
1

Inferring Loop Invariants by Mutation,
Dynamic Analysis, and Static Checking

Juan P. Galeotti1, Carlo A. Furia2, Eva May1, Gordon Fraser3, and Andreas Zeller1

1 Chair of Software Engineering, Saarland University, Saarbrücken, Germany
2 Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland

3 University of Sheffield, UK

Abstract—Verifiers that can prove programs correct against their full functional specification require, for programs with loops,
additional annotations in the form of loop invariants—properties that hold for every iteration of a loop. We show that significant
loop invariant candidates can be generated by systematically mutating postconditions; then, dynamic checking (based on
automatically generated tests) weeds out invalid candidates, and static checking selects provably valid ones. We present a
framework that automatically applies these techniques to support a program prover, paving the way for fully automatic verification
without manually written loop invariants: Applied to 28 methods (including 39 different loops) from various java.util classes
(occasionally modified to avoid using Java features not fully supported by the static checker), our DYNAMATE prototype
automatically discharged 97% of all proof obligations, resulting in automatic complete correctness proofs of 25 out of the
28 methods—outperforming several state-of-the-art tools for fully automatic verification.

F

1 INTRODUCTION

D ESPITE significant progress in automating pro-
gram verification, proving a program correct

still requires substantial expert manual effort. For
programs with loops, one of the biggest burdens is
providing loop invariants—properties that hold at the
entry of a loop and are preserved by an arbitrary
number of loop iterations. Compared to other spec-
ification elements such as pre- and postconditions,
loop invariants tend to be difficult to understand and
to express, and even structurally simple loops may
require non-trivial invariants to be proved correct [1].

In this paper, we present and evaluate a novel
approach to improve the automation of full program
verification through the automatic discovery of suit-
able loop invariants. The approach is based on a
combination of static (program proving) and dynamic
(testing) techniques that complement each other’s ca-
pabilities. The key observation is that, given loop in-
variant candidates (assertions that may or may not hold
for the loops under analysis), an automatic testing tool
can efficiently weed out invalid candidates, whereas a
program verifier can promptly validate candidates—
and possibly use them to prove the program correct.
Thus, if we can produce a suitable set of plausible loop
invariant candidates, we have chances to prove the
program correct in a fully automatic fashion, without
need for additional annotations.

1.1 Running Example: Binary Search
Figure 1 shows binarySearch0, a helper method de-
clared in class java.util.Arrays in the standard Java

private static int binarySearch0(int[] a,
int fromIndex, int toIndex,
int key) {

int low = fromIndex, high = toIndex − 1;
while (low ≤ high) {
// midpoint of [low..high]
int mid = low + ((high − low)/2);
int midVal = a[mid];
if (midVal < key) low = mid+1;
else if (midVal > key) high = mid − 1;
else return mid; // key found

}
return −(low + 1); // key not found

}

Fig. 1. Binary search method in java.util.Arrays.

/*@
@ requires a 6= null;
@ requires TArrays.within(a, fromIndex, toIndex);
@ requires TArrays.sorted(a, fromIndex, toIndex);
@
@ ensures \result ≥ 0 =⇒ a[\result] = key;
@ ensures \result < 0
@ =⇒ ¬TArrays.has(a, fromIndex, toIndex, key);
@*/

Fig. 2. Pre- and postcondition of binarySearch0.

API. Method binarySearch0 takes a sorted array a; if
element key is found in a, it returns its index, other-
wise it returns a negative integer. Figure 2 formalizes
this behavior as pre- and postcondition written in

ar
X

iv
:1

40
7.

52
86

v4
 [

cs
.S

E
]

 5
 F

eb
 2

01
6

2

JML [2], using model-based predicates [3], represent-
ing implicit quantified expressions, with descriptive
names. For example, the predicate ¬TArrays.has(a,
fromIndex,toIndex, key) means that array a has no
element key over the interval range from fromIndex

(included) to toIndex (excluded). The specification of
Figure 2 is what we want to verify binarySearch0

against, and it would be required for any kind of
functional validation—be it based on testing or static
reasoning.

Fully automatic verifiers such as cccheck [4] (for-
merly known as Clousot [5]) or BLAST [6] fail to
establish the correctness of the annotated program. On
the other hand, auto-active verifiers such as ESC/Ja-
va2 [7]1 succeed, but only if we provide suitable
invariants for the loop in Figure 1, such as those in
Figure 3. Compared to pre- and postconditions, it is
much more difficult to write loop invariants, since
they capture implementation-specific details rather
than general input/output behavior. A method imple-
menting a different search algorithm would have the
same postcondition as binarySearch0’s, but proving it
correct would most likely require quite different loop
invariants.

24 /*@
25 @ loop_invariant fromIndex ≤ low
26 @ loop_invariant low ≤ high + 1
27 @ loop_invariant high < toIndex
28 @ loop_invariant ¬TArrays.has(a,fromIndex,low,key)
29 @ loop_invariant ¬TArrays.has(a,high+1,toIndex,key)
30 @*/

Fig. 3. Loop invariants required for verifying method
binarySearch0.

1.2 Summary of the DYNAMATE Approach
In this paper, we present an approach that automates
the functional verification of partial correctness of
programs with loops by inferring the required loop in-
variants. The approach combines different techniques
as illustrated in Figure 4. Initially, a static verifier
runs on the program code and its specification. If the
verifier fails to prove the program correct, a round of
four steps begins.

Step 1: test cases. To support dynamic invariant
detection, a test case generator builds executions of the
program that satisfy the given precondition.

1. Like most static verifiers working on real programming
languages, ESC/Java2 does not fully support a number of Java
and JML language features, which makes it an unsound tool in
general. In this work, we only deal with a subset of Java and JML
that excludes ESC/Java2’s unsupported features, and we always
use ESC/Java2 with the -loopSafe option for sound verification
of unbounded loops. Therefore, the rest of the paper refers to
ESC/Java2 as a sound but incomplete tool, with the implicit proviso
that we avoid exercising its known sources of unsoundness. See
Section 5.1 for more details about this issue with reference to the
case study.

(In the binarySearch0 example, a possible test case
searches for 5 in the array [0, 1, 2] and returns the
index −3.)

Step 2: candidate invariants. From the resulting
executions, an invariant detector dynamically mines
candidates for loop invariants. Our invariant detector
tools use fixed, generic patterns as well as variable
and specific patterns derived from the given postcon-
dition. The patterns systematically determine candi-
dates; only those candidates that hold for all execu-
tions are retained and go to the next stage.

(This step generates: high < toIndex using
the generic patterns; and ¬TArrays.has(a, high,

toIndex, key) from the postcondition. Neither is in-
validated by the test case with a = [0, 1, 2] and
key = 5, but the latter candidate does not hold in
general.)

Step 3: invariant verification. The surviving set of
loop invariant candidates are fed into a static program
verifier. The verifier may confirm that some candidates
are valid loop invariants.

(The program verifier confirms that high < toIndex

is a valid loop invariant, but rejects the other candi-
date.)

Step 4: program verification and refinement. Using
the verified invariants, the static verifier may also be
able to produce a proof that the program is correct
with respect to its specification. If the proof does
not succeed using the loop invariants inferred so far,
another round of generating, mining, and verifying
starts. If the verifier has left loop invariants unproved,
the test generator searches for executions that falsify
them, thus refining the set of candidates for the next
proof attempt.

(A test case searching for 2 in [0, 1, 2] reveals
that ¬TArrays.has(a, high, toIndex, key) is invalid:
it does not hold initially when high = toIndex− 1.)

We implemented this approach in a tool called DY-
NAMATE2, a fully automatic verifier for Java programs
with loops.

1.3 Loop Invariants from Postconditions

A key functionality in DYNAMATE is GIN-DYN, a
flexible mechanism for generating loop invariants.
While a vast amount of research on automatically
finding loop invariants has been carried out over the
years (Section 6), most approaches target restricted
classes of loop invariants (such as linear inequalities
over scalar numeric variables), which limits wide
applicability in practice. In fact, while ESC/Java2 can
handle full-fledged JML-annotated Java programs, it
provides no support for loop invariant discovery.

To overcome this limitation, in previous work [8],
[1] we introduced the idea of guessing invariant candi-

2. DYNAMATE = “Dynamic Mining and Testing”

3

dates based on mutations of the postcondition. The ratio-
nale for this idea is the observation that a loop drives
the program state towards a goal characterized by the
postcondition; a loop invariant, which characterizes
all program states reached by the loop, can then be
seen as a relaxation of the postcondition. Mutating
the postcondition is thus a way to obtain possible
loop invariant candidates. The fundamental challenge
in implementing this idea as a practically applicable
technique is dealing with the blow-up in the number
of candidates: generation is exponentially expensive
and too many useless candidates bog down the pro-
gram verifier with irrelevant or incorrect information.

In Section 4, we introduce the GIN-DYN technique,
which addresses this challenge. GIN-DYN uses dy-
namic checking to quickly weed out incorrect loop
invariant candidates, and static checking to prune
formally correct but redundant or irrelevant ones. This
way, the program verifier only has to deal with a
small, manageable set of likely useful loop invariants,
while the invariant generation process remains flex-
ible as it is not restricted to simple fixed assertion
patterns.

1.4 Experimental Evaluation

We conducted a case study that applied DYNAMATE
to 28 methods from the java.util classes in the
Java standard library, including the binarySearch0

Code + Spec

Dynamic Invariant Detector
(DAIKON + GIN-DYN)

Static Program Verifier
(ESC/Java2)

Test Generator
(EVOSUITE)

filtered candidatesexecutions

unproved candidates program proof

Fig. 4. How DYNAMATE works. The program code (cen-
ter) is first fed into a test case generator (left), which
generates executions covering legal behavior. From
these, two dynamic invariant detector tools (top) mine
possible loop invariants, based both on fixed patterns
(DAIKON) as well as postconditions (GIN-DYN). The
candidates not invalidated by the generated runs are
then fed (together with code and specification) into
a symbolic program verifier (right). The verifier then
may produce a program proof (bottom right), but may
also refute candidates, which initiates another round of
executions, and thus refined invariants.

method.3 DYNAMATE automatically discovered all
loop invariants in Figure 3 given the code and spec-
ification in Figure 1 and Figure 2, resulting in fully
automatic verification of the binarySearch0 method.
Across the whole case study, DYNAMATE discharged
97% of the proof obligations of all the methods, result-
ing in full correctness proofs for 25 of the 28 methods.
As we show in Section 5.3, these results correspond to
an over 20% improvement over state-of-the-art tools
for automatic verification, such as the CodeContracts
static checker, in terms of number of automatically
discharged obligations.

Being able to provide such fully automatic proofs
of real Java code is certainly promising. However,
we have to adjust our expectations: from a software
engineering perspective, the methods DYNAMATE can
prove are still very small. Unfortunately, the state
of the art is such that proofs of large, complex sys-
tems are simply impossible without significant man-
ual effort by highly-trained experts; and the intrinsic
complexity of formal verification indicates that they
will remain so for the foreseeable future. However,
if a critical function is similar in complexity to those
analyzed in our experiments—that is, mostly array-
based algorithm implementations with a handful of
loops and conditions—then there are chances that
DYNAMATE will be able to prove it. (And, if the proof
attempt fails, no human effort is wasted.) From a veri-
fication perspective, being able to conduct such proofs
automatically on practical functions from production
code is an important goal; DYNAMATE neither expects
nor requires any loop annotation, user interaction, or
expert knowledge.

1.5 Summary of Contributions
The main contributions of this paper are:

1) DYNAMATE: an algorithm to automatically dis-
charge proof obligations for programs with loops,
based on a combination of dynamic and static
techniques.

2) GIN-DYN: an automatic technique to boost the
dynamic detection of loop invariants, based on
the idea of syntactically mutating postcondi-
tions [8].

3) A prototype implementation of the DYNAMATE
algorithm that integrates the EVOSUITE test case
generator, the DAIKON dynamic invariant detec-
tor, and the ESC/Java2 static verifier, as well as
GIN-DYN.

4) An evaluation of our DYNAMATE prototype on a
case study involving 28 methods with loops from
java.util classes.

