
ar
X

iv
:2

30
8.

09
43

8v
1 

 [
cs

.S
E

] 
 1

8 
A

ug
 2

02
3

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 1

Software Development in Startup Companies:
The Greenfield Startup Model

Carmine Giardino, Nicolò Paternoster, Michael Unterkalmsteiner, Member, IEEE, Tony

Gorschek, Member, IEEE, and Pekka Abrahamsson, Member, IEEE

Abstract—Software startups are newly created companies with no operating history and oriented towards producing cutting-edge

products. However, despite the increasing importance of startups in the economy, few scientific studies attempt to address software

engineering issues, especially for early-stage startups. If anything, startups need engineering practices of the same level or better than

those of larger companies, as their time and resources are more scarce, and one failed project can put them out of business. In this

study we aim to improve understanding of the software development strategies employed by startups. We performed this

state-of-practice investigation using a grounded theory approach. We packaged the results in the Greenfield Startup Model (GSM),

which explains the priority of startups to release the product as quickly as possible. This strategy allows startups to verify product and

market fit, and to adjust the product trajectory according to early collected user feedback. The need to shorten time-to-market, by

speeding up the development through low-precision engineering activities, is counterbalanced by the need to restructure the product

before targeting further growth. The resulting implications of the GSM outline challenges and gaps, pointing out opportunities for future

research to develop and validate engineering practices in the startup context.

✦

1 INTRODUCTION

SOFTWARE startups launch worldwide every day as a
result of an increase in new markets, accessible technolo-

gies, and venture capital [1]. With the term software startups
we refer to those organizations focused on the creation of
high-tech and innovative products, with little or no oper-
ating history, aiming to aggressively grow their business
in highly scalable markets. Being a startup is usually a
temporary state, where a maturing working history and
market domain knowledge leads to the analysis of current
working practices, thereby decreasing conditions of extreme
uncertainty [2].

The research presented in this paper aims at under-
standing how practitioners engineer software development
strategies in startups. We focus on the structure, planning,
and control of software projects, in the period from idea
conception to the first open beta release. We performed
semi-structured, in-depth interviews with CEOs and CTOs
from 13 startups, covering a wide spectrum of themes and
iteratively adjusted the developed model according to the
emerging evidence. With the resulting Greenfield Startup
Model (GSM), we capture the underlying phenomenon of
software development in early-stage startups.

New ventures such as Facebook, Linkedin, Spotify, Pinter-
est, Instagram, Groupon and Dropbox, to name a few, are ex-

• C. Giardino is with the Faculty of Computer Science, Free University of
Bolzano/Bozen, Dominikanerplatz 3, 39100 Bolzano/Bozen, Italy.

• N. Paternoster, M. Unterkalmsteiner and T. Gorschek are with the
Software Engineering Research Lab Sweden, Blekinge Institute of
Technology, Campus Gräsvik, 371 79 Karlskrona, Sweden.

• P. Abrahamsson is with the Department of Computer and Information
Science, Norwegian University of Science and Technology NTNU, Sem
Sælandsvei 7-9, 7491 Trondheim, Norway.

amples of startups that evolved into successful businesses.
Despite many success stories, the vast majority of startups
fail within two years of their creation, primarily due to
self-destruction rather than competition [3]. Operating in a
chaotic, rapidly evolving and uncertain environment, soft-
ware startups face intense time-pressure from the market
and are exposed to relentless competition [4], [5]. To succeed
in this environment startups need to be ready to adapt their
product to new market demands while being constrained
by very limited resources [6].

From an engineering perspective, software development
in startups is challenging as they work in a context where it
is difficult for software processes to follow a prescriptive
methodology [6], [7]. Even though startups share some
characteristics with similar contexts (e.g. small and web
companies), the combination of different factors makes
the specific software development context unique [8], [6].
Therefore, research is needed to investigate and support
the startup engineering activities [7], guide practitioners in
taking decisions and avoid choices that could easily lead
to business failure [9]. However, despite the impressive
size of the startup ecosystem [10], the research on software
engineering in startups presents a gap [2].

With the Greenfield Startup Model (GSM) we aim to
contribute to the body of knowledge on startup software
engineering. We created the model as an abstraction of
reality [11], based on a systematic procedure and grounded
on empirical data obtained by the study of 13 cases. While
the GSM presents the most significant themes in the devel-
opment strategies that characterize these startups’ contexts,
it does not provide guidelines or best practices that should
be followed. However, the categories in the GSM and the
relations among them can provide a common direction,
vocabulary, and model for future research on software de-
velopment in startups.

Researchers can use the GSM as a starting point

http://arxiv.org/abs/2308.09438v1


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 2

to understand how technical debt influences the future
growth of startup companies. Furthermore, the model pro-
vides a tool to understand the context in which star-
tups operate, which is central when developing meth-
ods / models / tools / techniques / practices suited to these
types of development efforts. Filling gaps on the state-of-
practice in startups is also beneficial for startup practitioners
who can apply the discussed strategies to speed up the
development initially, although they need also to consider
the likely drop-down in performance at a later stage. In
this regard, we identified several commonalities between
the issues related to software development in startups and
the research focused on studying technical debt [12], [13].
This paper makes the following contributions:

• an empirical investigation into the driving characteris-
tics of early-stage startups

• a rigorously developed model that illustrates how and
explains why startups perform engineering activities in
a certain manner

• a discussion on opportunities for future research and
potential solutions for the challenges faced by startups

The remainder of this paper is structured as follows.
Background and related work is covered in Section 2. Sec-
tion 3 introduces the research questions and shows the
design and execution of the study. Results are presented
in Section 4, illustrating the GSM. Section 5 discusses the
most relevant implications of the GSM. Section 6 compares
results of the study to state-of-the-art in literature. Section 7
discusses validity threats. The paper concludes in Section 8.

2 BACKGROUND

Looking at the number of new business incubators which
appeared in the last decade one can estimate the importance
of startups [14]. The wave of disruption in new technologies
has led non-startup companies to be more competitive,
forcing themselves to undertake radical organizational and
innovational renewals, in an attempt to behave more like
startups [15]. However, the implementation of method-
ologies to structure and control development activities in
startups is still a challenge [16]. Several models have been
introduced to drive software development activities in star-
tups, however without delivering significant benefits [17],
[16], [6].

Software engineering (SE) faces complex and multi-
faceted obstacles in understanding how to manage develop-
ment processes in the startup context. Bach refers to startups
as “a bunch of energetic and committed people without de-
fined development processes” [18]. Sutton defines startups
as creative and flexible in nature and reluctant to intro-
duce process or bureaucratic measures, which may result
in ineffective practices [6]. The limitation of resources leads
to a focus on product development instead of establishing
rigid processes [16], [19]. Attempts to tailor lightweight
processes to startups reported failures: “Everyone is busy,
and software engineering practices are often one of the first
places developers cut corners” [20]. Rejecting the notion of
repeatable and controlled processes, startups prominently
take advantage of reactive and low-precision [21] engineer-
ing practices [6], [22], [23], [24].

