques LI, BLI, RBLI, BLISS and BLISSDB, on all the afore-
mentioned classes and methods, for various scopes. The
lowest analysis times are highlighted, and the correspond-
ing speedup is then reported as the quotient of the analysis
time required by LI and the best analysis time among those
reported for BLI, RBLI, BLISS and BLISSDB. Note that in
some cases, LI runs out of memory while the other techni-
ques do not. In those cases we report an infinite speedup
(00). This happens in 20 methods. Particularly interesting
are the cases for methods TreeSet.bfs and AviTree.bfs,
where LI runs out of memory by scope 14 and 13, respec-
tively, whereas BLISS and BLISSDB are able to reach scopes
17 and 20, respectively.

NO. X, XXXXX 2015

Looking at the speedups for method BinomialHeap.bfs in
Table 4, we see that for scopes 15 through 20, “>" symbols
pile up. For scope 15, the explanation for such notation is
simple: if the actual analysis time was 10 hours, the speedup
would be 36,000X. However, since the analysis timed out at
10 hours (but could have taken possibly much longer to
complete), all that we can conservatively affirm is that the
speedup is at least 36,000X. Analysis times typically grow
exponentially as the scope is increased. For scope 16,
although we can only guarantee a 36,000X speedup, due to
the exponential growth in analysis times it is likely that the
actual speedup is much larger (noted by >>) than 36,000X.
The same principle applies to even larger scopes; in order to
remind the reader of the exponential growth in analysis
times, we add another “>" symbol for each scope.

In Table 8 we sort the 32 methods in our experimental
evaluation by maximum speedup achieved. The listing
also includes the technique that yielded said speedup.
We focus on those analyses where memory was not
exhausted. Therefore, infinite speedups are dismissed.
From Table 8 we see that 19 out of the 32 methods (59
percent) achieve a speedup greater than or equal to 5X.
According to Table 10, for most of the methods where the
speedup was below 5X, the reduction in the number of
partially symbolic structures collected is significant. For
example, as shown in Table 9, out of the 13 methods
whose analysis speedup is below 5X, 6 reduce the corre-
sponding set of partially symbolic structures by more
than 50 percent. In fact, out of the 32 methods under anal-
ysis, 47 percent get their collected structures reduced by
more than 50 percent. This will yield considerable savings
in testing, since these structures will need to be solved to
build test suites.

The remaining seven methods, in which low speedups
and reductions on collected structures occurred, are the
following;:

1) BinTree.bfs,

2) BinTree.dfs,

3) BinTree.repOK,

4) BinTree.count,

5) - LinkedList.repOK,

6) LinkedList.add, and

7)  LinkedList.remove.

The fact that class BinTree does not lend itself well to
the techniques introduced in this paper should not be sur-
prising. This is due to the fact that BinTree is a class whose
adapted hybrid class invariant (characterizing whether a
partially symbolic structure can be extended to a binary
tree) can precisely determine the infeasibility of partially
symbolic structures. Therefore, as discussed just before
Section 5.1, there is no room for additional pruning bene-
fits beyond those achieved by using the hybrid invariant
within LI

As for the methods from class LinkedList, their analysis
times are almost negligible; therefore, there is hardly any
room for optimization. Still, LinkedList is the only class in
our benchmark that contains cyclic structures, and it
serves the purpose of showing that the techniques can be
applied to cyclic structures without problems or noticeable
overhead.
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public static void main(String[] args) throws Exception {

BinomialHeap X = new BinomialHeap ();
X = (BinomialHeap) Debug.makeSymbolicRef(”X”, X);
if (X != null && X.repOK_Concrete()){

X.extractMin ();

if (X.size != X.numNodes()){

throw new Exception ();
}

}
}

Fig. 14. Method extractMin(bug find) used as driver for SPF.