5) A comparison against state-of-the-art tools for
automatic verification based on predicate abstrac-

3. As Section 5.1 explains in detail, we occasionally modified the
methods to remove features unsupported by ESC/Java2—without
changing the methods’ input/output behavior.

4

tion, abstract interpretation, and constraint-based
techniques.

The remainder of this paper is organized as follows.
Section 2 overviews the DYNAMATE algorithm in
general, followed by a description of the current pro-
totype in Section 3. Section 4 describes in more detail
the GIN-DYN technique for loop invariant detection.
Section 5 evaluates DYNAMATE on a case study con-
sisting of Java code from selected java.util classes.
Section 6 discusses related work in loop invariant
detection. Section 7 closes with conclusions and future
work.

2 OVERVIEW OF THE DYNAMATE ALGO-
RITHM

DYNAMATE builds on an interplay of three compo-
nents: a test case generator, a dynamic invariant de-
tector, and a static verifier. The algorithm is applicable
to any language that offers three such components.

The DYNAMATE algorithm, illustrated in Algo-
rithm 1, inputs a program M and its specification—
a precondition P and a postcondition Q. Two out-
comes of the algorithm are possible: success means that
DYNAMATE has found a set of valid loop invariants
that are sufficient to statically verify M against its
specification (P,Q); failure means that DYNAMATE
cannot find new valid loop invariants, and those
found are insufficient for static verification. Even in
case of failure, the valid loop invariants found by DY-
NAMATE have a chance of enabling partial verification
by discharging some proof obligations necessary for
a correctness proof.

Algorithm 1 The DYNAMATE algorithm
Require: Program M , precondition P , postcondition
Q
TS ← ∅ (set of tests)
INV ← ∅ (set of verified loop invariants)
C ← ∅ (set of candidates)
while static verifier cannot prove (M,P,Q, INV)
do

T ← execute test case generator on (M,P,C)
TS ← TS ∪ T
I ← execute invariant detector on (M,TS)
if I has not changed then

return (“failure”, INV)
end if
M̂ ← annotate M with candidate invariants I
J ← statically check valid invariants of (M̂, P)
INV ← INV ∪ J
C ← I \ INV

end while
return (“success”, INV)

DYNAMATE’s main loop starts by executing the
test case generator, which produces a new set T

of test cases that exercise M with inputs satisfying
the precondition P . The loop feeds the overall set
TS of test cases generated so far to the dynamic
invariant detector, which outputs a set of candidate
loop invariants I . We call them “candidates” because
the invariant detector summarizes a finite set of runs,
and hence it may report assertions that are not valid
loop invariants in general.

To find out which candidates are indeed valid,
DYNAMATE calls the static verifier on the program
annotated with all candidates I ; the verifier returns
a set of proved candidates J (a subset of I), which
DYNAMATE adds to the set INV of verified loop
invariants.

Then, using the current INV , it calls the static
verifier again, this time trying a full correctness proof
of M against (P,Q). If verification succeeds, DY-
NAMATE terminates with success. Otherwise, DYNA-
MATE’s main loop continues as long as the invariant
detector is able to find new candidate invariants,
to invalidate previous candidates, or both. The loop
may also diverge, keeping on finding new candidate
invariants until it runs out of resources.

Since we assume a static verifier that is sound
but incomplete, unproved candidates in I \ INV are
not necessarily invalid. Thus, in case of failed proof,
DYNAMATE relies on the test case generator to create
executions of M that invalidate as many unproved
candidates in C as possible.

3 HOW DYNAMATE WORKS

This section details how DYNAMATE works, using
binarySearch0 as running example.

3.1 Input: Programs and Specifications
Each run of DYNAMATE takes as input a Java method
M with its functional specification consisting of pre-
condition P and postcondition Q. Pre- and postcon-
dition are written in JML [2]: an extension of the
Java syntax for expressions that supports standard
logic constructs such as implications and quantifiers.
P and Q generally consist of a number of clauses,
each denoted by the keyword requires (precondition)
and ensures (postcondition); clauses are implicitly
logically conjoined. In Figure 2, for example, the
precondition has three clauses and the postcondition
has two.

While DYNAMATE can work with JML specifications
in any form, we find it effective to follow the princi-
ples of the model-based approach to specification (in-
troduced with JML [2] and developed in related work
of ours [3], [9]). Specifications refer to underlying
mathematical models of the data structures involved;
a collection of predicates encapsulate the assertions
relevant to the application domain and express them
abstractly in terms of the underlying models. The
specification of binarySearch0 in Figure 2 follows this

5

approach, as it uses the predicates within, sorted, and
has, which are collected in a class TArrays providing
notation to capture facts about integer array-like data
structures.

Following the model-based specification style en-
tails three main advantages for our work. First, it
improves the abstraction and clarity of specifications,
and hence it also facilitates reuse with different im-
plementations. For instance, it should be clear that
has(a, fromIndex, toIndex, key) means that array a

contains a value key within fromIndex and toIndex.
Using predicate has also abstracts several details
about how arrays are implemented, such as whether
they are zero-indexed; in fact, we would write the
same specification even if a were, say, a dynamic
list and fromIndex and toIndex two pointers to list
elements. Predicates are defined only once and then
reused for all methods working in a similar domain;
in fact, for our experiments (Section 5) we developed
a small set of predicates in two classes (TArrays and
TLists), which were sufficient to express the specifi-
cation and loop invariants of all 28 methods used in
the evaluation.

Second, model-based specifications also make it
easy to reconcile static and a runtime semantics. When
developing predicates in TArrays we defined each
predicate as a static boolean method with both a Ja-
va implementation and a JML specification. For exam-
ple, has’s precondition declares its domain of defini-
tion (in words: a is not null and [fromIndex..toIndex)

is a valid interval within a’s bounds); its postcondition

∃ int i; fromIndex ≤ i ∧ i < toIndex ∧ key = a[i]

defines the static semantics of the predicate using
explicit quantification and primitive operations; its
implementation recursively searches through a for an
element key and returns true iff it finds it within
fromIndex and toIndex. Dynamic tools will then use its
implementation to check whether a predicate holds;
static tools will instead understand a predicate’s se-
mantics in terms of its JML specification.

A third advantage of using model-based specifica-
tions is leveraged by the DYNAMATE approach and
more precisely by the GIN-DYN invariant detector
described in Section 4. Collections of predicates such
as TArrays provide useful domain knowledge, as they
suggest which predicates are likely to be pertinent to
the specification of the methods at hand: if a method’s
postcondition Q includes a predicate p from some
class T , it’s likely that the loop invariants necessary
to prove Q also include p or some other predicates
defined in T .

3.2 Test Case Generation
The DYNAMATE algorithm needs concrete executions
to dynamically infer loop invariants: DAIKON mines

private static int binarySearch0(int[] a,
int fromIndex, int toIndex,
int key) {

// Precondition clause:
// TArrays.sorted(a,fromIndex,toIndex)
if (¬TArrays.sorted(a,fromIndex,toIndex))
throw new AssertionError("Failed precondition");

...

Fig. 5. Runtime check for a precondition clause of
binarySearch0’s.

relations that hold in all passing test cases (Sec-
tion 3.3); and GIN-DYN filters out invalid loop in-
variant candidates that are falsified by a test case (Sec-
tion 4). While any test case generator could work with
DYNAMATE, our prototype integrates EVOSUITE [10],
a fully automatic search-based tool using a genetic
algorithm. Besides being a fully automated tool, a
specific advantage of EVOSUITE is that its genetic
algorithm evolves test suites towards covering all pro-
gram branches at the same time, and hence infeasible
branch conditions (common in the presence of asser-
tions) do not ultimately limit search effectiveness.

Within DYNAMATE, EVOSUITE needs to generate
test cases that satisfy preconditions written in JML.
To this end, we instrument every method with an
initial check that its precondition holds: if it does not,
the instrumentation code throws an exception that
terminates execution and makes the test case invalid.
The instrumentation leverages the availability of a
runtime semantics for all specification predicates—
developed using the model-based style discussed in
Section 3.1.

One of binarySearch0’s preconditions requires that
the input array a be sorted within the range from
fromIndex to toIndex; Figure 5 shows the correspond-
ing instrumentation that calls the implementation of
the predicate sorted and throws an exception if it
evaluates to false.

Since EVOSUITE tries to maximize branch coverage,
it has a good chance4 of producing tests that pass
all precondition checks and thus represent valid ex-
ecutions according to the specification. For example,
EVOSUITE produces the valid test in Figure 6 where
the value −1030 is searched for in a trivially sorted
array initialized to all zeros.

3.3 Dynamic Loop Invariant Inference
At the core of the DYNAMATE algorithm lies a com-
ponent that detects “likely” loop invariants based
on the concrete executions provided by the test case
generator. The current DYNAMATE implementation
relies on two modules with complementary func-
tionalities. Simple boilerplate invariants (mostly in-
volving numeric relations between scalar variables

4. Due to randomization, success may vary between runs.

6

void test() {
// Element not found
int[] intArray = new int[8];
int intV = Arrays.binarySearch0(intArray, 0, 6, −1030);
}

Fig. 6. A test that covers the “not found” branch in
binarySearch0.

TABLE 1
Some loop invariant candidates produced by

DAIKON in the first iteration of DYNAMATE. Column
VALID reports which candidates are valid.

ID CANDIDATE VALID

c1 key ∈ {−1030, 0} NO
c2 a 6= null YES
c3 a[]’s elements one of {−915, 0} NO
c4 Arrays.INSERTION_THRESHOLD 6= toIndex NO
c5 low ≥ fromIndex YES
c6 low ≥ key NO
c7 high < toIndex YES
c8 high > key NO
c9 high ≤ a.length −1 YES
c10 toIndex > fromIndex NO

or basic array properties) come from DAIKON [11].
On top of it, GIN-DYN produces more complex
invariants—involving the same predicates used in the
specification—discovered by mutating postcondition
clauses.

DAIKON’s and GIN-DYN’s invariants are comple-
mentary; for example, neither one suffices for a cor-
rectness proof of binarySearch0. DAIKON invariants
are usually necessary as a basis to establish GIN-DYN
invariants (for example, to prove a predicate is well-
defined by ensuring absence of out-of-bound errors).
Therefore, we run DAIKON first and introduce GIN-
DYN invariants as soon as we reach a fixpoint in the
overall DYNAMATE algorithm. This scheme is flexible
and fosters an effective combination between loop
invariant inference techniques with complementary
advantages. The rest of this section describes how
DYNAMATE uses GIN-DYN and DAIKON.

3.3.1 Dynamic Invariant Detection with DAIKON

DAIKON [11] is a widely used dynamic invariant
detector which supports a set of basic invariant tem-
plates. Given a test suite and a collection of program
locations as input, DAIKON instantiates its templates
with program variables, and traces their values at the
locations in all executions of the tests. The instantiated
templates that hold in every execution are retained as
likely invariants at those locations. Likely invariants
are still just candidates (they may be invalid) because
they are based on a finite number of executions.

Since DYNAMATE needs loop invariants, it instructs
DAIKON to trace variables at four different locations
of each loop: before loop entry, at loop entry, at loop

exit, and after loop exit. To this end, we instrument
the input programs adding dummy methods invoked
at these locations, which gives access to all variables
within the loops without requiring modifications to
DAIKON.

DYNAMATE executes DAIKON on binarySearch0

using the initial test suite, which produces 62 loop
invariant candidates, most of which are invalid due
to the incompleteness of the initial test suite. Table 1
shows 10 of the 62 candidates; among others, c3 is
merely a reflection of the fact that the initial test suite
only put the values 0 and −915 in the arrays. Another
visible characteristic of these invariants is that they
are limited to simple properties, and hence they are
insufficient to prove binarySearch0’s postcondition. In
general, DAIKON templates give invariants that are
immediately useful to establish simple properties such
as absence of out-of-bound accesses, but are hardly
sufficient to prove full functional correctness.

