
27 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Probabilistic Model Checking of Regenerative Concurrent Systems

Published version:

DOI:10.1109/TSE.2015.2468717

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1603291 since 2016-10-17T16:04:53Z



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JULY 14, 2015 1

Probabilistic Model Checking of
Regenerative Concurrent Systems

Marco Paolieri, András Horváth, and Enrico Vicario, Member, IEEE Computer Society

Abstract—We consider the problem of verifying quantitative reachability properties in stochastic models of concurrent activities with
generally distributed durations. Models are specified as Stochastic Time Petri Nets (STPNs) and checked against Boolean combinations
of interval until operators imposing bounds on the probability that the marking process will satisfy a goal condition at some time in the
interval [α, β] after an execution that never violates a safety property. The proposed solution is based on the analysis of regeneration
points in the model execution: a regeneration is encountered after a discrete event if the future evolution depends only on the current
marking and not on its previous history, thus satisfying the Markov property. We analyze systems in which multiple generally distributed
timers can be started or stopped independently, but regeneration points are always encountered with probability 1 after a bounded number
of discrete events. Leveraging the properties of regeneration points in probability spaces of execution paths, we show that the problem
can be reduced to a set of Volterra integral equations, and we provide algorithms to compute their parameters through the enumeration of
finite sequences of stochastic state classes encoding the joint probability density function (PDF) of generally distributed timers after each
discrete event. The computation of symbolic PDFs is limited to the first regeneration epoch, and the repetitive structure of the stochastic
process is exploited also before the lower bound α, providing crucial benefits for large time bounds. A case study is presented through
the probabilistic formulation of Fischer’s mutual exclusion protocol, a well-known real-time verification benchmark.

Index Terms—Probabilistic Model Checking, Reachability, Stochastic Petri Net, Markov Regenerative Process, Markov Renewal Theory.

F

1 INTRODUCTION

IN the engineering of non-functional requirements, verifica-
tion of quantitative properties of stochastic models enables

early assessment of design choices and provides model-
driven guidance for implementation and integration stages.
This becomes particularly valuable in the development of
systems where the effects of concurrency are intertwined
with probabilistic behavior and stochastic durations.

Probabilistic model checking supports a systematic prac-
tice through which the same model can be verified against
multiple probabilistic properties, specified in some well-
defined language, and open to automated regression verifi-
cation when the model evolves. Empirical evidence indicates
that most probabilistic requirements occurring in industrial
practice can be specified through a limited set of specification
patterns [1]. In particular, most transient properties can
be reduced to the form of the probabilistic interval until
operator, which specifies a bound on the probability that
the model will be in a goal state at some time in the
interval [α, β] after having visited only legal states. A large
body of techniques and tools have been developed and
demonstrated on industrial case studies following either a
statistical [2], [3], [4], [5] or numerical [6], [7], [8], [9] approach.
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In particular, numerical probabilistic model checking aims
at computing results with high accuracy and confidence
through exhaustive state-space analysis [10], often at the
expense of a restriction on the class of models amenable to
verification.

Most numerical approaches addressed the verification of
real-time properties over models of concurrent activities with
exponentially distributed (EXP) durations. In this case, due to
the memoryless property of the exponential distribution,
the underlying stochastic process of the model satisfies the
Markov property at each time instant, i.e., the current state
provides sufficient information to predict future evolution,
regardless of elapsed sojourn times. Efficient algorithms for
the analysis of continuous-time Markov chains (CTMCs) can
thus be applied to the verification of requirements specified
in continuous stochastic logic (CSL), also allowing nesting
of temporal operators [11], [12], [13], [9], [14]. Properties
specified as deterministic timed automata can also be verified
through the analysis of piecewise-deterministic Markov
processes resulting from the synchronous composition of
the model with the specification automaton [15], [16].

However, for valid modeling of several classes of systems,
some durations must be represented as generally distributed
(GEN) random variables, i.e., variables that break the limit
of memoryless EXPs. Notable examples include aging pro-
cesses, which structurally depend on some age variables,
or real-time systems, in which correctness depends on firm
time bounds resulting from Worst-Case Execution Times,
minimum intervals between releases, deterministic duration
of synchronous periods, timeouts and watchdogs. In this
case, the future evolution of the model depends on random
timers encoding the remaining time of GEN durations. The
underlying stochastic process is no more a CTMC and rather
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belongs to some wider class, which is determined by the
persistence of GEN timers after discrete events [17].

If GEN timers cannot persist to any discrete event, the
underlying stochastic process is semi-Markov (SMP): the
system has “memory” of the sojourn time elapsed in the
current state (i.e., its future evolution depends on this
continuous variable, in addition to the discrete state), but the
Markov property is satisfied immediately after each discrete
event. In the terminology of Markov renewal theory [18],
the corresponding time instants are called regeneration points
and, by a renewal argument [18], execution paths reaching
some goal state within time β can be decomposed into
a prefix that reaches the first regeneration at some time
t ≤ β and an independent suffix that reaches the goal state
within the remaining time β − t. In [19], verification of a
probabilistic interval until with α = 0 is reduced for SMPs
to a first-passage analysis problem by making illegal and
goal states absorbing (i.e., disabling any timer). Following a
different approach, [20] verifies non-nested until operators
on stochastic automata with underlying SMPs by unfolding
the set of model behaviors into a tree where nodes impose
distinct pairwise orderings on timers; a fragment of the tree
is analyzed to compute the probability of reaching each node
and to decide a formula with α 6= 0, but regenerations are
not exploited and complexity is exponential with respect the
number of events feasible within β. As a common limitation,
the SMP assumption that GEN timers are disabled or reset
after each discrete event is still a severe limit for model
validity, as it rules out important design mechanisms such as
timeouts that span across multiple activities, or asynchronous
components that start their timers independently.

When GEN timers can persist after the occurrence of
discrete events, memory of elapsed sojourn times can be
carried across multiple states, but regeneration points can still
be encountered, delimiting regeneration epochs. If this happens
infinitely often with probability 1 (w.p.1), the process is
Markov regenerative (MRP) [17], [18]. A large literature has
addressed numerical solution for models in the subclass of
MRPs that satisfy the so-called enabling restriction, i.e., models
where at most a single GEN timer is enabled in each state.
In this case, GEN timers cannot overlap their intervals of
activity, and bounded reachability can be evaluated through
the analysis of the CTMCs subordinated to the activity
interval of each GEN timer [21], [22], [23]. Nonetheless, the
enabling restriction imposes a severe limitation as well, as it
rules out models with multiple concurrent GEN timers (e.g.,
a timeout over a GEN timer).

When regeneration points are not guaranteed to be
reached infinitely often w.p.1, the underlying process belongs
to the class of generalized semi-Markov processes (GSMPs)
[17], [24], for which very few results of numerical evaluation
were developed. Evaluation of (non-nested) probabilistic
interval until operators with α = 0 was proposed in [25]
under the assumption of a bound on the number of discrete
events feasible within time β; the solution is based on the
enumeration of a tree of probability density functions (PDFs)
of active timers over regions [26]. In [27], the assumption of
a bound on the number of events within time β is removed
and fairly general conditions that guarantee termination in
exact or approximate evaluation are provided, through the
enumeration of stochastic state classes [28], [29], [30] represent-

ing the joint PDF of timers over Difference Bounds Matrix
zones [31]. While a calculus based on zones largely reduces
the branching factor of enumerated trees, the complexity of
[25] and [27] grows exponentially with the length of event
sequences within time β, and no computational advantage is
provided when the underlying stochastic process falls in the
subclass of MRPs.

In this paper, we propose a technique for the verification
of non-nested interval until operators in MRPs that always
encounter a regeneration point or a conclusive state (i.e.,
an illegal state, or a goal state reached after α, or any state
reached after β) w.p.1 within a bounded number of discrete
events. This contribution extends the class of stochastic
models amenable to numerical solution by including models
that fall in the class of MRPs but do not satisfy the enabling
restriction, without bounds on the number of events executed
within time β, and with a major reduction of complexity
when the stochastic process has a repetitive structure and
multiple regenerations can be traversed before reaching the
time limit β.

In Section 2, we introduce Stochastic Time Petri Nets
(STPNs) for the specification of stochastic models. A prob-
ability measure on STPN execution paths is defined by
establishing a formal relation between cylinder sets (i.e., sets
of execution paths that follow a common qualitative ordering
of events under given timing restrictions) and stochastic
state classes. We provide an algorithm for the detection of
regeneration points in the enumeration of stochastic state
classes; in so doing, we generalize the state of the art in
the literature on stochastic Petri nets [17] by encompassing
the case of regenerations where all GEN timers have been
enabled for a deterministic time (Section 3). Coming to the
core result of the work, we then show that the verification
of an interval until operator can be reduced to a set of
Volterra integral equations of the second kind that extend
generalized Markov renewal equations [18] into a bivariate
form based on three kernels, and we provide algorithms to
compute the kernels through the enumeration of stochastic
state classes reachable before the first regeneration (Section 4).
We finally illustrate how the approach extends the class
of models amenable to numerical solution through the
study of a probabilistic formulation of Fischer’s mutual
exclusion protocol (Section 5), and draw our conclusions on
the verification of regenerative stochastic systems (Section 6).

2 PROBLEM DEFINITION

2.1 Stochastic Time Petri Nets
We specify concurrent systems with stochastic durations
using stochastic time Petri nets (STPNs) [30], [28]. An STPN
is defined by a set of transitions, representing activities with
stochastic duration, and a set of places; a marking assigns a
nonnegative number of tokens to each place. Places can serve
as input or output places of a transition: when the marking
assigns at least one token to each input place, the transition
is enabled; after its firing, one token is removed from each
input place and one token is added to each output place.
STPNs have a natural graphical representation illustrated
in Fig. 1a: transitions are drawn as bars, places as circles,
and tokens as dots inside each place. Directed arcs connect
input places to transitions, and transitions to output places.
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The color of a transition represents the PDF type of its
stochastic duration: white for exponential distributions, gray
for deterministic durations, and black for other distributions
(as a special case, a thin black bar is used for transitions
with zero duration, see Fig. 8). Each transition samples a
time to fire when it becomes enabled; as in discrete event
systems, the transition with minimum time to fire is the next
event and its firing enables, disables, or restarts other events
by removing tokens from input places and adding tokens
to output ones. Similarly to stochastic reward nets [32] or
stochastic activity networks [33], the enabling of a transition
can be limited using enabling functions, arbitrary constraints
on token counts that are annotated next to the transition, after
the symbol ?; update functions of the form place ← expression
can specify additional updates of the token count of a place
after the firing of the transition (see Fig. 8). In the following,
we adopt STPNs to specify stochastic systems, although
our techniques can be extended to other formalisms after
defining a calculus for the computation of times to fire PDFs
given a sequence of events (e.g., stochastic timed automata
[34]). As a requirement, the underlying stochastic process
must encounter regenerations w.p.1 after a bounded number
of fired events, and the state space must be finite (e.g., for
STPNs, the number of tokens accumulated in each place
must be bounded).

2.1.1 Syntax
Definition 1. An STPN is a tuple

〈P, T,A−, A+, B, U,EFT,LFT, F,W 〉
where: P and T are disjoint sets of places and transitions;
A− ⊆ P × T and A+ ⊆ T × P are the precondition and
post-condition relations, respectively; B and U associate
each transition t ∈ T with an enabling function B(t) : NP →
{TRUE, FALSE} and with an update function U(t) : NP → NP .
In addition, for each transition t ∈ T , the STPN specifies:
an earliest firing time EFT (t) ∈ Q>0, a latest firing time
LFT (t) ∈ Q>0 ∪ {∞} such that EFT (t) ≤ LFT (t),
a cumulative distribution function (CDF) Ft such that
x < EFT (t) ⇒ Ft(x) = 0 and x > LFT (t) ⇒ Ft(x) = 1,
and a weight W (t) ∈ R>0.