Startups typically develop software services that are
licensed to customers rather than products that are sold and
customized to a particular client [25]. Market-driven soft-
ware development (sometimes called packaged software de-
velopment or COTS software development [26]) addresses
issues related to this aspect. Researchers emphasize the im-
portance of time-to-market as a key strategic objective [27],
[28] for companies operating in this sector. Furthermore,
requirements are “invented by the software company” [29],
“rarely documented” [30], and can be validated only after
the product is released to market [31], [32]. Hence, failed
product launches are largely due to “products not meeting
customer needs” [33]. To address this issue, startups em-
brace product-oriented practices with flexible teams, apply-
ing workflows that provide the ability to quickly change
direction to the targeted market [19], [6]. Therefore, many
startups focus on team productivity, granting more freedom
to the employees instead of providing them with rigid
guidelines [22], [23], [24].

Can the goals of startups, namely accelerating time-to-
market and meeting customer needs, be improved by the
use of solid engineering practices customized for startups?
Even though this specific question is not the focus of the
study presented in this paper, the detailed investigation of
state-of-practice is a prerequisite for future research into
enabling the engineering taking place in startups.

2.1 General lack of research in startups

Sutton [6] noted in 2000 a general lack of studies in this
area, claiming that “software startups represent a segment
that has been mostly neglected in process studies”. Further
evidence for this observation is provided by Coleman and
O’Connor [16], [17], [34] in 2008. A Systematic Mapping
Study (SMS) [2] performed in 2013 identified only a few
studies into software engineering practices with focus on
startups. Moreover, the identified studies are highly frag-
mented and spread across different areas rather than con-
stituting a consistent body of knowledge. The following
subsections discuss the findings of the SMS.

2.2 Software development in startups

Carmel [35] introduced the term startup to the SE literature
in 1994, studying the time-to-completion in a young package
firm. He noticed how these companies were particularly
innovative and successful, advocating research to inves-
tigate their software development practices and enabling
replication of their success by transferring their practices to
other technology sectors.

Software startups are product-oriented in the first period
of their development phase [19]. Despite good early achieve-
ments, software development and organizational manage-
ment increase in complexity [36], [37] causing deterioration
of performance over time. Briefly, the necessity of estab-
lishing initial repeatable and scalable processes cannot be
postponed forever [38]. Starting without any established
workflows [9], startups grow over time, creating and sta-
bilizing processes to eventually improve them only when
sufficiently mature [3].

As startups have little time for training activities, as
discussed by Sutton [6], the focus shifts from prescriptive



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 3

processes to team capabilities, hiring people who can “hit
the ground running” [39]. Empowering the team and focus-
ing on methodological attributes of the processes oriented
towards prototyping, proof-of-concepts, mock-ups and de-
mos, testing basic functionalities, have been the priority
in startups [35]. With the startups’ growth, coordinated
quality control and long-term planning processes become
necessary [39].

Tingling [40] studied the extent to which maturity of a
company affects process adoption. He reports on introduc-
ing Extreme Programming (XP) principles [41] in the devel-
opment process, and the challenges arising from the need of
trained team-members to fully implement the methodology.
Similarly, da Silva and Kon [42] were only able to start with
all the XP practices in place after six months of coaching the
team. Nevertheless, even then, customization of practices
need to be implemented, adapting the processes to the
startups’ context [43].

Contributions to flexibility and reactiveness of the de-
velopment process exist by means of Lean [44] and Ag-
ile [45] methodologies (also reported in [46], [47]). Startups
face uncertain conditions, leading to a fast learning from
trial and error, with a strong customer relationship, and
avoiding wasting time in building unneeded functional-
ity and preventing exhaustion of resources [48], [49], [6].
Customer involvement in software development has also
been discussed by Yogendra [50] as an important factor
to encourage an early alignment of business concerns to
technology strategies.

However, the question remains, to what extent can im-
proved practices in e.g. requirements engineering contribute
to shortening time-to-market or improve target market ac-
curacy. There have been initiatives to optimize practices for
a specific purpose. McPhee and Eberlein [51] introduced
practices adapted for reducing time-to-market. Cohen et
al. looked at development performance and time-to-market
trade-off [52]. None of these studies focus on startups per
se, but show that there is current knowledge that could be
useful for startups, or at least can function as a starting point
for performing research into solutions for startups.

In conclusion, since “all decisions related to product
development are trade-off situations” [49], startups gener-
ally optimize workflows to the dynamic context they are
involved in. Startups typically adopt any development style
that might work to support their first needs, following
the “Just do it” credo [53]. As remarked by Coleman and
O’Connor [16], “many managers just decide to apply what
they know, as their experience tells them it is merely com-
mon sense”. This, however, does not preclude the possibility
to collect, package and transfer experience in a lightweight
manner, that allows flexible adoption of good engineering
practices. On the contrary, startups that cannot benefit from
very experienced team members would increase their suc-
cess potential by following validated work practices.

2.3 Software process improvement in startups

The problem of one-size-fits-all, related to some SPI rep-
resentations for startups, is described by Fayad [54]. He
discusses the problem in actuating the same best-practices
criteria for established companies in 10-person software

startups. Sutton [6] remarks that problems of rigid SPI mod-
els in software startups arise due to: the dynamic nature of
the development process, which precludes repeatability; or-
ganizational maturity, which cannot be maintained by star-
tups lacking corporate direction; severe lack of resources,
both human and technological for process definition, im-
plementation, management, and training. In conclusion, the
primary benefits of one-size-fits-all SPI often do not hold for
startups, which instead of promoting product quality, aim to
minimize time-to-market.

Additionally, the role of rigid SPI has been neglected
because it is seen as an obstacle to the team’s creativity
and flexibility, and to the need of a quick product delivery
process environment [17]. Product quality is often left aside
in favor of minimal and suitable functionalities, shortening
time-to-market. Mater and Subramanian [55] and Mirel [56]
report that the quality aspects mostly taken in considera-
tion in internet startups are oriented towards usability and
scalability. However, market and application type heavily
influence the quality demand [16], [57].

To maintain the development activities, oriented towards
limited but suitable functionality, studies suggest external-
izing the complexity of parts of the project to third party
solutions by outsourcing activities [58], software reuse [59]
and open-source strategies [60], [61].

2.4 Technical debt

A new stream of SE research, trying to tackle the problem
of technical debt [62], brings and encompasses various
implications in studying development in software startups.
The metaphoric neologism of technical debt was originally
introduced by Cunningham in 1992 [63] and has recently
attracted the attention of SE researchers1. Brown et al. [65]
provides an illustration of the technical debt concept: “The
idea is that developers sometimes accept compromises in a
system in one aspect (e.g., modularity) to meet an urgent
demand in some other aspects (e.g., a deadline), and that
such compromises incur a “debt” on which “interest” has to
be paid and which the “principal” should be repaid at some
point for the long-term health of the project”. Tom et al. [62]
identified five dimensions of technical debt: code, design
and architecture, environment, knowledge distribution and
documentation, and testing. On a daily basis startups face a
trade-off between high-speed and high-quality engineering,
not only in architecture design but in multifaceted aspects
(weak project management, testing, process control). In the
context of early-stage startups, we illustrate empirical evi-
dence on accumulated technical debt in subsection 4.7 and
discuss its implications in subsection 5.4.

2.5 Terminology

To set a common ground and to prevent ambiguity, we use
the following terminology throughout the paper:

• Software development strategy: the overall approach
adopted by the company to carry out product develop-
ment.

1. Important contributions characterizing the “debt landscape”
are [12], [13] published at a dedicated workshop [64] organized by the
Software Engineering Institute and ICSE.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 4

• Engineering activities: the activities needed to bring a
product from idea to market. Traditional engineering
activities are, among others, requirement engineering,
design, architecture, implementation, testing.