3.3.2 GIN-DYN: Invariants from Postconditions
When the DYNAMATE algorithm reaches a fixpoint
without finding a proof, it is a sign that DAIKON
has run out of steam and more complex invari-
ants are required to make progress. For example,
binarySearch0’s loop invariants on lines 28–29 in
Figure 3 are never produced by DAIKON with its
standard templates.

Extending DAIKON with new templates is possible,
but even leaving implementation issues aside (e.g.,
DAIKON only includes non-static methods with no
arguments as predicates) we cannot anticipate all
possible forms a loop invariant may take. Instead,
we apply ideas introduced in our previous work [8]:
since loop invariants can be seen as relaxations of the
postcondition, syntactically mutating a postcondition
Q generates variants of Q which we use as sugges-
tions for invariant candidates. We turn this intuition
into a practically applicable technique by providing
GIN-DYN: a way to efficiently generate and filter out
a large amount of invalid or uninteresting invariant
candidates. Section 4 describes in detail how GIN-
DYN does the filtering, again based on a combina-
tion of dynamic and static techniques. The rest of
the current section briefly discusses how invariant
candidates produced by GIN-DYN are used within
DYNAMATE.

When it reaches a fixpoint, DYNAMATE asks GIN-
DYN for a new wave of invariant candidates, adds
them to the set of current candidates, and proceeds
with static validation, which is possibly followed by
other iterations of the main algorithm. Thus, GIN-
DYN and DAIKON invariant candidates are used in
the very same way; the fact that they nearly always
are disjoint sets increases the chance of eventually
getting to a complete set of invariants.

In fact, GIN-DYN produces the two fundamental
invariants on lines 28–29 in Figure 3 necessary for

7

a correctness proof of binarySearch0. The final set
of verified loop invariants includes those of Figure 3
with 28 more,5 consisting of 13 invariants found by
DAIKON and 20 invariants found by GIN-DYN.

3.4 Static Program Verification
In DYNAMATE, invariant candidates come from dy-
namic analysis; hence they are only educated guesses
based on a finite number of tests. The DYNAMATE
algorithm complements dynamic analysis with a static
program verifier, which serves two purposes: (1) veri-
fying loop invariant candidates, and (2) using verified
loop invariants to carry out a conclusive correctness
proof.

3.4.1 Verification of Loop Invariants
The DYNAMATE prototype relies on the ESC/Java2 [7]
static verifier, which works on Java programs and JML
annotations.

By default [12], ESC/Java2 handles loops un-
soundly by unrolling them a finite number of times;
but, by enabling the -loopSafe option, it encodes
the exact modular semantics of loops based on loop
invariants [13, Sec. 5.2.3].6 Therefore, DYNAMATE al-
ways calls ESC/Java2 with the -loopSafe option en-
abled.

To determine whether a candidate L is a valid
invariant of some loop `, DYNAMATE annotates ` with
the assertion loop_invariant L and runs ESC/Java2
on the annotated program. As part of verifying the
input, ESC/Java2 checks whether L is a valid loop
invariant, that is it holds initially and is preserved by
every iteration. DYNAMATE searches for ESC/Java2
warnings that signal whether checking L was suc-
cessful. Since ESC/Java2 is a sound but incomplete
tool,7 if it produces no warning about L, we conclude
that L is a valid loop invariant; if it does produce
a warning, it may still be that L is valid but the
current information (typically, in the form of other
loop invariants) is insufficient to establish it with
certainty.

Due to the undecidability of first-order logic,
ESC/Java2 may also time out or run out of memory,
which also counts as inconclusive output. In all such
cases, the DYNAMATE algorithm leverages the static/-
dynamic complementarity once again: it initiates an-
other iteration of testing, trying to conclusively falsify
the candidates that ESC/Java2 could not validate.

Invariant candidates to be validated may have de-
pendencies, that is proving that one candidate L1 is
valid requires to assume another candidate L2. To
find a maximal set of valid loop invariants, DYNA-
MATE applies the HOUDINI algorithm [14], which first

5. In this work, we do not address minimizing the number of
invariants.

6. See also: http://sourceforge.net/p/jmlspecs/mailman/
message/31579805/

7. On the Java code we apply it to: see Footnote 1

considers all candidates at once, and then iteratively
removes those that cannot be verified until all sur-
viving candidates are valid loop invariants. In the
binarySearch0 example, DAIKON produces 62 loop
invariant candidates in the first iteration. Running
ESC/Java2 determines that half of them are valid loop
invariants, among which c2, c5, c7, and c9 in Table 1.

3.4.2 Program Proof
At the end of each iteration, DYNAMATE uses the
current set of valid loop invariants to attempt a cor-
rectness proof of the program against its specification.
If ESC/Java2 succeeds, the whole DYNAMATE algo-
rithm stops with success; otherwise, it begins another
iteration with the goal of improving its invariant set.

The first iteration of DYNAMATE on binarySearch0

does not find a correctness proof, since the invariants
in Table 1 are insufficient to prove the specification in
Figure 2.

3.5 Refining the Search for Loop Invariants

Unproved loop invariant candidates may be over-
specific and hence unsound—such as c1 in Table 1.
Since this may indicate unexplored program behavior,
for every such candidate L, DYNAMATE adds the
conditional check

if (¬L) throw new AssertionError("L failed")

at the locations where loop invariants are checked.
The check is enclosed by a try/catch block, so that
testing L does not affect testing other candidates. This
directs EVOSUITE’s search towards trying to explore
the new conditional branch, and hence falsifying L.
This helps refine the dynamic detection of loop in-
variants by providing more accurate tests.

4 GIN-DYN: LOOP INVARIANTS FROM
POSTCONDITIONS

The postcondition Q of a method M characterizes the
goal state of M ’s computation; a loop ` in M ’s body
contributes to reaching the goal by going through a
series of intermediate states, which `’s loop invari-
ants characterize. Based on these observations [1], we
suggested [8] the idea of systematically mutating Q to
guess candidate invariants of `.

The throwaway prototype discussed in [8] did not
work on a real programming language, and required
users to manually select a subset of mutation oper-
ators to direct the generation of candidates. In fact,
applying these ideas in a fully automatic setting on
realistic programs requires to address two funda-
mental challenges: (a) providing a sweeping widely-
applicable collection of mutations, and (b) efficiently
discarding a huge number of invalid and uninterest-
ing mutations.

http://sourceforge.net/p/jmlspecs/mailman/message/31579805/
http://sourceforge.net/p/jmlspecs/mailman/message/31579805/

8

The GIN-DYN technique presented in this section
addresses these challenges by following a three-step
strategy:

1) Generate many mutants (i.e., variants) of Q’s
clauses, applying predefined generic sequences of
mutation operators.

2) Discard mutants that cannot be loop invariants
of ` because at least one test case exercising `
violates them.

3) Further prune valid but uninteresting loop in-
variants by eliminating those mutants that are
tautologies, that is that hold independent of the
specific behavior of `.

The mutants that survive both the validation and the
tautology elimination phases are in a good position
to be useful to establish Q by virtue of having been
derived from it. The following subsections detail the
three steps as they are available in DYNAMATE.

4.1 Generation of Mutants
The fundamental idea behind GIN-DYN is to syntacti-
cally mutate postcondition clauses by substituting an
expression for another one. The mutation algorithm
maintains a set M of mutants and, for each type
t, a set Et of available expressions of type t. M
initially consists of the clauses in postcondition Q, and
Eint and Eint[] include the integer and integer array
variables available in the current loop `. The basic
mutation operators (or just “mutations” for short)
used by GIN-DYN are the following:
• Substitution: given a mutant m ∈ M and an

expression e ∈ Et of type t, replace by e any
subexpression of type t in m. This generates as
many mutants as are subexpressions of type t in
m, which are added to M.

• Weakening: given a mutant m ∈ M and a
Boolean expression b ∈ Eboolean, add to M the
mutants b =⇒ m and ¬b =⇒ m.

• Aging: given a mutant m ∈ M, replace by e − 1
or e + 1 any subexpression e of type int in m.
This generates twice as many mutants as are
subexpressions of type int in m, which are added
to M.

In addition to these operators, the mutation algorithm
can extend the sets of available expressions, thus en-
abling a larger number of substitutions; in particular,
predicate extraction is the process of adding to the
set Eboolean of Boolean expressions all predicates
belonging to the same collection (such as TArrays) as
those in the postcondition (see Section 3.1).

Figure 7 shows one example of applying two
substitutions to binarySearch0’s second postcondition
clause: \result is replaced with low; and toIndex is re-
placed with mid. The produced mutant is clearly not a
useful loop invariant because its antecedent is always
false in the loop’s context. In contrast, the mutations
applied in Figure 8 produce one of binarySearch0’s

Q:
\result < 0 =⇒¬TArrays.has(a,fromIndex,toIndex,key)
; low < 0 =⇒¬TArrays.has(a,fromIndex,toIndex,key)
; low < 0 =⇒¬TArrays.has(a,fromIndex,mid,key)

Fig. 7. Mutations producing a valid but trivial loop
invariant.

Q:
\result < 0 =⇒¬TArrays.has(a,fromIndex,toIndex,key)
; ¬TArrays.has(a,fromIndex,toIndex,key)
; ¬TArrays.has(a,high,toIndex,key)
; ¬TArrays.has(a,high +1,toIndex,key)

Fig. 8. Mutations producing a valid and useful loop
invariant.

required loop invariants: predicate extraction adds
¬has(a, fromIndex, toIndex, key) to the set of avail-
able Boolean expressions; a first substitution uses it
to replace the whole postcondition; one further int

substitution of high for fromIndex and one application
of aging (turning high into high +1) determine a valid
loop invariant which is also useful in the correctness
proof.

4.1.1 Mutation Waves
The number of combined multiple substitutions dom-
inates the combinatorial complexity of generating mu-
tants: if we start with q postcondition clauses in M,
each having up to s subexpressions of some type
t, and we have e expressions of type t available,
applying all possible n consecutive t-type substitu-
tions builds a number of mutants in the order of
(qse)n. Therefore, for all but the most trivial cases
it is unfeasible to exhaustively apply more than few
multiple substitutions.

To mitigate this problem, the mutation algorithm
combines multiple applications of mutation opera-
tors (possibly with predicate extraction) to determine
complex mutants that may significantly differ from
the initial postcondition. GIN-DYN defines several
mutation sequences, which we call waves; each wave ω
combines a variable number of mutations, which are
applied exhaustively starting with the postconditions
and finally producing a set Mω of mutants.

The current implementation defines 16 waves; GIN-
DYN executes one or more waves in each iteration
of DYNAMATE’s main loop (Figure 4). The waves
are of three kinds: the first kind includes 7 waves
that all work by substituting integer expressions in
any postcondition clause; the second kind includes 4
waves that all work by substituting integer expres-
sions in any predicate, in negated or unnegated form,
appearing in the postcondition; the third kind includes
5 waves that all work by substituting integer expres-
sions in any predicate, in negated or unnegated form,

9

belonging to the same collection (TArrays or TLists)
as those in the postcondition. Waves of the same
kind differ in how many integer expressions each
generated mutant may contain (from one up to three),
in whether only parameterless integer expressions are
available for substitution (variables and parameterless
method calls), and in whether aging or weakening are
applied. Figure 9 describes one wave of each kind:
the first and the second wave produce the mutants in
Figure 7 and Figure 8.

KIND WAVE

1st M← Q ; int sub. ; int sub.
2nd M← {p ∈ Q ∩ boolean} ; int sub. ; aging
3rd M← {T.p ∈ boolean | ∃q : T.q ∈ Q} ; int sub. ; aging

Fig. 9. One example mutation wave of each kind.

The three kinds of waves try to cover the most
common patterns found in algorithms [1]: mutations
of the postcondition (1st kind), of some predicate in
the postcondition (2nd kind), of some predicate of the
same family of those in the postcondition (3rd kind).

