
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Asymptotic Perturbation Bounds for Probabilistic
Model Checking with Empirically Determined

Probability Parameters
Guoxin Su, Yuan Feng, Taolue Chen, and David S. Rosenblum, Fellow, IEEE

Abstract—Probabilistic model checking is a verification technique that has been the focus of intensive research for over a decade.
One important issue with probabilistic model checking, which is crucial for its practical significance but is overlooked by the
state-of-the-art largely, is the potential discrepancy between a stochastic model and the real-world system it represents when the
model is built from statistical data. In the worst case, a tiny but nontrivial change to some model quantities might lead to misleading or
even invalid verification results. To address this issue, in this paper, we present a mathematical characterization of the consequences
of model perturbations on the verification distance. The formal model that we adopt is a parametric variant of discrete-time Markov
chains equipped with a vector norm to measure the perturbation. Our main technical contributions include a closed-form formulation of
asymptotic perturbation bounds, and computational methods for two arguably most useful forms of those bounds, namely linear
bounds and quadratic bounds. We focus on verification of reachability properties but also address automata-based verification of
omega-regular properties. We present the results of a selection of case studies that demonstrate that asymptotic perturbation bounds
can accurately estimate maximum variations of verification results induced by model perturbations.

Index Terms—Asymptotic perturbation bound, Discrete-time Markov chain, Numerical iteration, Optimization, Parametric Markov
chain, Perturbation analysis, Probabilistic model checking, Quadratic programming

F

1 INTRODUCTION

P ROBABILISTIC model checking is a system verification
technique that has matured over the past two decades

and has been applied in software engineering, such as verifi-
cation of non-functional requirements for complex software
systems [10]. A common scenario of probabilistic model
checking is to verify a system model, such as a Discrete-
Time Markov Chain (DTMC) [40], Markov Decision Process
(MDP) [43] and Continuous-Time Markov Chain (CTMC)
[4], against a temporal property, such as a formula in the
Linear Temporal Logic (LTL) [52] or Probabilistic Computa-
tion Tree Logic (PCTL) [30], and to return either a qualitative
answer (namely a yes/no answer) or a quantitative answer
(namely a probability). PRISM [34] is one of the most widely
used probabilistic model checking tools.

Many case studies reported for probabilistic model
checking, including those performed with PRISM, involve
stochastic models embodying theoretically defined distribu-
tions, such as the use of a fair coin toss to introduce random-
ization into an algorithm, or the uniform probability dis-
tribution of randomly chosen IP addresses in the Zeroconf
protocol. However, real-world systems often contain proba-

• G. Su and D. S. Rosenblum are with Department of Computer Science,
School of Computing, National University of Singapore.
E-mail: {sugx, david}@comp.nus.edu.sg

• Y. Feng is with Centre for Quantum Computation and Intelligent Sys-
tems, University of Technology Sydney, and AMSS-UTS Joint Research
Laboratory for Quantum Computation, Chinese Academy of Sciences.
E-mail: yuan.feng@uts.edu.au

• T. Chen is with Department of Computer Science, Middlesex University
London.
E-mail: t.chen@mdx.ac.uk

Manuscript received xxxx, 2014; revised xxxx, 2015.

bility parameters that are empirically determined, such as the
failure rate of a system component. Whether the verification
reflects the true quantitative property of the system underly-
ing the stochastic model is dependent on whether the model
is a faithful abstraction of the system. In the stochastic model
construction, measurements or experiments are employed to
determine the transition probabilities (for discrete-time sys-
tems) or transition rates (for continuous-time systems). On
the one hand, those statistical quantities are affected by the
measurement or experimental environment. For example,
the rate of losing a message in a communication protocol
implemented in a physical network is affected by network
load, electrical or wireless noise, etc. On the other hand, the
stochastic nature of the system itself may vary over time. For
example, the reliability of a hardware component decreases
with the age of the component.

In both of the above situations, usually the model builder
is able to improve the precision of the empirical parameters
with various measures, e.g., by increasing the sample size
or reducing the environmental disturbance. However, it is
important to consider the possible consequence of some
perturbation occurring in the parameters on the verification
of the model. In the worst case, a tiny but non-trivial change
to some quantities in the model might lead to a misleading
or even invalid verification result.

A straightforward method to address the above problem
is to perform multiple point-wise model checking which is
supported by e.g., the tool PRISM: We modify the values
of the quantities in the model, run the model checker for
each choice of values, and then compare the resulting set of
outcomes. Such a simplified method only partially reveals
the dependence of verification on model perturbations. A

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

rigorous alternative technique is the parametric variant of
probabilistic model checking called parametric model checking
[21], [24], [29] which symbolically or semi-symbolically com-
putes a closed-form, perhaps highly non-linear probability
function to capture the mathematical relationship between
the parameters and a verification result. In practice, there
may be no precise, concrete values to instantiate the pa-
rameters. It is well-known that the optimization problem
of non-convex polynomial functions is NP-hard in general
and even good approximate solutions are often difficult to
compute using relaxation methods [36]. Another recently
developed technique is the polynomial-time verification of
interval-value variants of DTMCs [13], [42], [47], in which
interval-value estimates of probabilities are allowed. But this
technique computes optimal point-wise verification results
rather than closed-form expressions with limited reusability.

In this paper, we present a novel technique of perturba-
tion analysis for probabilistic model checking to achieve the
aforementioned purpose. As in parametric model checking,
our formal model is a parametric variant of a DTMC, called
a Parametric Markov Chain (PMC), whose transition matrix
contains probability variables. To cope with the imprecision
with the parameter elicitation, we employ the entry-wise
1-norm to measure the perturbation distance of the PMC
probability variables. The main technical contributions of
this paper are as follows:

• We present a closed-form formulation of asymptotic
perturbation bounds that characterize the worst effects
of model perturbations on a verification result.

• We also investigate the computation problem of the
two most useful forms of those bounds, namely the
linear bounds and the quadratic bounds. Specifically, we
investigate the mathematical programming of those
two forms of bounds and the computational com-
plexity, and then present a scalable iterative method
to facilitate the numerical computation in practice.

• Lastly, we derive the backward counterparts of those
bounds which, given a variation range for a verifi-
cation result, infer the largest tolerated distance of
model perturbations.

The dynamics of a DTMC is determined by a (stochastic)
transition matrix. Perturbation analysis of matrix operators
is a long-investigated research area which, in general terms,
results in either perturbation upper bounds [48] or asymp-
totic expansions [33]. The former are non-asymptotic and
defined in terms of a norm of the perturbed matrix, whereas
the latter are approximate with increasing orders and are
most useful only when the perturbed matrix is fixed. Instead
of directly applying existing perturbation techniques to our
problem, a different perspective of our approach is the pur-
suit of asymptotic bounds via mathematical programming
with variables measured by the 1-norm.

Informally speaking, we can identify three aspects of sig-
nificance for asymptotic bounds. First, asymptotic bounds
are natural theoretical metrics of the worst possible effect of
the perturbed quantities on the model verification. Second,
because–as mentioned—the imprecision of the parameter
elicitation is usually small but not eliminated, asymptotic
bounds can be used to conveniently but accurately estimate
the maximum variations that might occur to a verification

result. Third, the backward bounds provide an answer to the
following question: How accurate should a model builder
measure some specific parameters in order to safely confine
a verification result within a desirable range?

For the ease of presentation, we mainly deal with the
verification of extended reachability probabilities in the text,
but based on automata-based verification method, our tech-
nique can also deal with ω-regular properties. We evaluate
our approach with case studies on variant models of some
widely studied systems, including the Google PageRank
algorithm, the Zeroconf protocol and a NAND multiplexer.

The remainder of the paper is organized as follows:
Section 2 presents the formal model and basic definitions.
Section 3 presents the main technical results of our approach
for reachability model checking. Section 4 extends those
results for automata-based model checking. Section 5 dis-
cusses several issues related to the main contributions. Sec-
tion 6 presents case studies. Section 7 discusses the related
work. Section 8 concludes the paper. For readability and
completeness, one lengthy proof and some supplementary
content are presented in the appendices. Preliminary results
in the paper have been reported in three previous conference
papers [12], [49], [51].

2 MODEL, 1-NORM AND EXAMPLE

In this section, we recall some preliminary definitions, and
then present the PMC model and the 1-norm of vectors.
We also present a running example based on the Google
PageRank Algorithm.

2.1 Markov Chain and Preliminary Definitions

The model of Discrete-Time Markov Chains (DTMCs) or,
briefly, Markov Chains (MCs) is a fundamental model that
captures the probabilistic aspect of a discrete-time system.

Definition 1 (Markov Chain). An MC is a tuple M =
(S,P, α,A, L) where

• S is a finite, non-empty set of states represented as
numbers 1, . . . ,m for some m ≥ 1,

• P an m×m transition matrix such that, for each s, t ∈
S, P(s, t) ∈ [0, 1] and

∑
t∈S P(s, t) = 1,

• α an initial distribution such that α(s) ≥ 0 for each
s ∈ S and

∑
s∈S α(s) = 1,

• A a set of atomic propositions, and
• L : S → 2A a labeling function.

The digraph of M is induced as follows: s is a vertex of
the digraph if and only if s ∈ S, and (s, t) is an edge of the
digraph if and only if P(s, t) > 0. The size of M, denoted
as |M|, is the sum of the numbers of vertices and edges in
the digraph ofM. A path inM is an infinite sequence π =
s0s1s2 · · · of states in S such that P(si, si+1) > 0 for each
i. Denote the set of paths inM by PathM. The probability
distribution PrM over PathM is defined in a standard way
as in the literature (e.g., see Baier and Katoen [5, Chapter
10]). For convenience, we extend the labeling function L
to paths, namely, L(π) = L(s0)L(s1) · · · . We say t ∈ S
is reachable from s if there is a path π such that π[0] = s
and π[i] = t for some i. Let rch(s) ⊆ S denote the set of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

states reachable from s, and rch(M) ⊆ S the set of states
reachable from some s ∈ S such that α(s) > 0.

The problem of verifying M against some property ϕ
is defined as the computation of PrM(ϕ). In the sequel, we
mainly deal with the following extended reachability properties
or, briefly, reachability properties. Let S?, S! ⊆ S. The property
of reaching S! via S?, denoted by the conventional LTL-style
“until” notation S?US!, is interpreted as the following set:

{π ∈ PathM | ∃i. π[i] ∈ S! ∧ ∀0 ≤ j < i. π[j] ∈ S?} .

The notation PrM(S?US!) reads as “the probability that
S?US! is satisfied by M”. If S? ∪ S! = S, we abbreviate
S?US! as ♦S!.

For simplicity, we mainly deal with reachability prop-
erties. But we demonstrate in detail later in Section 4 that
our approach can be immediately generalized for the whole
class of ω-regular properties.

2.2 Parametric Markov Chain and 1-Norm
A PMC model is a parametric variant of an MC with one
or more undetermined transition probability variables [21].
Before presenting the PMC model, we formulate the most
essential ingredients of the model. A vector variable ~x is a vec-
tor of pair-wise distinct symbolic variables (x1, . . . , xk) for
some k ≥ 1. Let I be a partition of {1, . . . , k}. Intuitively, I
separates ~x into multiple independent perturbed sub-vectors.
To abuse notation for simplicity, we also use ~x to denote a
vector in Rk. Two transition matrices P and P ′ of the same
size are structurally equivalent, denoted P ' P ′, if they
have exactly the same positions of zero entries.

We refer to the parametric counterpart of a transition
matrix in a PMC as a parametric transition matrix. Informally,
a parametric transition matrix P[~x] based on P and ~x is
obtained by associating variables from ~x with some specific
entries of P . Formally, the (s, t)-entry of P[~x] is either the
probability P(s, t) or a symbolic expression of the form
P(s, t) + xi for some 1 ≤ i ≤ k. Here, the constant value
P(s, t) in the symbolic expression is usually an average of
a set of measured values and the variable xi encodes the
possible perturbation. We further require P[~x] to satisfy
the following conditions, which we argue are mild and
sufficient for practical purposes.

1) For all s, t ∈ S, if P(s, t) ∈ {0, 1} then P[~x](s, t) =
P(s, t). In words, only “truly” probabilistic entries
in P[~x] (with values larger than 0 but smaller than
1) can be parameterized.

2) For all s, t, t′ ∈ S such that t 6= t′, if P[~x](s, t) =
a+x and P[~x](s, t′) = b+x′ then x 6= x′, namely, a
single variable is not allowed to be associated with
different entries in the same row of P[~x]. Because
entries in the same row archive outgoing transition
probabilities from the same state, they cannot be
parameterized with the same variable. (Note that
the same x is allowed to occur in different rows.)

3) Let var(s) be the set of variables appearing in the
sth row of P[~x]. For all s ∈ S, either var(s) = ∅ or
var(s) = {xi}i∈I for some I ∈ I . In words, either
no variable appears in a row in P[~x] or variables
appearing in that row form an independent sub-
vector .

Moreover, whenever P[~x] is mentioned in the sequel, it
is always assumed that ~x is within the following set:

UI = {~x ∈ Rk | ∀I ∈ I,
∑
i∈I xi = 0, and P[~x] ' P} .

The zero-sum constraint in UI expresses that the perturba-
tion on the same-row probabilities should not distort them
to be a probability distribution. The constraint of structural
equivalence in UI expresses that the perturbation should
not alter the structure of the original matrix.

Definition 2 (Parametric Markov Chain). A PMC is a tuple
M[~x] = (S,P[~x], α,A, L) where

• P[~x] is an m×m parametric transition matrix, and
• all other components are the same as their counterparts in

an MC (c.f., Definition 1).

We call each variable in ~x a perturbed parameter or, simply,
parameter of M[~x]. We also call M = (S,P, α,A, L) the
unperturbed MC of M[~x]. It is easy to see that M[~x] with
~x ∈ UI has the same underlaying digraph asM. Note that
Definition 2 is more restricted than the original PMC defini-
tion [21] because of the conditions added to the parametric
transition matrix. But again, we believe that those conditions
impose little practical restriction.