A place p is said to be an input or output place for a tran-
sition t if (p, t) ∈ A− or (t, p) ∈ A+, respectively. Following
the usual terminology of stochastic Petri nets, a transition
t is called immediate (IMM) if EFT (t) = LFT (t) = 0
and timed otherwise; a timed transition is called exponential
(EXP) if Ft(x) = 1 − e−λx for some rate λ ∈ R>0, or
general (GEN) if its time to fire is distributed according to
a non-exponential distribution; as a special case, a GEN
transition t is deterministic (DET) if EFT (t) = LFT (t) > 0.
For each transition t with EFT (t) < LFT (t), we assume
that Ft can be expressed as the integral function of a
PDF ft, i.e., Ft(x) =

∫ x
0 ft(y) dy. The same notation is

also adopted for IMM and DET transitions, which are
associated with Dirac impulse functions ft(y) = δ(y − y)
with y = EFT (t) = LFT (t). In particular, we consider the
class of piecewise expolynomial PDFs obtained by piecewise
composition of products of exponentials and polynomials,
on bounded or unbounded supports (also known in the
literature as exponomials [14]).

free bufferarrival
UNIF([1,2])

operationalservice
DET(1.5)

failed

fail
EXP(0.1)

restart
UNIF([1,2])

(a) STPN model of the queue.
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(b) Transient probabilities.

Fig. 1: G/D/1/2/2 queue with server breakdowns.

2.1.2 Semantics
Given an STPN 〈P, T,A−, A+, B, U,EFT,LFT, F,W 〉, a
marking m ∈ NP assigns a natural number of tokens to
each place of the net. A transition t is enabled by m if m
assigns at least one token to each of its input places and
the enabling function B(t)(m) evaluates to TRUE; the set of
transitions enabled by m is denoted as E(m).

Definition 2. The state of an STPN is a pair 〈m,~τ〉 where
m ∈ NP is a marking and ~τ ∈ RE(m)

>0 assigns a time to fire to
each enabled transition.

Given an initial state s0 = 〈m0, ~τ0〉, an execution of the
STPN is represented by a (finite or infinite) path

ω = s0
γ1−→ s1

γ2−→ s2
γ3−→ · · ·

where γi ∈ T is the ith transition fired along the execution
and si = 〈mi, ~τi〉 is the state reached after the firing of γi. In
each state si:
• The next transition γi+1 is selected from the set of

enabled transitions with minimum time to fire ac-
cording to a discrete distribution given by weights: if
Emin = arg mint∈E(mi) ~τi(t), then t ∈ Emin is selected
with probability pt = W (t)/(

∑
u∈Emin

W (u)).
• After the firing of γi+1, the new markingmi+1 is derived

by (1) removing a token from each input place of γi+1,
(2) adding a token to each output place of γi+1, and (3)
applying the update function U(γi+1) to the resulting
marking. A transition t enabled by mi+1 is said to be
persistent if it is distinct from γi+1, and it is enabled also
by mi and by the intermediate markings after steps (1)
and (2); otherwise, t is said to be newly enabled.

• For each newly enabled transition t, the time to fire
~τi+1(t) is sampled according to the distribution Ft; for
each persistent transition t, the time to fire in si+1 is
reduced by the sojourn time in the previous marking,
i.e., ~τi+1(t) = ~τi(t)− ~τi(γi+1).
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Example 1. Fig. 1a introduces a small running example
inspired by [23] and representing a G/D/1/2/2 queue
(1 server with DET service time, a population of 2 customers
with GEN arrival times, a capacity of 2). Tokens in places
free and buffer specify the number of customers in the idle
state or inside the queue, respectively. Customers arrive in
series after times uniformly distributed over [1, 2] (transition
arrival), while service has a deterministic duration of 1.5
(transition service) and requires the server to be operational;
the time to failure of the server is exponentially distributed
with rate 0.1 (transition fail), and repairs are completed in
a time uniformly distributed over [1, 2] (transition restart).
Fig. 1b depicts transient probabilities for the number of
customers in the buffer and for the state of the server.

2.2 Probability space and cylinder sets

In the formulation of the probabilistic model checking
problem, we will need to refer to the probability measure
of selected sets of paths of an STPN model. We thus
formalize the concept by defining the probability space
(Ωm0 ,Fm0 ,Prm0,f~τ0

) induced by the semantics of STPNs
for a given initial marking m0 and initial times to fire PDF
f~τ0 . The outcomes Ωm0 of the probability space are all paths
ω = s0

γ1−→ s1
γ2−→ · · · with initial marking m0. Note that

Ωm0
may include paths that are not feasible under the initial

distribution f~τ0 due to temporal constraints of the model; for
these paths, the probability measure Prm0,f~τ0

will be zero.
To identify a σ-algebra Fm0

of events over Ωm0
, we

define as cylinder set C(m0, γ1, I1, γ2, I2, . . . , γn, In) the set
of all paths with initial marking m0 that fire the sequence of
transitions γ1, γ2, . . . , γn at absolute times contained in the
intervals I1, I2, . . . , In, respectively:

C(m0, γ1, I1, γ2, I2, . . . , γn, In) := {ω ∈ Ωm0
|

|ω| ≥ n and ∀ 0 < k ≤ n.(ω[k] = γk and T (k, ω) ∈ Ik) }
where |ω| is the number of firings in ω, ω[k] is the kth
transition fired along ω for all 0 < k ≤ |ω|, and T (k, ω) is
the absolute time of the kth firing in ω, for all k:

T (k, ω) :=

{∑k−1
i=0 mint∈E(mi) ~τi(t) if k ≤ |ω|,

+∞ if k > |ω|.
Note that, in contrast with the usual definition of cylinder
sets for CTMCs [11], [12], constraints refer to absolute firing
times rather than sojourn times. This formulation enables
a simpler treatment of the dependence among subsequent
sojourn times in models with underlying stochastic processes
more general than SMPs.

The set of events Fm0
is defined as the smallest

σ-algebra on Ωm0
that contains all the cylinder sets

C(m0, γ1, I1, γ2, I2, . . . , γn, In) for n ∈ N, γ1, γ2, . . . , γn
ranging over all sequences of n transitions in T , and
I1, I2, . . . , In ranging over all sequences of n non-empty in-
tervals with rational endpoints (possibly right-unbounded).

Proposition 1. Fm0
is countable, the intersection of cylinder sets

is a cylinder set, and the complement of a cylinder set is a finite
union of disjoint cylinder sets.

Proof. The elements of Fm0 are uniquely identified by
finite strings alternating transitions and firing inter-

vals with rational endpoints: pairs of rational num-
bers and finite strings from a finite alphabet are count-
able sets, and thus Fm0

is also countable. The inter-
section of the cylinder sets C(m0, γ1, I1, γ2, I2, . . . , γn, In)
and C(m0, γ

′
1, I
′
1, γ
′
2, I
′
2, . . . , γ

′
m, I

′
m) with n ≤ m is non-

empty only if γi = γ′i for i = 1, . . . , n and it cor-
responds to the cylinder set C(m0, γ1, I1 ∩ I ′1, γ2, I2 ∩
I ′2, . . . , γn, In ∩ I ′n, γ′n+1, In+1, . . . , γ

′
m, I

′
m). Finally, the com-

plement of a cylinder set C(m0, γ1, I1, γ2, I2, . . . , γn, In)
corresponds to the finite union of all the cylinder sets
C(m0, γ

′
1, I
′
1, γ
′
2, I
′
2, . . . , γ

′
n, I
′
n) such that either (1) ∃i ≤

n.(γi 6= γ′i) and I ′i = [0,∞), or (2) ∀i ≤ n.(γi = γ′i) and
∃i ≤ n.(I ′i = [0, inf Ii] ∨ I ′i = [sup Ii,∞)).

The probability measure Prm0,f~τ0
can be expressed in

terms of transient stochastic state classes [35] and, if GEN
transitions are associated with piecewise expolynomial PDFs,
it can be computed numerically using the Sirio package of
the ORIS Tool [36].

Definition 3. A transient stochastic state class is a tuple Σ =
〈m,D, f〈τage,~τ〉〉 where: m ∈ NP is a marking; f〈τage,~τ〉 is
the PDF (immediately after a firing) of the random vector
〈τage, ~τ〉 including the absolute time τage and the times to fire
~τ = (τ1, . . . , τn) of transitions E(m) = {t1, . . . , tn} enabled
by m; D ⊆ Rn+1 is the support of f〈τage,~τ〉.

The initial (unconditioned) transient stochastic state class
Σ0 assigns non-null probability to states with marking m0

and absolute time τage = 0 according to the times to fire
PDF f~τ0 , i.e., Σ0 = 〈m0, D0, f〈τage,~τ0〉〉, where D0 = [0, 0]×
[support of f~τ0 ] and f〈τage,~τ0〉(xage, x1, . . . , xn) = δ(xage) ·
f~τ0(x1, . . . , xn) for E(m0) = {t1, . . . , tn}. Given a class Σ,
the state PDF conditioned on the execution of a transition γ
at an absolute time in the interval I is given by the successor
class of Σ through γ and I .

Definition 4. We say that Σ′ = 〈m′, D′, f ′〈τage,~τ〉〉 is the
successor of Σ = 〈m,D, f〈τage,~τ〉〉 through γ ∈ T at some
time in I and with succession probability µ, and we write
Σ

γ,I,µ
===⇒ Σ′, if, given that the marking of the STPN is m and
〈τage, ~τ〉 is a random vector distributed over D according to
f〈τage,~τ〉, then: (1) γ has non-null probability µ of firing in Σ
at some time in I , and (2) if γ fires in Σ at some time in I , its
firing yields the marking m′ and, conditioned on this event,
the times to fire and τage after the firing are distributed over
D′ according to f ′〈τage,~τ〉.

The relation
γ,I,µ
===⇒ can be enumerated through a calculus

for the computation of the probability of outgoing events,
and for the symbolic derivation of the support and closed-
form PDF of 〈τage, ~τ〉 in successor classes. Given a class Σ,
an enabled transition γ and a firing interval I , this calculus
computes the succession probability µ and the (unique)
successor class Σ′ such that Σ

γ,I,µ
===⇒ Σ′. Each class encodes

the PDF of the current state given the past history, providing
a full characterization of the future evolution. The treatment
in this paper does not assume the knowledge of this calculus;
for convenience, we provide a summary in the additional
material, and refer to [29], [30], [35] for a comprehensive
description.
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The probability measure of cylinder sets can be evaluated
through the repeated computation of successor classes.

Proposition 2. Given an initial marking m0 and PDF f~τ0
of the times to fire, the probability measure of a cylinder set
C(m0, γ1, I1, γ2, I2, . . . , γn, In) according to Prm0,f~τ0

is equal
to the product

∏n
i=1 µi of succession probabilities for the sequence

of transient stochastic state classes

Σ0
γ1,I1,µ1
=====⇒ Σ1

γ2,I2,µ2
=====⇒ · · · γn,In,µn======⇒ Σn,

or equal to 0 if the sequence is not defined (i.e., ∃i ≤ n.µi = 0).