Then, different waves of the same kind achieve
different trade-offs between combinatorial complexity
and exhaustiveness of the applied substitutions. If we
disregarded generation time completely, we would
retain only the most general wave of each kind (for
example, including as many three substitutions per
mutant as well as aging and weakening) and run it
to completion. Unfortunately, this would require an
exorbitant amount of time in most cases and, even
in the cases where it would not lead to combinato-
rial explosion, it would generate too many irrelevant
mutants. Instead, we introduce waves that are incre-
mentally more complex, so that the more amenable
algorithms do not require to run the most complex
waves at all. With the current implementation of GIN-
DYN, this solution has the drawback of introducing
redundancy in the generation of mutants, where some
later waves generate mutants that were already gen-
erated by previous waves (and hence are immediately
discarded). Implementing a mutation generation pro-
cess that avoids redundancies belongs to future work
(although the results in Section 5 indicate that muta-
tion generation is not the bottleneck in DYNAMATE).

DYNAMATE’s waves target substitutions only8 of
integer (int and Integer) expressions because they
are at the heart of so many algorithms and their
functional specifications [1] Applying DYNAMATE to
disparate varieties of programs may require introduc-
ing mutations involving substitutions of types other
than integer.

8. Note that substitutions of Boolean expressions are subsumed
by the process of predicate extraction.

4.2 Validation of Mutations
Each wave ω produces a setMω of mutants. Mutants
are educated guesses; the large majority of them are
not loop invariants of ` and must be discarded. To
determine whether a mutant µ ∈ Mω is a loop
invariant, GIN-DYN injects a check of µ at the entry
and exit of `’s body, runs the test cases available for `
(generated as in Section 3.2), and retains in Mω only
the mutants that pass all tests.

Being based on dynamic techniques, the validation
of mutations performed within GIN-DYN is provi-
sional, in that validated mutants still have to pass
muster with the static program prover before we can
conclude they are valid loop invariants. However, one
advantage of testing is that we can check mutants for
invariance independently of one another. In contrast,
static verifiers such as ESC/Java2 work modularly:
they reason about the program state at the begin-
ning of every loop iteration entirely in terms of the
available loop invariants, and hence they may fail
to confirm that a given assertion L is indeed a loop
invariant if other invariants, necessary to prove L, are
not provided. The dependency problem is particularly
severe in the presence of nested loops, where there can
be circular dependencies. Runtime checks do not incur
such limitations, and can check mutants for invariance
in batches; the batch size is determined by how many
assertions we can monitor at once, whereas how we
partition the mutants in batches does not affect the
correctness of the final result.

4.3 Tautology Elimination
Several of the mutants Mω that pass validation are
trivial, in that they hold only by virtue of their
logic structure—that is, they are tautologies, useless
to prove the postcondition Q. For example, many
mutants are implications with an identically false
antecedent (such as the one in Figure 7). To identify
and discard mutants that are tautologies, GIN-DYN
uses ESC/Java2 as follows. For each mutant µ ∈Mω ,
it builds a dummy method mµ with the following
structure:

public void mµ(t1 v1, t2 v2, . . .) {
//@ assume verified loop invariants
//@ assert µ

}

The arguments of mµ include all variables occurring
in µ; since ESC/Java2 reasons modularly, it makes no
assumption about their values, which is tantamount
to setting them nondeterministically. Then, an assume

lists all loop invariants verified across all DYNAMATE
iterations by ESC/Java2 (Section 3.4.1). Any formula
that is a consequence of these already known invari-
ants is redundant and should not be retained. The
final assert asks ESC/Java2 to establish the mutant
µ in the given context; GIN-DYN retains µ only if

10

ESC/Java2 cannot prove the assert, and hence µ is not
logically derivable from the verified loop invariants.
This way, the tautology elimination is sound and
complete relative to the static verifier’s capabilities.

5 CASE STUDY

We evaluated the DYNAMATE approach by running
our prototype on 28 methods from the java.util

package of OpenJDK Java 1.6.

5.1 Case Study Selection and Preparation

Table 3 lists the 28 methods used in the case study,
which we obtained as follows. We initially considered
all methods with loops in java.util: there are 421
such methods in 50 classes, for a total of 575 loops.

Since DYNAMATE uses ESC/Java2 as static prover,
only methods that ESC/Java2 can verify by manually
providing suitable loop invariants may be within
DYNAMATE’s capabilities. To identify them, we con-
ducted a preliminary assessment where we tried to
manually specify and annotate with loop invariants,
and verify using ESC/Java2, methods with loops
of java.util. Overall, we spent about four person-
weeks in the assessment process. Unsurprisingly, we
spent most of the time devising the loop invari-
ants and working around ESC/Java2’s limitations—
precisely what DYNAMATE can provide automation
for—whereas writing pre- and postconditions was
generally straightforward and quick. Nonetheless, we
had to write pre- and postcondition ourselves rather
than reusing Leavens et al.’s [15], which include com-
plex JML features unsupported by ESC/Java2 and in
fact have not been used for verification of the method
implementations.

During the assessment, we tried to verify every
method against functional specifications as complete
as possible. In the end, we dropped all methods for
which we could not get ESC/Java2 to work with non-
trivial functional specifications within the available
time budget or without resorting to complex features.
Here are some common reasons that lead us to drop
methods during the assessment phases:
• Methods relying on language types and oper-

ations that are not adequately supported by
ESC/Java2’s encoding and backend SMT solver:
non-linear arithmetic, complex bitwise opera-
tions, floating point arithmetic, and strings.

• Methods including calls to native code whose
semantics is cumbersome or impossible to specify
accurately (although we specified a few basic
native methods such as arraycopy).

• Methods relying on I/O and other JVM
services—most notably, reflection features.

• Methods requiring substantial modifications to
their implementation, specification, or both to
be verified; in particular, we excluded methods

whose verification requires ghost code or com-
plex framing conditions.

• Data-structure classes relying on complex class
invariants whose specification is a challenge of
its own [16].

When overloaded methods operating on different
basic types were available, we included the versions
operating on int and on Object (as placeholder for
Integer in sorting methods); even if the algorithms
are the same, the latter typically require more complex
annotations since they have to deal with null values.
By the same token, we dropped variants of methods
operating on different types, such as short and byte,
when they were mere duplicates that carried no new
challenges for verification.

Overall, we retained the 26 java.util methods
listed in Table 2. As described in the last column, we
slightly modified a few of the methods to make up for
features that needlessly hinder automated reasoning
(e.g., external iterators and control-flow breaking in-
structions) or that ESC/Java2 does not fully support
(e.g., bitwise operations and “for each” loops). We also
factored out the loops in sort1 and mergeSort into
separate methods according to the algorithms they
implement. Only three method modifications affected
the number of loops. Methods replaceAll and reverse

consist of a conditional at the outermost level, with a
loop in each branch that caters to the specific features
of the collection such as whether it offers random
access or external iterators; in our experiments, we
only retained the loops (one per method) in the branch
corresponding to Integer indexed lists. The single
loop in removeLastOccurrence visits, in reverse order,
the elements of a double-ended queue implemented
as a circular array. It turns out that the asymmetry
in the index range [head..tail) of valid elements in
the queue (from index head included to index tail

excluded) makes reasoning more complicated when
elements are visited backward (from last to first) than
when they are visited forward (from first to last, as
in removeFirstOccurrence). As a result, we found no
simple way to reason about removeLastOccurrence’s
implementation as is without the help of ghost
code; in particular, reversing the approach used with
removeFirstOccurrence does not seem to work. In-
stead, we refactored removeLastOccurrence’s single
loop into three different loops with the same se-
mantics but in a form more amenable to reasoning.
None of these modifications altered the input/output
semantics of the loops or the essence of the original
algorithms, even though it is possible that different
modifications would also work.

In all, we obtained the 28 methods listed in Table 3,
which we used in our case study. The specifications
we wrote also include few boilerplate frame condi-
tions, class invariants, and definitions of exceptional
behavior; since these are straightforward and do not
impact the core of the correctness proofs, Table 3 does

11

TABLE 2
Signatures of methods in java.util selected as a basis for our case study. We show the number of lines (LOC)
of each method’s body, the number of loops (|`|, where m{n} denotes m outer loops and n inner loops), and

which language features were modified to obtain the corresponding methods of the case study in Table 3.

CLASS METHOD LOC |`| MODIFIED

ArrayDeque contains(Object) 11 1 bitwise mask
ArrayDeque removeFirstOccurrence(Object) 13 1 bitwise mask
ArrayDeque removeLastOccurrence(Object) 13 1 bitwise mask, conditional structure
ArrayList clear() 4 1
ArrayList indexOf(Object) 10 2
ArrayList lastIndexOf(Object) 10 2
ArrayList remove(Object) 14 2 refactored calls to fastRemove
Arrays binarySearch0(int[],int,int,int) 13 1 bitwise mask
Arrays equals(int[],int[]) 11 1
Arrays fill(int[],int) 2 1
Arrays fill(int[],int,int,int) 3 1
Arrays fill(Object[],Object) 2 1
Arrays fill(Object[],int,int,Object) 3 1
Arrays hashCode(int[]) 6 1 “for each” loop expressed as regular for
Arrays hashCode(Object[]) 6 1 “for each” loop expressed as regular for
Arrays sort1(int[],int,int) 42 5 {3} loops factored out into insertionSort_b and quicksortPartition
Arrays mergeSort(Object[],Object[],int,int,int) 25 3 {1} loops factored out into insertionSort_a and merge, for Integers
Arrays vecswap(int[],int,int,int) 2 1 refactored local variables
Collections replaceAll(List〈T〉,T,T) 37 4 retained only one replacement loop that uses no external iterators
Collections reverse(List〈T〉) 13 2 retained only one replacement loop that uses no external iterators
Collections sort(List〈T〉) 7 1 replaced external iterators with direct access
Vector indexOf(Object,int) 10 2
Vector lastIndexOf(Object,int) 12 2
Vector removeAllElements() 4 1
Vector removeRange(int,int) 7 1
Vector setSize(int) 9 1

TOTAL 289 41 {4}

not list them. We made the resulting fully annotated
28 methods obtained by this process publicly available
for repeatability and for related research on verifica-
tion of real Java code:

https://bitbucket.org/caf/java.util.verified/

ESC/Java2 as a sound verifier. ESC/Java2 does not
support a number of Java and JML features [12], [17],
such as overflow checks, inherited annotations, string
literals, multiple inheritance, and static initializers,
whose encoding in unsound with respect to their
intended semantics. Unsupported features are com-
promises that “increase automation, improve perfor-
mance, and reduce both the number of false positives
and the annotation overhead” [18], and as such they
are common in the design of static verifiers. To ensure
validity of our experiments, we ascertained—by man-
ually inspecting the source code against ESC/Java2’s
list of documented unsupported features—that the
code of our case study uses none of the unsupported
Java and JML features on which the verified speci-
fications depend. Regarding loops, our experiments
always call ESC/Java2 with the -loopSafe option
which, as explained in Section 3.4.1, produces a sound
semantics of loops thorough invariants.

Positioning. Table 3 gives an overview of the case
study subjects, but we should keep in mind that met-
rics such as lines of code or specification clauses are
poor indicators of the complexity of full verification
of functional properties. Even the shortest algorithms

can be extremely tricky to specify and verify (see [19]
for an extreme example), as they may require annota-
tions involving complex disjunctions and quantifiers;
the model-based approach helps express complex
predicates [1] but it cannot overcome the intrinsic
formidable complexity of automated reasoning.

Although the data structure implementations of our
examples use arrays, the model-based style is largely
oblivious of this detail, and its abstraction ensures that
the general DYNAMATE approach remains applicable
in principle to other types of data structures. Besides,
even if the full formal verification of complex linked
data structures such as hash tables and graphs has
made substantial progress in recent years [20], [21],
[16], it remains a challenging problem for which full
automation is still out of reach. Taking stock, our
case study subjects consist of real code that is rep-
resentative of the state of the art of formal software
verification and highlights challenges to providing
full automation.