As shown in Fig. 10, we use the methods in the bench-
mark as drivers that lead the execution of SPF until the state
space determined by the methods is exhausted. Notice that
we are not looking for existing bugs; moreover, the try-catch
block surrounding the method call masks any runtime
exception that might be caught by SPF. Therefore, a valid
question is to what extent the proposed techniques contrib-
ute toward finding bugs. Method extractMin in class
BinomialHeap contains a nontrivial bug, first detected in
[10]. Method extractMin(bug find) from class BinomialHeap
denotes use of the “main” method shown in Fig. 14. This
driver executes method extractMin until a state in which
field size is incorrectly set is found. This bug requires a
structure with at least 13 nodes to be exhibited. In Table 4,
cells that correspond to experiments in which the bug is
found are highlighted. In scope 13 we observe that our tech-
niques produce a 2X speedup. It is interesting to note that
when the scopes are increased, the speedup grows as well,
reaching 12X for scope 20.

5.3 Implementation Details

BLISS and its related techniques were implemented on top
of the standard distribution of SPF downloadable from [26].
The techniques presented in this paper are included as alter-
natives to LI, which is implemented in class GETFIELD. To
guarantee that the LI experiments remain unbiased by the
introduction of the new techniques, we left class GETFIELD
untouched and introduced a new class GETFIELDBounded
that incorporates the new techniques.

The standard SPF distribution [26] does not include a
clear mechanism for introducing the hybrid preconditions.
Executing the hybrid preconditions was necessary in order
to make a fair evaluation. Therefore, we introduced a
generic mechanism that allows the user to include hybrid
preconditions in the class under analysis. These are exe-
cuted during LI using Java’s reflection mechanism.

5.4 Threats to Validity

BLISS requires the user to provide a representation invari-
ant for the class under analysis in both imperative and
declarative forms (e.g., as both a repOK method and a JML
predicate). This requirement could be perceived as a limita-
tion, especially in situations where one of the versions is
available but the other one is not. Our experience, however,
suggests that the hardest task is usually that of writing the
first invariant in a correct and complete fashion, in either
form. Once that is successfully accomplished, translating
the correct and complete invariant to the other paradigm is
a comparably much simpler matter.

left right left

right left

null null null null

left right left

null null null

left

null null null

null null null null null

Fig. 15. Nonempty red-black trees with up to three nodes generated by
Korat.

While the techniques introduced in this paper were proven
theoretically sound and complete, we have not verified the
implementation as formally correct: the code may contain
errors. However, we have checked that the experimental
results are consistent across tools. In particular, the number
of structures generated when analyzing method repOK is
consistent with the number of structures generated by Korat
[1] for all classes except TreeSet. The difference for class
TreeSet is explained by the fact that all techniques in this
paper (including LI) keep the node coloring symbolic.
Therefore, trees with the same structure that differ only in
coloring are collapsed into a single structure. For example,
for scope 3 (i.e., structures with up to three nodes), Korat
produces the five nonempty structures depicted in Fig. 15.
If we instead look at the structures generated by SPF, we
only get four nonempty structures. This is due to the fact
that the two structures shown inside the box are collapsed
by SPF into a single structure.

6 RELATED WORK

Constraint-based bounded verification has its origins in
[13], where a translation from annotated code to SAT is pro-
posed and off-the-shelf SAT-solvers are used in order to
determine the existence of bugs in the code under analysis.
Several articles suggest improvements over [13]. For
instance, [21] uses properties of functional relations to
improve Java code analysis, and provides improvements
for integer and array analyses. Bounded verification can be
performed modularly, as shown in [8]. In [10], the use of
tight field bounds allowed for a significant improvement on
bounded verification, which we leveraged in [12], as well as
in the techniques presented in this paper.