Proof. The event C(m0, γ1, I1, γ2, I2, . . . , γn, In) for n ∈ N
can be expressed as E0 ∩ E1 ∩ · · · ∩ En, where E0 = Ωm0

and, for each i > 0,

Ei = {ω ∈ Ωm0
| |ω| ≥ i, ω[i] = γi and T (i, ω) ∈ Ii }

is the constrained set of paths imposing an absolute time
only on the ith transition. By induction on the definition of
succession of stochastic state classes, for all i ≤ n, the class
Σi in

Σ0
γ1,I1,µ1
=====⇒ Σ1

γ2,I2,µ2
=====⇒ · · · γn,In,µn======⇒ Σn

represents the joint PDF of the absolute time and current state
given the events E0, E1, . . . , Ei, and µi is the probability
Prm0,f~τ0

{Ei | E0, E1, . . . , Ei−1} that paths that performed
γ1, . . . , γi−1 in I1, . . . , Ii−1 will also perform γi at some time
in Ii. Then Prm0,f~τ0

{E0 ∩E1 ∩ · · · ∩En} = Prm0,f~τ0
{E0} ·

Prm0,f~τ0
{E1 | E0} · · · Prm0,f~τ0

{En | E0, E1, . . . , En−1} =∏n
i=1 µi if µi > 0 for all i ≤ n; if some event Ei has

null probability given E0, E1, . . . , Ei−1 (i.e., Σi−1 has no
successor through γi at some time in Ii and thus µi = 0), the
measure of the cylinder set is zero.

2.3 Probabilistic Temporal Logic

We specify quantitative properties of STPNs with a prob-
abilistic temporal logic based on an interval until operator
with predicates over the markings of the net. The logic can
express bounds on the probability that the marking of the
STPN satisfies a goal predicate ϕ2 at some time in the interval
[α, β] without violating a safety predicate ϕ1. The syntax of
the logic is

ψ ::= TRUE | ¬ψ | ψ ∧ ψ | P∼p[ϕ U [α,β]ϕ ]

ϕ ::= TRUE | ¬ϕ | ϕ ∧ ϕ | AP

where ∼ ∈ {<,>}, p ∈ [0, 1] is a probability value,
α, β ∈ Q>0, and atomic predicates on markings are defined
as AP ::= g ./ x where ./ ∈ {<,≤,=, 6=,≥, >}, x ∈ R and
g : NP → R is a real-valued function (e.g., “free > 1” for the
net of Fig. 1a).

As in [20], the logic allows the Boolean composition of
interval until operators [12], each evaluated from a random
initial state s0 = 〈m0, ~τ0〉 in which m0 is a marking and ~τ0
is a vector of times to fire of enabled transitions sampled
according to f~τ0 . Without loss of generality, we assume
that all enabled transitions E(m0) = {t1, t2, . . . , tn} are
newly enabled in the initial state, and thus ~τ0 is distributed
according to f~τ0(x1, x2, . . . , xn) =

∏n
i=1 fti(xi). Note that

ϕ-formulae (i.e., the arguments of an until operator) only
depend on the marking m of visited states, while ψ-formulae

depend on the initial marking m0 and also on the initial
distribution f~τ0 .

Definition 5. Given a stochastic time Petri net
〈P, T,A−, A+, B, U,EFT,LFT, F,W 〉 with initial marking
m0 and times to fire ~τ0 initially distributed according to f~τ0 ,
the relations 〈m0, f~τ0〉 |= ψ and m |= ϕ for each m ∈ NP are
defined inductively as follows:

〈m0, f~τ0〉 |= TRUE and m |= TRUE are always satisfied
m |= AP ⇐⇒ AP is satisfied by m
m |= ¬ϕ ⇐⇒ m 6|= ϕ

m |= ϕ1 ∧ ϕ2 ⇐⇒ m |= ϕ1 ∧m |= ϕ2

〈m0, f~τ0〉 |= ¬ψ ⇐⇒ 〈m0, f~τ0〉 6|= ψ

〈m0, f~τ0〉 |= ψ1 ∧ ψ2 ⇐⇒ 〈m0, f~τ0〉 |= ψ1∧〈m0, f~τ0〉 |= ψ2

〈m0, f~τ0〉 |= P∼p[ϕ1 U [α,β]ϕ2 ] ⇐⇒
Prm0,f~τ0

{ω ∈ Ωm0 | ω |= ϕ1 U [α,β]ϕ2} ∼ p

where, for any path ω = s0
γ1−→ s1

γ2−→ · · · with si =

〈mi, ~τi〉, mi ∈ NP and ~τi ∈ RE(mi)
>0 for all i,

ω |= ϕ1 U [α,β]ϕ2 ⇐⇒ ∃n ≤ |ω| such that mn |= ϕ2 ∧(
∀k < n.(mk |= ϕ1)

)
∧
(
T (n, ω) ∈ [α, β]∨

(T (n, ω) < α ∧ T (n+ 1, ω) ≥ α ∧ mn |= ϕ1)
)
.

(1)

According to Eq. (1), a path satisfying the interval until
operator ϕ1 U [α,β]ϕ2 must visit only ϕ1-states and then either
reach a ϕ2-state in [α, β], or reach a (ϕ1 ∧ ϕ2)-state before
time α and let time advance past α. It is worth noting that
this formulation based on the index n of each state in a path
ensures that also intermediate states with zero sojourn time
(which may occur with nonzero probability when the model
includes IMM or DET transitions) satisfy ϕ1, which could
not be specified in the continuous-time formulation of [12].

Example 2. In the G/D/1/2/2 queue of Fig. 1a, the property
P<0.4[(buffer < 2)U [0,7](failed = 1)] ∧ P<0.2[(buffer <
2)U [2.5,7](failed = 1)] is satisfied when the probability of the
server being down without ever reaching its full capacity is
lower than 0.4 in the interval [0, 7] and lower than 0.2 in the
interval [2.5, 7].

The following proposition shows that, for every pair
of marking predicates ϕ1, ϕ2, and α, β ∈ Q>0, the set of
paths satisfying the interval until operator is an event of
Fm0

. Concretely, this means that the value of Prm0,f~τ0
{ω ∈

Ωm0 | ω |= ϕ1 U [α,β]ϕ2} is well-defined and the semantics
of Definition 5 can be computed with stochastic state classes.

Proposition 3. For each ϕ1, ϕ2 ∈ NP and α, β ∈ Q>0, the
set {ω ∈ Ωm0

| ω |= ϕ1 U [α,β]ϕ2 } of paths satisfying the
corresponding interval until operator is a countable union of
cylinder sets.

Proof. The cylinder sets that end on a ϕ2-marking reached
only through ϕ1-markings are countable. Each cylinder set
is in fact uniquely identified by the sequence of transitions
γ1, γ2, . . . , γn fired from m0, which are strings on a finite al-
phabet. For each cylinder set C(m0, γ1, I1, γ2, I2, . . . , γn, In)
that ends on a ϕ2-marking only through ϕ1-markings,
we consider (1) the cylinder set imposing only an abso-
lute time In = [α, β] for the nth transition, and (2) if
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the marking reached after γn satisfies also ϕ1, the cylin-
der sets C(m0, γ1, I1, γ2, I2, . . . , γn, In, γn+1, In+1) for each
γn+1 ∈ T that impose a bound In = [0, α) for the firing of
γn and a bound In+1 = [α,∞) for the firing of γn+1. The
countable union of these cylinder sets is an event of Fm0

including all and only the successful paths.

3 COMPOSING PATHS ACROSS REGENERATIONS

Paths satisfying an interval until operator can be represented
as a countable union of disjoint cylinder sets; when the union
is finite or any bounded error is allowed, the formal relation
between the measure of cylinder sets and stochastic state
classes presented in Section 2.2 provides a concrete solution
for the evaluation of Prm0,f~τ0

{ω ∈ Ωm0
| ω |= ϕ1 U [α,β]ϕ2}.

In [27], a solution algorithm is formulated based on the
enumeration of stochastic state classes for all finite sequences
of fired transitions γ1, γ2, . . . , γn and maximal firing time
intervals I1, I2, . . . , In that satisfy ϕ1 U [α,β]ϕ2. Similarly to
[25], the enumeration of closed-form PDFs enables the accu-
rate evaluation of low probability events, and the on-the-fly
analysis of cylinder sets can be stopped early if the interval
until operator is decided. As a major limit, the number of
discrete events, and thus the number of closed-form PDFs
to compute, can grow exponentially with the bound β. To
reduce this complexity, we identify discrete events after
which the stochastic process exhibits the Markov property;
the corresponding (random) time instants, called regeneration
points, can be leveraged to decompose the evolution of the
process through a Markov renewal argument: either a given
property is satisfied before hitting a regeneration point,
or, if a regeneration point is reached, the probability of
satisfying the property in the remaining time is conditionally
independent of the previous history given the current state.
In Section 4, the computation of PDFs will be limited to the
first regeneration along each sequence of discrete events,
combining measures associated with distinct initial states
into a system of integral equations. In this section, we
generalize the concept of regeneration of state-of-the-art
techniques for stochastic Petri nets [17], [21], [37] by detecting
states in which the time elapsed since the enabling of each
GEN transition is deterministic; moreover, we highlight the
properties of regeneration points in the context of stochastic
state classes, and provide an algorithm for their on-the-fly
detection during the enumeration of discrete events.

3.1 Extended regenerations

In the evolution of a stochastic process, a regeneration point
occurs whenever the state of the process subsumes any
information on its previous history.

Definition 6. Let {M(t), t ≥ 0 } be a stochastic process de-
fined on a probability space (Ω,F , P ) with finite state space
S. We say that {M(t), t ≥ 0 } encounters a regeneration
point at time t ≥ 0 if it satisfies the Markov property in t:

P{M(t+t′) = j |M(t) = i, (∀u ∈ At).M(u) = iu } =

P{M(t′) = j |M(0) = i }
for all j ∈ S, t′ ≥ 0, At ⊆ [0, t), and iu ∈ S for u ∈ At.

While CTMCs encounter a regeneration point at every
time instant, in STPNs regeneration points correspond to
discrete events after which GEN timers do not “carry
memory” of the previous evolution [17], similarly to EXP
timers (which are always memoryless). This is the case of
GEN timers that are either reset, or have been enabled for
a deterministic time: given the current marking and the
deterministic enabling times of GEN timers, the probability
distribution of future states is conditionally independent of
the previous history. A stochastic state class where the times
to fire satisfy this condition is called regenerative, and the PDF
of the vector 〈τage, ~τ〉 is always in product form.

Definition 7. A stochastic state class Σ is regenerative if,
for each enabled GEN transition ti, the time elapsed from
its enabling until the firing that led to Σ is equal to some
deterministic value di ∈ R>0, which we call the enabling time
of ti in Σ.

Remark 1. In a regenerative class Σ = 〈m,D, f〈τage,~τ〉〉 where
the sets of enabled GEN, EXP, and IMM transitions are
{t1, . . . , tn}, {tn+1, . . . , tm}, and {tm+1, . . . , tl}, respectively,
if ~d = (d1, . . . , dn) ∈ Rn>0 is the vector of enabling times of
GEN transitions, the support D and the probability density
function f〈τage,~τ〉 of 〈τage, ~τ〉 in Σ are equal to

D = Dage ×
n∏
i=1

[max{0, EFT (ti)− di}, LFT (ti)− di]

×
m∏

i=n+1

[0,+∞)×
l∏

i=m+1

[0, 0]

and

f〈τage,~τ〉(xage, ~x) = fage(xage) ·
n∏
i=1

fti(xi + di)∫ LFT (ti)
max{di,EFT (ti)} fti(u) du

·
m∏

i=n+1

λtie
−λtixi ·

l∏
i=m+1

δ(xi)

respectively, for some PDF fage of τage with support Dage.

Remark 2. As a notable case, a class in which all GEN
transitions are newly enabled is regenerative with ~d = ~0;
this case corresponds to the usual concept of regeneration in
the literature on stochastic Petri nets [17], [21]. In particular,
this is the regeneration of the initial class Σ0.

Remark 3. A regenerative class is uniquely identified by its
marking m, by the vector ~d of enabling times, and by the
PDF fage and support Dage of the absolute time τage of the
discrete event associated with the stochastic state class. The
marking m identifies the set of enabled transitions, and the
support and distribution of EXP and IMM transitions, while
the enabling times ~d identify the support and distribution of
GEN timers.