To cope with the imprecision with the parameter elici-
tation, we employ a vector 1-norm to measure the pertur-
bation distance of ~x of M[~x]. Recall that ‖~x‖1 =

∑k
i=1 |xi|.

Throughout the text, we write ‖~x‖1 as ‖~x‖ for simplicity.
The reason for choosing such a norm is two-fold. First, the
1-norm is one of the simplest norms and thus easy to use
in practice. Second, compared with other norms (e.g., the
Euclidean norm), the linear totality of the 1-norm results in
simplified computational techniques for asymptotic pertur-
bation bounds. We further explain the role and advantage
of the 1-norm in Section 5.2.

2.3 Example: PageRank Algorithm
In the following, we present a running example. Consider
the Google PageRank Algorithm that runs on a mini Web
depicted in Figure 1a [38, Sec. 11.6].1 Nodes in the directed
graphical model refer to Web pages and edges refer to
hyperlinks. The probability labeling an edge is calculated
by the number of hyperlinks. For example, Web Page 1 has
hyperlinks to Web Pages 2, 4 and 5, and so each of the three
edges from Web Page 1 to its linked Web pages is labeled 1

3 .
Web Page 4 is only linked to Web Page 3, and the edge from
Web Page 4 to Web Page 3 is labeled 1. Web Page 3 contains
no hyperlink and so has no outgoing edge. We assume the
initial distribution over the five Web pages is uniform.

The directed graphical model in Figure 1a can be re-
formulated as a matrix P ′. The PageRank algorithm trans-
lates P ′ into a transition matrix P by replacing the zero
rows (rows with zero entries only) of P ′ with uniform distri-
butions. Then, the algorithm sets the PageRank probability
matrix Ppr = dP+(1−d)1 ·v, where d ∈ [0, 1] is a so-called
damping factor, row vector v is a so-called personalization
vector, and 1 denotes a column vector of 1-entries. d is
usually set as 0.85 but we let d = 4

5 to make the presentation

1. All the concrete probabilities presented in this example are taken
from the citation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

2
1
3��

1
3

//

1
3

��

3

1

1
3
44

1
3
//

1
3

22

5

1
2

OO

1
2

oo

4

1

OO

(a)



x1,1 + 1
80 x1,2 + 19

60 x1,3 + 3
40 x1,4 + 19

60 x1,5 + 67
240

x2,1 + 1
80 x2,2 + 1

20 x2,3 + 41
120 x2,4 + 19

60 x2,5 + 67
240

x3,1 + 1
16 x3,2 + 1

4 x3,3 + 3
8 x3,4 + 1

4 x3,5 + 1
16

x4,1 + 1
80 x4,2 + 1

20 x4,3 + 7
8 x4,4 + 1

20 x4,5 + 1
80

x5,1 + 33
80 x5,2 + 9

20 x5,3 + 3
40 x5,4 + 1

20 x5,5 + 1
80


(b)

Fig. 1. (a) Graphical model for a mini Web and (b) parametric transition matrix of a PMC model for PageRank

of numbers simple. v is set as [1
16

4
16

6
16

4
16

1
16]. With proba-

bilistic model checking, we can calculate the probability, say,
of reaching Web Pages 4 or 5 without browsing Web Page 3,
namely, the probability of ϕpr = {1, 2}U{4, 5}. But we also
want to see the effect on such a probability result if the per-
sonalization vector is changed slightly at each Web page. To
this end, we associate each entry of Ppr with a variable. The
resulting parametric transition matrix, denoted Ppr[~x] with
~x = (xi,j)1≤i,j≤5, is depicted in Figure 1b. It may be the
case that xi1,j = xi2,j for all i1, i2, j. But to achieve a general
model, we let all variables be distinguished. Also note that
the binary indexes of the variables are for readability. It is
easy to re-index the variables to strictly follow our definition
of vector variables. For example, let xi,j = x5i−5+j for all
1 ≤ i, j ≤ 5. The partition on ~x is given by {{xi,j}5j=1}5i=1.

3 PERTURBATION ANALYSIS

In this section, we present the technical details of our per-
turbation analysis. Section 3.1 defines a variation function.
Section 3.2 analyzes asymptotic perturbation bounds, in
particular, linear bounds and quadratic bounds. Section 3.3
presents the backward counterparts of asymptotic perturba-
tion bounds.

3.1 Variation Function
Throughout this section, we focus on extended reachability
properties of PMCs. Given a PMC M[~x] with state space
S and an extended reachability property S?US! such that
S?, S! ⊆ S, for any ~x ∈ UI , we recall that PrM[~x](S?US!)
denotes the probability that S?US! is satisfied byM[~x].

The effect of perturbing ~x on verification ofM[~x] against
S?US! is formally characterized by the following function,
which is our main study object.

Definition 3. A variation function ofM[~x] against S?US! is
ρ : UI → [0, 1] such that

ρ(~x) = PrM[~x](S?US!)− PrM(S?US!)

In words, a variation function captures the difference of
satisfying a reachability property by a perturbed MC and an
unperturbed MC. Alternatively, a variation function can be
formulated directly based on vector and matrix structures
from standard probabilistic model checking. To illustrate
this, we define a set

S0 = {s ∈ (rch(M) ∩ S?)\S! | S! ∩ rch(s) 6= ∅} .

Let α0 be the sub-vector of α obtained by restricting α to
S0. Let A[~x] be an |S0| × |S0| parametric matrix that con-
tains the (possibly parameterized) transition probabilities

between states in S0, namely, A[~x](s, t) = P[~x](s, t) for all
s, t ∈ S0. Let I be the identity matrix of the same size as
A[~x]. By elementary matrix theory, I − A[~x] is invertible.
Let b[~x] be a parametric vector of length |S0| that contains
the probabilities of reaching S! from S0 in one step, namely,
b[~x](s) =

∑
t∈S!
P[~x](s, t) for each s ∈ S0. We call α0 the

initial vector, A[~x] the constraint matrix and b[~x] the target
vector for verifyingM[~x] against S?US!. Let A (resp. b) be a
matrix obtained by substituting each variable in A[~x] (resp.
b[~x]) to 0. The following lemma provides a well-known
alternative formulation for variation functions.

Lemma 4. Let αT0 denote the transpose of α0. For any ~x ∈ UI ,

ρ(~x) = αT0 (I−A[~x])−1b[~x]− αT0 (I−A)−1b .

Proof. The lemma is an immediate consequence of Theorem
10.19 and Remark 10.20 in [5].

We present the Taylor expansion of any given variation
function, which is interesting by itself and is useful in the
sequel. Denote (I − A)−1 as A∗, A[~x] − A as A′[~x], and
b[~x]− b as b′[~x].

Lemma 5. ρ(~x) =
∑∞
i=1 ρi(~x) where for each i ≥ 1

ρi(~x) = αT0

i−1 copies of A∗A′[~x]︷ ︸︸ ︷
A∗A′[~x] . . .A∗A′[~x]

(A∗A′[~x]A∗b + A∗b′[~x]) .

Proof. For any ~x ∈ UI , as I − A[~x] is invertible, we have
(I−A[~x])−1 =

∑∞
i=0 A[~x]i. Thus from Lemma 4,

ρ(~x) = αT0

∞∑
i=0

A[~x]ib[~x]− αT0
∞∑
i=0

Aib

Note that each term in the series
∑∞
i=0 A[~x]ib[~x] is a non-

negative vector, the convergence of the series implies its
absolute convergence, and thus the summands can be re-
ordered freely. Then,

∞∑
i=0

A[~x]ib[~x] =
∞∑
i=0

(A′[~x] + A)i(b′[~x] + b)

=
∞∑
i=0

Aib +
∞∑
i=1

i−1 copies of A∗A′[~x]︷ ︸︸ ︷
A∗A′[~x] . . .A∗A′[~x]

(A∗A′[~x]A∗b + A∗b′[~x])

To see the equality above, note that every term on the left
side of equality has a unique corresponding term on the
right side and vice versa. It is now clear that the lemma
follows directly from the definition of ρn.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

[
1
5
1
5

]
(a)

[
x1,1 + 1

80 x1,2 + 19
60

x2,1 + 1
80 x2,2 + 1

20

]
(b)

[
x1,4 + x1,5 + 143

240

x2,4 + x2,5 + 143
240

]
(c)

Fig. 2. (a) Initial vector, (b) constraint matrix and (c) target vector for
verifyingMpr[~x] against ϕpr

ρpr(~x) =

[
1
5
1
5

]T
.

[−x1,1 + 79
80 −x1,2 − 19

60

−x2,1 − 1
80 −x2,2 + 19

20

]−1
.

[
x1,4 + x1,5 + 143

240

x2,4 + x2,5 + 143
240

]
−
[

79
80 − 19

60

− 1
80

19
20

]−1
.

[
143
240
143
240

]
Fig. 3. Closed-form variation function ρpr ofMpr[~x] against ϕpr

Note that some variation functions have finite expan-
sions only. In other words, for some ρ, there is n such that
ρi(~x) = 0 (for all ~x ∈ UI) if i > n.

Example. We denote the PageRank PMC model with the
parametric transition matrix depicted in Figure 1b by
Mpr[~x] where ~x = (xi,j)1≤i,j≤5. Recall that the verifica-
tion problem that we are interested in for this example
is the probability of ϕpr satisfied by Mpr[~x], namely, the
probability of reaching Web Pages 4 or 5 without browsing
Web Page 3. We generate the corresponding initial vector,
the constraint matrix and target vector as presented in
Figure 2. Then, by Lemma 4, we can compute the variation
function ρpr as presented in Figure 3, which defines the exact
variation of the probability of ϕpr satisfied by Mpr[~x] for
any ~x. Clearly, ρpr is a nonlinear multivariate function. Also
note that some variables from ~x do not appear in ρpr(~x).
As mentioned before, because the values of variables in ~x
are unknown, ρpr(~x) sheds little light on how much of the
probability of ϕpr satisfied by Mpr[~x] will change if ~x is
perturbed by a specific amount. Hence, we develop methods
to address this issue in subsequent sections.

3.2 Asymptotic Perturbation Bound
In this subsection, we study the asymptotic bounds. Section
3.2.1 formulates the asymptotic perturbation bounds of ar-
bitrary degrees. Section 3.2.2 and Section 3.2.3 investigate
the computation and complexity of linear and quadratic
asymptotic perturbation bounds, respectively. Section 3.2.5
presents the iteration methods for numerically computing
the two forms of bounds.

3.2.1 Definition and Property
For s, t ∈ S, let cs,t = 1 if P(s, t) ∈ {0, 1} and let cs,t =
min{P(s, t), 1 − P(s, t)} otherwise. Let c = mins,t∈S cs,t.
The intention with the radius c is to restrict the perturbation
distance of ~x so that the possibility of ~x falling out of UI
is eliminated. Note that since our pursuit is the asymptotic
bounds, such a restriction does not affect the analysis.

Definition 6. Let ρ+, ρ− : (0, c)→ R such that

ρ+(δ) = sup{ρ(~x) | ~x ∈ UI , ‖~x‖ ≤ δ}
ρ−(δ) = inf{ρ(~x) | ~x ∈ UI , ‖~x‖ ≤ δ} .

In words, given any 0 < δ < c, ρ+(δ) (resp. ρ−(δ)) is
the least upper bound (resp. greatest lower bound) of the
variation function ρ(~x) subject to the condition that the
distance of ~x is confined with δ. Intuitively, ρ+ and ρ−

capture the largest possible effect of model perturbations on
verification. However, the closed-form expressions of these
exact bounds are usually difficult to obtain (see Section 5.1
for discussion). Therefore, we pursue their approximations.

Definition 7 (Asymptotic perturbation bound). A pair of
upper and lower asymptotic perturbation bounds of degree n for
variation function ρ are functions f+n , f

−
n : (0, c)→ R such that

f+n (δ)− ρ+(δ) = o(δn)

f−n (δ)− ρ−(δ) = o(δn) ;

in other words,

lim
δ→0

|f+n (δ)− ρ+(δ)|
δn

= lim
δ→0

|f−n (δ)− ρ−(δ)|
δn

= 0 .

In words, Definition 7 states that, as δ tends to 0, f+n (δ)
(resp. f−n (δ)) converges to ρ+(δ) (resp. ρ−(δ)) at least as fast
as any polynomial function on δ of degree n. It is easy to see
that ρ+ and ρ− themselves are upper and lower asymptotic
perturbation bounds, and thus Definition 7 is legitimate.
In the sequel, we often abbreviate asymptotic perturbation
bounds as asymptotic bounds.

In general, asymptotic bounds are not unique. In the
following, we present a mathematical construction of up-
per and lower asymptotic bounds of arbitrary degree. The
construction not only provides theoretical insights but also
paves the way for the computation of asymptotic bounds.

For n ∈ N, we define a function g+n : (0, c) → R such
that, for each δ ∈ (0, c), g+n (δ) is the solution of the following
mathematical optimization problem:

Maximize
∑

1≤i≤n
ρi(~x)

subject to ~x ∈ UI and ‖~x‖ ≤ δ.
(1)

Similarly, g−n : (0, c)→ R is a function such that, for each δ ∈
(0, c), g−n (δ) is the solution of the following mathematical
optimization problem:

Minimize
∑

1≤i≤n
ρi(~x)

subject to ~x ∈ UI and ‖~x‖ ≤ δ.
(2)

Theorem 8. For all n ∈ N, g+n (resp. g−n) is an upper (resp.
lower) asymptotic bound of degree n for ρ.

Proof. We first recall the standard multivariate index no-
tations and present a supporting lemma. For any integer
vector ι = (ι1, . . . , ιk), let

|ι| := ι1 + . . .+ ιk, ι! := ι1! . . . ιk!, ~xι := xι11 . . . xιkk .

Also let

∇ιρ(~x) =
∂|ι|ρ(~x)

∂xι11 · · · ∂x
ιk
k

Note that ρ is infinitely differentiable on UI and thus has a
Taylor series. Comparing the Taylor series of ρ and

∑∞
i=1 ρi,

we have the following lemma:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Lemma 9. For each i ≥ 1,

ρi(~x) =
∑
|ι|=i

∇ιρ(0)

ι!
~xι

Proof of Lemma 9. The equations hold simply by observing
that both

∑
|ι|=i

∇ιρ(0)
ι! ~xι and ρi(~x) contain all and only the

expressions of ~x of order i from ρ.