• Engineering elements: any practice, tool or artifacts
contributing to and supporting the engineering activ-
ities.

• Quality attributes: those overall factors that affect run-
time behavior, system design, and user experience.
They represent areas of concern that have the potential
for applications to impact across various layers and
tiers. Some of these attributes are related to the overall
system design, while others are specific to run time,
design time, or user centric issues [66].

• Growth: an increase in company size with respect
to the initial conditions for either employees or
users/customers, and product complexity for handling
an increasing number of feature requests.

• Software product: any software product and/or soft-
ware service.

• Software process improvement: any framework, prac-
tice, or tool that supports activities leading to a better
software development process [67].

3 RESEARCH METHODOLOGY

The goal of this study is to understand how software devel-
opment strategies are engineered by practitioners in startup
companies. In particular, we are interested in structure,
planning and control of software projects, in the period from
idea conception to the first open beta release of the software
product.

We set the boundaries of the research by reusing a
previously conducted systematic mapping study [2], which
steered also the formulation of research questions:
RQ-1: How do startups structure and execute their main

engineering activities?
RQ-2: How are product quality attributes considered by

startups?
To answer these questions, we investigated the soft-

ware development approach undertaken by practitioners
of startups. Following a Grounded Theory (GT) method-
ology [68], we executed 13 semi-structured interviews (with
13 companies) integrated with follow-up questionnaires. We
tailored the questionnaires to each startup, partially taking
advantage of the repertory grid principles [69]. From this,
we elaborated and extracted the Greenfield Startup Model
(GSM) explaining the underlying phenomenon of software
development in startups.

Following the GT principles, we captured the most
relevant aspects of software development from startup
practitioners, letting a theory emerge from the interviews
and adjusting the research hypotheses and questions as
we proceeded. During these interviews we collected data
related to engineering activities undertaken by startups.
Then, we proceeded with the analysis of the data, finding
important relations among concepts with a formal approach
to generate and validate the final theory [68].

As suggested by Coleman, in view of the different
versions of GT, researchers should indicate which “imple-
mentation” of the theory is being used [34]. Since infor-
mation obtained from the SMS and our direct experience

with startup companies provided a good initial level of
knowledge, in this study we use Corbin and Strauss’ ap-
proach [70]. This GT version empowers the researchers’
“theoretical sensitivity” [71], and encourages them to out-
line the research problem beforehand.

Figure 1 shows a complete overview of the study
methodology and execution, illustrating how we tailored
the general GT methodology to our specific needs. The
produced data collection and analysis packages (including
interview questions, follow-up questionnaires and codes)
are available in the supplemental material of this paper [72].

The results of our previous SMS provide input to the
study design, contributing to the Design and Execution of the
study. The process depicted in Figure 1 is evolutionary and
affects the design at each new iteration. In Data Collection we
integrate the empirical results in a case study database and
subsequently process it in Data Analysis to form theoretical
categories. At each iteration, the emergent theory is updated
following a formal procedure, Paradigm Model Generation,
and after verifying that we achieved Theoretical Saturation2

of categories, we proceeded to Theory Validation.
The first two authors jointly executed the whole pro-

cedure, handling conflicts by reviewing the rationale of
decisions with the third and fourth authors. When necessary
we performed an in-depth review of the study design and
data collected during the execution process. The process
details are described in the following subsections, structured
according to the five macro phases depicted in Figure 1.

3.1 Design and Execution

In this paper we address technical aspects related to soft-
ware development in startups, exploring their operational
dynamics. Lacking agreement on a unique definition of
the term startup, we sampled case companies according
to the recurrent themes characterized in the definition of
startups [2]:

• newly created: with little or no operating history.
• lack of resources: with economical, human, and physi-

cal limited resources.
• uncertainty: with little knowledge of the ecosystem

under different perspectives: market, product features,
competition, people and finance.

• aiming to grow: with a scalable business in increasing
number of users, customers and company’s size.

We sampled the companies in two distinct phases. First
we executed an initial convenience sampling [73], which led
to the identification of eight companies. Then we included
five additional startups during the theory formation process
(theoretical sampling), iteratively improving the sample ac-
cording to the emerging theory. The characteristics of the
sampled companies are reported in Table 1.

All companies, except C10, were founded within the
last three years (2009-2012), by an average of 3 founding
members, who were in majority developers. Moreover, the
number of current employees shows how, to different de-
grees, companies expanded the initial teams. All companies,
except C5, released their first product to the market within
6 months of the idea conception. The products consist of

2. The point at which executing more interviews would not bring any
additional value for constructing the theory.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 5

Fig. 1. Research methodology - Grounded Theory process overview

TABLE 1
Characteristics of the studied companies

ID Company age Founding Current First product
in months team employees building time

(developers) in months

C1 11 4 (2) 11 6
C2 5 2 (2) 6 3
C3 18 4 (4) 4 6
C4 17 3 (2) 11 6
C5 20 2 (1) 4 12
C6 30 3 (2) 4 1
C7 12 2 (1) 7 4
C8 24 4 (3) 16 4
C9 5 5 (4) 5 1
C10 43 6 (4) 9 4
C11 36 3 (3) 6 2
C12 12 3 (3) 3 3
C13 24 2 (2) 20 3

pure web (8), web- and mobile (4), and web- and desktop
applications (1), launched in six different nations (United
States (4), Italy (4), Germany (2), Sweden (1), United King-
dom (1), New Zealand (1)). The growing team size and
publicly available data suggest a generally healthy status of
the businesses. A detailed documentation about the startup
sampling and their distribution can be found in the sup-
plemental material of this paper [72]. We executed the case
studies online, supported by tools for video conferencing,
recording each session which lasted 1 hour on average.
The interview subjects were CEOs or CTOs. When selecting
interviewees, we required that they worked at the company
from the start. We followed a step-by-step work-flow, con-
sisting of the actual interview, preparation of the customized
follow-up questionnaire and the iterative adjustment of the
interview package artifacts.

3.2 Data collection

We designed the data collection to allow for triangulation,
which integrates multiple data sources (interview, question-
naire) converging on the same phenomenon. The interview

questions (see Table 10 in the supplemental material [72])
cover aspects such as development process, requirements
elicitation, quality requirements, analysis, design, imple-
mentation, testing and deployment. After transcribing an
interview, we sent a follow-up questionnaire to the intervie-
wee. We designed the questionnaire to capture additional
data, gather missing information and confirm interview
results by triangulation. Note that we did not use the
data from the follow-up questionnaire as input for theory
generation. Table 11 in the supplemental material shows
the prototype of the questionnaire that we adapted to each
interviewee and company, based on the data collected in the
earlier interview.

The case study database allowed us to easily retrieve
and search for information, assembling the evidence from
different data sources, as described also by Yin [74]. We
constructed and stored the database using the qualitative
data analysis software package AtlasTI3. We overlapped
interviews with questionnaire results to reveal and flag
potential inconsistencies in the data.

3.3 Data analysis

The first two authors led the coding procedure and per-
formed the analysis in a co-located environment, i.e. work-
ing together on a single computer screen. Before starting the
analysis, a data ordering procedure was necessary as inter-
views were spread across a multitude of topics. Therefore,
we structured the transcripts into thematic areas according
to different topic cards used during the interviews. We
proceeded horizontally to analyze the same thematic areas
within different transcripts, rather than going through an
entire transcript at one time. Once the data was ordered, we
coded the interviews according the following steps:

• We assigned labels to raw data, and carried out a
first low-level conceptualization using both in-vivo and
open coding [75].