Experimental setup. All experiments were per-
formed on a Ubuntu GNU/Linux system installed on
a 2.0 GHz Intel Xeon processor and 2 GB of RAM.
We set a timeout of 120 seconds to every invocation
of EVOSUITE and of 180 seconds to every invocation
of ESC/Java2. As EVOSUITE uses randomized algo-
rithms, its results are not deterministic; to control for
this, we repeated every complete experiment 30 times
and report the mean of every measure. DYNAMATE’s
ran on the 28 methods of Table 3 annotated with pre-
and postconditions but without any loop invariants:

https://bitbucket.org/caf/java.util.verified/

12

TABLE 3
Annotated methods used as case study, obtained from those in Table 2. We show the number of lines (LOC)
of each method’s body, the number of pre- (|P |) and postcondition (|Q|) clauses given as specification, and

the number of loops (|`|, where m{n} denotes m outer loops and n inner loops).

CLASS METHOD LOC |P | |Q| |`|

ArrayDeque contains 13 0 2 1
ArrayDeque removeFirstOccurrence 15 0 2 1
ArrayDeque removeLastOccurrence 15 0 2 3
ArrayList clear 9 0 3 1
ArrayList indexOf 12 0 3 2
ArrayList lastIndexOf 12 0 3 2
ArrayList remove 14 0 5 2

Arrays binarySearch0 18 2 2 1
Arrays equals 16 0 1 1
Arrays fill_a (int array) 4 1 1 1
Arrays fill_b (int array range) 5 2 3 1
Arrays fill_c (Object array) 4 1 3 1
Arrays fill_d (Object array range) 5 1 5 1
Arrays hashCode_a (int array) 10 0 1 1
Arrays hashCode_b (Object array) 11 0 1 1
Arrays insertionSort_a (mergeSort, Object array) 15 3 1 2 {1}
Arrays insertionSort_b (sort1, int array) 8 3 1 2 {1}
Arrays merge (mergeSort, Object array) 12 8 1 1
Arrays quicksortPartition (sort1, int array) 22 3 7 3 {2}
Arrays vecswap 4 5 4 1

Collections replaceAll 39 1 2 1
Collections reverse 15 1 1 1
Collections sort 9 2 3 1

Vector indexOf 12 1 3 2
Vector lastIndexOf 15 1 3 2
Vector removeAllElements 8 0 3 1
Vector removeRange 12 1 3 1
Vector setSize 11 1 3 1

TOTAL 345 37 72 39 {4}

the goal of the experiments was for DYNAMATE to
infer loop invariants without additional input.

5.2 Experimental Results

Table 4 summarizes the experimental results, where
DYNAMATE automatically verified 25 of the 28 meth-
ods in at least one of the 30 repeated runs (indicated
by a success rate above 0%).

A success rate below 100% indicates methods for
which EVOSUITE performed below par, and thus DY-
NAMATE reached a fix point in invariant discovery in
some of the 30 repeated runs. Specifically, EVOSUITE
may fail to find counterexamples to invalid invariants,
which thus remain in the set I \ INV of candidates
neither conclusively falsified nor conclusively proved.
This may prevent more general invariants from be-
ing inferred, thus jeopardizing the whole verifica-
tion effort; for example, a surviving invalid invariant
i ∈ {0, 1, 2} would shadow a valid invariant i ≥ 0.
Nonetheless, experiments with DYNAMATE normally
have high repeatability: 21 of the 25 verified subjects
have a success rate above 50%.

DYNAMATE automatically verified 25 of the 28
subjects, with high repeatability.

merge:
destHigh − ic = (mid − p) + (high − q)

quicksortPartition:
b ≤ c =⇒ x[b] > v

sort:
∀ int j: 0 ≤ j ∧ j < a.length =⇒ a[j] = \old(a[j])
∀ int j: 0 ≤ j ∧ j < ic =⇒

a[j] = l.getElementData()[j]

Fig. 10. The four necessary loop invariants that DYNA-
MATE failed to infer in all runs.

The success rate was 0% for methods Arrays.merge,
Arrays.quicksortPartition, and Collections.sort.
For these methods, DYNAMATE failed to infer all
necessary invariants. The four missing invariants, one
for each of merge and quicksortPartition and two for
sort, are shown in Figure 10; they have a form that
is neither among DAIKON’s templates nor GIN-DYN’s
mutants:

• merge’s missing invariant is an equality relation
that is not among DAIKON’s invariant because it
involves six variables but, by default, DAIKON re-
stricts templates to three variables for scalability.

• quicksortPartition’s missing invariant is also

13

TABLE 4
Experimental results for the case study. Column SUCCESS RATE displays the percentage of runs that found a full correctness proof. The

numbers in the other columns are means over 30 DYNAMATE runs: the percentage of PROVED proof obligations; the number of
ITERATions of DYNAMATE; the number of PROVED invariants (in parentheses, how many of them come from GIN-DYN) and how
many more would be required for a successful proof (MISSing); the number of WAVES of GIN-DYN candidates considered, how many
CANDidate invariants they generated, and what percentage of the candidates were FALSified by dynamic analysis or removed in the

TAUTology elimination phase; the TIME spent in TOTAL (seconds).

SUCCESS # # INVARIANTS GIN-DYN TIME
CLASS METHOD RATE PROVED ITERAT. PROVED MISS. WAVES CAND. FALS. TAUT. SECS.

ArrayDeque contains 57% 97.95% 7 14 (2) 0 10 438 98% 39% 2158 s
ArrayDeque removeFirstOccurrence 53% 97.96% 7 14 (2) 0 11 446 98% 42% 2180 s
ArrayDeque removeLastOccurrence 87% 99.52% 9 43 (11) 0 6 391 93% 60% 3281 s
ArrayList clear 70% 95.22% 6 9 (2) 0 6 26 79% 0% 1524 s
ArrayList indexOf 23% 90.83% 7 16 (3) 0 13 40 89% 11% 1914 s
ArrayList lastIndexOf 20% 93.33% 6 14 (2) 0 13 77 96% 0% 1574 s
ArrayList remove 23% 92.87% 7 16 (3) 0 13 40 89% 13% 2065 s

Arrays binarySearch0 100% 100% 11 30 (17) 0 6 1289 90% 77% 4200 s
Arrays equals 100% 100% 7 7 (1) 0 3 96 80% 21% 2240 s
Arrays fill_a 100% 100% 6 5 (1) 0 1 6 83% 0% 1391 s
Arrays fill_b 100% 100% 7 15 (5) 0 1 55 88% 21% 1880 s
Arrays fill_c 100% 100% 6 7 (3) 0 1 15 37% 53% 1375 s
Arrays fill_d 100% 100% 7 18 (8) 0 1 55 70% 39% 1857 s
Arrays hashCode_a 100% 100% 2 4 (0) 0 0 0 – – 389 s
Arrays hashCode_b 100% 100% 2 4 (0) 0 0 0 – – 343 s
Arrays insertionSort_a 100% 100% 10 74 (38) 0 8 1224 89% 70% 4029 s
Arrays insertionSort_b 100% 100% 11 73 (34) 0 8 5200 99% 45% 4512 s
Arrays merge 0% 90.48% 11 78 (62) 1 16 7532 97% 8% 8034 s
Arrays quicksortPartition 0% 93.94% 9 57 (18) 1 16 42714 99% 60% 5657 s
Arrays vecswap 100% 100% 8 18 (9) 0 5 1983 96% 22% 2698 s

Collections replaceAll 77% 96.71% 6 16 (4) 0 8 57 77% 56% 1801 s
Collections reverse 21% 79.30% 9 34 (18) 0 15 1181 63% 56% 6949 s
Collections sort 0% 72.80% 9 17 (0) 2 16 4343 96% 86% 3933 s

Vector indexOf 100% 100% 6 24 (4) 0 2 20 70% 32% 1698 s
Vector lastIndexOf 90% 99.23% 7 19 (2) 0 3 40 88% 38% 1859 s
Vector removeAllElements 100% 100% 5 12 (5) 0 1 10 50% 0% 1218 s
Vector removeRange 63% 95.80% 7 17 (5) 0 7 135 65% 21% 2574 s
Vector setSize 100% 100% 7 31 (20) 0 2 63 58% 15% 2003 s

AVERAGE 71% 97% 7 25 (10) 0 7 2410 82% 34% 2691 s

a scalar relation, but DAIKON’s templates do
not instantiate disjunctive (including implication)
templates without additional user input (splitting
predicates).

• sort’s missing invariants are quantified expres-
sions of the kinds that GIN-DYN supports. How-
ever, sort’s postcondition has a form that is unre-
lated to the two invariants, due to sort’s peculiar
implementation: a call to a native method does
the actual sorting of array a, and is followed by a
loop that copies the result from a into l. Thus, the
loop’s invariants are unrelated to sorting, which
is just a property carried over by copying.

We repeated the experiments by manually adding the
missing invariants; as expected, DYNAMATE success-
fully verified the methods.

Besides full functional verification, we also mea-
sured the percentage of proof obligations DYNAMATE
was able to discharge. We counted 367 proof obli-
gations constructed by ESC/Java2 for the annotated
Java programs used in our evaluation; these include
all pre- and postcondition checks, the class invariant
checks, and also implicit checks for out-of-bound

array accesses and null dereferencing. DYNAMATE
managed to find a set of loop invariants such that
97% of the proof obligations were discharged on
average. This dramatically decreases the number of
loop invariants users have to write manually.

On average, DYNAMATE automatically discharged
97% of the proof obligations.

Using exclusively DAIKON’s invariants, DYNA-
MATE could verify only hashCode_a and hashCode_b;
this shows the importance of GIN-DYN to add flexi-
bility to DYNAMATE. The other columns about GIN-
DYN in Table 4 show the crucial role of dynamic
analysis and tautology elimination to discard invalid
and irrelevant mutants: while postcondition mutation
generated nearly 2500 mutants on average (way too
many for ESC/Java2 to handle), dynamic analysis and
tautology elimination cut this number down to below
300 (i.e., 2410× (1− 0.82)× (1− 0.34)).

On average, 66% of DYNAMATE’s execution time is
spent running EVOSUITE, 15% in GIN-DYN, 14% in
ESC/Java2 and 6% in DAIKON. DYNAMATE’s aver-
age running time per method (45 minutes) is high

14

compared to other dynamic techniques. There are
ample margins to optimize the DYNAMATE proto-
type for better speed; in particular, using third-party
components as black boxes is an obvious source of
inefficiency. At the same time, DYNAMATE solves
an intrinsically complex task—fully automated cor-
rectness proof without loop annotations—compared
to the standard goal of dynamic techniques; given
the state of the art, we should not have unrealistic
expectations regarding its performance.

5.3 Experimental Comparison
The staggering amount of research on loop invariant
generation and automated verification has produced
a wide variety of results that are not always directly
comparable. In this section, we report on focused
experiments involving few cutting-edge tools that can
be directly compared to DYNAMATE, to convincingly
show how it improves the state of the art and its
specific strengths and weaknesses.

Tool selection. We selected other tools for auto-
mated verification that are in the same “league” as
DYNAMATE; namely, they satisfy the following char-
acteristics: i) a working implementation is available;
ii) they work on a real programming language, or at
least a significant subset; iii) they support numerical
and functional properties; iv) they are completely
automatic (or we clarify what extra input is needed);
v) they are cutting-edge (i.e., no other similar tool su-
persedes them). The first two requirements excluded
several techniques without serviceable implementa-
tions, or that only work on toy or highly specialized
examples; we provide more details about some of the
most significant exceptions at the end of the section.
All in all, we identified three “champions” with these
characteristics: INVGEN [22], which uses constraint-
based techniques and mainly targets linear numeric
invariants; BLAST [6], a software model-checker using
CEGAR and predicate abstraction; and cccheck [4],
the CodeContracts static checker formerly known as
Clousot [5], based on abstract interpretation with
domains for arrays.

We translated the classes used in DYNAMATE’s
evaluation (including the specification predicates in
TArrays and TLists) into a form amenable to each
tool: to C for INVGEN and BLAST, and to C# for
cccheck. We tried to replicate the salient features of Ja-
va’s semantics in each language, without introducing
unnecessary complications; for example, Java Objects
become C structs passed to functions as pointer argu-
ments.