We now present the main proof of Theorem 8. By Lemma
9, we have

∑
1≤i≤n ρi(~x) =

∑
1≤|ι|≤n

∇ιρ(0)
ι! ~xι. Denote by

ρ≤n(~x) this quantity. Let ~xδ be a solution of Problem (1)
for an arbitrary ι—the existence of ~xδ is guaranteed by the
compactness of the feasible set and the continuity of the
object function. For any ε > 0, by Taylor expansion theorem
we can choose δ′ ∈ (0, c) small enough such that for any
~x ∈ Rk with ‖~x‖ ≤ δ′,

|ρ(~x)− ρ≤n(~x)| ≤ ‖~x‖nε/2 (3)

Now for 0 < δ < δ′,

• we have |ρ(~xδ)− g+n (δ)| < εδn from Eq. (3), and thus

g+n (δ)

δn
<
ρ(~xδ)

δn
+ ε ≤ ρ+(δ)

δn
+ ε

• there exists ~x′ ∈ UI such that ‖~x′‖ ≤ δ and ρ(~x′) >
ρ+(δ) − δnε/2. Thus, we also have from Eq. (3) that
|ρ(~x′)− ρ≤n(~x′)| < δnε/2, and

g+n (δ)

δn
≥ ρ≤n(~x′)

δn
>
ρ(~x′)

δn
− ε

2
>
ρ+(δ)

δn
− ε

Therefore, limδ→0 |g+n (δ) − ρ+(δ)|/δn = 0 as expected. We
can show limδ→0 |g−n (δ) − ρ−(δ)|/δn = 0 in a similar way.
This completes the proof.

Through Theorem 8, we can see that in order to compute
asymptotic bounds of order n, it suffices to consider a
partial sum in the expansion of ρ up to order n. Because
the constraint ‖~x‖ ≤ δ in Problems (1) and (2) can be de-
composed to 2k linear constraints, we can employ standard
mathematical programming methods to compute g+n and
g−n . However, by exploiting the linear totality of ‖ · ‖, we
present customized computational methods for asymptotic
bounds of degrees one and two in the sequel.

3.2.2 Linear Perturbation Bound
In this subsection, we present a method to compute linear
closed-form expressions for g+1 and g−1 . Because all entries
in α0, A, and b are nonnegative, and because all entries in
A′[~x] and b′[~x] are either 0 or a sum expression of variables
from ~x, according to Lemma 5, we reformulate the linear
fragment ρ1 of ρ as follows:

ρ1(~x) = αT0 A
∗(A′[~x]A∗b + b′[~x]) = h · ~x

for some nonnegative vector h = (h1, . . . , hk). Let κ =
1
2 maxi,j∈I,I∈I(hi − hj).

Lemma 10. The following equations hold:

lim
δ→0

ρ+(δ)

δ
= − lim

δ→0

ρ−(δ)

δ
= κ .

Proof. Observing
∑
|ι|=1∇ιρ(0)~xι = h · ~x, it is easy to see

from Problem (1) that g+1 (δ)/δ = −g−1 (δ)/δ = κ.

ρpr1(~x) = 11011
66139x1,1 + 165165

1256641x1,2 + 231
1121x1,4 + 231

1121x1,5

+ 44759
198417x2,1 + 223795

1256641x2,2 + 313
1121x2,4 + 313

1121x2,5

Fig. 4. Linear fragment in the expansion of ρpr

We call κ the condition number of ρ. The following theo-
rem confirms that a condition number provides an asymp-
totic bound of degree one.

Theorem 11. The linear functions ±κδ are a pair of upper and
lower asymptotic bounds of degree one for ρ.

Proof. The proposition is an immediate consequence of The-
orem 8 and Lemma 10.

From now on, we formally refer to the linear functions
κδ and −κδ as linear (perturbation) bounds for ρ.

We now consider the worst-case complexity for comput-
ing condition numbers. The generation of A and b uses
a conventional graph-based algorithm. The complexity of
computing the inverse of I − A is cubic in the size of M.
Then, we have the following theorem:

Theorem 12. Computing linear bounds (namely condition num-
bers) can be done in time O(|M|3).

We mention in passing that it is possible to show that
the computation of linear bounds is in the complexity class
probabilistic logspace, which is believed to be lower than the
complexity class P [2].

Example. For the PageRank example, a simple numerical
calculation provides the expansion of the linear fragment
of ρpr based on Lemma 5, as presented in Figure 4. Then,
the condition number κpr is immediately calculated as
313
2242 = 0.1396 (with the aid of Matlab). This means that
for a given small amount of model perturbations, in the
worse case the probability of satisfying the property varies
approximately that amount multiplied by κpr.

3.2.3 Quadratic Perturbation Bound
In this subsection, we consider the computation of quadratic
closed-form expressions for g+2 and g−2 . Recall that ρ1 is the
linear fragment of ρ, and accordingly, we write ρ1 + ρ2 for
the quadratic fragment of ρ. For convenience, we introduce
the concept of directions. A vector ~v is a direction of ρ1 + ρ2
if |~v| = k,

∑
~vI = 0 for all I ∈ I and ‖~v‖ = 1. So for

any ~x ∈ UI , (ρ1 + ρ2)(~x) = ‖~x‖2ρ2(~v) + ‖~x‖ρ1(~v) for some
direction ~v. Informally, our strategy is to find a direction
such that ρ1 + ρ2 increases or decreases at the fastest rate.

Formally, let ~y∗ ∈ Rk be an optimal vector of the
following quadratic program:

Maximize ρ2(~y)

subject to
∑
i∈I

yi = 0, ∀I ∈ I

‖~y‖ = 1 and h · ~y = κ .

(4)

Similarly, let ~y∗ ∈ Rk be an optimal vector of the following
quadratic program:

Minimize ρ2(~y)

subject to
∑
i∈I

yi = 0, ∀I ∈ I

‖~y‖ = 1 and h · ~y = −κ .

(5)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

We call ~y∗ and ~y∗ a maximally increasing direction (MID)
and a maximally decreasing direction (MDD) of ρ1 + ρ2, re-
spectively. The following theorem confirms that MIDs and
MDDs provide asymptotic bounds of degree two. Note that
ρ1(~y∗) = −ρ1(~y∗) = κ.

Theorem 13. The quadratic functions ρ2(~y∗)δ2 ± κδ are a pair
of upper and lower bounds of degree two for ρ.

We present the lengthy proof of Theorem 13 in Appendix
A. We also call ρ2(~y∗)δ2 +κδ (resp. ρ2(~y∗)δ

2−κδ) an upper
(resp. lower) quadratic (perturbation) bound for ρ.

We now consider the complexity of computing quadratic
bounds. First, quadratic bounds are computed based on
linear bounds (or condition numbers). Second, we observe
that the constraint ‖~y‖ = 1 in Problems (4) and (5) can be de-
composed into linear constraints of the form

∑k
i=1 ςiyi = 1

where ςi ∈ {−1, 1}. Then each of the two problems is
equivalent to a combination of 2k standard quadratic op-
timization problems according to different signs ς . Thus, we
have the following theorem:

Theorem 14. Computing quadratic bounds can be done in time
O(poly(|M|), 2|~x|).

Alternatively, we can show that computing quadratic
bounds is in the complexity class of functional NP [46].

3.2.4 Simplification by Structural Analysis

Sections 3.2.2 and 3.2.3 present the computational methods
and complexity analysis for linear and quadratic bounds. In
practice, the computation usually can be simplified consid-
erably by carefully analyzing the structure of the constraint
matrix and target vector. This structural analysis is based
on the following three lemmas. To present (some of) these
lemmas, we need some auxiliary definitions.

For each I ∈ I , let hI = (hi)i∈I and κI = max(hI) −
min(hI). Let ~xmin

I = {xi | i ∈ I, hi = min(hI)} and
~xmax
I = {xi | i ∈ I, hi = max(hI)}. For s ∈ S, let As[~x]

(resp. bs[~x]) denote the sth row (resp. sth entry) of A[~x]
(resp. b[~x]). Let SI ⊆ S contain exactly the states s such
that var(s) = {xi}I∈I . Let ~vi,j (where i, j ≤ |~vi,j |) denote a
vector (i.e., direction) such that ~vi,j(i) = 0.5, ~vi,j(j) = −0.5
and ~vi,j(k) = 0 for any k /∈ {i, j}.

Lemma 15. hi = 0 iff xi does not appear in A[~x] or b[~x].

Proof. It is obvious that if xi does not appear in A[~x] or
b[~x] then hi = 0. For the reversed direction, suppose xi
appears in A[~x] or b[~x]. Recall that A[~x] and b[~x] are
defined based on S0, a subset of S from states in which at
least one of target states is reachable. In other words, there
is a path s0, . . . , sj , sj+1, . . . , sm . . . such that α(s0) > 0,
P[~x](sj , sj+1) = a+xi (where a is a constant) and sm ∈ S?.
Then, it must be the case that

hi ≥ α(s0) ·
j∏
l=0

P(sl, sl+1) ·
m∏

l′=j+1

P(sl′ , sl′+1) > 0 .

The lemma follows.

Lemma 16. If xi appears in bs[~x] for each s ∈ SI , then hi =
max(hI) where i ∈ I for all I ∈ I .

Proof. Suppose xi appears in bs[~x] for each s ∈ SI . Consider
the vector b′′[~x] = A′[~x]A∗b+b′[~x]. Clearly, since a variable
does not occur at the same row of A′[~x] and b′[~x] simulta-
neously, the coefficient of any variable at any row of b′′[~x] is
not large than 1. Let j ∈ s. Thus, the coefficient of xj in the
sth row of b′′[~x] (which may be 0) is not large than that of xi
at the same row (which must be 1). As h · ~x = αT0 A

∗b′′[~x],
hj ≤ hi.

With Lemmas 15 and 16, to compute a condition number,
one usually can remove the “irrelevant” variables in the
constraint matrix and target vector and thus simplify the
variation function.

Lemma 17. If there are i↓, i↑ ∈ I for some I ∈ I such that

(c1) (hi↑ − hi↓)/2 = κ > κI′ for all I ′ ∈ I\{I},
(c2) unless ~xmin

I = {xi↓}, for each s ∈ SI , all the variables in
~xmin
I appear in bs[~x] or none of them appears in bs[~x] or

As[~x], and
(c3) unless ~xmax

I = {xi↑}, for each s ∈ SI , all the variables
in ~xmax

I appear in bs[~x] or none of them appears in bs[~x]
or As[~x],

then ~vi↑,i↓ (resp. ~vi↓,i↑) is an MID (resp. MDD) of ρ1 + ρ2.

Proof. We aim to show that vi↑,i↓ is a solution of quadratic
program (4), while the case that vi↓,i↑ is a solution of
quadratic program (5) is similar. Clearly, Condition (c1)
guarantees that v↑,i↓ satisfy the three constraints of (4). Let
~y∗ be a solution of (4). If ~y∗[i] < 0, then xi ∈ ~xmin

I ; if
~y∗[i] > 0, then xi ∈ ~xmax

I . By (c2), we have that, for any
xj ∈ ~xmin

I such that j 6= i↓,

ρ2(~y∗) = ρ2(~y∗[i↓ ← yi↓ + yj , j ← 0]). (6)

(Here ~y∗[i↓ ← yi↓+yj , j ← 0] denotes a new vector obtained
by assigning yi↓+yj to the i↓th item and 0 to the jth item of
~y∗.) To see this, if ~xmin

I = {xi↓} then it must be the case that
~y∗(i↓) = −0.5 (because otherwise ~y∗ does not satisfy the
constraints of (4)) and thus (6) holds. If there is xj ∈ ~xmin

I

such that j 6= i↓, then (c2) guarantees that

• for any variable z 6∈ {xj , xi↓}, czxj appears in ρ2(~x)
iff czxi↓ appears in ρ2(~x) for any coefficient c1; and

• for any variable z ∈ {xj , xi↓}, neither czxi↓ nor czxj
appears in ρ2(~x) for any coefficient c.

Thus, (6) also holds. Similarly, by condition (c3), we can
show that for any xj ∈ ~xmax

I such that j 6= i↑, ρ2(~y∗) =
ρ2(~y∗[i↑ ← yi↑ + yj , j ← 0]). Therefore, ρ2(~y∗) = ρ2(vi↑,i↓).

In words, condition (c1) says that κI is the unique
maximum in {κI′}I′∈I and that hi↓ (resp. hi↑) is a min-
imum (resp. maximum) of hI . Condition (c2) (resp. (c3))
says that unless ~xmin

I (resp. ~xmax
I) contains a single variable

(equivalently, hI has a unique minimum (resp. maximum)
element), for each row of the constraint matrix and target
vector either all variables from ~xmin

I (resp. ~xmax
I) appear

in the target vector only or none of them appears in the
constraint matrix or target vector.

The significance of Lemma 17 is as follows. After we
compute h and κ and know (hi↑ −hi↓)/2 = κ, if we further
that the pair of indices i↓, i↑ ∈ I satisfy conditions (c1)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Algorithm 1: MID and MDD computation based on
Lemma 17

Input: h, κ, ρ2
if There exist a pair (i↑, i↓) of indices in I ∈ I satisfying
conditions (c1) to (c3) in Lemma 17 then

~y∗ ← ~vi↑,i↓ and ~y∗ ← ~vi↓,i↑ ;
else

~y∗ ← QP ∗(ρ2,h, κ) and ~y∗ ← QP∗(ρ2,h, κ);
/* QP ∗() and QP∗() are procedures for

solving Problems (4) and (5) resp. */

return ~y∗, ~y∗

to (c3) (just by scrutinizing the structure of the constraint
matrix and target vector), we immediately know that ~vi↑,i↓
(resp. ~vi↓,i↑) is an MID (resp. MDD), thus avoiding the
quadratic programs (i.e., Problems (4) and (5)). Based on
Lemma 17, we present Algorithm 1 which can simplify
the computation of MIDs and MDDs for a usual group
of variation functions. Procedures QP ∗() and QP∗() for
solving Problems (4) and (5) are supported by off-the-
shelf nonlinear program solvers. For example, they can be
easily reformulated as constrained optimization problems in
Matlab [?].