• We grouped concepts together into theoretical cate-
gories and subcategories. By means of axial coding we

3. Available online at http://www.atlasti.com/.

http://www.atlasti.com/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 6

first described the different relations between subcat-
egories, and then relations between subcategories and
categories.

• We refined categories several times to create different
levels of abstraction and adjusting concepts, aided by a
simple knowledge management tool.

• We validated consistency among categories by selective
coding, exploring and analyzing links among subcate-
gories.

• We identified the core category - the one with the
greatest explanatory power - by analyzing the causal
relations between high-level categories.

During data extraction we used in-vivo coding com-
bined with the more descriptive procedure of open coding.
Following the example of other grounded theories, devel-
oped in related areas such as Information Systems [76] and
Software Process Improvement [77], we performed the high-
level conceptualization during creation of categories, in the
process of refining axial and selective coding. As we were
iterating through the interviews, we analyzed new data by
updating codes and categories when necessary, and taking
notes in the form of memos to adjust the emerging theory.

After the coding process, we formalized a first repre-
sentation of the GT experience map in a theoretical model.
The model is presented in the form of categories and
subcategories that are linked together according to cause-
effect relationships [71]. The formation of the theoretical
model is a bottom-up approach. From the empirical data
and coding process, the model developed into two different
levels: a detailed level representing the network of subcat-
egories (identified mainly by the axial coding process), and
a high-level representation of the main categories network
(identified mainly by the selective coding process).

3.4 Paradigm model generation

As mentioned in subsection 3.1, we tested emergent theo-
ries by integrating additional companies into the sample,
selected following the principle of theoretical sampling [74].

We used the process of paradigm modeling, introduced
by Corbin [71], at each iteration together with interview
execution, systematically analyzing the emerging theory.
The paradigm model is composed of:

• Causal conditions: the events which lead to the occur-
rence of the phenomenon, that is our core category.

• Context: set of conditions in which the phenomenon
can be extrapolated.

• Intervening conditions: the broader set of conditions
with which the phenomenon can be generalized.

• Action/interaction strategies: the actions and responses
that occur as the result of the phenomenon.

• Consequences: specification of the outcomes, both in-
tended and unintended of the actions and interaction
strategies.

Within the limits of the critical bounding assumptions,
the role of the generated theory is to explain, predict and
understand the underlying phenomenon.

3.5 Theory Validation

Presenting a grounded theory (GT) is challenging for a
researcher, who must pay attention to structure the included

level of detail, and to the way data is portrayed displaying
evidence of emergent categories. To assess our study and to
determine whether the GT is sufficiently grounded, we used
a systematic technique to validate the theory. Strauss and
Corbin provided a list of questions to assist in determining
how well the findings are grounded [70]:
Q1 Are concepts generated, and are the concepts systemat-

ically related?
Q2 Are there many conceptual linkages and are the cate-

gories well developed?
Q3 Is variation4 built into the theory and are the conditions

under which variation can be found built into the study
and explained?

Q4 Are the conditions under which variation can be found
built into the study and explained?

Q5 Has the process been taken into account, and does the
theory stand the test of time?

Q6 Do the theoretical findings seem significant, and to
what extent?

In the remainder of this section, we illustrate how we
answered these six questions. We generated the concepts
according to the described coding process (Q1) and system-
atically related them through the use of a network diagram
(Q2). At each iteration of the grounded theory process,
we considered and examined a concept within different
conditions and dimensions, trying to incorporate data from
a broader range of practitioners (Q3). We constructed all the
linkages and categories by the use of Atlas.TI and compared
them according to the data analysis process. Moreover,
we connected extensive explanations, in form of in-vivo
statements as reported by practitioners, to the developed
concepts (Q4).

We designed the research process in multiple steps,
explaining the purpose and implementation of each. Thus,
the same process together with the supplemental material
of this paper [72] enables other researchers to replicate our
study within similar contexts (Q5). Moreover, we performed
a comparison with the state-of-art to validate the theory
and to strengthen its applicability within a wider time-
frame (Q6). By this comparison we highlight the areas
which have been neglected by existing studies, providing
possible directions for future studies (see subsections 6.1
and 6.2). Furthermore, we studied the confounding factors
which could interfere with the application of the GSM (see
subsection 6.3).

4 RESULTS: GREENFIELD STARTUP MODEL

The GSM captures the underlying phenomenon of software
development in early-stage startups. The model is formed
by 128 sub-categories, clustered in 35 groups, and finally in
7 categories (see Figure 2) at the highest level of abstraction5.
By the means of the GSM we provide explanations of the
development strategies and engineering activities under-
taken by startups. This section focuses on the data collected
from the studied startups, forming the GSM. Note that in
this section, we report on the GSM which is an abstraction

4. Variation refers to the variety of contexts to which the theory can
be applied.

5. All raw data, including codes, sub-categories and groups, are
available in the supplemental material [72].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 7

Fig. 2. Main categories and causal relationships in the Greenfield Startup Model

of the collected empirical data from thirteen startups. The
implications of the GSM and its validity are discussed in
Sections 5 and Section 6 respectively.

4.1 Model overview

We have grouped the main concepts representing the under-
lying phenomenon together to form high-level categories.
Figure 2 shows the network of causal relationships (rep-
resented by arrows) between categories (represented by
blocks).

In the forthcoming explanation of the GSM we make use
of identifiers (i.e. CATx) for the main categories shown in
Figure 2. The network is centered around the core category,
speed up development, which is the most interconnected node
in the theory reflecting the fact that “it is the one [category]
with the greatest explanatory power” [70].

A contextual condition, which characterizes to some
extent every startup is the severe lack of resources. In fact,
limited access to human, time and intellectual resources
constrain the capabilities of an early-stage startup to support
its development activities. The severe lack of resources forces
the company to focus on implementing an essential set of
functionalities. This is one of the main reasons why the
product quality has low priority with respect to other more
urgent needs6. At the same time, to be able to deal with such
constraints, startups depend on a small group of capable
and motivated individuals.

As unanimously expressed by respondents, the highest
priority is to speed up the development as much as possible by
adopting a flexible and effective evolutionary approach. The
low attention given initially to architectural aspects related

6. There are some exceptions where the quality aspects actually
matter and such cases will be discussed in subsection 6.3.

to product quality facilitates the efficiency of teamwork.
This allows startups to have a functioning but faulty prod-
uct, that can be quickly introduced to the market, starting
from a prototype implementation on day-one.

The initial employees are the ingredients which enable
high levels of performance in software development. To
support a fast-paced production environment, engineers
are required to be highly committed, co-located, multi-
role, and self-organized. In other words, the team is the
catalyst of development. With an essential and flexible work-
flow, which relies on tacit knowledge instead of formal
documentation, startups can achieve very short time-to-
market cycles. However, each line of code, written without
following structures and processes, contributes to growing
the accumulated technical debt, which is further increased by
having almost non-existing specifications, a minimal project
management and a lack of automated tests.

The consequences of such debt may not be perceived
in the initial stages of a startup, where finding the prod-
uct/market fit as quickly as possible is the most important
priority. Startups, which survive to subsequent phases will
likely increase their user-base, product size, and number of
developers. This will require the company to eventually pay
the accumulated technical debt, and confront the fact that an
initial growth hinders productivity.