We encoded in each tool as many of the ESC/Java2
proof obligations as possible. We used asserts to
express proof obligations for which no equivalent lan-
guage feature was available (for example, class invari-
ants in BLAST). When a tool’s specification language
did not support quantified expressions (as is the case

TOOL PROOF OBLIGATIONS VERIFIED TIME
EXPRESSIBLE PROVED METHODS

ESC/Java2 100 % 231 (63 %) 0/28 122 s
INVGEN 42 % 60 (39 %) 0/28 78 s
BLAST 100 % 238 (65 %) 3/28 5431 s
cccheck 100 % 276 (75 %) 3/28 106 s
DYNAMATE 100 % 354 (97 %) 25/28 75348 s

TABLE 5
Experimental comparison of DYNAMATE against other

tools for automated verification.

in C Boolean expressions), we rendered the semantics
using operational formulations, like DYNAMATE does
for runtime checking (Section 3.2).

For each tool, we measured the percentage of the
367 proof obligations that was expressible and the
percentage that was successfully verified. We also
include figures about the bare ESC/Java2, which can
discharge a good fraction of the proof obligations that
do not require reasoning about loops. Table 5 shows
the results.

Comparison results. ESC/Java2 gives a good base-
line of 63% proof obligations automatically dis-
charged. INVGEN is quite limited in what it can
express: the subset of C it inputs does not have
support for arrays, and hence it is strictly limited
to scalar properties; within these limitations, it is
often successful using its predefined templates. BLAST
supports the full C language, but does not go much
beyond the baseline in terms of what it can prove. In
fact, “the predicates tracked by BLAST do not contain
logical quantifiers. Thus, the language of invariants is
weak, and BLAST is not able to reason precisely about
programs with arrays or inductive data structures
whose correctness involves quantified invariants” [6].
cccheck’s performance is impressive, also given its full
support of .NET, but its abstract domains are still in-
sufficient to express complex quantifications over ar-
rays formalizing, for example, sortedness. DYNAMATE
achieves a solid 97% of automatically discharged
proof obligations, significantly improving over the
state of the art: the proof obligations discharged by
DYNAMATE are a superset of those checked by other
tools.9 In particular, DYNAMATE achieved full verifi-
cation of 25 out of 28 methods, while the other tools
verified at most 3 methods.

DYNAMATE automatically verified 28% more proof
obligations than state-of-the-art verification tools.

Given that our selection of 28 methods is based on
their analyzability with ESC/Java2 (as we describe

9. With the sole exception of a property in Collections.sort,
which BLAST can check using its context-free option −cfb. However,
BLAST can also check the negation of the same property, which
indicates unsoundness; hence, this exception seems immaterial for
the comparison.

15

at the beginning of Section 5), we do not claim that
our results generalize to other kinds of programs
or properties such as pointer reachability. They do,
however, provide evidence that dynamic techniques
can complement static ones in order to automate full
verification of “natural” programs that are currently
challenging for state-of-the-art tools. (In particular,
our DYNAMATE implementation boosts the capabil-
ities of ESC/Java2.)

The main weakness of DYNAMATE derives from
its usage of dynamic randomized techniques: DY-
NAMATE may require repeated runs, and is one
to two orders of magnitude slower than the static
tools. Future work will target these shortcomings to
further promote the significant results obtained by
DYNAMATE’s algorithms. Also part of future work is
evaluating DYNAMATE on examples originally used to
evaluate INVGEN, BLAST, or cccheck; and integrating
in DYNAMATE other third-party tools tailored to some
kinds of invariants.

Other tools. The following table summarizes the
crucial features that distinguish DYNAMATE from a
few other cutting-edge tools. Only JPF [23] is available
(A/U) but is not directly comparable as it is limited to
bounded checking (no exhaustive verification). Based
on [24], [25], the other techniques also have limita-
tions; see Section 6 for qualitative details.

TOOL A/U LIMITATIONS

Java Pathfinder [23] A bounded symbolic execution
Vampire [24] U linear array access, no nesting
Srivastava et. al [25] U requires templates and predicates

5.4 Threats to Validity

External validity concerns the generalization of our
results to subjects other than the ones we studied.
Regarding specifications, although we followed a par-
ticular style (the model-based approach), the style is
general enough that it remains applicable to other
software [9]. In addition, we wrote specifications as
complete as possible with respect to the full functional
behavior that can be manually proved with reasonable
effort using ESC/Java2; this makes our case study
a relevant representative of the state of the art in
formal software verification. Targeting DYNAMATE’s
approach to the verification of properties other than
functional, as well as tackling significantly larger pro-
grams, belongs to future work.

We took all measures necessary to minimize threats
to internal validity—which originate in the execution
of experiments. To minimize the effect of chance due
to the usage of randomized algorithms (EVOSUITE),
we repeated each experiment multiple times and con-
sidered average behavior; in most cases, chance neg-
atively affected only a small fraction of the runs. We
also manually inspected all results (inferred loop in-
variants), which gives us additional confidence about

their internal consistency. DYNAMATE and its mod-
ules depend on parameters such as weights, timeouts,
and thresholds which might influence experimental
results. We ran all subjects using the same parame-
ters, for which we picked default values whenever
possible.

Threats to construct validity have to do with how
appropriate the measures we took are. We measured
success in terms of how many proof obligations DY-
NAMATE discharged automatically. This certainly is
a useful metric; assessing other measures such as
execution time required per proof obligation belongs
to future work.

6 RELATED WORK

Since we cannot exhaustively summarize the huge
amount of work on automating program verification
indirectly related to DYNAMATE, we focus this section
on the problem of inferring loop invariants to auto-
mate functional verification; a natural classification is
in static and dynamic techniques. Section 5.3 presents
a more direct comparison between DYNAMATE and a
few selected “champions” of loop invariant inference.

6.1 Static Techniques

Abstract interpretation [26] is a general framework
for computing sound approximations of program se-
mantics; invariant inference is one of its main applica-
tions. Each specific abstract interpreter works on one
or more abstract domains, which characterize the kinds
of invariants that can be computed. Much of the work
in abstract interpretation has focused on domains for
non-functional properties, such as pointer reachabil-
ity [27] and other heap shape properties [28] or on
simple “global” correctness properties [29], [30], such
as absence of division by zero or null pointer derefer-
ence. Domains exist for simple numerical properties
such as polynomial equalities and inequalities [31],
[32] and interval (bounding) constraints involving
scalar variables [33], [34], [35]; these do not include
quantified array expressions, which are needed to
express the functional correctness of several programs
used in DYNAMATE’s evaluation, such as searching
and sorting algorithms. Only recently have the first
abstract domains supporting restricted quantification
over arrays been developed [36], [5].

Compared to DYNAMATE, these techniques offer
much more scalability and speed, but also incur
some limitations in terms of language support and
flexibility. In particular, Gulwani et al. [36] require
user input in the form of templates that detail the
structure of the invariants, and its experiments do not
target nested loops (e.g., only inner loops of searching
algorithms). The technique behind the CodeContracts
static checker [5] also cannot deal with some quan-
tified properties that DYNAMATE can handle (see

16

Section 5.3 for a direct comparison to cccheck [5]).
More generally, abstract interpretation is limited to
domains fixed a priori and may lose precision in the
presence of unsupported language features, whereas
DYNAMATE (largely thanks to its reliance on dynamic
analysis) works in principle with any property ex-
pressible through JML annotations and arbitrary Java
implementations.

Predicate abstraction [37], [38] is a technique to
build finite-state over-approximations of programs,
which can be seen as a form of abstract interpretation.
The applicability of predicate abstraction crucially
depends on the set of predicates provided as input,
which determine precision and complexity.

Whereas predicates may be collected from the pro-
gram text following some heuristics [39], [40] or they
may be manually specified through annotations [41],
[38], DYNAMATE requires no input besides a speci-
fied program. However, the two techniques may be
usefully combined, with the invariants guessed by
DYNAMATE used to build a predicate abstraction.

Predicate abstraction is a fundamental component
of the CEGAR (Counter-Example Guided Abstrac-
tion Refinement) approach [42] to software model-
checking, which features in tools such as SLAM [43]
and BLAST [6]. Software model checkers specialize
in establishing state reachability properties or other
temporal-logic properties, whereas they hardly han-
dle complex invariants involving quantification for
functional correctness (such as those central to DYNA-
MATE’s evaluation), as we demonstrate in Section 5.3.

Constraint-based techniques reduce the invariant
inference problem to solving constraints over a tem-
plate that defines the general form of invariants (play-
ing a somewhat similar role to abstract domains in
abstract interpretation). The challenge of developing
new constraint-based techniques lies in defining ex-
pressible yet decidable logic fragments, which char-
acterize extensive template properties.

The state of the art focuses on invariants in the
form of Boolean combinations of linear [44], [22],
[45] and quadratic [46] inequalities, polynomials [47],
[48], [49], restricted properties of arrays [50] and ma-
trices [51], and linear arithmetic with uninterpreted
functions [52]. Recent advances include automatically
computing least fixed points of recursively defined
predicates [53], [54], which are can express the ver-
ification conditions of transition systems modeling
concurrent behavior.

Since constraint-based techniques rely on decidable
logic fragments, they rarely support templates in-
volving quantification. The automata-based approach
of [50] is an exception, but its experiments are still
limited to flat linear loops with simple control logic,
and it is not applicable to linked structures.

See Section 5.3 for a direct comparison to IN-
VGEN [22].

Using first-order theorem proving. Kovács et
al. [55], [24] target the inference of loop invariants
for array-manipulating programs. Their technique en-
codes the semantics of loops directly as recurrence
relations and then uses a properly modified saturation
theorem prover to derive logic consequences of the re-
lations that are syntactically loop invariants. This can
generate invariants involving alternating quantifiers,
which are out of the scope of most other techniques.
McMillan [56] also uses a modified saturation theorem
prover to infer quantified loop invariants describing
arrays and linked lists.

Both techniques rely on heuristics that substantially
depend on interacting with a custom-modified theo-
rem prover, which limits their practical applicability
to programs with “regular” behavior. For example,
[55] assumes loops that monotonically increment or
decrement a counter variable; more general index
arithmetic is not handled. As a result, the example
programs demonstrated in [55], [24], [56] are limited
to linear access to array elements and no nested
loops, and do not include anything as complicated
as sorting (also see Section 5.3). While more complex
quantified invariants could be generated in principle,
doing so normally requires10 massaging the input
programs into a form amenable to the “regularity”
assumptions on which the inference technique relies.
In contrast, DYNAMATE uses a static prover and other
components as black-boxes, and works on real imple-
mentation of sorting and searching algorithms.

Totla and Wies [57] apply interpolation techniques
to axiomatic theories of arrays and linked lists, which
supports invariant inference over expressive domains;
however, the examples the technique can handle in
practice are still limited to flat loops and straight-
forward linked list manipulations (the technique for
arrays has not been implemented).

Combination of static techniques. HAVOC [58]
pioneered using a static verifier to check if candi-
date assertions are valid: it creates an initial set of
candidates (possibly including loop invariants) by
applying a fixed set of rules to the available module-
level contracts (i.e., module invariants and interface
specifications). Like DYNAMATE, HAVOC applies the
HOUDINI algorithm to determine which candidates
are valid. Using only static techniques, however, may
introduce false negatives, that is valid loop invariants
being erroneously discarded. In contrast, DYNAMATE
discards a large number of invalid candidates by
runtime checking, which is immune to false negatives.
Static verification is only applied later and, if the
program verifier fails, DYNAMATE will enter another
iteration of test case generation, trying to bring in
additional precision.

JPF (Java Pathfinder) supports heuristics [23] to
iteratively strengthen loop invariants from path condi-

10. Laura Kovács, personal communication, 14 March 2014.

17

tions and intermediate assertions.11 While JPF mainly
targets concurrency errors such as race conditions,
these heuristics are also applicable to numeric in-
variants. However, as the DAIKON experience shows,
invariants may not be apparent from the code (e.g.,
x < y might not appear in the code but be a necessary
loop invariant). JPF can also leverage postconditions if
they are available, but without mutating them as DY-
NAMATE does; furthermore, JPF’s symbolic-execution
approach cannot handle the kind of complex verifica-
tion conditions that program provers such as ESC/Ja-
va2 fully support and, more crucially, is limited to
bounded state spaces (such as arrays of bounded size).