Example. By Lemmas 15 and 16, we can derive that the
condition number κpr is (non-uniquely) archived by either
the pair x1,3 and x1,4 (or x1,5) or the pair x2,3 and x2,4
(or x2,5) in the constrain matrix and target vector in Figure
2. The variation function ρpr in Figure 4 is simplified by
removing all other variables, and becomes as follows:

ρ̃pr1 = 231
1121x1,4 + 231

1121x1,5 + 313
1121x2,4 + 313

1121x2,5 .

Certainly, as 231
1121 <

313
1121 , we conclude that κpr is achieved

by x2,3 and x2,4 and κpr = 313
1121 ·

1
2 .

To save space, we do not present the expansion of the
quadratic fragment ρpr2 of ρpr in the text. But we note that
the expansion contains 28 (symbolic) non-zero summands.
Thus, re-indexing xi,j as x5i−5+j for all 1 ≤ i, j ≤ 5,
the pair of indexes 8 and 9 meet conditions (c1) to (c3)
in Lemma 17. Therefore, ~v9,8 and ~v8,9 are an MID and
MDD of the quadratic fragment of ρpr, respectively. In other
words, an MID (resp. MDD) is obtained by increasing (resp.
decreasing) x2,4 and decreasing (resp. increasing) x2,3.

However, further calculations show that ρpr2(~v9,8) and
ρpr2(~v8,9) are equal to 0. This means that the upper (resp.
lower) quadratic bound of ρpr is just the linear bound κprδ
(resp. −κprδ). This is, however, not the general case. In
Section 4, we will present another variation function of the
PageRank model Mpr[~x] such that conditions (c1) to (c3)
are satisfied but the quadratic bounds do not coincide with
their linear counterparts.

3.2.5 Numerical Computation by Iteration
A realistic system model may have a large state space and
a relatively high number of parameters. Like probabilistic
model checking, the computation of linear and quadratic
bounds can benefit from the numerical iteration, which is
more efficient than the Gauss-Jordan elimination method for
the inversion operation of a large matrix [25]. An iterative

computation technique for linear and quadratic bounds can
be envisaged from Lemma 5, and is detailed below.

Let I0 = {i ∈ I | I ∈ I and xi occurs in A[~x] or b[~x]}.
Suppose I0 6= ∅, since otherwise the linear and quadratic
bounds are trivial. For each i ∈ I0, let Ci,i′ (resp. di,i′) be
obtained from A′[~x] (resp. b′[~x]) by instantiating 1 into xi
and xi′ , and by instantiating 0 into all other variables. If i =
i′, we simply write Ci (resp. di) instead of Ci,i (resp. di,i).
Recall that the linear coefficients in ρ are h = (h1, . . . , hk).
Then we have that

hi = 1
2α

T
0 A
∗(CiA

∗b + di), i ∈ I0 (7)

and hi = 0 for other i 6∈ I0. Since A∗ =
∑∞
j=0 A

j , according
to the definition of κ, it can be effectively approximated by
the numerical iteration. Note that according to Lemmas 15
and 16, we may not need to compute hi for all 1 ≤ i ≤ k.

For quadratic bounds, we consider the lower bound
only, as the upper bound can be dealt with in a symmetric
manner. For each i, i′ ∈ I0 such that i 6= i′, let Ei,i′ (resp.
fi,i′) be obtained from A′[~x] (resp. b′[~x]) by instantiating −1
into xi, 1 into xi′ , and 0 into all other variables. If conditions
(c1) to (c3) in Lemma 17 are satisfied, then an index pair
(i↓, i↑) achieving an MDD can be determined. If so, the
nonlinear coefficient in the lower quadratic bound g−2 of
ρ is given by

ρ2(vi↓,i↑) = 1
4α

T
0 A
∗Ei↓,i↑A

∗(Ei↓,i↑A
∗b + fi↓,i↑) . (8)

Otherwise, to invoke QB∗() in Algorithm 1, we need to first
compute the expression of ρ2. Consider the coefficient of
xj1xj2 (or, equivalently, xj2xj1) in ρ2, denoted cj1,j2 , for all
1 ≤ j1, j2 ≤ k. We separate three cases. For all j1 = j2 ∈ I0,

cj1,j1 = αT0 A
∗Cj1A

∗(Cj1A
∗b + dj1) . (9)

For all j1, j2 ∈ I0 such that j1 6= j2,

cj1,j2 = αT0 A
∗Cj1,j2A

∗(Cj1,j2A
∗b + dj1,j2)

− cj1,j1 − cj2,j2 .
(10)

If j1 6∈ I0 or j2 6∈ I0, then cj1,j2 = 0, namely, xj1xj2 does
not occur in ρ2. We conclude that quadratic bounds can be
computed using the numerical iteration.

While probabilistic model checking uses a flat iteration
to approximate A∗b, it is easy to observe that Equation
(7) suggests a double-iteration for computing a condition
number. In particular, we compute g ≈ A∗b and then a ≈
αT0 A

∗Cig. Similarly, Equations (8) to (10) suggest a triple-
iteration for computing the coefficients in the quadratic
bound or in the quadratic fragment of the variation function.
Roughly, let M denote the runtime of a flat iteration (even
though in practice M is usually not constant but subject
to factors such as the convergence rate and the termina-
tion criterion). Thus, the runtime of the numerical iteration
part of probabilistic model checking is M . The runtime of
iteratively computing a condition number is up to 2NM
where N = |I0|. The runtime of iteratively computing
quadratic bounds is (2N + 3)M if conditions (c1) to (c3)
hold, and is less than (2N + 3N2)M in the worst case
(because the number of non-zero quadratic coefficients is
less than N2). This analysis indicates the scalability of the
iterative computation of condition numbers and quadratic
bounds with respect to the iterative computation as a part of
probabilistic model checking.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

3.3 Backward Analysis
In the previous sections, we have dealt with the forward
perturbation analysis, which analyzes the worst possible
consequence of model perturbations on verification results.
In this subsection, we present a similar analysis in backward
direction, which provides the maximum permitted pertur-
bations to the model if variations of the verification result
are confined to a specific range, and thus is complementary
to the forward analysis. It turns out that there exists an el-
egant correspondence between (both exact and asymptotic)
perturbation bounds and their backward counterparts.

Definition 18. Let %+, %− : R+ → R+ such that

%+(δ) = inf{‖~x‖ | ~x ∈ UI , ρ(~x) ≥ δ}
%−(δ) = inf{‖~x‖ | ~x ∈ UI , ρ(~x) ≤ −δ} .

In words, given any δ ≥ 0, %+(δ) (resp., %−(δ)) is the
smallest perturbation distance ‖~x‖ subject to the condition
that ~x ∈ UI and ρ(~x) ≥ δ (resp. ρ(~x) ≤ −δ). Intuitively,
whenever ~x ∈ UI and ‖~x‖ < min{%+(δ), %−(δ)}, −δ <
ρ(~x) < δ is guaranteed.

Note that the functions ρ+ and %+ are both nondecreas-
ing. The following key lemma shows that they actually form
a Galois connection.

Lemma 19. ρ+(%+(δ)) ≤ δ and %+(ρ+(δ)) ≥ δ for any
sufficiently small δ ≥ 0.

Proof. We only prove the first part; the second one is similar.
Let δ ≥ 0 sufficiently small so that %+(δ) < c. For any
ε ∈ (0, %+(δ)), let

A(ε) = {~x ∈ UI | ‖~x‖ ≤ %+(δ)− ε}.

Then for any ~x ∈ A(ε), ρ(~x) < δ since otherwise by the
definition of %+, ‖~x‖ ≥ %+(δ), a contradiction. Thus

ρ+(%+(δ)− ε) = sup{ρ(~x) | ~x ∈ A(ε)} ≤ δ,

and hence ρ+(%+(δ)) ≤ δ by letting ε tend to 0.

Furthermore, we prove that %+ is a pseudo-inverse of
ρ+. Similar results also hold between %− and ρ−.

Lemma 20. %+ρ+%+ = %+ and ρ+%+ρ+ = ρ+.

Proof. Direct from Lemma 19, by notting that both ρ+ and
%+ are nondecreasing functions.

We now present our main theorem of this subsection.

Theorem 21. 1) limδ→0
%+(δ)
δ = limδ→0

%−(δ)
δ = 1

κ .

2) Let f̂+2 (δ) = δ/κ − ρ2(~y∗)δ2/κ3 and f̂−2 (δ) = δ/κ +
ρ2(~y∗)δ

2/κ3. Then

lim
δ→0

|f̂+2 (δ)− %+(δ)|
δ2

= lim
δ→0

|f̂−n (δ)− %−(δ)|
δ2

= 0 .

Proof. 1) By Lemma 19 and Theorem 10, we have

lim
δ→0

%+(δ)/δ ≤ lim
δ→0

%+(δ)/ρ+(%+(δ))

= lim
δ′→0

δ′/ρ+(δ′) = 1/κ

and

lim
δ→0

%+(δ)/δ = lim
δ′→0

%+(ρ+(δ′))/ρ+(δ′)

≥ lim
δ′→0

δ′/ρ+(δ′) = 1/κ.

Thus limδ→0 %
+(δ)/δ = 1/κ.

2) By Lemma 19 and Theorems 10 and 13, we have

lim
δ→0

%+(δ)− δ/κ
δ2

≤ − lim
δ→0

ρ+(%+(δ))− κ%+(δ)

%+(δ)2
· %

+(δ)2

κδ2

= − ρ2(~y∗)/κ3

and

lim
δ→0

%+(δ)− δ/κ
δ2

= lim
δ′→0

%+(ρ+(δ′))− ρ+(δ′)/κ

ρ+(δ′)2

≥ − lim
δ′→0

ρ+(δ′)− κδ′

δ′2
· δ′2

κρ+(δ′)2

= − ρ2(~y∗)/κ3

Thus %+(δ) = δ/κ− ρ2(~y∗)δ2/κ3 + o(δ2).

Theorem 21 confirms that 1/κ serves as a backward
condition number, while f̂+2 and f̂−2 are a pair of backward
counterparts of quadratic bounds.

4 AUTOMATA-BASED GENERALIZATION

For simplicity of presentation, in the previous sections we
focused on (extended) reachability properties. In this sec-
tion, we explain how our perturbation analysis of PMCs can
be generalized for LTL properties and ω-regular properties
via automata-based verification. We only present the neces-
sary definitions to reveal this generalization. For complete-
ness, we present the state-of-the-art technicalities underly-
ing the automata-based verification of MCs in Appendix B.

We first recall the syntax of LTL, which is a compact for-
malism for expressing (a subclass of) ω-regular properties.

Definition 22 (Linear Temporal Logic). Given a set of atomic
propositions A, the syntax of LTL formulas is defined by the
following rules:

ϕ ::= tt | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where a ∈ A.

Let ♦ϕ abbreviate ttUϕ. We define a “bounded version”
of ♦ϕ: Let ♦≤0ϕ be ϕ and ♦≤n+1ϕ = ϕ ∨ X♦≤nϕ for all
n ∈ N. The semantics of LTL is defined in a standard way
by a satisfaction relation, denoted |=. Given an infinite path π
of MCM = (S,P, α,A, L), and i ∈ N, we define:

(π, i) |= tt
(π, i) |= ϕ1 ∨ ϕ2 iff (π, i) |= ϕ1 or (π, i) |= ϕ2

(π, i) |= a iff a ∈ L(π[i])
(π, i) |= ¬ϕ iff (π, i) 6|= ϕ
(π, i) |= Xϕ iff (π, i+ 1) |= ϕ
(π, i) |= ϕ1Uϕ2 iff ∃i′ ≥ i. (π, i′) |= ϕ2

and ∀i ≤ i′′ < i′. (π, i′′) |= ϕ1

Write π |= ϕ if (π, 0) |= ϕ. The LTL-verification problem
of MCs is to compute

PrM(ϕ) = PrM({π ∈ PathM | π |= ϕ}) .

The general class of ω-regular properties, including LTL
properties, can be encoded by the generalized Büchi automata
(GBA).

Definition 23 (Generalized Büchi Automata). A GBA is a
tuple A = (Σ, Q,∆, Q0,F), where

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10



1
5
1
5
1
5

0

0

0

0

0

0


(a)



0 0 0 x1,1 + 1
80 x1,2 + 19

60 x1,3 + 3
40 0 0 0

0 0 0 x2,1 + 1
80 x2,2 + 1

20 x2,3 + 41
120 0 0 0

0 0 0 x3,1 + 1
16 x3,2 + 1

4 x3,3 + 3
8 0 0 0

0 0 0 0 0 0 x1,1 + 1
80 x1,2 + 19

60 x1,3 + 3
40

0 0 0 0 0 0 x2,1 + 1
80 x2,2 + 1

20 x2,3 + 41
120

0 0 0 0 0 0 x3,1 + 1
16 x3,2 + 1

4 x3,3 + 3
8

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


(b)



x1,4 + x1,5 + 143
240

x2,4 + x2,5 + 143
240

x3,4 + x3,5 + 5
16

x1,4 + x1,5 + 143
240

x2,4 + x2,5 + 143
240

x3,4 + x3,5 + 5
16

x1,4 + x1,5 + 143
240

x2,4 + x2,5 + 143
240

x3,4 + x3,5 + 5
16


(c)

Fig. 5. (a) Initial vector, (b) constraint matrix and (c) target vector for verifyingMpr[~x] against ϕ′pr

• Σ is a finite alphabet;
• Q is a finite set of states,
• ∆ ⊆ Q× Σ×Q is a transition relation,
• Q0 ⊆ Q is a set of initial states, and
• F ⊆ 2Q is a set of acceptance sets.