Remark 4. In the following, we denote by (Ωm,Fm,Prm,~d)
the probability space for the paths of an STPN with initial
marking m when times to fire are initially distributed
according to a PDF f~τ0 with the product form described
in Remark 1 for enabling times ~d and τage equal to zero (i.e.,
fage(xage) = δ(xage) and Dage = [0, 0]).
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3.2 Detection of regeneration points in the enumera-
tion of stochastic state classes

At regeneration points, the time elapsed since the enabling
of each GEN transition must be deterministic. In order to
detect regeneration points in the enumeration of successor
classes, we analyze synchronizations between the enabling
of DET/IMM and GEN transitions over sequences of firings:
immediately after the firing of a DET or IMM transition u, a
GEN transition t has been enabled for a deterministic time iff
t was enabled together with u, or with a deterministic delay
(or advance) with respect to the enabling of u.

We define the map ENABLING(u, t) to record, for each
DET/IMM transition u, the deterministic time from the
enabling of each GEN transition t until the scheduled firing
of u, or NIL if this time is not deterministic. The algorithm in
Fig. 2 constructs ENABLING(u, t) for an initial regeneration
(m0, ~d0) which assigns deterministic enabling time ~d0(t) to
each GEN transition t (lines 1–3). After the firing of the ith
transition in the sequence γ1, . . . , γn, the enabling time ~d(t)
of each GEN transition t is recomputed from ENABLING(γi, t)
(lines 7–13): if ~d assigns a deterministic enabling time to each
enabled GEN transition, a regeneration point is detected,
and the regeneration (m, ~d) is returned (line 16), where m
is the marking reached after the firing of γi. Otherwise, the
map ENABLING(u, t) is updated to maintain its invariant:
information on each disabled transition is removed (lines
18–21) and, for each DET/IMM transition u and GEN
transition t with deterministic enabling times ~d(u) and ~d(t),
respectively, the enabling time of t at the firing of u is set to
~d(t) + [LFT (u)− ~d(u)] (lines 22–24).

While the algorithm presented in Fig. 2 detects the first
regeneration on a finite sequence of transition firings, lines
5–24 can be executed after the enumeration of each stochastic
state class to identify regenerative classes and regenerations
on-the-fly.

3.3 Properties of regeneration points

The transient behavior of an STPN is fully characterized
by an infinite tree encoding the succession relation among
stochastic state classes for all sequences of fired transitions.
In the following, we omit the firing time interval I in
the notation Σ

γ,I,µ
===⇒ Σ′ whenever I = [0,+∞) (i.e., no

constraint is imposed on the absolute firing time).

Definition 8. The transient stochastic tree from an initial class
Σ0 is a tuple 〈N,E, n0,Σ〉 where: the set N is a countable
set of nodes; n0 ∈ N is the root node; the function Σ
associates each node n ∈ N with a stochastic state class
Σ(n); the labeled edges E ⊆ N × T × (0, 1] ×N represent
the (unconstrained) successions of stochastic state classes
associated with transition firings, i.e., (n, γ, µ, n′) ∈ E if and
only if Σ(n)

γ,µ
==⇒ Σ(n′).

When Σ(n0) corresponds to the initial class Σ0 (Section 2.2),
the transient tree enumerates all the sequences of transition
firings with non-null probability, and associates each node
with the resulting PDF over states and absolute reaching
times. A node n associated with a regenerative class Σ(n) =
〈m,D, f〈τage,~τ〉〉 is said to be regenerative, and it satisfies
two major properties presented in the following. The first

DETECT-FIRST-REGENERATION((m0, ~d0), γ1, . . . , γn)

1 for each DET/IMM transition u enabled by m0

2 for each GEN transition t enabled by m0

3 ENABLING(u, t)← ~d0(t) + [LFT (u)− ~d0(u)]
4 for i = 1 to n
5 regeneration ← TRUE

6 ~d(t)← NIL for each GEN transition t
7 for each GEN transition t enabled after the firing of γi
8 if t is newly enabled
9 ~d(t)← 0

10 elseif γi is DET/IMM ∧ ENABLING(γi, t) 6= NIL

11 ~d(t)← ENABLING(γi, t)
12 else
13 regeneration ← FALSE
14 if regeneration = TRUE
15 m← marking reached after the firing of γi
16 return (m, ~d)
17 else
18 for each disabled transition x
19 ENABLING(u, x)← NIL for each DET/IMM u
20 if x is DET/IMM
21 ENABLING(x, t)← NIL for each GEN t

22 for each DET/IMM transition u s.t. ~d(u) 6= NIL

23 for each GEN transition t s.t. ~d(t) 6= NIL

24 ENABLING(u, t)← ~d(t) + [LFT (u)− ~d(u)]
25 return NIL

Fig. 2: Algorithm detecting the first regeneration over the
sequence of transitions γ1, . . . , γn fired from the initial
regeneration (m0, ~d0).

property guarantees that two regenerative nodes reached
at different times, but associated with the same marking
and deterministic enabling times, enable the same firing
sequences with the same probabilities.

Lemma 1. Let ni and nj be two regenerative nodes associated
with stochastic state classes Σ(ni) and Σ(nj) with the same
marking m and the same deterministic enabling times ~d. Then, the
succession sequences feasible from ni and from nj are the same,
they have the same probability, and they end up in nodes associated
with stochastic state classes that have the same marking and the
same random vector ~τ of times to fire for enabled transitions.

Proof. The proof runs by induction on the length of suc-
cession sequences originating from the nodes ni and nj ,
and leverages the fact that the two classes have the same
marginal distribution of times to fire, so that they will allow
the same set of feasible behaviors with the same probabilities:
according to Remark 3, Σ(ni) and Σ(nj) have the same
support and distribution for the vector of times to fire of
enabled transitions; the former condition implies that they
accept the same sets of feasible behaviors (sequences of
firable transitions), and that equal succession sequences
result in the same final markings and times to fire supports
(due to the underlying non-deterministic model); the latter
condition implies that probabilities of these firing sequences
are also the same, and that they end up in classes with the
same PDF of times to fire.

Lemma 1 gives relevance to the pair (m, ~d), which
captures a condition that can be reached at different times
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REGENERATION
Marking: 2free operational
Enabling times: {arrival → 0}

PRODUCT-FORM PDF
age ∼ DET(0)
arrival ∼ UNIF([1, 2])
fail ∼ EXP(0.1)

Σ0

Marking: 2free failed

JOINT PDF OF (arrival , age)
f(arrival , age) = 0.7198 e0.1age

Darrival,age = {(arrival , age) |
−2 ≤ age ≤ 0, 0 ≤ arrival ≤ 2,
−2 ≤ age − arrival ≤ −1}

PRODUCT-FORM PDF
restart ∼ UNIF([1, 2])

Σ1

fail , 0.1389

Marking: 2free operational

JOINT PDF OF (arrival , age)
f(arrival , age) =

61.5074− 67.9762 e0.1age

Darrival,age = {(arrival , age) |
−2 ≤ age ≤ −1, 0 ≤ arrival ≤ 1,
−2 ≤ age − arrival ≤ −1}

PRODUCT-FORM PDF
fail ∼ EXP(0.1)

Σ2

restart , 0.1170

REGENERATION
Marking: free buffer operational
Enabling times:
{arrival → 0, service → 0}

PRODUCT-FORM PDF
fage(age) = −627.2336 e0.1age+
69.6926 age e0.1age + 630.6050
Dage = [−2,−1]
arrival ∼ UNIF([1, 2])
service ∼ DET(1.5)
fail ∼ EXP(0.1)

ENABLING(service, arrival)=1.5

Σ3

arrival , 0.9754

REGENERATION
Marking: 2free operational
Enabling times: {arrival → 1.5}

PRODUCT-FORM PDF
fage(age) = −1214.5693 e0.1age +
161.9426age e0.1age + 1261.2100
Dage = [−3.5,−2.5]
arrival ∼ UNIF([0, 0.5])
fail ∼ EXP(0.1)

Σ4

service, 0.4304

Fig. 3: Stochastic state classes for the sequence of events fail , restart , arrival , service in the queue of Fig. 1a.

in different regenerative classes, but always produces the
same subsequent behaviors. In the sequel, we refer to the
pair (m, ~d) as regeneration condition.

The next lemma completes the picture by focusing on the
advancement of the age before and after a regenerative node,
and it fully exploits the properties of regenerative stochastic
state classes to show that the times elapsed before and after
the regeneration are independent.

Lemma 2. Let nj be a regenerative node, nk be the descendant
of nj reached through the transitions ρ = γ0, . . . , γn, and f jage
and fkage be the marginal PDF of the τage variables in Σ(nj) and
Σ(nk), respectively. Then,

fkage(xage) =

∫ +∞

−∞
f jage(u) f̂kage(xage − u) du (2)

where f̂kage is the marginal PDF of τage for the node n̂k reached
through ρ in the transient tree rooted in a node n̂j with the same
marking and random vector as nj , but with τage distributed as
f̂ jage(xage) = δ(xage).

Proof. The time spent in the execution of ρ from nj or from
n̂j is the same as it only depends on the marginal distribution
of times to fire in nj and n̂j (Lemma 1); moreover, the
distribution of this time is given by f̂kage, since the age is
equal to zero in n̂j , i.e., f̂ jage(xage) = δ(xage). Since nj is
regenerative, f jage is in product form with respect to the
marginal PDF of times to fire (Remark 1), and thus the
evolution from nj is independent of the time at which
the node is reached; the age in nk is then the sum of the
independent random variables associated with the age in nj
and the duration of ρ, and it is distributed as the convolution∫ +∞
−∞ f jage(u) f̂kage(xage − u) du.

Note that in Lemma 1 the assumption that ni and nj
are regenerative is used only to guarantee that they have
the same marginal PDF for the vector of times to fire. In
Lemma 2, the assumption of regeneration is used also to
guarantee that the PDFs of τage and ~τ are in product form.

Example 3. In order to illustrate the concept of regeneration
points, we report in Fig. 3 the stochastic state classes
corresponding to the cylinder set with initial marking
2freeoperational and sequence of discrete events fail , restart ,
arrival , service (without constraints on the absolute firing
times) for the STPN of Fig. 1a. The probability measure
of the continuous set of paths contained in the cylinder
set is given by the product of succession probabilities
(which we report up to the fourth significant figure). In

regenerative stochastic state classes Σ0, Σ3, Σ4, the absolute
time of the last event and all the times to fire of enabled
transitions are independent random variables with product-
form PDF; notably, the GEN transition arrival in Σ4 is not
newly enabled, but its PDF is uniquely identified by the
deterministic enabling time 1.5. Note that, as discussed in
[35], τage encodes the negation of the absolute firing time, in
order to operate on variables decreasing with the same rate.

Remark 5 (Nesting of until operators). In a Markov regener-
ative process, the discrete component of the state does not
carry sufficient information to verify nested sub-formulas
independently. We illustrate the problem with an example
inspired by [10]. Consider an STPN with only one place p
and one transition t with time to fire uniform on [0, 4]. Let
p be a precondition for t, and let the initial marking assign
one token to p: at the firing of t, the token is removed and no
further transition is enabled. The underlying marking process
is semi-Markov with two states: p = 1 and p = 0. Consider
now the nested formula ϕext = P>1/3[ϕin U [0,2](p = 0)]
with ϕin = P<1/3[(p = 1)U [0,1](p = 0)]. Intuitively, for ϕext
to hold, ϕin must be satisfied continuously until the firing
of t. However, due to the dependency on past evolution
introduced by the GEN sojourn time, the satisfaction of
the inner formula ϕin changes over time: given a sojourn
of x time units, the probability of (p = 1)U [0,1](p = 0) is∫ x+1
x 1[x,4]/(4−x) dy, which is monotonically nondecreasing

and remains under 1/3 only when x ∈ [0, 1). Therefore,
the only paths that satisfy ϕin continuously are those that
sojourn in p = 1 less than x̄ = 1 time units, and the
probability of satisfying the nested operator ϕin U [0,2](p = 0)
is
∫ x̄
0 1/4 dy = 1/4. By this argument, we conclude that

the external formula ϕext is not satisfied; the important
remark is that this conclusion requires that initial states
be distinguished not only by their marking, but also by the
sojourn duration.