HOLA [59] implements an inference technique
somewhat similar to JPF, but uses abduction (a mech-
anism to infer premises from a given conclusion)
for strengthening, which gives it more flexibility and
generality. However, it is also limited to invariants
consisting of Boolean combinations of linear integer
constraints (inequalities and modular relations).

Srivastava and Gulwani [25] combine predicate ab-
straction and template-based inference to construct
quantified invariants that can express complex prop-
erties such as sortedness. Their tool takes as input a
program and a set of templates and predicates; for
example, inferring invariants specifying sortedness of
an array A requires a template ∀k : 2 =⇒ 2 and
predicates 0 ≤ x, x < y −1 and A[k] ≤ A[k +1].
They demonstrate the approach on several sorting
algorithms (as well as simple linked list operations).
While these results are impressive, DYNAMATE still
offers some complementary advantages (also see Sec-
tion 5.3): it works on real implementations and sup-
ports the full Java programming language; by using
model-based annotations, it is more flexible with re-
spect to the used data structures (e.g., lists vs. arrays);
and does not require extra user input in the form
of templates and predicates. In fact, the DYNAMATE
approach could also accommodate templates to sug-
gest invariant shapes, thus dramatically narrowing
down the search space; conversely, Srivastava and
Gulwani’s technique could be extended to generate
templates from postconditions as DYNAMATE’s GIN-
DYN does.

Separation logic is an extension of Hoare logic
specifically designed to specify and reason about
linked structures in the heap [60]. Consequently, the
bulk of the work in invariant inference based on
separation logic focuses on pointer reachability and
other shape properties [61], [62], [63], [64], often by
means of abstract interpretation techniques using do-
mains specialized for such properties. Program ver-
ifiers based on separation logic also target similar
properties, and typically provide a level of automation

11. The technique of [23] was not fully implemented in JPF
at the time of writing (Willem Visser, personal communication,
18 February 2014).

that is somewhat intermediate between that of “push-
button” tools (such as DYNAMATE) and of interactive
provers (such as Isabelle and Coq). For example, jStar
is a powerful separation-logic verifier that works on
real Java code and includes support for loop invariant
inference [65]; it focuses on heap reachability proper-
ties, requires auxiliary annotations in the form of so-
called abstract predicates and custom inference rules,
and falls back to user interaction when automated
inference is not successful. For these reasons, we
did not include separation-logic based tools in our
comparison with DYNAMATE. In fact, extending DY-
NAMATE’s techniques to work with separation-logic
properties is an interesting direction for future work.

Fully automatic verification requires attacking from
multiple angles. In this respect, the DYNAMATE archi-
tecture is flexible and can accommodate and benefit
from other static approaches.

6.2 Dynamic Techniques

The GUESS-AND-CHECK [66] algorithm infers invari-
ants in the form of algebraic equalities (polynomials
up to a given degree). GUESS-AND-CHECK achieves
soundness and completeness by targeting a very re-
stricted programming language where all expressions
are of Boolean or real type. It starts from concrete pro-
gram executions, which determine constraints solved
using a linear algebra solver; the solution may estab-
lish a valid loop invariant or determine a counterex-
ample that can be used to construct new executions.
While the overall structure of GUESS-AND-CHECK has
some similarities to ours, DYNAMATE targets general-
purpose programs, which requires very different tech-
niques.

The work on DAIKON [11] pioneered using dy-
namic techniques to infer invariants, and has origi-
nated a lot of follow-up work. The bulk of it targets,
however, assertions such as pre- and postconditions
and not loop invariants. Nguyen et al.’s dynamic in-
ference technique [67] is a noticeable exception, which
generates loop invariants in the form of polynomial
equations over program variables.

A general limitation of dynamic invariant inference
is its reliance on predefined templates, which restricts
the kinds of invariants that can be inferred. DYNA-
MATE uses the GIN-DYN approach to work around
this limitation: a method’s postcondition suggests the
possible forms loop invariants may take. The DYNA-
MATE architecture could also integrate dynamic in-
variant inference tools with richer or more specialized
templates than DAIKON.

6.3 Hybrid Techniques

Recent work in the context of CEGAR techniques has
combined static verification and test case generation.

18

The SYNERGY algorithm [68] avoids unnecessary ab-
straction refinements guided by concrete inputs gen-
erated using directed automatic random testing [69].
The DASH algorithm [70] builds on SYNERGY to han-
dle programs with pointers without whole-program
may-alias analysis. Unlike DYNAMATE, these tech-
niques aim at type-state properties (e.g., correct lock
usage or absence of resource leaks). Yorsh et al. [71]
follow a similar technique of refining abstractions
based on the behavior in concrete executions. A model
generator determines new concrete states whose exe-
cution leads to an unexplored abstract state. The new
concrete states could be unreachable, since they are
derived based on the abstraction; therefore, they are
not as precise as actual tests.

With the overall goal of improving symbolic execu-
tion, Godefroid and Luchaup [72] suggest to guess
loop invariants from concrete execution traces; the
invariants are then used to summarize loop execu-
tions when constructing path conditions. The DYSY
approach [73] directly mines invariants from the col-
lected path conditions with no required predefined
invariant patterns; like DAIKON, it produces a collec-
tion of likely invariants, which may include unsound
ones; DYSY’s constraint-based techniques, however,
may provide more flexibility in terms of the invariant
forms that can be mined.

Nimmer and Ernst [74], [75] combine dynamic in-
variant inference à la Daikon with a static program
checker. Loop invariants are out of the scope of
that work, since they use ESC/Java with unsound
loop approximation (i.e., single unrolling); hence,
“loop invariants may need to be strengthened to be
proved” [74]. Nguyen et al. [76] perform static induc-
tive validation of dynamically inferred program in-
variants. Their work targets scalar numerical disjunc-
tive invariants (precisely, expressible as inequalities
between maxima of scalar terms), which are useful for
numerical programs but cannot express some more
complex functional properties such as sortedness. DY-
NAMATE not only provides loop invariants for full
program proofs; it also closes the cycle by means
of a test input generator, which makes the overall
technique completely automatic.

Nori and Sharma [77] use a program verifier in
combination with automatic test case generation to
automatically produce termination proofs. The kinds
of loop invariants required for termination proofs are
simpler than those discovered by DYNAMATE, since
they only have to constrain the values of a ranking
function—an integer expression showing progress.
Thus, invariants based on predefined templates are
sufficient for termination but are only a small ingre-
dient of DYNAMATE.

7 CONCLUSIONS AND FUTURE WORK
We have presented a fully automated approach to
discharge proof obligations of programs with loops.

The approach combines complementary techniques:
test case generation, dynamic invariant detection, and
static verification. A novel and important component
of our work is a new fully automatic technique
for loop invariant detection based on syntactically
mutating postconditions. Our DYNAMATE prototype
automatically discharged 97% of all proof obligations
for 28 methods with loops from java.util classes.

Besides general improvements such as scalability
and performance, our future work will focus on the
following issues:

Better test generators: As any module in DYNA-
MATE can be replaced by a better implementation of
the same functionalities, we are currently investigat-
ing dynamic/symbolic approaches to test case gen-
eration [78] as well as hybrid techniques integrating
search-based and symbolic approaches [79].

More diverse invariant generators: We are ex-
ploring evolutionary approaches in which invariants
are systematically evolved from a grammar over a
small set of primitives [80]. We also plan to apply
techniques based on symbolic execution (such as the
one implemented in DYSY [73]) to provide for more,
and more diversified, loop invariant candidates.

Stronger component integration: If a proof fails,
a program verifier may be able to produce a coun-
terexample, which would make an ideal input to the
test case generation module for a new iteration. We
are researching how to leverage such additional in-
formation, whenever available, while preserving the
low coupling of DYNAMATE’s architecture.

DYNAMATE can become a platform on which sev-
eral approaches to test generation, dynamic analysis,
and static verification can work in synergy to produce
a greater whole. We are committed to make the DY-
NAMATE framework publicly available, including all
subjects required to replicate the results in this paper.
For details, see:

http://www.st.cs.uni-saarland.de/dynamate/

ACKNOWLEDGMENTS

The research leading to these results has received
funding from the European Research Council un-
der the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement
nr. [290914] and EU FP7 grant 295261 (MEALS). The
second author was partially funded by the Swiss SNF
Grant ASII 200021-134976. Klaas Boesche, Alessandra
Gorla, Jeremias Rößler, and Christoph Weidenbach
provided helpful comments on earlier revisions of this
work.

REFERENCES

[1] C. A. Furia, B. Meyer, and S. Velder, “Loop invariants: Anal-
ysis, classification, and examples,” ACM Comp. Sur., vol. 46,
no. 3, p. Article 34, January 2014.

http://www.st.cs.uni-saarland.de/dynamate/

19

[2] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design
of JML: a behavioral interface specification language for Java,”
ACM SIGSOFT Software Engineering Notes, vol. 31, no. 3, pp.
1–38, 2006.

[3] N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying
reusable components,” in VSTTE, ser. LNCS, vol. 6217.
Springer, 2010, pp. 127–141.

[4] M. Fähndrich and F. Logozzo, “Static contract checking with
abstract interpretation,” in Formal Verification of Object-Oriented
Software - International Conference, FoVeOOS 2010, Paris, France,
June 28-30, 2010, Revised Selected Papers, ser. Lecture Notes
in Computer Science, B. Beckert and C. Marché, Eds.,
vol. 6528. Springer, 2010, pp. 10–30. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-18070-5_2

[5] P. Cousot, R. Cousot, and F. Logozzo, “A parametric segmen-
tation functor for fully automatic and scalable array content
analysis,” in POPL. ACM, 2011, pp. 105–118.

[6] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The
software model checker Blast,” STTT, vol. 9, no. 5-6, pp. 505–
525, 2007.

[7] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond
assertions: Advanced specification and verification with JML
and ESC/Java2,” in FMCO, ser. LNCS. Springer, 2006, pp.
342–363.

[8] C. A. Furia and B. Meyer, “Inferring loop invariants using
postconditions,” in Fields of Logic and Computation, ser. LNCS,
vol. 6300. Springer, 2010, pp. 277–300.

[9] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer,
“What good are strong specifications?” in ICSE. ACM, 2013,
pp. 257–266.

[10] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in QSIC. IEEE Computer Society, 2011, pp. 31–
40.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” IEEE TSE, vol. 27, no. 2, pp. 99–123, Feb.
2001.

[12] J. R. Kiniry, A. E. Morkan, and B. Denby, “Soundness
and completeness warnings in ESC/Java2,” in Proceedings
of the 2006 Conference on Specification and Verification of
Component-based Systems, ser. SAVCBS ’06. New York,
NY, USA: ACM, 2006, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/1181195.1181200

[13] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML
tools and applications,” Int. J. Softw. Tools Technol. Transf.,
vol. 7, no. 3, pp. 212–232, Jun. 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10009-004-0167-4

[14] C. Flanagan and K. R. M. Leino, “Houdini, an annotation as-
sistant for ESC/Java,” in FME, ser. LNCS, vol. 2021. Springer,
2001, pp. 500–517.

[15] G. T. Leavens, B. Shilling, K. Becker, K. Boysen, C. Clifton,
C. Ruby, and D. R. Cok, http://www.eecs.ucf.edu/~leavens/
JML-release/javadocs/java/util/package-summary.html,
1998–2002.

[16] N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flex-
ible invariants through semantic collaboration,” in Proceedings
of the 19th International Symposium on Formal Methods (FM), ser.
Lecture Notes in Computer Science, vol. 8442. Springer, 2014,
pp. 514–530.

[17] D. R. Cok, J. R. Kiniry, and D. Cochran, “ESC/Java2 imple-
mentation notes,” Kind Software, Tech. Rep., October 2008,
http://goo.gl/BFn1zh.

[18] M. Christakis, P. Müller, and V. Wüstholz, “Collaborative
verification and testing with explicit assumptions,” in FM, ser.
Lecture Notes in Computer Science, vol. 7436. Springer, 2012,
pp. 132–146.