In the following subsections we explain the categories
presented in Figure 2, and conclude in subsection 4.9 with
the final theory. In the explanations we use identifiers of the
companies presented in Table 1 (i.e. C1...C13) to highlight
statements made by the interviewees.

4.2 Severe lack of resources

The concept of severe lack of resources characterizes the
uncertainty of development strategies in startups and it



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 8

is composed of three subcategories: time-shortage, limited
human resources and limited access to expertise.

Since startups want to bring the product to market as
quickly as possible, the resource they are the most deprived
of is time. Startups operate under a constant time pres-
sure, mainly generated by external sources (investor pressure,
business pressure) and sometimes internal necessities such
as internal deadlines and demo presentations at events. In this
regard, C3 commented: “Investors wanted to see product
features, engineers wanted to make them better. Finally
the time-to-market was considered more important and the
teams’ interests were somehow sacrificed.”

In addition, to compensate for the limited human re-
sources, practitioners empower multi-role and full stack en-
gineers, as confirmed by C1: “Everyone was involved in
any tasks, from mobile to web development, organizing
themselves in choosing the part to implement”. The extent
to which startups have access to specialized knowledge -
both internal and external to the company - is reduced when
compared to established software companies. Therefore, to
partially mitigate the limited access to expertise, startups rely
on the external aid of mentors or advisors. Under these
strict limitations, most of the decisions related to software
development are fundamentally trade-off situations.

4.3 Team as the development catalyst

Among the different aspects fostering the speed of the
development process, the startups’ focus is on the char-
acteristics of the initial team. In startups developers have
big responsibilities. In fact, limited human resources, discussed
in CAT7, cause the team-members to be active in every
aspect of the development process, from the definition of
functionalities to the final deployment.

Engineers in the founding team of startups are some-
times multi-role and typically full-stack engineers. Multi-role
engineers handle both the development and are at the
same time responsible for marketing and sales. C1 observed
that: “A developer has many responsibilities, and needs to
quickly move among a variety of tasks as there is no com-
pany hierarchy.” Full-stack engineers can tackle different
problems at various levels of the technology stack (generalist
developers instead of specialists). C11 remarked that: “Instead
of hiring gurus in one technology, startups should hire
young developers, generalists, that know how to quickly
learn new technologies, and quickly move among a huge
variety of tasks.”

Moreover, having a very small and co-located development
team enables members to operate with high coordination,
relying on tacit knowledge and replacing most of the docu-
mentation with informal discussions. Practitioners reported
that keeping the development team small helps startups in
being fast and flexible, as remarked by C8: “If you have
more than 10 people, it is absolutely impossible to be fast”.
Then, also basic knowledge of tools and standards of the working
domain and knowing each other before starting the company
support the efficiency of activities by limiting the need for
formalities between team members.

In every software company, skilled developers are essential
for high speed development. Especially in startups, the “hack-
ing culture” and a tendency to the “just-do-it” approach

allow the team to quickly move from the formulation of
a feature idea to its implementation. In this regard, C1
comments: “We had a hacker culture/environment, people
hacking stuff without formally analyzing it, but breaking it
down and finding a way around.”

A limited access to expertise forces the team to rely mainly
on their personal abilities, even though interviewees re-
ported that asking mentors for an opinion is a viable practice
to aim for feasible objectives. Furthermore, teams work under
constant pressure mainly constrained by a tight time shortage.

Finally, startups present founders-centric structures, and
especially in the early-stage, the CTO/CEO background has
high-impact on the company’s development approach. For
instance, in case of an academic background, the CTO might
encourage the introduction of some architectural design
before the development phase. Even though the CTO/CEO
initially guides the development process, most of the de-
cisions are taken collectively by all members of the team.
Then, the CTO/CEO only intervenes in situations where
conflicts occur.

4.4 Evolutionary approach

Startups prefer to build an initial prototype and iteratively
refine it over time, similarly to the concept of “evolutionary
prototyping” [78]. The goal is to validate the product in
the market as soon as possible, finding the proper prod-
uct/market fit. Indeed, startups can focus on developing
only parts of the system they want to validate instead
of working on developing a whole new system. Then, as
the prototype is released, users detect opportunities for
new functionalities and improvements, and provide their
feedback to developers.

Since flexibility and reactiveness are the main priorities, the
most suitable class of software development approaches
are highly evolutionary in nature. As uncertain conditions
make long-term planning not viable, startups cannot base their
work on assumptions without rapidly validating them by
releasing the product to market. Uncertainty lies first of all
in the team composition. Since the teams are typically small
and project knowledge is generally undocumented, even a
minor change in their composition (e.g. a developer falls
ill) can have a significant impact on the overall product de-
velopment. Furthermore, startups operate in a continuously
evolving environment of competitors and targeted market
sectors. Then, to get a competitive advantage in the market,
startups typically make use of cutting-edge solutions, char-
acterized by an evolution that cannot be foreseen in the long
run. However, user feedback and requests play a special role
in daily decisions as main drivers for defining the product
features in the short term.

To obtain fast user responses and quickly validate the
product, startups build a functioning prototype and iterate it
over time. Quoting C4, “[. . . ] you should start with some-
thing that is really rough and then polish it, fix it and
iterate. We were under constant pressure. The aim was to
understand as soon as possible the product market/fit iter-
ating quickly, adjusting the product and releasing fast.” The
companies focus on building a small set of functionalities
to include in the first version, and progressively roll-out to a
larger number of people with small iterations (confirmed by C4:
“we deploy from 5 to 20 times a day”).



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 9

The objective of this evolutionary approach is to avoid
wasting time on “over-engineering the system” and build-
ing complex functionalities that have not been tested on
real users. By releasing a small number of good-enough
functionalities (see CAT3) the startup verifies the suitability
of the features and understands how to adjust the direction
of product development towards actual users’ needs. The
first version of the product is typically a prototype contain-
ing basic functionalities developed with the least possible
effort that validates critical features, enabling the startup’s
survival in the short term. Supported by direct contact and
observation of users, automated feedback collection and analysis
of product metrics, startups attempt to find what is valuable for
customers.

4.5 Product quality has low priority

The interests of software startups, related to the product, are
concentrated on building a limited number of suitable func-
tionalities rather than fulfilling non-functional requirements.
This strategy allows them to quickly release simple products
with less need for preliminary architectural studies.

The quality aspects considered by startups during the
development process are geared towards user experience
(UX7), in particular ease of use, attractiveness of the UI and
smooth user-flow without interruptions. C11 notes that UX is
an important quality factor: “When a user needs to think too
much on what action should be done next, he will just close
the application without returning”. C3 adds: “If the product
works, but it is not usable, it doesn’t work”.

The extent to which quality aspects are taken into ac-
count might depend on the market sector and the type of
application. Nevertheless, realizing a high level of UX is
often the most important attribute to consider for customer
discovery of evolutionary approaches in view of the limited
human resources and time shortage, presented in CAT7. C4
confirms: “None of the quality aspects matter that much as
the development speed does.”

To achieve a good level of UX while dealing with lack
of human resources and time shortages, startups analyze
similar products, developed by larger companies that can
afford more rigorous usability studies. Then, the users’
feedback and product metrics begin to have a central role
in determining the achieved UX level. Product metrics are
typically web-based statistical hypothesis testing, such as
A/B testing [79]. Other than UX, some other factors can
influence the quality concerns of development:

• The efficiency emerges after using the product, letting engi-
neers avoid wasting time in excessive improvements of
not-validated functionalities.