An infinite word w ∈ Σω is accepted by A, if there
exists an infinite run θ ∈ Qω such that θ[0] ∈ Q0,
(θ[i], w[i], θ[i + 1]) ∈ ∆ for i ≥ 0 and for each F ∈ F ,
there exist infinitely many indices j ∈ N such that θ[j] ∈ F .
Note that w[i] (resp. θ[i]) denotes the ith letter (resp. state)
of w (resp. θ). The accepted language of A, denoted L(A),
is the set of all words accepted by A. It is well-known that
GBA are expressive enough to accept the class of ω-regular
languages.

For simplicity, when given an MCM and a GBA A, we
always assume they are compatible, namely, Σ = 2A where A
is the set of atomic propositions forM and Σ is the alphabet
of A. Then, the automata-based verification problem is to
compute

PrM(A) = PrM({π ∈ PathM | L(π) ∈ L(A)}) .

It is well-known that each LTL formula can be encoded by
a GBA, thus PrM(A) subsumes PrM(ϕ).

The key idea of computing PrM(A) is by constructing a
product MCM⊗A′ such thatA′ is a so-called separated GBA
that is equivalent toA and PrM(A) equals to PrM⊗A

′
(♦B)

for some reachability problem ♦B. The formal techniques
behind this idea is presented in Appendix. In the same
way, given PMC M[~x], we can construct a product PMC
M[~x]⊗A′. We can verify that such a product PMC contains
a parametric transition matrix satisfying the intended con-
straints (c.f., Section 2.2). We define a generalized variation
function forM[~x] against A as

ρA(~x) = PrM[~x](A)− PrM(A) .

Then, all techniques presented in Section 3 can be lifted for
ρA immediately.

Example. In the following, we illustrate automata-based per-
turbation analysis of our PageRank example. Consider the
LTL formula ϕ′pr = ♦≤3{4, 5}, which informally expresses
“reaching Web pages 4 or 5 within three steps (i.e., clicking
the hyperlinks no more than three times)”. The initial vector,
constraint matrix and target vector for verifying Mpr[~x]

(with ~x = (xi,j)1≤i,j≤5) against ϕ′pr (namely Aϕ′pr) are
presented in Figure 5. With them one immediately obtains
the closed-form expression of ρ′pr (similar to the one in
Figure 3 for ρpr). To save space, we do not present the
expression of ρ′pr or its linear fragment ρ′pr1 or quadratic
fragment ρ′pr1 + ρ′pr2 explicitly. We note that the expansion
of ρ′pr1 contains 15 (symbolic) summands and the expansion
of ρ′pr2 contains 78 (symbolic) summands. We compute
the condition number as 0.1443. By using Lemma 17, we
can determine that an MID (resp. MDD) is obtained by
increasing (resp. decreasing) x3,4 while decreasing (resp.
increasing) x3,3 only. We further compute the quadratic
bounds as ±0.1443δ − 0.0927δ2. In words, for any amount
of the perturbation δ that occurs to the model Mpr[~x],
using the condition number, we estimate the maximum
variation of the probability of ϕ′pr satisfied by Mpr[~x] as
±0.1443δ, and using the quadratic bounds, we estimate it
as ±0.1443δ − 0.0927δ2.

5 DISCUSSION

5.1 Reflection on Linear and Quadratic Bounds
An important rationale behind our perturbation analysis is
the fact that, the imprecision of quantities in the system
model is usually of small-scale in the realistic situations, in
other words, the model builder has various measures to nar-
row down the ranges of the parameter values. Consider, for
example, the situation where the true value of a perturbed
parameter is the expected value of a random variable. To
estimate this value, we can observe the random variable
to generate samples. If the sample size is large enough, by
statistics theory there is a high confidence that the sample
mean is sufficiently close to the true value of the parameter.

The asymptotic nature of linear and quadratic bounds
implies that they are only able to provide approximations
rather than exact bounds. Nonetheless, for stochastic sys-
tems with parameters subject to small but nontrivial pertur-
bations, linear and quadratic bounds provide adequate es-
timates and fulfill our requirements to a satisfactory degree
in application (as shown later in Section 6). Moreover, linear
and quadratic bounds have two advantages. First, they
enjoy simple closed forms that uniformly characterize the
sensitivity and robustness of a verification result, regardless
of the actual model perturbation. Second, their computation
has relatively low complexity upper-bound (compared with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

the point-wise exact bounds [12]) and can employ efficient
numerical iteration methods in practice.

It is natural to expect that asymptotic bounds of higher
degrees provide more accurate approximations, but at cost
of high computational burden. This challenging generaliza-
tion is left to future work.

5.2 Reflection on Vector Norm
Many results presented in Section 3 depend on the 1-norm
of the perturbed parameters. In short, by choosing such
a norm, the condition number can be computed by linear
programming, and the quadratic bounds are computed by
pursuing an MID and an MDD, which are computed largely
based on the condition number. In what follows, we clarify
the (in)dependence in more detail. Because lower (perturba-
tion) bounds are symmetric to upper (perturbation) bounds,
we here only need to discuss the case of upper bounds.

Certainly, the variation function ρ is independent of any
norm. We denote the resulted upper bound as ρ+‖·‖∗ if the
norm ‖ · ‖∗ is adopted. As we only consider finite norms, a
well-known fact from the matrix theory states that there are
positive constants c and C such that

c‖~x‖ ≤ ‖~x‖∗ ≤ C‖~x‖, ~x ∈ Rk. (11)

Hence, one can easily show that Theorem 8 holds for ρ+‖·‖∗
as well if Problem (1) and (2) are adapted for ‖ · ‖∗.

However, the computation of linear bounds based on an
arbitrary norm cannot directly resort to linear programming.
To see this, consider the following simple variation function:

ρeg(x, y, z) = x/2 + y/3 + x2/4 .

Note that ρeg is obtained from a simple PMC with the
reachability problem. (The detailed model is omitted for
simplicity.) Assume the Euclidean norm ‖ · ‖2 to measure
the variables of ρeg. By Theorem 8, a linear upper bound of
ρeg is an optimal solution of the following problem:

Maximize x/2 + y/3

subject to x+ y + z = 0 and
√
x2 + y2 + z2 ≤ δ.

(12)

The above problem is clearly not a linear program. Its unique
optimal solution is as follows:

x = 4√
42
δ, y = 1√

42
δ, z = − 5√

42
δ .

Thus, the linear upper bound is 7δ/(3 ·
√

42). Furthermore,
the linear bounds say little about the quadratic bounds. To
see this, replace the objective function in Problem (12) with
the quadratic function ρeg itself. Then, the solution is no
longer an optimal solution of the modified problem. This
example demonstrates the dependence of the computational
techniques in Sections 3.2.2 and 3.2.3 on the 1-norm.

We also mention that, Inequality (11) implies an inequal-
ity between an exact bound based on the 1-norm and one
based on another norm. In particular, as

√
k‖~x‖ ≤ ‖~x‖2 ≤

‖~x‖ and ρ+ is an increasing function, we have that

ρ+(δ) ≤ ρ+‖·‖2(δ) ≤ ρ+(
√
kδ) .

The above bounding relationship can be used to provide
(loose) estimates for our asymptotic bounds if the Euclidean
norm is adopted. Note that for other norms (e.g., the maxi-
mum norm ‖ · ‖∞), a similar relationship holds.

PRISM
model

state space
& transition

matrix

verification
property

initial/target
vectors &
constraint

matrix

condition
number &
quadratic
bounds

Fig. 6. Computation procedure in the experiment

6 CASE STUDIES

In this section, we evaluate the applicability of the two
forms of asymptotic bounds, namely, condition numbers
and quadratic bounds. We mainly consider the accuracy
of these bounds. Our objective is to demonstrate that, de-
spite the asymptoticity, these bounds can be used to accu-
rately predict the actual worst effect caused by small but
non-trivial model perturbations. Our computation of these
bounds in the case studies adopts the numerical iteration.
We have analyzed the scalability of this iterative compu-
tational method with respect to the one in probabilistic
model checking in Section 3.2.5. In this section, we also
provide empirical evidence for scalability through analysis
of computation runtime.

The case studies are based on the PageRank example and
two other benchmarks, namely a Zeroconf protocol model
and a NAND multiplexer model. We have implemented our
iterative computational method in Matlab and interacted
with PRISM. The procedure is depicted in Figure 6. We
first specify a system model in PRISM and export its state
space and transition matrix into matrices in Matlab. We then
generate the constraint matrix and target vector with respect
to a verification property, namely a reachability property or
LTL property. Finally, we calculate the condition number
and quadratic bounds using my implementation prototype.
All PRISM specifications and the Matlab source codes are
available at the first author’s Web site.2

The evaluation constitutes the following steps: First, we
verify the unperturbed modelM ofM[~x] against a property
ϕ, which produces the probabilistic result p. Second, we
select a set of small perturbation values d for the perturbed
parameters ~x. Third, for each d, we select multiple vectors
~vi such that ‖~vi‖ ≤ d and obtain a perturbed MC M[~vi].
Fourth, we verify M[~vi] against ϕ and obtain the proba-
bilistic result pi. Finally, we compare the estimates κd and
f+(d) (or f−(d)) with maxi(pi − p) or mini(pi − p) where
κ is the condition number and f+ and f− are the quadratic
bounds computed before.

6.1 PageRank Algorithm

Recall that the two verification properties for the Page-
Rank model Mpr[~x] that we considered earlier are ϕpr =
{1, 2}U{4, 5} and ϕ′pr = ♦≤3{4, 5}, and the condition num-
bers (CN for short) and quadratic bounds (QB for short)
corresponding to these two properties are as follows:

2. http://www.comp.nus.edu.sg/∼sugx/tse15/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 1
Accuracy test data for PageRank w.r.t. (a) ϕpr and (b) ϕ′pr

pert. result (10−4)
by CN (10−4)

upper lower

0.000 6891.4659207 6891.4659207 +/-0.000000000
0.005 +6.980374536 -6.980374536 +/-6.980374665
0.010 +13.96074907 -13.96074907 +/-13.96074933

(a)

pert. result (10−4)
by CN (10−4)

by QB (10−4)
upper lower upper lower

0.000 9038.7 9038.7 +/-0.000 +0.000 -0.000
0.005 +7.189 -7.236 +/-7.213 +7.189 -7.236
0.010 +14.33 -14.52 +/-14.43 +14.33 -14.52

(b)

property CN QB
ϕpr κpr = 0.1396 ± 0.1396δ
ϕ′pr κ′pr = 0.1443 ±0.1443δ − 0.0927δ2

Our computation reveals that the maximum variations
of the probability of satisfying ϕpr almost overlays with
κprδ for any perturbation distance δ. This is not the case for
ϕ′pr. But our validation data as presented in Table 1 shows
that up to the perturbation distance of 0.01, the condition
number and quadratic bounds can accurately estimate the
maximum variations. When the perturbation distance is 0,
the upper and lower bounds of the probabilistic results
coincide with the unperturbed results. Note that the 0.01
perturbation distance is a nontrivial distance compared with
the smallest constant transition probability 1

80 = 0.0125
in the parametric transition matrix of Mpr[~x] (see Figure
1b). We also see that the quadratic bounds provide more
accurate estimates than the condition number.

6.2 Zeroconf Protocol
Consider the IPv4 Zeroconf protocol implemented in some
physical network with noisy communication channels. The
Zeroconf protocol enables a new host to join a computer
network automatically and with “zero configuration” (such
as without pre-assignment of an IP address). Figure 7 de-
picts a lightweight abstract model of Zeroconf that uses
a maximum of four message probes for the new host to
discover an unused IP address. At the start state, the new
host randomly selects an IP address and either moves to a
probe state or the ok state, depending on whether the selected
IP address is occupied or not. At each of the four test states,
the new host sends a probe to existing hosts and waits. If
it receives a reply within a specified time, then the process
goes back to the probe state; if not, the process proceeds to
the next probe state or the error state. The constant number
n is the number of existing hosts, and m = 60,534 is the
size of the IP address space as specified in Zeroconf. The
variable x refers to the loss rate of a probe or its reply. Note
that y = 1 − x. In reality, x relies on an ad-hoc statistical
estimation and is instantiated by the sample mean x̄. Due to
sampling errors or environmental influences, there may be
some perturbations on x.

We are interested to know the probability that an address
collision happens. This problem can be stated as the reacha-
bility property ♦{error}. For experimentation purposes,

start probe probe probe probe

ok error

n
m x x x

x
y

1− n
m

1 1

Fig. 7. Zeroconf protocol with uncertain message loss rate

TABLE 2
Accuracy test data for Zoreconf protocol

loss rate result (10−6) % estimated (10−6)
CN QB

0.095 -36.73 -19.8% -39.97 -35.73
0.096 -29.89 -16.9% -31.97 -29.26
0.097 -22.79 -12.3% -23.98 -22.46
0.098 -15.47 -8.33% -15.99 -15.31
0.099 -7.859 -4.23% -7.993 -7.824
0.100 185.67 – – –
0.101 +8.131 +4.38% +7.993 +8.162
0.102 +16.54 +8.91% +15.99 +16.66
0.103 +25.22 +13.6% +23.98 +25.50
0.104 +34.20 +18.4% +31.97 +34.68
0.105 +43.48 +23.4% +39.97 +44.20

0.095 -6.845 -4.39% -6.966 -6.813
0.096 155.79 – – –
0.097 +7.089 +4.54% +6.966 +7.120

0.103 -8.979 -4.08% -9.127 -8.941
0.104 219.87 – – –
0.105 +9.277 +4.22% +9.127 +9.313

we assume that the number of hosts in the network is
35,000, and let the estimated message loss rate be 0.1 while
the actual rate be perturbed up to ± 5%. We calculate the
condition number and quadratic bounds as follows:

loss rate CN (×10−3) QB (×10−3)
0.100 3.9965 δ2 · 42.308± δ · 3.9965

The experimental data for the accuracy test are presented in
Table 2, from which we observe that

• there are non-negligible effects on the address col-
lision probability due to small perturbations of the
message loss rate;

• the pair of quadratic bounds provide more accurate
estimates than the condition number; and

• as the message loss rate increases or decreases from
the estimated rate, the deviation between the actual
result and the estimated result increases.