4 REGENERATIVE SOLUTION OF AN INTERVAL UN-
TIL OPERATOR

4.1 Renewal equations for the until operator

Given the predicates ϕ1 and ϕ2, a real interval [α, β] with
α, β ∈ Q>0, and a regeneration condition i = (m, ~d), we
define

Ωi(α, β) := {ω ∈ Ωm | ω |= ϕ1 U [α,β]ϕ2 }
to be the set of paths that start from the marking of the
regeneration condition i and satisfy the until operator, and
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we denote by pi(α, β) := Pr i{Ωi(α, β)} its probability
measure defined as in Remark 4 (Section 4). For each path
ω = s0

γ1−→ s1
γ2−→ · · · in Ωi(α, β), with sn = 〈mn, ~τn〉,

mn ∈ NP and ~τn ∈ RE(mn)
>0 , we indicate as REG(ω) the

index of the first regeneration along the path:

REG(ω) := min{n ∈ N | sn−1
γn−→ sn is a regeneration}

and we indicate as OK(ω) the index of the first state leading
to the satisfaction of the until operator:

OK(ω) := min{n ∈ N | n ≤ |ω| ∧ (mn |= ϕ2)∧(
∀k < n.(mk |= ϕ1)

)
∧
(
T (n, ω) ∈ [α, β]∨

(T (n, ω) < α ∧ T (n+ 1, ω) ≥ α ∧ mn |= ϕ1)
)
}.

Moreover, we indicate with tREG(ω) := T (REG(ω), ω) the
time of the first regeneration in ω, and with (mREG(ω), ~dREG(ω))
the corresponding regeneration condition. The probability
pi(α, β) can then be decomposed so as to separately account
for paths in Ωi(α, β) that satisfy the until operator under
different timings of the first regeneration. To this end,
we distinguish paths that satisfy the until operator before
reaching a regeneration from those that encounter the first
regeneration before α, or between α and β, and then satisfy
the until operator:

ΩLi (α, β) := {ω ∈ Ωi(α, β) | OK(ω) < REG(ω) },
ΩGi (α, β) := {ω ∈ Ωi(α, β) |

OK(ω) ≥ REG(ω) ∧ tREG(ω) < α },
ΩHi (α, β) := {ω ∈ Ωi(α, β) |

OK(ω) ≥ REG(ω) ∧ tREG(ω) ∈ [α, β] }.
Proposition 4. For any regeneration condition i and α, β ∈
Q>0, it holds pi(α, β) = Pr i{ΩLi (α, β)} + Pr i{ΩGi (α, β)} +
Pr i{ΩHi (α, β)}.
Proof. The sets ΩLi (α, β), ΩGi (α, β), ΩHi (α, β) are a partition
of the set of paths Ωi(α, β): on the one hand, they are
clearly disjoint; on the other hand, to prove that their union
is Ωi(α, β) it is sufficient to consider that ∀ω ∈ Ωi(α, β),
tREG(ω) > β implies OK(ω) < REG(ω).

The probability measure of the three sets ΩLi (α, β),
ΩGi (α, β) and ΩHi (α, β) can be expressed in terms of three
kernels characterizing the behavior of the stochastic process
within the first epoch of regeneration.

The measure of ΩLi (α, β) is directly defined as the local
kernel Lϕ1,ϕ2

i (α, β) := Pr i{ΩLi (α, β)}, which evaluates the
probability measure of paths that satisfy the until operator
before reaching a regeneration. In contrast, the measures
of ΩGi (α, β) and ΩHi (α, β) are not limited to a regeneration
epoch and require the next Propositions 5 and 6.

Proposition 5. The measure Pr i{ΩGi (α, β)} is equal to∑
k

∫
x∈[0,α)

dGϕ1

ik (x) pk(α− x, β − x) (3)

where k = (m, ~d) ranges over all reachable regeneration conditions
and the global kernel Gϕ1

ik (x) is defined as

Gϕ1

ik (x) := Pri{ω ∈ Ωi | tREG(ω) ≤ x ∧ (4)

(mREG(ω), ~dREG(ω)) = k ∧ (∀j < REG(ω)).(mj |= ϕ1) } .

Proof. For each ω ∈ ΩGi (α, β), it must be OK(ω) ≥ REG(ω)
and tREG(ω) < α (i.e., ω encounters a goal state after reaching
a regeneration point before time α). According to Lemmas 1
and 2, the process evolution after the regeneration point de-
pends only on the regeneration condition (mREG(ω), ~dREG(ω)),
and the time remaining for the satisfaction of the until
operator is reduced by tREG(ω); since the only condition
required by Eq. (1) for states (mj , ~τj) with j < OK(ω) is
mj |= ϕ1, and OK(ω) ≥ REG(ω) for ω ∈ ΩGi (α, β), the
measure Pri{ΩGi (α, β) } is equal to∫
X(α)

p(mREG(ω),~dREG(ω))

(
α− tREG(ω), β − tREG(ω)

)
dPri(ω) (5)

where X(α) := {ω ∈ Ωi | tREG(ω) < α ∧ (∀j <
REG(ω)).(mj |= ϕ1) }. In Eq. (5), the measure of each path
reaching its first regeneration point before α without violat-
ing ϕ1 is multiplied by the probability that the until operator
will be satisfied from that regeneration in the remaining time.
By conditioning on all reachable regeneration conditions
(mREG(ω), ~dREG(ω)) = k and times tREG(ω) = x of the first
regeneration before α, we obtain Eq. (3), where the global
kernel represents the probability of reaching, within time x,
a regeneration with regeneration condition k while always
satisfying ϕ1 in previous states.

Proposition 6. The measure Pr i{ΩHi (α, β)} is equal to∑
k

∫
x∈[α,β]

dHϕ1,ϕ2

ik (α, x) pk(0, β − x) (6)

where k = (m, ~d) ranges over all reachable regeneration conditions
and the conditional global kernel Hϕ1,ϕ2

ik (α, x) is defined as

Hϕ1,ϕ2

ik (α, x) := Pri{ω ∈ Ωi | tREG(ω) ∈ [α, x] ∧
(mREG(ω), ~dREG(ω)) = k ∧ (∀j < REG(ω)).

(
mj |= ϕ1 ∧

(mj |= ϕ2)⇒ T (j + 1, ω) < α
)
} .

(7)

Proof. For each ω ∈ ΩHi (α, β), it must be that OK(ω) ≥
REG(ω) and tREG(ω) ∈ [α, β] (i.e., ω encounters a goal state
after reaching a regeneration point at some time in [α, β]).
The proof is analogous to the case of Proposition 5: in this
case, states (mj , ~τj) with j < REG(ω) must satisfy ϕ1, but not
ϕ2 if the sojourn lasts until after α: otherwise, the formula
would be satisfied at time α by letting time advance in a
ϕ2-state, and we would have OK(ω) < REG(ω).

Propositions 5 and 6 provide an important result, as
they apply renewal arguments to the satisfaction of the
until operator and distinguish the properties that must
be satisfied by paths before a regeneration point in [0, α)
or in [α, β]. We can now present our main result, which
follows directly from Propositions 4 to 6 and shows that the
measure p(m0,~0)(α, β) of paths satisfying the until operator
from the initial regeneration (m0,~0) can be computed from
the measures pi(α, β) for all possible i, α, β.

Theorem 1. The measures pi(α, β) for all i = (m, ~d), each
corresponding to the probability that the model satisfies the interval
until operator ϕ1 U [α,β]ϕ2 from the initial marking m with PDF
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time
0 α β

i ϕ2

tOK

ϕ1

(a) Paths contributing to Lϕ1,ϕ2
i (α, β).

time
0 tREG x

i kϕ1

(b) Paths contributing to Gϕ1
ik (x).

time
0 α tREG x

i kϕ1 ϕ1 ∧ ¬ϕ2

(c) Paths contributing to Hϕ1,ϕ2
ik (α, x).

Fig. 4: Constraints on paths contributing to the kernels.

of GEN timers given by the deterministic enabling times ~d, are
given by the system of integral equations

pi(α, β) = Lϕ1,ϕ2

i (α, β)

+
∑
k

∫
x∈[0,α)

dGϕ1

ik (x) pk(α− x, β − x)

+
∑
k

∫
x∈[α,β]

dHϕ1,ϕ2

ik (α, x) pk(0, β − x)

(8)

where i and k range over all reachable regeneration conditions.

The theorem represents a bivariate generalization of
Markov renewal equations [18], [38] leveraging three kernels
that result from a renewal argument specific to the interval
until operator: the model can satisfy ϕ2 between α and
β either (1) without regenerations, (2) reaching the first
regeneration before α, or (3) reaching the first regeneration
in [α, β]. As illustrated in Fig. 4, ϕ1 must always be satisfied;
additionally, also ¬ϕ2 must be satisfied between α and the
first regeneration in paths that satisfy the until operator only
after a regeneration in [α, β].

The bivariate unknowns pi(α, β) take into account both
a minimum and maximum time for the satisfaction of ϕ2;
after a regeneration at time x with regeneration condition
k, the success probability is given by the solution from k
with reduced time constraints: pk(α − x, β − x) if x < α
and pk(0, β − x) if x ≥ α. In the next section, we will show
that the numerical solution of the integral equations for
pi(α, β) requires a number of unknowns pk(x, y) that grows
linearly with respect to β, similarly to the required values of
Lϕ1,ϕ2

i and Gϕ1

ik ; in contrast, the number of required values
of Hϕ1,ϕ2

ik grows linearly with the product α(β − α), as
illustrated in Fig. 5.

4.2 Numerical integration and kernels evaluation

The kernels can be evaluated through the enumeration of
stochastic state classes limited to the first regeneration along
sequences of discrete events; Eq. (8) can then be solved
numerically in the time domain through techniques such as
Newton–Cotes formulas or Runge–Kutta methods [39], with
various trade-offs between accuracy and complexity. Given
a step h, discretizing the temporal domain [0, β] into points

0 tb
0

ta

tb̄−ā tb̄

tā

Lϕ1,ϕ2
i

Hϕ1,ϕ2
ik

Fig. 5: Required values of Lϕ1,ϕ2

i (ta, tb) and Hϕ1,ϕ2

ik (ta, tb).

tn = nh, with α = āh and β = b̄h, Newton–Cotes formulas
define the linear system

~p(ta, tb) = ~Lϕ1,ϕ2(ta, tb)

+
a∑

m=0

wm dG
ϕ1(tm) ~p(ta−m, tb−m)

+
b∑

m=a

wm dH
ϕ1,ϕ2(ta, tm) ~p(0, tb−m)

(9)

in the unknowns ~p(0, tb) for b = 0, . . . , b̄ − ā, and
~p(ta, ta+b̄−ā) for a = 1, . . . , ā, where, for first-degree for-
mulas (trapezoidal rule), wm = h/2 for m = 0, m = a, or
m = b, and wm = h otherwise. For regular MRPs dG(0) = 0
and dH(0, 0) = 0, and Eq. (9) can be solved by forward
substitution; in particular,

~p(0, tb) = ~Lϕ1,ϕ2(0, tb) +
b∑

m=1

wm dH
ϕ1,ϕ2(0, tm) ~p(0, tb−m)

for b = 0, . . . , b̄− ā, and

~p(ta, tb) = ~Lϕ1,ϕ2(ta, tb)