• The product should be reasonably ready-to-scale to be able
to accommodate a potential growth of the user-base.
Startups externalize complexity to third party solutions,
such as modern cloud services, achieving a sufficient
level of scalability.

• Realizing high reliability is not an urgent priority as
users are fault-tolerant towards innovative beta products.
In these cases, users typically have a positive attitude

7. According to ISO 9241-210 (Ergonomics of human-system interac-
tion), UX is defined as “a person’s perceptions and responses that result
from the use or anticipated use of a product, system or service”.

towards the product, even though it exhibits unreliable
behavior. In this regard, the focus of beta testing is
reducing friction between the product and the users,
often incorporating usability testing. In fact, the beta
release is typically the first time that the software is
available outside of the developing organization8.

4.6 Speed-up development

Speed up development represents the core category of the
GSM. Firmly grounded as the primary objective of startups,
it shows the most important characteristic of developing
software in the early stages.

To speed up development, startups adopt evolutionary
approaches supported by a solid team focusing on imple-
menting a minimal set of suitable functionalities. Startups
keep simple and informal workflows to be flexible and reactive,
adapting to a fast changing environment. The fact that teams
are typically self-organized and developers have significant re-
sponsibilities facilitates the adoption of informal workflows.
The aim to shorten time-to-market restricts potential plan-
ning activities, as reported by C8: “Speed was of essence
so we didn’t plan out too many details”. To deal with such
unpredictability, startups prefer to take decisions as fast as
possible, mainly by means of informal and frequent verbal
discussions.

Even though Agile principles embrace change, startups
often perceive development practices as a waste of time
and ignore them to accommodate the need for releasing the
product to the market quickly. This approach is possible also
in view of a lack of systematic quality assurance activities;
startups focus on user experience and other quality aspects,
such as efficiency, can be postponed until after the first
release.

Another beneficial strategy that startups employ to
quickly deliver products is the externalization of complexity
on third party solutions. Startups make use of third party
components (COTS) and open source solutions (for product
components, development tools and libraries). They take
advantage of external services for the sake of delivering a
product reasonably ready to scale for possible future growth.
Moreover, advanced version control systems are not only
used to manage the code-base, but also in task assignment,
responsibility tracing, configuration and issue management,
automatic deployment, and informal code walkthroughs
when issues occur. Even though the use of well-integrated
and simple tools allows startups to automate many activi-
ties and reduce their completion time, drawbacks of such
approaches are increased interoperability issues.

Startups further improve development speed by making
use of standards and known technologies which are widely rec-
ognized, well tested, and supported by strong communities.
Moreover, the use of standards and frameworks reduces
the need for a formal architectural design since most of the
solutions are well documented and ready-to-use. C1 stated
that: “as long as you use Ruby standards with the Rails
framework, the language is clean itself and doesn’t need
much documentation”.

8. A discussion of the impact of innovative products on the user
satisfaction is presented in subsection 6.3.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 10

Other important factors that positively impact the speed
of development are the team’s desire to create disruptive
technologies, to demonstrate personal abilities, and to have the
product used in the market. As reported by practitioners, these
factors are essential to enhance the morale of developers
and therefore to achieve higher team performance. On the
other hand, when a developer is not able to meet deadlines,
especially in the typical sprint-based environments of Agile,
the morale goes down, hindering the development speed.

Finally, the constant pressure under which the company
regularly operates, leads the team to often work overtime to
meet deadlines. But as reported by practitioners, such a way
of working can be an effective strategy only in the short term
since it can lead to poorly maintainable code and developer
burnout in the long run.

4.7 Accumulated technical debt

Startups achieve high development speed by radically ig-
noring aspects related to documentation, structures and
processes. C4 stated that: “You have to accept some extent
of technical debt and some flawed code so you can move
faster. You have to hit the sweet spot of moving very fast
but at the same time without writing code that is so bad
that you can’t update it anymore.”

Instead of traditional requirement engineering activities,
startups make use of informal specification of functionalities
through ticket-based tools to manage low-precision lists
of features to implement, written in the form of self-
explanatory user stories [80]. Practitioners intensively use
physical tools such as post-it notes and whiteboards, which
help in making functionalities visible and prioritizing stories
based on personal experiences. C4 commented that “[. . . ]
it is the only way. Too many people make the mistake of
sitting down and write big specs and then they build it for
four months, realizing the product is not valuable only at
the end.”

Since startups are risky businesses by nature, even less
attention is given to the traditional phase of analysis, which
they replace by a rough and quick feasibility study. However,
this approach has also disadvantages, as observed by C7:
“Some months later I started realizing the drawbacks: now
that we have to grow, it would be nice to have done some
more detailed study. . . But at the same time, maybe if I
did the study, I wouldn’t have all the agility and flexibil-
ity that we have now. It’s a big tradeoff.” It is generally
hard to analyze risks with cutting-edge technologies. To find
out the feasibility of such cutting-edge projects, startups
attempt a first implementation with rough and informal
specifications, assuming that the project’s complexity will
remain limited to a few functionalities, as discussed in CAT3
(subsection 4.5). Additionally, by keeping the product as simple
as possible and learning from competitors’ solutions and
mistakes, practitioners use their past experiences in similar
contexts to help to assess the feasibility of the project. Finally, to
avoid restrictions on the flexibility of the team, potentially
limiting decisions are taken only when strictly necessary
and as late as possible. Limiting, early decisions can increase
the technical debt as commented by C8: “Our biggest short-
coming was a poor initial decision on data structuring which
was fundamental as the whole code (and the business logic)

relied on it. 95% was right, and 5% of the data structure
was wrong, and caused a lot of troubles (refactoring and
re-doing code).”

Another important factor that contributes to the accumu-
lation of technical debt is the general lack of architectural design,
substituted by high-level mock-ups and low-precision diagrams,
describing critical interactions with third-party components only.
In particular, the use of well-known standards, frameworks
and conventions removes the need for formal UML [81]
diagrams and documentation, and provides a minimum
level of maintenance costs. C6 stated that: “. . . with perfect
hindsight we should have used a framework to create more
maintainability of the code. At the beginning, we didn’t use
the framework to develop the application faster. We believe
that the additional time needed to use the framework would
have payed off, because it would have increased under-
standability of the code structure and decrease the time
needed for new developers to start working.”

A similar attitude towards verification and validation
brings startups to a lack of automated testing, which is often
replaced by manual smoke tests. Quoting C3, “Trying the
product internally allows us to get rid of 50% of bugs of
important functionalities. Meanwhile, users report bugs of
secondary functionalities, eventually allowing us to mitigate
the lack of testing. Indeed, staying one week in production
enables us to identify 90% of bugs”. However, in certain
cases where components of the system might cause loss of
data or severe damages to the product or users, engineers
realize a reasonable level of automatic testing. In such cases,
aided by modern automatic tools, they quickly assess the
status of the system integration as they add new functional-
ities to the product.

Startups perceive rigid project management as a “waste
of time” that hinders development speed since the uncer-
tainty makes formal scheduling pointless (C9 reported that “ini-
tial chaos helps to develop faster”). Startups’ minimal project
management is supported by keeping: internal milestones short
and informal, low-precision task assignment mechanisms and a
low cost project metrics (quoting C13, “the only track of
progress was made by looking at closed tickets”). In this
context only a final release milestone is viable, which helps
practitioners to remain focused on short term goals and put
new features in production.