Symbolic execution and bounded verification were com-
bined in [20]. Symbolic execution was used to build path
conditions that were later solved using bounded verifica-
tion. Bounds have also been used in the context of symbolic
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TABLE 9
Number of Partially Symbolic Structures Collected by Each Technique, and Corresponding Reduction Compared to LI
Method Technique S03 S04 S05 S06 S07 S08 S09 S10 S11 S12
TreeSet.dfs LI 8 22 64 196 625 2,055 6,917 23,713 82,499 OOM
BLI 4 14 20 92 385 1,511 3,909 16,353 64,835 -
RBLI 4 8 14 42 151 555 1,657 6,083 22,953 -
BLISS(DB) 4 8 14 26 55 95 141 217 407 -
Reduction 50% 63% 78% 86% 91% 95% 98% 99.1% 99.6%
BinHeap.trace L1 LI 40 119 349 1,049 OOM
BLI 31 77 251 659 -
RBLI 9 20 77 363 -
BLISS(DB) 25 43 130 547 -
Reduction 37% 63% 62% 47%
BinHeap.delete LI 16 58 196 647  OOM
BLI 12 37 144 416 -
RBLI 9 20 77 363 -
BLISS(DB) 9 18 68 327 -
Reduction 43% 68% 64% 49%
TreeMap.trace L3 LI 775  OOM
BLI/RBLI/BLISS(DB) 219 -
Reduction 71%
BinHeap.extractMin LI 8 19 45 117 291 OOM
BLI 6 14 38 98 254 -
RBLI/BLISS(DB) 5 8 20 96 252 -
Reduction 36% 57% 55% 17% 14%
TreeSet.remove LI 24 104 417 1,542 5,367 17,957 58,542 187,710 595,651 OOM
BLI 8 56 100 643 2,988 11,912 27,395 106,510 388,824 -
RBLI 8 47 91 535 2,414 9,642 22,538 87,156 317,473 -
BLISS(DB) 8 47 91 493 2,229 8,933 20,242 79,621 OOM -
Reduction 66% 54% 78% 68% 58% 50% 65% 57% 46%

execution; tools like Kiasan [6] and SPF [17] limit the length
of reference chains. In [23] symbolic execution was used to
generate tests for container classes closely resembling the
ones used in this paper to assess our techniques. Several dif-
ferent approaches were used (in [23]) for test generation,
including symbolic execution of repOK, but no relational
field bounds were considered. All techniques that resort to
symbolic execution can benefit from using the mechanisms
associated with the techniques presented in this paper. For
example the “lazier” [6] and “lazier#” [7] algorithms delay
the concretization of a reference (much more so than stan-
dard lazy initialization), but eventually, when required, the
approaches presented here can limit the number of choices
for concretization.

Although symbolic execution is a white-box technique, it
is worth mentioning that, when analyzing code that manip-
ulates complex data, one can keep the structures concrete
by taking a black-box approach to calling just methods that
use the structures. Here, however, we are interested in
doing symbolic execution of methods that take symbolic
structures as input. For a detailed comparison of white-box
versus black-box approaches to analyzing structures, the
interested reader is referred to [23].

Green [24] is a technique that aims at providing a simple,
canonical interface to a constraint solver in order to enable
the recycling of results from one analysis run in future anal-
ysis runs. Although it is designed to be used in the context

of symbolic execution, it targets the solving of path condi-
tions. The DB component of BLISSDB cannot be easily
substituted with Green due to the fact that the auxiliary
solver checks used by BLISS (as explained in Section 4) are
based on the translation of declarative invariants, not on
path conditions.

7 CONCLUSIONS AND FURTHER WORK

Relational field bounds have been successfully used in the
context of bounded exhaustive bug finding, in order to
increase analysis scalability. They have also been used
for the improvement of generalized symbolic execution
(symbolic execution extended to deal with programs that
manipulate heap-allocated data structures) through an
enhancement of lazy initialization called bounded lazy ini-
tialization [12]. In this paper, we built upon BLI and intro-
duced novel techniques that further improve the efficiency
of symbolic execution via two mechanisms: bound refine-
ment and auxiliary feasibility (SAT) checks along the sym-
bolic execution process. We showed that these mechanisms,
jointly realized in a prototype called BLISS, significantly
improve symbolic execution when compared to traditional
LI and to BLI. Furthermore, we showed that BLISS can be
improved even further by caching SAT checks, since many
of these are repeated when carrying out the same analysis
for different (typically increasing) scopes. We carried out
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TABLE 10
Reductions in Test Suite Size Achieved by BLISS
Class Method MaxScope #LI #BLISS  Red. (%)
TreeSet bfs 13 1,033,411 1,767 99.8
dfs 11 82,499 407 99.5
repOK 9 212 212 0
contains 16 65,535 8,191 87.5
add 9 141 141 0
remove 10 187,710 79,621 57.5
TreeMap trace L1 10 209,343 77,662 62.9
trace L2 6 35,701 10,038 71.8
trace L3 3 775 219 71.7
AvlTree  bfs 12 290,511 425 99.8
dfs 11 82,499 241 99.7
repOK 12 425 425 0
contains 15 32,767 511 98.4
insert 9 1,640 477 70.9
remove 7 2,297 396 82.7
BinHeap bfs 14 4,240 15 99.6
dfs 17 6,764 18 99.7
repOK 20 21 21 0
insert 8 224 184 17.9
delete 6 647 327 49.5
extractMin 7 291 252 13.5
extractMiny,,, 20 9 9 0
trace L1 6 1,049 547 47.9
trace 1.2 4 960 264 72.5
trace_L3 2 103 84 18.5
BinTree  bfs 13 1,033,411 1,033,411 0
dfs 13 1,033,411 1,033,411 0
repOK 13 1,033,411 1,033,411 0
count 13 1,033,411 1,033,411 0
LList repOK 20 20 20 0
add 20 2 2 0
remove 20 16,234 16,234 0