+
a∑

m=1

wm dG
ϕ1(tm) ~p(ta−m, tb−m)

+
b∑

m=a

wm dH
ϕ1,ϕ2(ta, tm) ~p(0, tb−m)

(10)

for a = 1, . . . , ā and b = a+ b̄− ā. Evaluating the unknowns
~p(ta, tb) in this order, the solution ~p(tā, tb̄) can be computed
as a direct sum that requires:
• local kernel values ~Lϕ1,ϕ2(0, tb) for b = 0, . . . , b̄− ā and
~Lϕ1,ϕ2(ta, ta+b̄−ā) for a = 1, . . . , ā;

• global kernel values dGϕ1(tm) for m = 1, . . . , ā;
• conditional global kernel values dHϕ1,ϕ2(ta, tm) for a =

0, . . . , ā and m = a, . . . , a+ b̄− ā.
Values of Lϕ1,ϕ2

i (ta, tb), dGϕ1

ik (tm), and dHϕ1,ϕ2

ik (ta, tm) can
be derived from the transient tree enumerated from regener-
ation condition i, halting on (1) regenerative nodes, (2) nodes
not satisfying ϕ1, (3) nodes with minimum reaching time
τage greater than β. In the enumeration, the successors
of a class Σ, indicated as SUCCESSORS(Σ), are derived
according to the calculus described in the Appendix in
the supplemental material, and in [29], [30], [35]. Each
class Σn derived through successions Σi−1

γi,µi
===⇒ Σi for

i = 1, . . . , n is associated with the probability measure
η(Σn) =

∏n
i=1 µi of the cylinder set of paths that perform the
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EVALUATE-Lϕ1,ϕ2
i (α, β)

1 Σ0 = initial state class with regeneration condition i
2 p← 0
3 Γ← {Σ0 }
4 while Γ 6= ∅
5 select and remove a class Σ = 〈m,D, f〉 from Γ
6 if m |= ¬ϕ1 ∧ ¬ϕ2 or Σ is regenerative
7 discard Σ
8 elseif m |= ¬ϕ1 ∧ ϕ2

9 p← p+ η(Σin∈[α,β])
10 elseif m |= ϕ1 ∧ ¬ϕ2

11 Γ← Γ ∪ SUCCESSORS(Σout∈[0,β])
12 elseif m |= ϕ1 ∧ ϕ2

13 p← p+ η(Σin∈[α,β])
14 + η(Σin∈[0,α),out∈[α,+∞))
15 Γ← Γ ∪ SUCCESSORS(Σout∈[0,α))
16 return p

Fig. 6: Algorithm evaluating Lϕ1,ϕ2

i (α, β).

sequence of discrete events γ1, . . . , γn. Additional constraints
on paths can be imposed by restricting the set of values
of times to fire; in particular, given a stochastic state class
Σ = 〈m,D, f〉 and the intervals I1 and I2, we indicate as
Σin∈I1,out∈I2 = 〈m,Din∈I1,out∈I2 , fin∈I1,out∈I2〉 where

Din∈I1, out∈I2 := { 〈τage, ~τ〉 ∈ D | −τage ∈ I1
and (mini τi)− τage ∈ I2 }

η(Σin∈I1, out∈I2) := η(Σ)

∫
Din∈I1, out∈I2

f〈τage,~τ〉(xage, ~x) dxage d~x

fin∈I1, out∈I2(xage, ~x) := f(xage, ~x)
η(Σ)

η(Σin∈I1, out∈I2)

the class Σ conditioned on the event imposing that the
last firing happened at some time in I1 and the next firing
will happen at some time in I2 (note that τage encodes the
negation of the absolute reaching time). Correspondingly,
η(Σin∈I1, out∈I2) represents the measure of the cylinder set
of paths where the firings that enter and leave Σ occur in
the intervals I1 and I2, respectively. In the following, the
superfluous restrictions in ∈ [0,+∞) and out ∈ [0,+∞)
will be omitted in the notation.

Local kernel values Lϕ1,ϕ2

i (ta, tb). The algorithm in Fig. 6
evaluates Lϕ1,ϕ2

i (α, β) by enumerating the transient tree
from regeneration condition i. Specifically, Γ is the frontier
set containing classes to be processed and p accumulates
the value of Lϕ1,ϕ2

i (α, β). For each non-regenerative class Σ
selected from Γ, three cases are possible, depending on the
satisfaction of ϕ1 and ϕ2:

• A state in a class ¬ϕ1 ∧ ϕ2 (line 8), contributes to the
probability p iff it is reached in [α, β]; according to this,
p is incremented by the measure of the subset of Σ
restricted with the constraint in ∈ [α, β].

• A state in a class ϕ1∧¬ϕ2 (line 10) does not contribute to
p, but its successors can, provided that they are reached
within β; according to this, the successors of Σ that are
reached within β are added to Γ.

• A state in a class ϕ1∧ϕ2 (line 12) can contribute to either
p or the frontier Γ: p is incremented by the measure of
the states in Σ that are reached within [α, β], or reached

EVALUATE- ~Hϕ1,ϕ2
i (α, x)

1 Σ0 = initial state class with regeneration condition i
2 pk ← 0 for each regeneration condition k
3 Γ← {Σ0 }
4 while Γ 6= ∅
5 select and remove a class Σ = 〈m,D, f〉 from Γ
6 if Σ is regenerative with regeneration condition k
7 pk ← pk + η(Σin∈[0,x])
8 elseif m |= ϕ1 ∧ ¬ϕ2

9 Γ← Γ ∪ SUCCESSORS(Σout∈[0,x])
10 elseif m |= ϕ1 ∧ ϕ2

11 Γ← Γ ∪ SUCCESSORS(Σout∈[0,α))
12 return ~p

Fig. 7: Algorithm evaluating ~Hϕ1,ϕ2

ik (α, x).

before α and left after α; the successors of Σ are added
to Γ iff they are reached before α.

Global kernel values dGϕ1

ik (tm). The values dGϕ1

ik (tm) for m =
1, . . . , ā can be derived from the transient tree enumerated
from regeneration condition i, stopping on any regenerative
class, or on any (¬ϕ1)-class, or after the time limit α. In
particular, the value dGϕ1

ik (tm) can be obtained by summing
up, over each regenerative class n with regeneration k, the
PDF value of the absolute reaching time multiplied by η(n),
i.e., dGϕ1

ik (tm) =
∑
n η(n) fnage(−tm).

Conditional global kernel values dHϕ1,ϕ2

ik (ta, tm). The values
dHϕ1,ϕ2

ik (ta, tm) can be approximated as (Hϕ1,ϕ2

ik (ta, tm) −
Hϕ1,ϕ2

ik (ta, tm−1))/h, where the values Hϕ1,ϕ2

ik (α, x) are
derived from the transient tree enumerated from regenerative
condition i stopping on regenerations, on (¬ϕ1)-classes, and
on classes reached after β. The evaluation also discards states
in ϕ2-classes that are left after α, since Hϕ1,ϕ2

ik (α, x) provides
the measure of the set of paths that end on regeneration
condition k after visiting only ϕ1-states and without visiting
any ϕ2-state after α. The algorithm in Fig. 7 evaluates
Hϕ1,ϕ2

ik (α, x) for all k by enumerating the transient tree from
regeneration condition i; similarly to Fig. 6, Γ is the frontier
set and pk accumulates the value of Hϕ1,ϕ2

ik (α, x). For each
state class Σ selected from Γ:

• A state in a regenerative class with regeneration con-
dition k (line 6), contributes to the probability pk of
Hϕ1,ϕ2

ik (α, x) iff it is reached before time x; according to
this, pk is incremented by the measure of the subset of
Σ restricted with the constraint in ∈ [0, x].

• A state in a class ϕ1 ∧ ¬ϕ2 (line 8) does not contribute
to any pk, but its successors can, provided that they are
reached within x; according to this, the successors of Σ
that are reached within x are added to Γ.

• The successors of a state in a class ϕ1 ∧ ϕ2 (line 10) can
contribute to Hϕ1,ϕ2

ik (α, x) if the state is left before time
α; according to this, the successors of Σ that are reached
before α are added to Γ.

Overall, for each regeneration condition i, the transient
tree enumeration is performed:

• β
h + 1 times to compute Lϕ1,ϕ2

i (ta, tb) for a = 0 and
b = 0, . . . , b̄− ā, and for a = 1, . . . , ā and b = a+ b̄− ā;
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• once for the evaluation of the global kernel values
dGϕ1

ik (tm) for m = 1, . . . , ā and all k;
• (αh + 1)(β−αh + 2) times for the evaluation of the

conditional global kernel values Hϕ1,ϕ2

ik (ta, tm) for
a = 0, 1, . . . , ā, m = a− 1, . . . , a+ b̄− ā, and all k.

If R is the number of reachable regeneration conditions, the
number of transient tree enumerations is thus O

(
α
h
β−α
h R

)
.

The advantage with respect to [25], [27], where model check-
ing is performed with a single transient tree enumeration, lies
in the reduced depth of these transient trees: the computation
of successors for the leaves of the tree now halts not only
on ¬ϕ1 classes, but also on regenerative ones. Notably, both
the worst case space and time required for the computation
of a successor class grow exponentially with the depth of
the predecessor in the tree [29]; when the time bound β is
large and regenerations are reached in a limited number of
discrete events, the repeated enumeration of shallow trees
becomes extremely beneficial.

4.3 Eliminating the lower bound α
The availability of deterministic transitions in STPNs can be
leveraged to remove the lower bound α for the satisfaction
of ϕ2, reducing the evaluation of an interval until operator to
a first-passage problem. We present this alternative approach
by discussing the effect of α = 0 on Eq. (8), and then
the negative consequences of extending the model with an
additional transition with deterministic duration equal to α.

The complexity of Eq. (8) is largely reduced if the
until operator does not restrict the minimum time for the
acceptance of the goal condition ϕ2, i.e., if α = 0. In this case,
both Eq. (8) and its kernels are simplified: the local kernel
Lϕ1,ϕ2

i (α, β) becomes the probability that, starting from the
regenerative state i, a ϕ2-state is encountered before the first
regeneration and not later than β. Moreover, the second term
of Eq. (8) gives a null contribution. Finally, the conditional
global kernel Hϕ1,ϕ2(α, x) becomes the probability that a
regeneration k is reached before x after visiting only states
that satisfy ϕ1 ∧ ¬ϕ2.

The two kernels Lϕ1,ϕ2

i (0, β) and Hϕ1,ϕ2(0, x) can be
derived from the transient trees rooted in regenerative classes
reached within the first regeneration epoch, not later than
β and through executions that visit only classes satisfying
ϕ1 ∧ ¬ϕ2: the local kernel Lϕ1,ϕ2

i (0, β) is derived from the
transient tree rooted in a class with regeneration condition
i and limited to the first regeneration, or to time β, or to
the first conclusive state that satisfies ϕ2 or ¬ϕ1; finally,
Hϕ1,ϕ2

ik (0, x) is derived through the analysis of behaviors
that reach the first regeneration within time β, visiting only
states that satisfy ϕ1 ∧ ¬ϕ2.

This construction applies the strategy of [12] to the context
of non-Markovian processes. In fact, restrictions made in the
enumeration of transient trees correspond to manipulations
performed on the underlying stochastic process to turn any
state that satisfies ϕ2 or ¬ϕ1 into an absorbing state (i.e.,
disabling any transition).

The case [0, β] can be lifted to solve the case [α, β] by
exploiting the ability of STPNs to represent DET transitions.
Following the same principle of techniques that reduce
probabilistic model checking to the analysis of a synchronous

composition of the model with a specification automaton [15],
[16], the STPN model can be extended with a DET transition
t with density ft(x) = δ(x− α) and ϕ2 can be restricted to
ϕ′2 = ϕ2 ∧ {t has fired}. In so doing, regenerations before α
of the original model are not exploited, since the additional
DET transition t is not “memoryless”. Only after the firing
of t at time α, regenerations will be fully exploited in the
analysis. This approach is thus well-suited only for cases
with a small α with respect to the duration of regeneration
epochs.