Finally, one of the categories that contributes most to
growing accumulated technical debt is the substantial use of
informal and verbal communication channels on a daily
basis. The high co-location and the fast paced development
approach increase the volume of tacit knowledge and the
severe lack of any kind of documentation. C4 observed in
this regard that: “[. . . ] the issue of having documentation
and diagrams out of the source code is that you need to
update them every time you change something. There is
no time for it. Instead, there is a huge pay off in having
a code that is understandable itself.” On the other hand,
there are situations where this strategy is not good enough,
as observed by C1: “I had problems due to the lack of
documentation. The only back-end documentation was the
front end-design, so I had to guess what was behind!”.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 11

4.8 Initial growth hinders performance

The lack of attention given in the first phases to engineering
activities allows startups to ship code quickly. However,
if the startup survives, the initial product becomes more
complex over time, the number of users increases and the
company starts to grow. Under these circumstances the need
to control the initial chaos forces the development team
to return the accumulated technical debt, instead of focusing
on new users’ requests. Hence, the initial growth hinders
performance in terms of new functionalities delivered to the
users.

When the user base increases, customers become more
quality demanding and scalability issues might start to
arise. Company and user size grow when business events
occur, such as: a new round of funding, a possible acquisition,
the release of a competing product on the market, or when the
project is open for the first public release. Therefore, while the
project lacks even minimal processes, the current team is not
able to manage increased complexity of new functionalities and
maintain the codebase.

Subsequently, practitioners start considering the need for
project management activities, also in view of hiring new
staff members, as discussed by C13: “[Project management] is
strictly necessary if you radically change the team or when
the team grows. The informal communication and lack of
documentation slow down the process afterwards”. Project
management becomes even more important when the focus
shifts to business concerns. Part of the effort, which was
initially almost entirely dedicated to product development,
moves to business activities. Moreover, the availability of
project information becomes an important issue as the ac-
cumulated tacit knowledge hinders the ability of new hires to
start working on project tasks.

Another factor that slows down performance is that por-
tions of code need to be rewritten and substantial refactoring of the
codebase is required by increasing product demands. Prac-
titioners realized that some decisions taken (or not taken)
during the rough and quick feasibility study before starting the
implementation, have led to negative consequences on the
long term performance and maintainability of the product.
The combination of these factors leads to the need to re-
engineer the product. By re-engineering the systems, startups
aim to increase the scalability of the product/infrastructure and
start to standardize the codebase with well-known frameworks.
C7 reports that: “To mitigate this (lack of frameworks) I had
to make a schema for other developers when we hired them.
We had to do a big refactoring of the codebase, moving it
from custom php to Django, normalizing the model and
making it stick with the business strategy. I had the code
in different php servers communicating via JSON, some
engineering horror. Now that we are fixing it, it’s really
painful. We had to trash some code. However I don’t regret
that I didn’t make this choice sooner, it was the only way”.

The fear of changing a product, which is working, arises
when product complexity increases. The changes to the
codebase, to support bug fixing, become highly interrelated
with other functionalities and difficult to manage because
the product is poorly engineered. Therefore, the fear arises
that changing a validated product might cause changes to
users’ responses. The increasing number of feature requests

leads to the growing necessity of having a release plan. There-
fore, startups begin to partially replace informal communication
with traceable systems and introduce basic metrics for measuring
project and team progress to establish an initial structured
workflow. Yet, C11 stated that: “[. . . ] it is still better to have
a reasonable drop-down in performance when the team
grows than lose time in the beginning”.

4.9 Paradigm model

To explain and understand the development strategies in
early-stage software startups we construct the theory gener-
ated and supported by the above presented GSM:

Theory. Focusing on a limited number of suitable functional-
ities, and adopting partial and rapid evolutionary development
approaches, early-stage software startups operate at high devel-
opment speed, aided by skilled and highly co-located develop-
ers. Through these development strategies, early-stage software
startups aim to find early product/market fit within uncertain
conditions and severe lack of resources. However, by speeding-up
the development process, they accumulate technical debt, causing
an initial and temporary drop-down in performance before setting
off for further growth.

We formed this theory by considering the different ele-
ments specified by Corbin [71]:

• “Causal conditions” are represented by three main con-
ceptual categories: product quality has low priority, evolu-
tionary approach and team is the catalyst of development.

• “Phenomenon” is represented by the core category
speed up development.

• “Context” is limited to early-stage web software star-
tups operating in conditions of severe lack of resources
aiming to early find product/market fit.

• “Intervening conditions” are summarized by the ex-
tremely uncertain development environment.

• “Action and interaction strategies” are represented by
the accumulation of technical debt.

• “Consequences” lead to a temporary performance
drop-off.

5 IMPLICATIONS OF THE GSM

In this section we present relevant implications that emerge
from the behavior of early-stage startups, formally ex-
pressed in the GSM. Although the startups we studied
were spread across various nations and market sectors (see
subsection 3.1), certain patterns emerged. We discuss these
patterns with respect to literature and identify possible
venues for future research.

5.1 Light-weight methodology

The most urgent priority of software development in star-
tups is to shorten time-to-market to find the right prod-
uct/market fit. However, focusing on building and releasing
the first version of a product, startups tend to not apply
any specific or standard development methodologies or
processes. Three interviewees (C5, C7, C13) referenced the
Lean startup methodology [53], a highly evolutionary devel-
opment approach, centered around the quick production of
a functioning prototype and guided by customer feedback.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 12

However, none of the studied startups strictly followed the
complete “build-measure-learn” cycle proposed by the Lean
startup methodology. One of the main purposes of Lean is
waste reduction, although the identification of waste is not
an easy matter as it spans perspectives and time [82]. For
example, running a value stream mapping is resource in-
tensive, something that may put off startups. Nevertheless,
even though the absence of a basic process might enable
startups to focus more on the product, startup companies
can take advantage of some engineering activities even in
the early stages [83]. For instance, Taipale [46] reports how
startups benefited from tailoring some simple XP practices
to their needs.

Startups in the early stage apply fast cycles of “build and
fix” when necessary to act quickly and decisively enough
to get the first response from the market. However, the
lack of perceivable cause and effect relationships constrains
effective analysis [84]. Hence, applying best practices in a
highly uncertain environment might be counter-productive.
There is little to analyze yet, and waiting for patterns to
emerge can be considered a waste of time. Quickly de-
veloping a set of suitable functionalities allows the team-
members to present a prototype to a small set of potential
customers and investors to start collecting quick feedback
and respond accordingly. However, the studied startups do
not explicitly follow the step-by-step process of “customer
development” defined by Blank [8]. Instead, they absorb
and implement the high-level principles from the customer
development methodology, reflected in the GSM by the
theoretical category find the product/market fit quickly.

From a research perspective, collaboration with startups
and technology transfer to those companies is challenging.
State-of-the-art technology transfer models require long-
term commitment from all participants [85], an investment
that might not be acceptable for an early-stage startup. Thus,
there is a need to develop and validate technology transfer
models adapted to the startup context.

5.2 Empowering the team members

The Lean startup methodology proposed by Ries [53] em-
phasizes team empowerment as a critical factor to pursue
the development of a Minimum Viable Product (MVP).
Empowerment allows the team to move rapidly and cut
through the bureaucracy, approval committees and veto
cultures. However, empowerment cannot be implemented
without structure and means to measure performance [86].
Startups can use lightweight tools, for example collection
and evaluation of key performance indicators, task man-
agement and continuous deployment, to enable information
sharing and autonomy creation which are key aspects of
empowerment [86].