[19] J.-C. Filliâtre, “Verifying two lines of C with Why3: an exercise
in program verification,” in VSTTE, ser. LNCS, vol. 7152.
Springer, 2012, pp. 83–97.

[20] K. Zee, V. Kuncak, and M. C. Rinard, “Full functional verifi-
cation of linked data structures,” in PLDI. ACM, 2008, pp.
349–361.

[21] H. Mehnert, F. Sieczkowski, L. Birkedal, and P. Sestoft, “For-
malized verification of snapshotable trees: Separation and
sharing,” in VSTTE, ser. LNCS, vol. 7152. Springer, 2012.

[22] A. Gupta and A. Rybalchenko, “InvGen: An efficient invariant
generator,” in CAV, ser. LNCS, vol. 5643. Springer, 2009, pp.
634–640.

[23] C. S. Pasareanu and W. Visser, “Verification of Java programs
using symbolic execution and invariant generation,” in SPIN,
ser. LNCS, vol. 2989. Springer, 2004, pp. 164–181.

[24] K. Hoder, L. Kovács, and A. Voronkov, “Invariant generation
in Vampire,” in TACAS, ser. LNCS, vol. 6605. Springer, 2011,
pp. 60–64.

[25] S. Srivastava and S. Gulwani, “Program verification using
templates over predicate abstraction,” in PLDI. ACM, 2009,
pp. 223–234.

[26] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in POPL, 1977, pp. 238–252.

[27] D. Nikolic and F. Spoto, “Reachability analysis of program
variables,” ACM Trans. Program. Lang. Syst., vol. 35, no. 4, p. 14,
2013.

[28] B.-Y. E. Chang and K. R. M. Leino, “Abstract interpretation
with alien expressions and heap structures,” in VMCAI, ser.
LNCS, vol. 3385. Springer, 2005, pp. 147–163.

[29] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival, “A static analyzer for
large safety-critical software,” in PLDI. ACM, 2003, pp. 196–
207.

[30] “WALA: Watson libraries for analysis,” http://wala.
sourceforge.net, 2006.

[31] “PPL: Parma polyhedra library,” http://bugseng.com/
products/ppl/, 2008.

[32] R. Bagnara, P. M. Hill, and E. Zaffanella, “The Parma Poly-
hedra Library,” Sci. of Comp. Prog., vol. 72, no. 1–2, pp. 3–21,
2008.

[33] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in POPL, 1978, pp.
84–96.

[34] “Apron numerical abstract domain library,” http://apron.cri.
ensmp.fr/library/, 2009.

[35] B. Jeannet and A. Miné, “Apron: A library of numerical
abstract domains for static analysis,” in CAV, ser. LNCS, vol.
5643. Springer, 2009, pp. 661–667.

[36] S. Gulwani, B. McCloskey, and A. Tiwari, “Lifting abstract
interpreters to quantified logical domains,” in POPL. ACM,
2008, pp. 235–246.

[37] S. Graf and H. Saïdi, “Construction of abstract state graphs
with PVS,” in CAV, ser. LNCS, vol. 1254. Springer, 1997, pp.
72–83.

[38] C. Flanagan and S. Qadeer, “Predicate abstraction for software
verification,” in POPL. ACM, 2002, pp. 191–202.

[39] Y. Jung, S. Kong, B.-Y. Wang, and K. Yi, “Deriving invariants
by algorithmic learning, decision procedures, and predicate
abstraction,” in VMCAI, ser. LNCS, vol. 5944. Springer, 2010,
pp. 180–196.

[40] P. H. Schmitt and B. Weiß, “Inferring invariants by symbolic
execution,” in VERIFY, vol. 259. CEUR-WS.org, 2007.

[41] B. Weiß, “Predicate abstraction in a program logic calculus,”
Sci. Comput. Program., vol. 76, no. 10, pp. 861–876, 2011.

[42] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, ser.
LNCS, vol. 1855, 2000, pp. 154–169.

[43] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani,
“Automatic predicate abstraction of C programs,” in PLDI.
ACM, 2001, pp. 203–213.

[44] M. Colón, S. Sankaranarayanan, and H. Sipma, “Linear invari-
ant generation using non-linear constraint solving,” in CAV,
ser. LNCS, vol. 2725. Springer, 2003, pp. 420–432.

[45] S. Gulwani, S. Srivastava, and R. Venkatesan, “Constraint-
based invariant inference over predicate abstraction,” in VM-
CAI, ser. LNCS, vol. 5403. Springer, 2009, pp. 120–135.

[46] S.Gulwani, S. Srivastava, and R. Venkatesan, “Program analy-
sis as constraint solving,” in PLDI. ACM, 2008, pp. 281–292.

[47] S. Sankaranarayanan, H. Sipma, and Z. Manna, “Non-linear
loop invariant generation using Gröbner bases,” in POPL.
ACM, 2004, pp. 318–329.

[48] D. Kapur, “Automatically generating loop invariants using
quantifier elimination,” in Deduction and Applications, ser.
Dagstuhl Seminar Proceedings, vol. 05431, 2006.

http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://doi.acm.org/10.1145/1181195.1181200
http://dx.doi.org/10.1007/s10009-004-0167-4
http://www.eecs.ucf.edu/~leavens/JML-release/javadocs/java/util/package-summary.html
http://www.eecs.ucf.edu/~leavens/JML-release/javadocs/java/util/package-summary.html
http://goo.gl/BFn1zh
http://wala.sourceforge.net
http://wala.sourceforge.net
http://bugseng.com/products/ppl/
http://bugseng.com/products/ppl/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/

20

[49] E. Rodríguez-Carbonell and D. Kapur, “Generating all poly-
nomial invariants in simple loops,” Journal of Symb. Comp.,
vol. 42, no. 4, pp. 443–476, 2007.

[50] M. Bozga, P. Habermehl, R. Iosif, F. Konečný, and T. Vojnar,
“Automatic verification of integer array programs,” in CAV,
ser. LNCS, vol. 5643. Springer, 2009, pp. 157–172.

[51] T. A. Henzinger, T. Hottelier, L. Kovács, and A. Voronkov,
“Invariant and type inference for matrices,” in VMCAI, ser.
LNCS. Springer, 2010, pp. 163–179.

[52] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko,
“Invariant synthesis for combined theories,” in VMCAI, ser.
LNCS, vol. 4349. Springer, 2007, pp. 378–394.

[53] K. Hoder and N. Bjørner, “Generalized property directed
reachability,” in SAT, ser. LNCS, vol. 7317. Springer, 2012,
pp. 157–171.

[54] A. R. Bradley, “SAT-based model checking without unrolling,”
in VMCAI, ser. LNCS, vol. 6538. Springer, 2011, pp. 70–87.

[55] L. Kovács and A. Voronkov, “Finding loop invariants for
programs over arrays using a theorem prover,” in FASE, ser.
LNCS, vol. 5503. Springer, 2009, pp. 470–485.

[56] K. L. McMillan, “Quantified invariant generation using an
interpolating saturation prover,” in TACAS, ser. LNCS, vol.
4963. Springer, 2008, pp. 413–427.

[57] N. Totla and T. Wies, “Complete instantiation-based interpo-
lation,” in POPL. ACM, 2013, pp. 537–548.

[58] S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and
T. Wies, “Intra-module inference,” in CAV, ser. LNCS, vol.
5643. Springer, 2009, pp. 493–508.

[59] I. Dillig, T. Dillig, B. Li, and K. L. McMillan, “Inductive
invariant generation via abductive inference,” in OOPSLA.
ACM, 2013, pp. 443–456.

[60] J. C. Reynolds, “Separation logic: A logic for shared mutable
data structures,” in IEEE Symposium on Logic in Computer
Science (LICS). IEEE Computer Society, 2002, pp. 55–74.

[61] S. Magill, A. Nanevski, E. Clarke, and P. Lee, “Inferring
invariants in separation logic for imperative list-processing
programs,” in Proceedings of the 3rd Workshop on Semantics,
Program Analysis, and Computing Environments for Memory Man-
agement, 2006.

[62] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay, “Automatic
numeric abstractions for heap-manipulating programs,” in
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 2010, pp.
211–222.

[63] F. Vogels, B. Jacobs, F. Piessens, and J. Smans, “Annotation
inference for separation logic based verifiers,” in Formal Tech-
niques for Distributed Systems (FMOODS/FORTE), ser. Lecture
Notes in Computer Science, vol. 6722. Springer, 2011, pp.
319–333.

[64] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang,
“Compositional shape analysis by means of bi-abduction,”
Journal of the ACM, vol. 58, no. 6, p. 26, 2011.

[65] D. Distefano and M. J. Parkinson, “jStar: towards practical
verification for Java,” in Proceedings of the 23rd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 2008, pp. 213–
226.

[66] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. Nori, “A
data driven approach for algebraic loop invariants,” in ESOP,
ser. LNCS, vol. 7792. Springer, 2013.

[67] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using dy-
namic analysis to discover polynomial and array invariants,”
in ICSE. IEEE, 2012, pp. 683–693.

[68] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,
and S. K. Rajamani, “Synergy: a new algorithm for property
checking,” in SIGSOFT FSE. ACM, 2006, pp. 117–127.

[69] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed auto-
mated random testing,” in PLDI. ACM, 2005, pp. 213–223.

[70] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons,
“Proofs from tests,” in ISSTA. ACM, 2008, pp. 3–14.

[71] G. Yorsh, T. Ball, and M. Sagiv, “Testing, abstraction, theorem
proving: better together!” in ISSTA. ACM, 2006, pp. 145–156.

[72] P. Godefroid and D. Luchaup, “Automatic partial loop sum-
marization in dynamic test generation,” in ISSTA. ACM, 2011,
pp. 23–33.

[73] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: dynamic
symbolic execution for invariant inference,” in ICSE. ACM,
2008, pp. 281–290.

[74] J. W. Nimmer and M. D. Ernst, “Static verification of dynam-
ically detected program invariants: Integrating Daikon and
ESC/Java,” in RV, 2001.

[75] J. Nimmer and M. Ernst, “Automatic generation of program
specifications,” in ISSTA, 2002, pp. 229–239.

[76] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using
dynamic analysis to generate disjunctive invariants,” in 36th
International Conference on Software Engineering (ICSE), 2014,
pp. 608–619.

[77] A. V. Nori and R. Sharma, “Termination proofs from tests,” in
ESEC/FSE. ACM, 2013, pp. 246–256.

[78] K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux, “Gen-
erating test suites with augmented dynamic symbolic execu-
tion,” in TAP, 2013, pp. 152–167.

[79] J. Malburg and G. Fraser, “Combining search-based and
constraint-based testing,” in ASE. IEEE, 2011, pp. 436–439.

[80] S. Ratcliff, D. R. White, and J. A. Clark, “Searching for in-
variants using genetic programming and mutation testing,”
in GECCO. ACM, 2011, pp. 1907–1914.

	1 Introduction
	1.1 Running Example: Binary Search
	1.2 Summary of the DYNAMATE Approach
	1.3 Loop Invariants from Postconditions
	1.4 Experimental Evaluation
	1.5 Summary of Contributions

	2 Overview of the DYNAMATE Algorithm
	3 How DYNAMATE Works
	3.1 Input: Programs and Specifications
	3.2 Test Case Generation
	3.3 Dynamic Loop Invariant Inference
	3.3.1 Dynamic Invariant Detection with Daikon
	3.3.2 Gin-Dyn: Invariants from Postconditions

	3.4 Static Program Verification
	3.4.1 Verification of Loop Invariants
	3.4.2 Program Proof

	3.5 Refining the Search for Loop Invariants

	4 GIN-DYN: Loop Invariants from Postconditions
	4.1 Generation of Mutants
	4.1.1 Mutation Waves

	4.2 Validation of Mutations
	4.3 Tautology Elimination

	5 Case Study
	5.1 Case Study Selection and Preparation
	5.2 Experimental Results
	5.3 Experimental Comparison
	5.4 Threats to Validity

	6 Related Work
	6.1 Static Techniques
	6.2 Dynamic Techniques
	6.3 Hybrid Techniques

	7 Conclusions and Future Work
	References