Example 4. The property of Example 2 (Section 2.3) is
not satisfied. In fact, the measure of paths satisfying
ϕ1 U [α,β]ϕ2 from the initial marking 2freeoperational with
ϕ1 = (buffer < 2) and ϕ2 = (failed = 1) is 0.3313 < 0.4 for
α = 0 and β = 7, and 0.2359 > 0.2 for α = 2.5 and β = 7.
In the latter case, when limited to ϕ1-markings, the model
can reach only 3 distinct regenerations before time β = 7
and the corresponding transient trees include a total of 44
classes. In contrast, if a transition with deterministic value
α = 2.5 is added to the model, a total of 130 classes need to
be enumerated. In particular, the transient tree enumerated
from the initial regeneration includes 115 classes: this larger
number is a consequence of the deterministic timer added to
the initial state, which results in a larger number of transition
firings required to reach the first regeneration.

5 FISCHER’S MUTUAL EXCLUSION PROTOCOL

5.1 Model definition

We illustrate the proposed technique on a stochastic model
of n concurrent processes P1, P2, . . . , Pn accessing a critical
section with Fischer’s protocol [40]. The protocol ensures
mutual exclusion using atomic read and write operations
on a shared communication variable id taking the values
0, 1, . . . , n. When id = 0, each process Pi can attempt the
access to the critical section. To this end, it performs the
(time-consuming) write operation id ← i, waits for a time
not lower than W , and then reads id again: if id = i, it can
access the critical section and write id ← 0 on exit; whereas,
if id 6= i, it has to wait until id = 0 to attempt again.

Fischer’s protocol is a typical benchmark for real-time
model checking, as it neatly illustrates the interaction be-
tween concurrency and firm timing: mutual exclusion is
guaranteed provided that the waiting time W is greater than
the maximum time required by the write operation of any
process. This condition inherently requires a model with
multiple concurrent timers with upper and lower bounds.
While the protocol has been verified in the qualitative per-
spective using real-time model checkers such as Kronos [41]
and Uppaal [42], randomized versions have been analyzed
in closed-form [43] or through simulation [44], [45] only with
timed activities modeled through exponential or gamma
distributions. In this case, due to unbounded PDF supports,
mutual exclusion can be violated with probability greater
than zero.

We analyze quantitative properties in a stochastic model
of the protocol enforcing the requirement of mutual exclusion
with certainty through the use of concurrent GEN timers with
bounded supports. Fig. 8 illustrates an STPN model with
three processes P1, P2, P3 (the same scheme can be extended
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id

idle1 ready1arrival1
EXP(0.1)

writing1readEmpty1
?id = 0

waiting1write1
UNIF(0,1)
id ← 1

reading1wait1
DET(1.1)

readOther1
?id 6= 1

cs1readSelf1
?id = 1

completed1service1
UNIF(0,2)

reset1
id ← 0

idle2 ready2arrival2
EXP(0.1)

writing2readEmpty2
?id = 0

waiting2write2
UNIF(0,1)
id ← 2

reading2wait2
DET(1.1)

readOther2
?id 6= 2

cs2readSelf2
?id = 2

completed2service2
UNIF(0,2)

reset2
id ← 0

idle3 ready3arrival3
EXP(0.1)

writing3readEmpty3
?id = 0

waiting3write3
UNIF(0,1)
id ← 3

reading3wait3
DET(1.1)

readOther3
?id 6= 3

cs3readSelf3
?id = 3

completed3service3
UNIF(0,2)

reset3
id ← 0

Fig. 8: STPN model of three processes accessing a critical section with Fischer’s mutual exclusion protocol.

to any number of processes). The shared variable is encoded
by the marking of place id (initially empty). Each process
Pi eventually leaves its idle state through transition arrivali
(EXP with rate 0.1), and enters the contention by reaching
place writingi as soon as id = 0 (IMM transition readEmptyi
with enabling function ?id = 0); it then sets the shared
variable to its own identifier (as specified by the update
function id ← i) at the end of a write operation (transition
writei , with duration uniformly distributed over [0, 1]), and
sojourns in a waiting state (place waitingi ) for a time greater
than the maximum time that any process can spend writing
to id (transition waiti , DET equal to 1.1). When the wait
completes, process Pi reads id again to ensure that its write
was the last one (place readingi ): if id 6= i, the control goes
back to the initial state of contention readyi (IMM transition
readOtheri ); whereas, if the shared variable is still equal
to the process identifier (i.e., id = i), Pi enters the critical
section csi (IMM transition readSelfi ), performs its service
(transition servicei , uniform over [0, 2]), and then resets the
shared variable (IMM transition reseti ), returning idle.

5.2 Quantitative evaluation

We consider a deadline requirement prescribing that the
latency for the access of P1 to the critical section be (1) not
higher than β (which we call base deadline) with probability
greater than p, and (2) not higher than βr > β (which we
call relaxed deadline) probability greater than pr > p. This
property can be encoded as the Boolean conjunction of two
probabilistic existence properties [1]:

P>p[ TRUE U [0,β](cs1 = 1) ] ∧
P>pr [ TRUE U [0,βr](cs1 = 1) ] .

(11)

Fig. 9 reports the measure Pr (m,~0){ω ∈ Ωm | ω |=
TRUE U [0,β](cs1 = 1)} as a function of β, for m ∈
{mA,mB ,mC} where: mA = ready1 idle2 idle3 (which oc-
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Fig. 9: The probability of paths satisfying
TRUE U [0,β](cs1 = 1) as a function of β, for markings
mA = ready1 idle2 idle3 , mB = 3idready1 idle2waiting3 ,
mC = 3idready1writing2waiting3 .

curs when P1 becomes ready while the other processes
are idle), mB = 3idready1 idle2waiting3 (which occurs
when P1 becomes ready and P3 has just set the shared
variable, closing the access to the contention), mC =
3idready1writing2waiting3 (which occurs when P1 becomes
ready while both P2 and P3 are in the contention, with
P2 writing to id and P3 waiting to check id after a write
operation). As intuitive, the latency of P1 increases when
the initial condition changes from mA to mB , and then from
mB to mC . Properties in the form of Eq. (11) are decided
by comparing the probability computed for a given value of
β with the threshold p. For example, with initial condition
mA, for β = 2, p = 0.90, βr = 6 and pr = 0.95, we conclude
from Fig. 9 that P>p[ TRUE U [0,β](cs1 = 1) ] = FALSE and
P>pr [ TRUE U [0,βr](cs1 = 1) ] = TRUE. The relaxed deadline
is thus met with the required probability, but the base
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Fig. 10: The probability of paths satisfying (cs1 =
0) U [0,β](

∑n
i=2 completedi = 1 ∧ ∑n

i=2 readyi ≥ k) as
a function of β, from marking mA = ready1 idle2 idle3 , and
different service times.

deadline is not.
In order to understand the role of different design pa-

rameters in the overall distribution of latency, the probability
measure of subsets of successful paths can be evaluated with
additional until properties. For instance, the probabilistic until
pattern [1]

P>p[ (
∑
i 6=1 csi = 0) U [0,β](cs1 = 1) ] (12)

evaluated from the initial marking mA formulates a require-
ment on the measure of probability of the set of behaviors
where P1 is the first process accessing the critical section. In
a practical perspective, this property expresses a bound p
on the probability that P1 is not overtaken in the access to
the critical section by some process that was initially idle.
The corresponding probability measure is determined by
the trade-off between the rapidity of P1 in completing the
write operation (and thus preventing the access of other
processes to contention) and the number n − 1 and rate λ
with which other processes enter the ready state. Results of
the evaluation show that the probability of no-overtaking
depends on the total load (n−1)λ, but it is relatively immune
to the number of processes that produce it. For instance, if
(n − 1)λ is kept equal to 0.2 (to 0.1) while varying n − 1
from 2 to 8, the probability of no-overtaking remains equal
to 0.93 (to 0.96) with a variation lower than 0.001.

When P1 is overtaken, the service time of the overtaking
process plays a twofold role: it determines the time that P1

must wait before the next attempt, and it also determines
the probability that more processes leave the idle state. The
latter factor requires that service time be kept sufficiently low
with respect to the total load of the system. For a quantitative
assessment of this property, we can formulate a requirement
on the maximum probability that at least k processes become
ready during the first failed attempt of P1:

P<p[ (cs1 = 0) U [0,β](
∑n
i=2 completedi = 1 ∧∑n

i=2 readyi ≥ k) ] .
(13)

Fig. 10 reports the probability measure associated with this
property (as function of β, from the initial state mA) for three
service time distributions when n = 3 and k = 1.

While the impact of service times is intuitive, the role of
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Fig. 11: The probability measure of paths satisfying
TRUE U [0,β](cs1 = 1) from m0 = idle1 idle2 idle3 when
write1 is distributed according to truncated Erlang PDF
f(x) = xe−20x/400 over [0, 1] (mean value 0.1) or its
symmetrical g(x) = f(1− x) (mean value 0.9).

writing time distributions is twofold: due to the last-write-
wins policy of Fischer’s protocol, a lower writing time favors
P1 in keeping concurrent processes out of the contention, but
in case of contention a greater writing time will favor P1 in
being the last process that completes its write to id , and thus
the first to enter the critical section. To give a quantitative
insight into this mechanism, we consider a setting in which
the writing times of P2 and P3 are distributed uniformly over
[0, 1] (mean value 0.5), while the writing time of P1 has either
a truncated Erlang PDF f(x) = xe−20x/400 over [0, 1] (mean
value 0.1) or its symmetrical g(x) = (1 − x)e−20(1−x)/400
over [0, 1] (mean value 0.9). Fig. 11 shows that, for β < 7, a
faster writing time PDF f(x) results in a higher probability
that P1 will reach the critical section from the initial marking
m0 = ready1 ready2 ready3 , while the slower PDF g(x) is
advantageous when β > 7. This result captures the following
intuition: while the lower mean value of f favors process P1

in the first attempt, the greater mean value of g makes P1

more competitive in trials subsequent to an initial overtaking;
until time 7, the gain in the first attempt prevails, but
after time 7, the competitive advantage in subsequent trials
becomes more relevant. In this perspective, it is worth noting
that the unbiased distribution with mean value 0.5 is always
worse than one of the two biased distributions f and g.

As a last example, we evaluate the probability that process
P1 is in the critical section within a given time window [α, β]
after an execution in which P3 has never accessed the critical
section. This property might be of interest in a problem of
real-time testing where the system can be observed only
within an interval [α, β] and the test case requires P1 in the
critical section without prior accesses of P3. The requirement
can be formulated as the probabilistic interval until

P>p[ (cs3 = 0) U [α,β](cs1 = 1) ] (14)

and verified for given values of α, β and p so as to determine
the time α at which it is best to start the observation, or
the minimum duration of β − α to obtain a probability of
conclusive execution greater than a given threshold p. Fig. 12
plots the probability measure of paths satisfying (cs3 =
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0) U [α,β](cs1 = 1) for different values of α and duration
β − α of the observation window. For each window size β −
α ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, the probability p(m0,~0)(α, β) :=

Pr (m0,~0){ω ∈ Ωm0 | ω |= (cs3 = 0) U [α,β](cs1 = 1)} is
plotted in Fig. 12 for α = 0, 0.1, . . . , 4, which might serve to
select an optimum time α to start the observation.