To further test the last observation presented above, we
perform the same perturbation analysis pivoted at 0.096
and 0.104 message loss rates. The condition numbers and
quadratic bounds are as follows:

loss rate CN (×10−3) QB (×10−3)
0.096 3.4832 δ2 · 38.336± δ · 3.4832
0.104 4.5634 δ2 · 46.539± δ · 4.5634

The additional experimental data are also presented in Table
2. By comparing the three groups of data in the table, we
observe that the perturbation bounds provide more accurate
estimates when the perturbation distance of the message
loss rate is small. We also test the dependence relationship of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

0

5

10

15

20

25

30

35

40

45

5000 10000 15000 20000 25000 30000 35000

Number of hosts

Add. Confl.

C.N.

(×10-4)

(×10-3)

Fig. 8. Address collision and its sensitivity w.r.t. host number.

the address collision probability and the condition number
on the number of existing hosts. Two increasing trends are
depicted in Figure 8.

6.3 NAND Multiplexing
Multiplexing is a technique for building more reliable com-
ponents from less reliable ones. Figure 9 depicts an im-
perfect NAND gate and a NAND multiplexer. The NAND
multiplexer is devised by replicating the NAND gate K
times. Since the multiplexer is a component of a system
that may contain other unreliable components, the inputs
for the multiplexer are two bundles of K logical values 1
(representing a stimulated result) or 0 (representing a non-
stimulated result) as determined by a probability distribu-
tion. The functionality of the U unit is to randomly choose
two input values as the inputs for the NAND gates. It is
assumed that the NAND gates have the same error rate and
that they fail independently. Whether the overall output of
the multiplexer is stimulated or not depends on the number
of stimulated outputs of the NAND gates. More specifically,
we specify a small value 0 < ∆ < 0.5. Then, the overall
output of the multiplexer is considered to be stimulated if
at least K(1 − ∆) of the outputs of the NAND gates are
stimulated, and non-stimulated if no more thanK∆ of them
are stimulated. In the case that neither of the two conditions
is satisfied, the overall output is undecided.

The NAND multiplexer specified in PRISM has two
probability parameters, namely the original stimulated in-
put and the error rate. We analyze the consequence of per-
turbations to the two parameters on the overall stimulated
or non-stimulated probabilities of the multiplexer. In our
experiments, we set K = 40 (resulting in 6,642 states in
the model) and ∆ = 0.25. We also set the unperturbed
probability of stimulated inputs as 0.9 and the unperturbed
gate error rate as 0.01. Tables 3 and 3 present validation
data corresponding to the two parameters. Again, similar to
the previous two case studies, we observe both non-trivial

U

K

K

K

Fig. 9. NAND multiplexer

TABLE 3
Accuracy test data for NAND multiplexer with (a) perturbed input and

(b) perturbed error rate

input result % estimated by
CN QB

0.884 -.12710 -14.9% -.10771 -.12842
0.888 -.09208 -10.8% -.08078 -.09243
0.892 -.05903 -6.91% -.05385 -.05903
0.896 -.02825 -3.31% -.02693 -.02822
0.900 0.85413 – – –
0.904 +.02555 +2.99% +.02693 +.02563
0.908 +.04828 +5.65% +.05385 +.04867
0.912 +.06816 +7.98% +.08078 +.06913
0.916 +.08522 +9.97% +.10771 +.08699

(a)

error rate result % estimated by
CN QB

0.006 +.00929 +1.09% +.00970 +.00952
0.007 +.00670 +0.82% +.00728 +.00717
0.008 +.00469 +0.55% +.00485 +.00480
0.009 +.00236 +0.28% +.00243 +.00241
0.010 0.85413 – – –
0.011 -.00238 -0.28% -.00243 -.00244
0.012 -.00478 -0.56% -.00485 -.00490
0.013 -.00720 -0.84% -.00728 -.00738
0.014 -.00964 -1.13% -.00970 -.00988

(b)

variations on verification results and accurate estimates
when the two parameters are perturbed slightly.

6.4 Runtime Analysis
We summarize runtime results of our experiment in all
case studies together with the model information for each
example in Table 4. Note that we only consider the iter-
ation part of computation. The termination criterion for
all iterations is set as 10−12. The machine that we used
to run the experiment is an MS Windows 7 desktop with
3.4GHz quad-core CPU and 16GB RAM in total. We adopt
two runtime measures, namely the actual elapsed time
and the iterative number. It is emphasized that we do not
aim to devise an optimized implementation but only to
evaluate the scalability of the iteration for computing CN
and QB with respect to that for computing a probabilistic
verification outcome. From our analysis results, a reasonable
scalability is demonstrated via a comparison of data in the
the correspondent columns of the table.

6.5 Summary
In summary, from the previous case studies, we learn that

• small but nontrivial perturbations on probability pa-
rameters of the stochastic system model can cause
non-negligible variations on verification, potentially
turning acceptable results into unacceptable ones;

• condition numbers and quadratic bounds can pro-
vide sufficiently accurate estimates of the maximum
variations of the verification results;

• as the perturbation distance increases, estimates by
quadratic bounds are tighter than those by condition
numbers; and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 4
Runtime analysis data in all case studies

model #st. #pa.
verification CN QB
ms #it. ms #it. ms #it.

PR 25 25 0.39 13 0.70 26 – –
PR’ 25 25 0.19 3 0.28 7 0.33 10
ZCF 7 2 2.40 87 5.40 184 8.20 289

NAND 6642 2 8.55 161 20.0 321 30.0 480

• the runtime analysis manifests promising scalability
for the iterative computation of those bounds.

7 RELATED WORK

7.1 Parametric Model Checking

One key definition underlying our approach is the probabil-
ity function PrM[~x](S?US!) (c.f., Definition 3) for a given
PMC M[~x] and a reachability property S?US!. Different
methods for generating such a probability function are
studied in the literature. Daws [21] presented a language-
theoretic method to compute the exact rational expression
of such a probability function, based on the fact that all
paths satisfying ϕ can be represented as a (finite) Büchi
automaton. Once such an automaton is constructed, one can
use a standard method in automata theory to infer a regular
expression, which is further evaluated to the rational expres-
sion of the function. Hahn et al. [29] improved the efficiency
of Daws’s method for most practical cases by reducing the
state space and by using a method called early evaluation,
even though the length of the rational expression in the
worst case is unchanged, namely Θ(nlogn) where n is the
size of the state space of the PMC. Their parametric model
checking also deals with rewards properties and MDPs, and
is implemented in a tool called PARAM [29].

Filieri et al. [24] presented a parameterized version of the
matrix inversion operation, namely the Gauss-Jordan elimi-
nation method, to compute the same probability function.
Since the transition matrix of the PMC model is usually
sparse in practice, the method by Filieri et al. [24] leads to a
reasonable computational cost. The worst-case complexity is
O(n3· τ c) where n is the size of the state space of the PMC,
τ is the average number of outgoing transitions from each
state (thus τ � n by sparsity), and c is the number of rows
containing symbolic entries. Their method can also deal
with properties expressed by nested Probabilistic Compu-
tation Tree Logic (PCTL) formulas, which cannot be directly
represented as finite automata. They also presented sensitiv-
ity analysis directly using the first-order partial derivatives
of the probability function.

Our perturbation analysis is in contrast to these ex-
isting approaches mainly on two aspects. First, we con-
sider the Taylor expansion of the variation function but
not the closed-form probability function. In practice, we
are particularly concerned with the linear and quadratic
fragment of the expansion, we can employ the iterative
numerical computation and avoid the expensive symbolic or
semi-symbolic computation in parametric model checking.
Second, to provide an outcome of verification or sensitivity

analysis, these approaches require concrete numerical val-
ues to be instantiated into the variables of the probability
function, instead of using a norm to measure those variables.
Although—not explicitly mentioned in those papers—one
can exploit an optimization method to deal with the worst
effect of the imprecise variables on the probability function,
it is well-known that the optimization problem of non-
convex polynomial functions is NP-hard and even good
approximate solutions are difficult to compute using the
relaxation methods (e.g, semidefinite programing [36]).

Like Daws [21] and Hahn et al. [29] but unlike Fil-
ieri et al. [24], we do not address nested PCTL formulas.
The reason is two-fold. First, albeit nested PCTL formulas
are of interest in theory, ω-regular properties are expressive
enough to represent most interesting temporal properties
for real-world system models. Second, nested PCTL for-
mulas break the continuity of the probability function (as
demonstrated in our previous work [50]) and thus limit the
applicability of condition numbers and quadratic bounds.

There are research works [6], [13], [22] on parameter es-
timations and model repairs, which in general address how
to determine the values of some parameters in the Markov
model or to fix the model such that a given, originally un-
satisfied temporal property becomes satisfied. Those works
are complementary to parametric model checking and our
perturbation analysis.

We also mention that parameters in a PMC are described
with probability distributions in some papers [9], [37]. The
authors employed statistical inference [9] or simulation [37]
to deal with the verification problem of the resulted model.
By contrast, the reasoning techniques adopted by us and the
aforementioned literature are analytical.

7.2 Model Checking with Uncertain Probabilities
In the probabilistic model checking setting, there is a line
of research on Markov models with uncertainties. The un-
certainties with the probabilities in the transition matrix of
the model are characterized by interval values. Sen et al.
[47] presented two semantic interpretations for an interval-
valued variant of DTMCs in which the uncertain probabi-
lities in a transition matrix are given as intervals. Such a
model is interpreted either as a set of DTMCs, called an
Uncertain Markov Chain (UMC), or as a variant of a Markov
Decision Process (MDP) with an (uncountably) infinite set
of adversaries, called an Interval-valued MDP (IMDP). Sen
et al. [47] considered the complexity bounds of the model
checking problems for the two kinds of models (namely
UMCs and IMDPs) against PCTL. Chatterjee et al. [11]
considered the problems against an extended logic of PCTL,
denoted ω-PCTL, which can express all ω-regular proper-
ties, and presented tighter complexity bounds that those by
Sen et al. [47]. Benedikt et al. [7] considered the problem for
IMDP against LTL, which, despite a fragment of ω-PCTL,
leads to a different complexity upper bound. Chen et al.
[15] presented complexity bounds (namely P-completeness)
that further improve the results by Chatterjee et al. [11] on
the model checking problem for IMDPs against PCTL, and a
different complexity lower bound for the problem for UMC
against PCTL. Puggelli et al. [42] presented P-completeness
complexity bounds for an generalization of IMDPs that use
convex sets to characterize the uncertain probabilities.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

The methods presented in the above works are related to
the perturbation bounds of variations on verification results
that we address in this paper. Indeed, this relationship has
been exploited in our previous work [12] to compute point-
wise exact bounds for the probability function. However,
point-wise bounds are not in closed form, and thus are less
informative and useful for characterizing the consequences
of model perturbations on its verification if the value ranges
of the parameters are unknown.

Another similar work in the same setting is the approx-
imate model checking method based on interval and affine
arithmetic for UMCs proposed by Ghorbal et al. [27]. Such
a method computes over-approximate verification bounds
that also are not in closed form.

7.3 Perturbation Analysis of Matrix Operator
Since the dynamics of a DTMC (and a PMC) is determined
by a stochastic transition matrix, the problem of the vari-
ation function that we investigate in this paper can be
alternatively and equivalently defined using the inversion
of (a fragment of) the transition matrix (c.f., Lemma 4). In
view of this, our paper is in line with a long-investigated
research area called perturbation analysis of operators on
matrices (e.g., inversion, rank, eigenvalue and stationary
vector). The existing literature in this area usually provide
two results, namely perturbation upper bounds [17], [48]
and asymptotic expansions [33]. The upper bounds are non-
asymptotic and defined in terms of a norm of the perturbed
matrix, whereas the expansions are approximate but most
useful when the value of each entry in the perturbed matrix
is known. Because of requiring quite different mathematical
techniques, the two are usually studied separately in the
literature. But both are useful in practice, such as in numer-
ical computation and dynamic robust control. In software
engineering, in particular, the partial derivatives (which are
equivalent to the linear fragment of the Taylor expansion)
have been used to analyze the sensitivity of the overall sys-
tem performance (e.g., reliability) to a parameter belonging
to some system component [16], [18], [23].

We do not directly exploit an exiting technique to deal
with our problem in the context of probabilistic model
checking. Our pursuit of asymptotic bounds is clearly re-
lated but in contrast to the upper-bound approach and the
asymptotic approach. On the one hand, we make use of the
Taylor expansion of our variation function. On the other
hand, we measure the perturbed parameters by a vector
norm and pursue asymptotic bounds as mathematical pro-
gramming problems. Moreover, our approach emphasizes
the computation of those bounds and considers both the
computational complexity and the iteration-based numeri-
cal computation.

8 CONCLUSIONS

In this paper, we have presented a systematic approach to
formulate and compute asymptotic perturbation bounds,
especially the linear and quadratic forms of those bounds,
to support probabilistic model checking applied to systems
containing empirically determined probability parameters.
We showed the advantage and significance of those bounds
through both theoretical analysis and empirical evaluation.

Future research directions fall into two categories. The
first one includes the tool support and applications of our
approach. For experimentation purposes, we have devel-
oped an implementation prototype. A more sophisticated,
self-contained toolkit is an important part of our further
work. We also plan to apply our approach to analyzing
specific problems in software engineering, such as decision-
making of self-adaptive systems based on imprecise param-
eter estimations. The second work category includes various
topics of theoretical and methodological enhancements for
our approach, such as perturbation analysis for CTMCs.

ACKNOWLEDGMENT

This research is partially supported by the Singapore
Ministry of Education (Grant No. R-252-000-458-133), the
Australian Research Council (Grant Nos. DP130102764
and DP160101652), the National Natural Science Founda-
tion of China (Grant Nos. 61428208 and 61502260), the
CAS/SAFEA International Partnership Program for Cre-
ative Research Team, and an oversea grant from the State
Key Laboratory of Novel Software Technology at Nanjing
University. We thank the anonymous reviewers for their
instructive comments on an earlier version of the paper.