experiments with classic data structure implementations
that show the benefits of incorporating our techniques into
Symbolic PathFinder, enabling the tool to effectively work
with data structures whose size exceed the tool’s previous
capabilities (in time and/or space), with the goal of both
systematically exploring program paths and automatically
generating test inputs. Our experiments showed that, com-
pared to LI and BLI, BLISS can reduce the time required to
systematically explore program paths by up to four orders
of magnitude, and that it generally reduces the number of
structures obtained during path exploration (which have to
be concretized using SMT solving to build test suites) by
over 50 percent, with reductions of over 90 percent in some
cases, compared to LI. We also showed that these reduced
collections of partially symbolic structures retain exactly the
same coverage as the much larger collections that would be
obtained using LI, since our techniques only remove spuri-
ous structures.

As explained in Section 2.1.1, some constraints are harder
to generalize (in order to admit partially symbolic struc-
tures) as hybrid preconditions than others. Even if some of
the harder ones could perhaps be generalized by hand
(albeit possibly at the cost of introducing new errors), we
showed that some constraints do not lend themselves to be
captured by a hybrid invariant at all. This can become a
nontrivial obstacle for the usability of symbolic execution

on programs dealing with heap-allocated structures, consid-
ering that a hybrid invariant is a necessary prerequisite of
all the techniques involved, starting with (and including)
traditional LI

In this context, we conclude that the BLISS techniques are
particularly effective for the verification of classes whose
concrete repOK cannot be easily and/or completely cap-
tured by the hybrid invariant. Our experimental results
show that BLISS obtains better results on classes with less
precise hybrid invariants, where there is room for improve-
ment, i.e., some distance between the concrete and hybrid
invariants’ pruning power that can be compensated by
BLISS.

The new techniques require precomputed field bounds
for the fields of the program under analysis. Computing
tight field bounds as explained in [10] requires a large num-
ber of satisfiability queries, which are independent and can
therefore be parallelized. Hence, a cluster is used to com-
pute these bounds. We are working on alternative, more
efficient ways of computing bounds. In particular, we are
currently developing bound computation mechanisms that
can be run on a single workstation, with efficiency compara-
ble to the approach in [10], but which may lead to less pre-
cise (yet sound) bounds.

We also plan to integrate Green [24] into the BLISS distri-
bution. As explained in Section 6, Green is not a practical
substitute for the non-path-condition-related SAT checks
used by BLISS (which are cached by the BLISSDB mecha-
nism). Nevertheless, it could be a useful addition towards
obtaining the benefits of verdict caching on the SMT side
(i.e., to recycle path-condition-related SMT check results
across runs) as well. In particular, there are some cases
where the benefits of BLISS are eclipsed by a proportionally
large amount of runtime being invested in the SMT-solving
of path conditions. Incorporating Green could be an impor-
tant step towards improving effectiveness in such cases.

The techniques we presented aim at producing a com-
plete exploration of the state space. Yet, for instance, in the
context of bug finding, it could be more effective to replace
such completeness with new techniques to explore larger
structures. It might perhaps be useful to use overly refined
TACO bounds from larger scopes, which may allow us to
explore new structures at the expense of pruning valid
instances.
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