5.3 Computational advantage of regenerative analysis

In the construction of Fig. 12, for each value δ of β − α, the
measures p(m0,~0)(α, α+δ) for α = 0, 0.1, . . . , 4 are computed
as the by-product of a single solution of Eq. (8) for the
evaluation of p(m0,~0)(4, 4+δ) with step 0.1. For this measure,
we identify 17 distinct regeneration conditions reachable
under ϕ1 = (cs3 = 0), whose transient trees include 904
stochastic state classes. For α = 4 and δ = 1, adopting a
step size h = 0.1, the enumeration of each tree is repeated
5

0.1 + 1 = 51 times for the evaluation of Lϕ1,ϕ2

i , once for
the evaluation of dGϕ1

ik (tm), and ( 4
0.1 + 1)( 1

0.1 + 2) = 492
times for the evaluation of Hϕ1,ϕ2

ik , resulting in 491, 776
enumerated classes.

As a comparison, the reduction to transient analysis
through a deterministic timer α = 4 described in Section 4.3
requires more than 8 million classes to be enumerated; of
these, more than 99% belong to the enumerations of the
initial transient tree, in which a regeneration is reached only
after the elapse of α. Note that the approaches of [27], [25]
would necessarily incur in this exponential complexity by
enumerating the times to fire PDFs after each discrete event
along any feasible path until α+ δ; in the approach of [25],
this complexity would be further exacerbated by the finer
grain of regions with respect to zones.

Fig. 13 highlights the reduction of complexity achieved
by the proposed regenerative approach. A transient analysis
eliminating the lower bound α through the inclusion of
a deterministic transition forgoes all regeneration points
occurring before α, forcing the enumeration of each discrete
event along any feasible path within α and producing
the complexity shown by the dotted line. Whereas, in
the regenerative approach based on the bivariate Markov
renewal equations of Eq. (8), the total number of enumerated
classes follows the solid line.

6 CONCLUSIONS

The verification of an interval until operator ϕ1 U [α,β]ϕ2 in
regenerative systems presents major challenges, both theoret-
ical and practical, that cannot leverage existing approaches
for CTMCs [12] nor established results of Markov renewal
theory [18], [38].

Stochastic models with concurrent GEN timers “accu-
mulate memory” over time: the state at time α does not
summarize, in general, the past evolution of the system, and
the process cannot be verified independently before and
after α, in contrast to CTMCs, in which every time instant,
and thus α, is a regeneration point. On the other hand, the
reduction to a first-passage analysis problem requires the
introduction of a deterministic timer in order to account for
the minimum time α for the satisfaction of ϕ2. Unfortunately,
this approach crucially affects regenerative transient analysis
[35]: it is now the deterministic timer that carries memory
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until its elapse, in order to characterize the state distribution
of the system at time α. Regeneration points before α are
thus inevitably lost, forcing the enumeration of all sequences
of discrete events before α.

We provided a solution based on the bivariate extension
of Markov renewal equations, explicitly accounting for a
satisfaction interval [α, β]. The result is based on the formal
definition of the probability space of STPN paths, which
established the theoretical relation between cylinder sets
of paths and stochastic state classes [35]. Enumeration of
stochastic state classes was in turn the basis for algorithms
computing kernels of bivariate Markov renewal equations.

The computation of the kernels requires to repeat the enu-
meration of stochastic state classes from each regeneration
condition for a number of times linear in α(β − α), but each
enumeration is limited to the first regeneration epoch and
regeneration points are exploited also before α. In so doing,
since the number of feasible events grows exponentially with
the time bound, repeated enumeration of a limited number
of shallow trees can produce considerable benefits when the
stochastic process has a repetitive structure and multiple
regenerations can be traversed before reaching the time
bound β. Moreover, the enumeration is always restricted to
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paths satisfying the safety condition ϕ1, and the underlying
stochastic process needs to encounter regeneration points
w.p.1 in a bounded number of events only on paths that
always satisfy ϕ1.

The benefits of the approach were demonstrated by a
preliminary implementation in the analysis of a probabilistic
model of Fischer’s mutual exclusion protocol, a typical
benchmark for real-time model checking. Notably, quan-
titative properties were analyzed in a stochastic model that
guarantees the correctness of the protocol due to generally
distributed timers with bounded and deterministic supports.
The construction of these results highlighted important
problems of the probabilistic model checking of transient
properties in regenerative systems, which can serve as the
basis for further analysis techniques.
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APPENDIX A
CALCULUS OF STOCHASTIC STATE CLASSES

The succession relation
γ,I,µ
===⇒ among stochastic state classes

can be enumerated through symbolic operations on the
support and probability density function (PDF) of vectors of
random variables. While a complete presentation is in [30],
[29], we report the main steps required by the calculus.

A stochastic state class Σ = 〈m,D, f〈τage,~τ〉〉 includes the
marking m ∈ NP , and the joint PDF f〈τage,~τ〉 and support
D ⊆ Rn+1 of the random vector 〈τage, ~τ〉, where:
• the random variable τage encodes the negation of the

time of the previous firing;
• the components of ~τ = (τ1, . . . , τn) encode the times to

fire of enabled transitions E(m).
As detailed in Remark 1, the initial stochastic state class
corresponding to a regeneration (m, ~d) can be constructed for
an STPN 〈P, T,A−, A+, B, U,EFT,LFT, F,W 〉 from the
marking m, the enabling times ~d, and the sampling PDFs
ft of enabled transitions t ∈ E(m), where ft is the PDF of
the distribution F (t). Initially, the components of the vector
〈τage, ~τ〉 are independent random variables and their joint
PDF f〈τage,~τ〉 is in product form.

Given a stochastic state class Σ = 〈m,D, f〈τage,~τ〉〉, a
transition γ ∈ E(m) and a firing interval I , the probability µ
that γ fires in Σ at some time in I can be computed as

µ =

∫
Da

W (t1)∑
i:xi=x1

W (ti)
f〈τage,~τ〉(xage, ~x) dxage d~x (15)

where (without loss of generality) enabled transitions cor-
responding to the times to fire τ1, . . . , τn are indicated as
t1, . . . , tn with t1 = γ, and

Da = {〈xage, ~x〉 ∈ D | (∀j > 1.x1 ≤ xj)∧ (x1−xage) ∈ I}
is the set of values for 〈τage, ~τ〉 such that the time to fire
of t1 is minimum, and the time of the next firing (obtained
increasing −τage by the sojourn time τ1) is contained in I . By
integrating the PDF f〈τage,~τ〉(xage, ~x) over this set of values,
we obtain the succession probability µ. The ratio of weights
in Eq. (15) accounts for the case in which τ1 is deterministic
and other deterministic times to fire attain the minimum
value: according to the semantics of STPNs, the probability
that t1 is selected is W (t1)/

∑
i:xi=x1

W (ti).

The unique successor class Σ′ such that Σ
γ,I,µ
===⇒ Σ′ can

be derived as follows. The marking m′ is computed by
removing one token from each input place of t1, adding one
token to each output place of t1, and applying the update
function U(t1) to the resulting marking. The support D′

and PDF f〈τ ′
age,~τ

′〉 of the vector of times to fire 〈τ ′age, ~τ ′〉
immediately after the firing of t1 (and conditioned on this
event) is computed in four steps.

Precedence conditioning. The assumption that t1 fires at
some time in I before any other transition yields a new
random vector 〈τaage, ~τa〉 distributed over Da according to
f〈τaage,~τa〉(xage, ~x) = f〈τage,~τ〉(xage, ~x)/µ.

Time advancement and marginalization. When t1 fires, τage and
the times to fire τa2 , . . . , τ

a
n of enabled transitions are reduced

by the random variable τa1 associated with t1. The time to
fire of t1 is eliminated from the joint PDF f〈τaage,~τa〉 and from

its support Da by integrating the PDF over all values of
τa1 . The PDF of the resulting random vector 〈τ bage, ~τ b〉 with
~τ b = (τa2 − τa1 , . . . , τan − τa1 ) and τ bage = τaage − τa1 is

f〈τbage,~τb〉(xage, x2, . . . , xn) =∫ U1(xage,~x
b)

L1(xage,~xb)
f〈τaage,~τa〉(xage+x1, x1, x2 + x1, . . . , xn + x1)dx1

where U1(xage, x2, . . . , xn) and L1(xage, x2, . . . , xn) are
the maximum and minimum value of x1 such that
(xage, x1, . . . , xn) ∈ Da, respectively. As detailed in [29], U1

and L1 are piecewise functions; as a consequence, the PDF
f〈τbage,~τb〉 is a piecewise function defined on a partitioning
of its support Db = {(xage, x2, . . . , xn) ∈ Rn | ∃x1 ∈ R :
(xage, x1, . . . , xn) ∈ Da}.
Disabling. Times to fire associated with transitions disabled
during the firing (i.e., after removing tokens from input
places of t1, or after adding tokens to output places of t1, or
after applying the update function B(t1)) are eliminated
one at a time from the vector 〈τ bage, ~τ b〉 by integrating
the PDF f〈τbage,~τb〉 over all of their values in Db. For ex-
ample, the disabling of transition t2 yields the random
vector 〈τ cage, ~τ c〉 with ~τ c = (τ b3 , . . . , τ

b
n) that has PDF

f〈τcage,~τc〉(xage, ~x) =
∫ U2

L2
f〈τbage,~τb〉(xage, x2, x3, . . . , xn) dx2

with support Dc = {(xage, x3, . . . , xn) ∈ Rn−1 | ∃x2 ∈ R :
(xage, x2, x3, . . . , xn) ∈ Db}.
Newly enabling. Times to fire of transitions newly en-
abled after the firing (i.e., enabled by the new marking
m′, but not by m or by some intermediate marking)
are added one at a time as independent random com-
ponents to the vector 〈τ cage, ~τ c〉. For example, the newly
enabling of transition tn+1 yields the random variable
〈τ ′age, ~τ ′〉 that has PDF f〈τ ′

age,~τ
′〉(τage, x3, . . . , xn, xn+1) =

f〈τcage,~τc〉(τage, x3, . . . , xn) ftn+1
(xn+1) with support D′ =

Dc × [EFT (tn+1), LFT (tn+1)].

Example 5. For the STPN of Fig. 1a, the successor of
Σ0 in Fig. 3 through the firing of transition fail (without
constraints on the firing time) is computed as follows.
The new marking 2free failed is obtained from 2free
operational by removing one token from the input place
operational and adding one token to the output place
failed . The integral of the PDF f〈τage,~τ〉(age, arrival , fail) =
δ(age) 0.1 exp(−0.1 fail) over Da = {〈xage, ~x〉 ∈ D |
fail ≤ arrival} = {〈xage, ~x〉 ∈ R3 | xage = 0 ∧ (1 ≤
arrival ≤ 2) ∧ (fail ≤ arrival)} gives µ = 1 + 10 (e−0.2 −
e−0.1) ' 0.1389 and f〈τaage,~τa〉(age, arrival , fail) =
0.7198 exp(−0.1 fail). Time advancement and elimination of
the fired timer fail give f〈τbage,~τb〉(age, arrival) =

∫ 2
0 δ(age +

fail) 0.7198 exp(−0.1 fail) dfail = 0.7198 exp(0.1 age) and

Db = {(age, arrival) ∈ R2 | (−2 ≤ age ≤ 0)∧
(0 ≤ arrival ≤ 2) ∧ (−2 ≤ age − arrival ≤ −1)}.

No other transition is disabled thus f〈τcage,~τc〉(age, arrival) =

f〈τbage,~τb〉(age, arrival) and Dc = Db, while restart (uni-
formly distributed over [1, 2]) is newly enabled after
the firing, resulting in f〈τ ′

age,~τ
′〉(age, arrival , restart) =

f〈τcage,~τc〉(age, arrival) and D′ = Dc × [1, 2] for the final
vector of times to fire 〈τ ′age, ~τ ′〉 = 〈age, (arrival , restart)〉.
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