REFERENCES

[1] M. Agrawal, S. Akshay, B. Genest, and P. S. Thiagarajan, “Approx-
imate verification of the symbolic dynamics of markov chains,”
Journal of ACM, vol. 62, no. 1, pp. 2:1–2:34, Mar. 2015.

[2] E. Allender and M. Ogihara, “Relationships among PL, #L, and
the determinant,” ITA, vol. 30, no. 1, pp. 1–21, 1996.

[3] R. Alur, S. La Torre, and P. Madhusudan, “Perturbed timed au-
tomata,” in Proceedings of the 8th international conference on Hybrid
Systems: computation and control, ser. HSCC’05. Springer-Verlag,
2005, pp. 70–85.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
checking algorithms for continuous-time markov chains,” Software
Engineering, IEEE Transactions on, vol. 29, no. 6, pp. 524–541, 2003.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[6] E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A.
Smolka, “Model repair for probabilistic systems,” in Proceedings
of the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, ser. TACAS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 326–340.

[7] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL model checking
of Interval Markov Chains,” in Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’13. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 32–46.

[8] P. Bouyer, N. Markey, and P.-A. Reynier, “Robust model-checking
of linear-time properties in timed automata,” in Proceedings of
the 7th Latin American conference on Theoretical Informatics, ser.
LATIN’06. Springer-Verlag, 2006, pp. 238–249.

[9] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzé, Y. Rafiq, and
G. Tamburrelli, “Formal verification with confidence intervals: A
new approach to establishing the Quality-of-Service properties of
software systems,” Reliability, IEEE Transactions on, 2015.

[10] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,”
Commun. ACM, vol. 55, no. 9, pp. 69–77, Sep. 2012.

[11] K. Chatterjee, K. Sen, and T. A. Henzinger, “Model-checking
omega-regular properties of Interval Markov Chains,” in FoSSaCS,
ser. Lecture Notes in Computer Science, R. M. Amadio, Ed., vol.
4962. Springer, 2008, pp. 302–317.

[12] T. Chen, Y. Feng, D. S. Rosenblum, and G. Su, “Perturbation
analysis in verification of discrete-time markov chains,” in Pro-
ceedings of the 25th International Conference on Concurrency Theory
(CONCUR’14), 2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

[13] T. Chen, E. Hahn, T. Han, M. Kwiatkowska, H. Qu, and L. Zhang,
“Model repair for markov decision processes,” in Theoretical As-
pects of Software Engineering (TASE), 2013 International Symposium
on, July 2013, pp. 85–92.

[14] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre, “LTL model check-
ing of time-inhomogeneous Markov chains,” in Proceedings of the
7th International Symposium on Automated Technology for Verification
and Analysis, ser. ATVA’09. Springer-Verlag, 2009, pp. 104–119.

[15] T. Chen, T. Han, and M. Z. Kwiatkowska, “On the complexity of
model checking interval-valued discrete time Markov chains,” Inf.
Process. Lett., vol. 113, no. 7, pp. 210–216, 2013.

[16] R. C. Cheung, “A user-oriented software reliability model,” IEEE
Trans. Softw. Eng., vol. 6, no. 2, pp. 118–125, Mar. 1980.

[17] G. E. Cho and C. D. Meyer, “Comparison of perturbation bounds
for the stationary distribution of a Markov chain,” Linear Algebra
Appl, vol. 335, pp. 137–150, 2000.

[18] V. Cortellessa and V. Grassi, “A modeling approach to analyze
the impact of error propagation on reliability of component-
based systems,” in Proceedings of the 10th International Conference
on Component-based Software Engineering, ser. CBSE’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 140–156.

[19] C. Courcoubetis and M. Yannakakis, “The complexity of proba-
bilistic verification,” J. ACM, vol. 42, no. 4, pp. 857–907, 1995.

[20] J.-M. Couvreur, N. Saheb, and G. Sutre, “An optimal automata
approach to LTL model checking of probabilistic systems,” in
LPAR, 2003, pp. 361–375.

[21] C. Daws, “Symbolic and parametric model checking of discrete-
time Markov chains,” in Proceedings of the First International Con-
ference on Theoretical Aspects of Computing, ser. ICTAC’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 280–294.

[22] R. Donaldson and D. Gilbert, “A model checking approach to the
parameter estimation of biochemical pathways,” in Proceedings of
the 6th International Conference on Computational Methods in Systems
Biology, ser. CMSB’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 269–287.

[23] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-
adaptation via quantitative verification and sensitivity analysis at
run time,” Software Engineering, IEEE Transactions on, In Press.

[24] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient prob-
abilistic model checking,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE’11. New York, NY,
USA: ACM, 2011, pp. 341–350.

[25] V. Forejt, M. Z. Kwiatkowska, G. Norman, and D. Parker, “Auto-
mated verification techniques for probabilistic systems,” in SFM,
ser. Lecture Notes in Computer Science, M. Bernardo and V. Is-
sarny, Eds., vol. 6659. Springer, 2011, pp. 53–113.

[26] C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli, “Managing
non-functional uncertainty via model-driven adaptivity,” in Pro-
ceedings of the 2013 International Conference on Software Engineering,
ser. ICSE’13. IEEE Press, 2013, pp. 33–42.

[27] K. Ghorbal, P. S. Duggirala, V. Kahlon, F. Ivancic, and A. Gupta,
“Efficient probabilistic model checking of systems with ranged
probabilities,” in Reachability Problems - 6th International Workshop,
2012, pp. 107–120.

[28] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for PCTL in para-
metric Markov Decision Processes,” in NASA Formal Methods, ser.
Lecture Notes in Computer Science, M. G. Bobaru, K. Havelund,
G. J. Holzmann, and R. Joshi, Eds., vol. 6617. Springer, 2011, pp.
146–161.

[29] E. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability
for parametric Markov models,” International Journal on Software
Tools for Technology Transfer, vol. 13, no. 1, pp. 3–19, 2011.

[30] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal aspects of computing, vol. 6, no. 5, pp. 512–535,
1994.

[31] B. Heidergott, “Perturbation analysis of Markov chains,” in
WODES 2008. 9th International Workshop on Discrete Event Systems,
2008, pp. 99–104.

[32] D. Kähler and T. Wilke, “Complementation, disambiguation, and
determinization of Büchi automata unified,” in ICALP (1), ser.
Lecture Notes in Computer Science, L. Aceto, I. Damgård, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
Eds., vol. 5125. Springer, 2008, pp. 724–735.

[33] T. Kato, Perturbation Theory for Linear Operators (2ed). Berlin,
Heidelberg, New York: Springer-Verlag, 2005.

[34] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International

Conference on Computer Aided Verification (CAV’11). Springer, 2011,
pp. 585–591.

[35] ——, “The PRISM benchmark suite,” in Proc. 9th International
Conference on Quantitative Evaluation of SysTems (QEST’12). IEEE
CS Press, 2012, pp. 203–204.

[36] J. B. Lasserre, “Global optimization with polynomials and the
problem of moments,” SIAM J. on Optimization, vol. 11, no. 3, pp.
796–817, Mar. 2000.

[37] I. Meedeniya, I. Moser, A. Aleti, and L. Grunske, “Evaluating
probabilistic models with uncertain model parameters,” Software
and Systems Modeling, vol. 13, no. 4, pp. 1395–1415, 2014.

[38] P. V. Mieghem, Performance Analysis of Communications Networks
and Systems. New York, NY, USA: Cambridge University Press,
2005.

[39] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla, “Evalu-
ating the reliability of NAND multiplexing with PRISM,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 10, pp. 1629–1637, 2005.

[40] J. Norris, Markov Chains, ser. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1998.

[41] E. Pavese, V. Braberman, and S. Uchitel, “Automated reliability
estimation over partial systematic explorations,” in Proceedings
of the 2013 International Conference on Software Engineering, ser.
ICSE’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 602–611.

[42] A. Puggelli, W. Li, A. Sangiovanni-Vincentelli, and S. Seshia,
“Polynomial-time verification of PCTL properties of MDPs with
convex uncertainties,” in Computer Aided Verification. Springer,
2013, pp. 527–542.

[43] M. L. Puterman, “Markov decision processes,” Handbooks in opera-
tions research and management science, vol. 2, pp. 331–434, 1990.

[44] G. Rodrigues, D. Rosenblum, and S. Uchitel, “Using scenarios
to predict the reliability of concurrent component-based software
systems,” in Proceedings of the 8th International Conference on Fun-
damental Approaches to Software Engineering, ser. FASE’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 111–126.

[45] G. N. Rodrigues, D. S. Rosenblum, and S. Uchitel, “Reliability
prediction in model-driven development,” in Proceedings of the 8th
international conference on Model Driven Engineering Languages and
Systems, ser. MoDELS’05. Berlin, Heidelberg: Springer-Verlag,
2005, pp. 339–354.

[46] S. Sahni, “Computationally related problems,” SIAM Journal on
Computing, vol. 3, pp. 262–279, 1974.

[47] K. Sen, M. Viswanathan, and G. Agha, “Model-checking Markov
chains in the presence of uncertainties,” in Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2006, pp.
394–410.

[48] G. W. Stewart and J. Sun, Matrix Perturbation Theory. Academic
Press, 1990.

[49] G. Su and D. S. Rosenblum, “Asymptotic bounds for quantitative
verification of perturbed probabilistic systems,” in Proceeding of
the 15th International Conference on Formal Engineering Methods,
L. Groves and J. Sun, Eds. Springer, 2013.

[50] ——, “Nested reachability approximation for discrete-time
markov chains with univariate parameters,” in Automated Technol-
ogy for Verification and Analysis - 12th International Symposium, ATVA
2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings, 2014,
pp. 364–379.

[51] ——, “Perturbation analysis of stochastic systems with empirical
distribution parameters,” in Proceeding of the 36th International
Conference on Software Engineering (ICSE’14), 2014.

[52] M. Y. Vardi, “Automatic verification of probabilistic concurrent
finite state programs,” in 26th Annual Symposium on Foundations of
Computer Science. IEEE, 1985, pp. 327–338.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

PLACE
PHOTO
HERE

Guoxin Su received a PhD degree in com-
puter science from the University of Technol-
ogy Sydney, Australia and a bachelor’s degree
and a master’s degree from the Philosophy De-
partment at Sun Yat-sen University, China. He
is currently a postdoctoral research fellow with
the Department of Computer Science, School
of Computing, National University of Singapore,
Singapore. His research interests include proba-
bilistic model checking and formal verification of
software systems.

PLACE
PHOTO
HERE

Yuan Feng is a Professor at the Centre for
Quantum Computation and Intelligent Systems
(QCIS), University of Technology Sydney (UTS),
Australia. He received his BS and PhD degrees
from the Department of Applied Mathematics
and the Department of Computer Science and
Technology, Tsinghua University, in 1999 and
2004, respectively. Before joining UTS in 2009,
he was an Associate Professor at Tsinghua Uni-
versity. His research interests include the theory
of quantum information and quantum computa-

tion, quantum programming, and probabilistic systems.

PLACE
PHOTO
HERE

Taolue Chen received the bachelor’s and mas-
ter’s degrees from the Nanjing University, China,
both in computer science. He was a junior re-
searcher (OiO) at CWI and acquired PhD de-
gree from the Free University Amsterdam, The
Netherlands. He is currently a senior lecturer in
the Department of Computer Science, Middlesex
University London, UK. Prior to this, he was a
research assistant in the University of Oxford,
UK, and a postdoctoral researcher in the Uni-
versity of Twente, The Netherlands. His research

interests include formal verification and synthesis of stochastic systems,
model checking, concurrency theory, process algebra, and computa-
tional complexity.

PLACE
PHOTO
HERE

David S. Rosenblum received the PhD degree
from Stanford University in 1988. He is a pro-
fessor in the Department of Computer Science
and Dean of the School of Computing at the
National University of Singapore (NUS). Before
joining NUS, he was a research scientist at AT&T
Bell Laboratories in Murray Hill, New Jersey,
from 1988 to 1996; an associate professor at
the University of California, Irvine, from 1996 to
2002; the chief technology officer and principal
architect of PreCache, Inc., from 2001 to 2003;

and professor of software systems at University College London from
2004 to 2011. His research interests include probabilistic modeling
and analysis, and the design and validation of mobile, context-aware
ubiquitous computing systems. He is the recipient of the 2002 ICSE
Most Influential Paper Award for his ICSE 1992 paper on assertion
checking, and the first ACM SIGSOFT Impact Paper Award in 2008 for
his ESEC/FSE 1997 paper on Internet-scale event observation and no-
tification (coauthored with Alexander L. Wolf). He is a Fellow of the ACM
and the IEEE, the Past Chair of ACM SIGSOFT, and the Editor-in-Chief
of the ACM Transactions on Software Engineering and Methodology.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Procedure Construct(~xI ,~hI , dI)

Input : ~xI = (x1, . . . , xn), ~hI = (h1, . . . , hn), dI .
Output: ~x]I = (x]1, . . . , x

]
n).

~x]I ← ~xI ;
Take arbitrarily 1 ≤ p, q ≤ n such that
hp = max1≤i≤n{hi} and hq = min1≤i≤n{hi};
d (∗)
for i← 1 : n do

if x]i > 0 and hi < hp then
x]p ← x]p + x]i ;
x]i ← 0;

if x]i < 0 and hi > hq then
x]q ← x]q + x]i ;
x]i ← 0;

(∗∗)
d← ‖~x]I‖;
x]p ← x]p + (dI − d)/2;
x]q ← x]q − (dI − d)/2;
return ~x]I

Algorithm 2: (Used to prove Lemma 25)

Input : ~x = (xi)i∈I,I∈I
Output: ~x′ = (x′i)i∈I,I∈I
~x′ ← ~x;
Im ← {I ∈ I | κI = κ};
for I ∈ I\Im do

(x′i)i∈I ← 0;
d← ‖~x′‖;
for I ∈ Im do

~hI ← (hi)i∈I ;
dI ← ‖(x′i)i∈I‖/d;
(x′i)i∈I ← Construct((xi)i∈I ,~hI , dI);

return ~x′

APPENDIX A
PROOF OF THEOREM 13
Proof of Theorem 13. By Theorem 8, it suffices to show that
quadratic function f+2 (δ) := ρ2(~y∗)δ2 + κδ (resp. f−2 (δ) :=
ρ2(~y∗)δ

2 − κδ) satisfies Problem (1) (resp. (2)) when n = 2.
We here only detail a proof for MIDs, namely f+2 (δ) for
sufficiently small δ, while a proof for MDDs is deployed in
a similar manner.

Throughout the proof, we let ~xδ specifically denote a so-
lution of Problem (1) when n = 2, namely ρ1(~xδ) + ρ2(~xδ) =
g+2 (δ). For each I ∈ I , let κI = 1

2 maxi,j∈I(hi − hj) and

rI =

{
mini,j∈I,hi 6=hj |hi − hj |/2 if κI > 0
0 otherwise.

Let r1 = min{rI | I ∈ I, rI > 0}, r2 = min{κ − κI | I ∈
I, κI < κ}, and r = min{r1, r2/2} if r2 > 0 and r = r1
otherwise. Let

V = {~y ∈ Rk | ‖~y‖ ≤ 1, and for all I ∈ I,
∑
i∈I

yi = 0}.

We provide some lemmas in order to prove the theorem.

Lemma 24. Let ~x′I = Construct(~xI ,~hI , dI) be the vector
obtained by the procedure of Algorithm 2 for some I ∈ Im and
dI ≥ ‖~xI‖. Let ρ1(~xI) =

∑
i∈I hixi. Then ρ1(~x′I) = κdI , and

ρ1(~x′I)− ρ1(~xI) ≥ r‖~x′I − ~xI‖+ (κ− r)(dI − ‖~xI‖).

Proof of Lemma 24. We divide the procedure into three parts
by (∗) and (∗∗), and show that

ρ1(~x]I)− ρ1(~xI) ≥ r‖~x]I − ~xI‖ (13)

holds after executing the first two parts by induction on the
codes of the algorithm. Note that before (∗), ~xI = ~x]I . Thus
Eq.(13) holds trivially. Now for each 1 ≤ i ≤ n, let ~x∗I =
(x∗i)i∈I and ~x]I = (x]i)i∈I be the vectors before and after the
i-th loop iteration, respectively. If x∗i > 0 and hi < hp, then
x]p = x∗p + x∗i , x]i = 0, and x]j = x∗j for any j 6= p, i. Thus
‖~x]I − ~x∗I‖ = 2x∗i . On the other hand, ρ1(~x]I) − ρ1(~x∗I) =
(hp − hi)x∗i ≥ 2rx∗i . Thus

ρ1(~x]I)− ρ1(~xI) = ρ1(~x]I)− ρ1(~x∗I) + ρ1(~x∗I)− ρ1(~xI)

≥ 2rx∗i + r‖~x∗I − ~xI‖ by induction

≥ 2rx∗i + r(‖~x]I − ~xI‖ − ‖~x
]
I − ~x

∗
I‖) triangle ineq.

= r‖~x]I − ~xI‖.

The other case is similar. Thus Eq.(13) holds after (∗∗).
Now, we abuse the notation slightly to denote by ~x∗I the

vector when the algorithm reaches (∗∗). Note that at each
iteration of the loop, ‖~x]I‖ is non-increasing, and

∑
i x

]
i = 0.

Thus d ≤ dI . Furthermore, we observe x∗p ≥ 0 and x∗q ≤ 0.
Thus ‖~x′I − ~x∗I‖ = dI − d and ρ1(~x′I) − ρ1(~x∗I) = (hp −
hq)(dI − d)/2 = κ(dI − d). Then

ρ1(~x′I)− ρ1(~xI) = ρ1(~x′I)− ρ1(~x∗I) + ρ1(~x∗I)− ρ1(~xI)

≥ κ(dI − d) + r‖~x∗I − ~xI‖ by Eq.(13)
≥ κ(dI − d) + r(‖~x′I − ~xI‖ − ‖~x′I − ~x∗I‖)
≥ (κ− r)(dI − ‖~xI‖) + r‖~x′I − ~xI‖. by d ≤ ‖~xI‖

Finally, it is easy to see that x′i ≥ 0 if hi = hp, x′i ≤ 0
if hi = hq , and x′i = 0 otherwise. Furthermore, ‖~x′I‖ = dI .
Thus, ρ1(~x′I) = κdI .

Lemma 25. For each ~x ∈ V , there is ~x′ ∈ V such that ρ1(~x′) =
κ and ρ1(~x′)− ρ1(~x) ≥ r‖~x′ − ~x‖.

Proof of Lemma 25. We use a proof-of-concept algorithm to
generate such ~x′. For each ~x ∈ V , let ~x′ be the vec-
tor returned from Algorithm 2. Let ~x′I = (x′i)i∈I and
~xI = (xi)i∈I . Note that for I 6∈ Im, ~x′I = 0. Then by
Lemma 24 we have

ρ1(~x′) =
∑
I∈Im

ρ1(~x′I) = κ
∑
I∈Im

dI = κ.

Furthermore, if r2 = 0, then I = Im, and

ρ1(~x′)− ρ1(~x) =
∑
I∈Im

(ρ1(~x′I)− ρ1(~xI))

≥
∑
I∈Im

[r‖~x′I − ~xI‖+ (κ− r)(dI − ‖~xI‖)]

≥ r
∑
I∈Im

‖~x′I − ~xI‖ = r‖~x′ − ~x‖.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

If r2 > 0, then r = min{r1, r2/2}, and

ρ1(~x′)− ρ1(~x) =
∑
I∈Im

(ρ1(~x′I)− ρ1(~xI))−
∑
I 6∈Im

ρ1(~xI)

≥
∑
I∈Im

[r‖~x′I − ~xI‖+ (κ− r)(dI − ‖~xI‖)]

−
∑
I 6∈Im

κI‖~xI‖

≥ r
∑
I∈Im

‖~x′I − ~xI‖+ (κ− r)(1−
∑
I∈Im

‖~xI‖)

− (κ− 2r)
∑
I 6∈Im

‖~xI‖

≥ r
∑
I∈Im

‖~x′I − ~xI‖+ r
∑
I 6∈Im

‖~xI‖+ (κ− r)(1− ‖~x‖)

≥ r‖~x′ − ~x‖

where the second inequality is from the assumption that r ≤
r2/2 ≤ (κ − κI)/2 for any I 6∈ Im, and the last inequality
from the facts that ~x′I = 0 for any I 6∈ Im and ‖~x‖ ≤ 1.

Lemma 26. ρ1(~xδ) = κδ for sufficiently small δ > 0.

Proof of Lemma 26. Without loss of generality we suppose
r > 0 since otherwise r1 = 0 and then κ = 0 and hi is
a constant for each i, and thus the result holds trivially. Let
Q = 1

2∇
2ρ(0) (thus, 2Q is the Hessian matrix of ρ(~x) at 0).

We prove this lemma by contraposition. Choose δ suffi-
ciently small such that δ‖Q‖2 < r. Suppose ρ1(~xδ) < κδ.
Write δ−1~xδ = ~yδ . Then ~yδ ∈ V and ρ1(~yδ) < κ. From
Lemma 25, we can find ~y′δ such that ρ1(~y′δ) = κ, and
ρ1(~y′δ) − ρ1(~yδ) ≥ r‖~y′δ − ~yδ‖. Hence ~y′δ 6= ~yδ , ~y′δ is in the
feasible set of Problem (4), and ρ2(~y′δ) ≤ ρ2(~y∗). On the
other hand, note that ∇ρ2(~yδ) = ~yδQ (namely, ~yδQ is the
gradient of ρ2(~yδ)). By the mean value theorem and Cauchy
inequality, we have

ρ2(δ~yδ)− ρ2(δ~y′δ)

= δ2∇ρ2(t~yδ + (1− t)~y′δ)(~yδ − ~y′δ)
≤ δ2‖∇ρ2(t~yδ + (1− t)~y′δ)‖2 · ‖~yδ − ~y′δ‖2
≤ δ2‖Q‖2 · ‖~yδ − ~y′δ‖

where 0 ≤ t ≤ 1 and ‖ · ‖2 denotes the Euclidean norm,
which is bounded by ‖ · ‖ from above. The last inequality is
derived by noting that

‖∇ρ2(t~yδ + (1− t)~y′δ)‖2
= ‖(t~yδ + (1− t)~y′δ) ·Q‖2
≤ (t‖~yδ‖2 + (1− t)‖~y′δ‖2)‖Q‖2 ≤ ‖Q‖2

Note that δ‖Q‖2 < r. It follows that ρ2(δ~yδ) − ρ2(δ~y′δ) <
rδ‖~yδ − ~y′δ‖, and that

g+2 (δ) = δρ1(~yδ) + δ2ρ2(~yδ)

< δρ1(~y′δ)− rδ‖~y′δ − ~yδ‖+ ρ2(δ~y′δ) + rδ‖~yδ − ~y′δ‖
= δρ1(~y′δ) + ρ2(δ~y′δ)

≤ ρ1(δ~y∗) + ρ2(δ~y∗)

contradicting the fact that δ~y∗ is in the feasible set of
Problem (1) when n = 2.

We now conclude the proof of Theorem 13. For suffi-
ciently small δ > 0, by Lemma 26, ~xδδ−1 is in the feasible set

of Problem (4) and thus ρ2(~xδ)δ
−2 ≤ ρ2(~y∗) by definition.

Also note that ρ1(~y∗) = κ. Thus

g+2 (δ) = ρ1(~xδ) + ρ2(~xδ) ≤ ρ1(δ~y∗) + ρ2(δ~y∗).

The reverse inequality holds trivially as δ~y∗ is in the feasible
set of Problem (1). This completes the proof.

APPENDIX B
SUPPLEMENT TO SECTION 4
In the following, we present the technical details under-
pinning automata-based verification of MCs. To achieve
an optimal algorithm to verify an MC against some ω-
regular property, especially when the ω-regular property is
specified as an LTL formula, the notion of separated automata
is crucial. Given GBA A and state q, we denote by A[q] the
automatonAwith q as the unique initial state.A is separated
if L(A[q′]) ∩ L(A[q′′]) = ∅ for any pair of different states
q, q′. Note that L(A) =

⋃
q∈Q0

L(A[q]).

Theorem 27. The following statements hold:

• For any LTL formula ϕ over A, there exists a separated
GBA Aϕ = (Σ, Q,∆, Q0,F), where Σ = 2A and
|Q| ≤ 2O(|ϕ|), such that L(Aϕ) is the set of computations
satisfying the formula ϕ.

• For any GBA A = (Σ, Q,∆, Q0,F), one can construct
a separated GBA A′ = (Σ, Q′,∆′, Q′0,F ′) such that
|Q′| ≤ 2|Q| and L(A′) = L(A).

The proof of the above theorem can be found in Cou-
vreur et al. [20] and also in Chen et al. [14] for the first
statement, and in Kähler et al. [32] for the second statement.
Owing to Theorem 27, we only need to consider separated
GBA. Note that when translated into separated GBA, there
is an exponential blow-up in state space, which is unavoid-
able [19]. We now define a pre-product of an MC and a GBA:

Definition 28 (Model pre-product). The pre-product of an MC
M and a separated GBA A (with Σ = 2A) is a tupleM⊗A =
(S ×Q,P⊗, α⊗) where

P⊗((s, q), (s′, q′)) =

{
P(s, s′) if (q, L(s), q′) ∈ ∆
0 otherwise,

α⊗(s, q) =

{
α(s) if q ∈ Q0

0 otherwise.

For the sake of clarity, we call states ofM⊗A locations.
Note that in generalM⊗A itself is not an MC. The reason
is two-fold: (i) If |Q0| > 1, then α⊗ is not a probability
distribution. (ii) The sum of the probabilities of outgoing
transitions from a location might exceed 1. However, due
to the fact that A is separated, as we will see later, these
observations would not incur any issue.

We shall exploit some graph-theoretic notions. For a
general digraph, given two vertices ` and `′, we write ` 7→ `′

if there is an edge from ` to `′. Furthermore we write 7→∗ for
the reflexive and transitive closure of 7→. As usual, M, A
andM⊗A can be viewed as digraphs. We introduce some
standard definitions:

I. A strongly connected component (SCC) is a set of lo-
cations B ⊆ S × Q such that (i) B is strongly con-
nected, meaning that for any two locations `, `′ ∈ B,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

` 7→∗ `′, and (ii) no proper superset of B is strongly
connected.

II. An SCC B is accepting if ∀F ∈ F , there exists some
(s, q) ∈ B such that q ∈ F .

III. An SCC B is an accepting bottom SCC (BSCC) if (i) B
is accepting; (ii) for each location ` ∈ B, if ` 7→∗ `′
then either `′ ∈ B or `′ is not in an accepting SCC;
(iii) for each location ` = (s, q) ∈ B, for any s′ with
s 7→ s′, (s′, q′) ∈ B for some q′.

The following lemma essentially exploits the fact that for
each accepted word of a separated GBA, there is a unique
accepting path.

Lemma 29. Let M ⊗ A be the product of an MC M and a
separated GBA A, and B an accepting BSCC of it. Let ` = (s, q)
and `′ = (s, q′) be two locations. Then

1) if B is reachable from both ` and `′, then q = q′.
2) if `, `′ ∈ B, and `0 7→ ` and `0 7→ `′ for some `0 ∈ B,

then q = q′.

The proof of Lemma 29 can be also found in Cou-
vreur et al. [20] and Chen et al. [14]. Lemma 29 entails that
in the product M⊗A, we can safely remove the locations
that do not lead to an accepting BSCC, and thus obtain
an MC (with possible sub-stochastic transitions), denoted
M⊗A = (S ×Q,P⊗, α⊗).

Let B! be the union of all accepting and reachable BSCCs
of M⊗A, which can be computed by Depth-First-Search
algorithms.

Proposition 30. For any MCM and separated GBA A,

PrM({π ∈ PathM | L(π) ∈ L(A)}) = PrM⊗A(♦B!) .