Yang [87], unlike to Ries’ methodology, structurally dif-
ferentiates four dimensions that positively impact perfor-
mance and should be considered in empowerment pro-
grams:

• autonomy of taking decisions, where team-members
can choose the activities they are interested in;

• responsibility for organizational results or success,
keeping track of their own performance;

• information such that team members have influence on
making decisions;

• creativity, enabled by a culture where negative results
are not punished, but attempts are rewarded;

Different forms of coordination methods utilize the
idea of dividing problem and solutions space, like hand-
shaking presented by Fricker et al. [88]. These could also
be investigated, especially since the main manager of a
startup (CTO/CEO) cannot be involved in all solution deci-
sions [89]. Even though the GSM identifies and explains the
startups’ focus on characteristics of the initial team, further
research is needed to adapt and validate team empower-
ment programs in the startup context that can foster the
speed of development processes.

5.3 Focus on minimal set of functionalities

To deliver a product with the right features built in, startups
need to prioritize and filter. From an engineering point of
view, most startups do not explicitly apply traditional Re-
quirement Engineering (RE) activities to collect and manage
requirements. However, by integrating simple techniques
such as Persona and Scenario, companies can improve the
effectiveness of requirements elicitation even with mostly
unknown final users [90], thereby also shortening time-to-
market.

Another study suggests that using a lightweight project-
initiation framework such as the Agile Inception Deck
can help in preventing premature failure of the software
project due to a wrong understanding of the project require-
ments [91]. Looking at RE in general, there are several good
practice guidelines that are adapted for small organizations,
where the organization can choose what is relevant for them,
see e.g. uniREPM [92]. The key is that even startups can ben-
efit from a limited and fast inventory of good engineering
practices.

5.4 Paying back the technical debt

To be faster, startups may use technical debt as an invest-
ment, whose repayment may never come due. Tom et al. [62]
refer to “debt amnesty” as a written off debt when a feature
or product fails.

Even though potentially useful in the short-term, over
time technical debt has a negative impact on morale, pro-
ductivity and product quality. Kruchten et al. [93] suggest
identifying debt and its causes, e.g. by listing debt-related
tasks in a common backlog during release and iteration
planning. Tracking technical debt can also be conducted by
measuring usability and scalability of the product, paying
attention to the customers’ behaviors through real-time and
predictive monitoring [53].

An alternative to control technical debt with small effort,
as stated by many interviewees, is the use of modern coding
platforms (e.g. Github) and well-known frameworks. Cod-
ing platforms allow developers to integrate several engi-
neering activities such as requirements lists, issue tracking,
source control, documentation, continuous integration, re-
lease and configuration management. Frameworks include
support programs, compilers, code libraries and tool sets
to enable the initial development of a project with limited
overhead. However, these strategies target only particular
dimensions [62] of technical debt, such as environmental
and knowledge debt.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 13

Furthermore, to be effective in the selection of third party
components and frameworks, startups need to perform an
efficient impact analysis of their process configuration. Tech-
nology selection frameworks have been used to stimulate
innovation [94], as decision making support [95], [96], and
in tool selection [97]. However, such approaches need to be
adapted to the particular constraints and context of early-
stage startups.

5.5 Synthesis

With slightly different levels of adherence, the presented
implications are reflected in the behavior of most of the
companies we studied. The results of this analysis indicate
that early-stage startups are far from adopting standard
development methodologies. The typical tendency is to
focus on the teams’ capability to implement and quickly
iterate on a prototype, which is released very fast. Thus,
in a context where it is hard for even the most lightweight
agile methodologies to penetrate, research should focus on
the trade-off between development speed and accumulated
technical debt [65], which appears to be the most important
determinant for the success of an early-stage startup.

Our investigation of early-stage startups opens up sev-
eral opportunities for further research. Most importantly,
the performance drop-down caused by the necessity of re-
turning the accumulated technical debt while expanding the
company’s operations and structuring mitigation strategies
needs to be addressed. This can be achieved by meeting the
following four software development objectives:

• integrating scalable solutions with fast iterations and a
minimal set of functionalities (this allows startups to
maintain effective planning and realistic expectations)

• empowering team members enabling them to operate
horizontally in all the activities of the development
environment simultaneously

• improve desirable workflow patterns through the ini-
tiation of a minimal project management over time, as
a natural result of emerging activities of tracing project
progress and task assignment mechanisms

• then, only when the chaos has been initially managed,
planning long-term performance by adoption of Agile
and Lean development practices.

Eventually, to enable the introduction and adoption of
new development methodologies, research is needed on
new/adapted technology transfer models from academia
and industry to startups’ contexts.

6 THEORY VALIDATION

In this section we discuss the validity of the GSM by
means of cross-methodological observations, as discussed
in subsection 3.5. As we refer to the GSM’s main categories
throughout the validation, we list their name and corre-
sponding subsection where they have been introduced:
CAT1 Speed-up development (4.6).
CAT2 Evolutionary approach (4.4).
CAT3 Product quality has low priority (4.5).
CAT4 Team is catalyst of development speed (4.3).
CAT5 Accumulated technical debt (4.7).
CAT6 Initial growth hinders performance (4.8).
CAT7 Severe lack of resources (4.2).

6.1 Comparison with other models

To validate the generalization of the model, we describe
conceptualizations derived from the GSM that are sup-
ported by previous models developed by Coleman [34], [17],
[16], Baskerville [98] and Brooks [99]. Table 2 presents an
overview of the comparison, mapping GSM categories to
aspects reported in literature.

We refer to Coleman’s work since he has conducted
similar studies in the context of startups, even though with a
different focus. Coleman investigated factors in software de-
velopment that hinder initiatives of one-size-fits-all software
process improvement (SPI) in a later stage, representing
also companies in the expansion phase with more than 100
employees.

Coleman aims to highlight how managers consider two
distinct kinds of processes: essentials and non-essentials. The
essential processes are the most closely linked to product
development, such as requirements gathering, design and
testing. The non-essential processes are those that might be
omitted, such as planning, estimating and staging meetings.
In particular, he discusses how practices are routinely re-
moved: “With most methodologies and approaches, very
few stick to the letter of them and they are always adapted,
so we adapted ours to the way we wanted it to work for us,
for our own size and scale” [16].

Coleman’s network is characterized by the “cost of pro-
cess” (core category) and all the factors that in management
contributed to the lack of software process improvements
(SPI). The cost of process represents the lack of formal and
prescriptive work-flows in development, mainly conducted
by verbal communication without heavy documentation or
bureaucracy. Coleman reports on the practitioners’ percep-
tion that documentation alone does not ensure a shared
understanding of project requirements. Moreover, managers
perceive rigid processes as having a negative impact on the
creativity and flexibility of the development team. This is
in accordance with our generated theory, which bases the
reasons for adopting evolutionary and low-precision engi-
neering elements on the flexibility and reactivity attributes
of the development process in startups.

As also reported in the GSM, the definition of a “min-
imum process” is not a matter of poor knowledge and
training, but rather a necessity that lets the company move
faster. “One-size-fits-all” solutions have always found dif-
ficulty in penetrating small software organizations [100].
When startups begin establishing any rigid SPI process, they
experience process erosions [16], which result in work-flows
barely satisfying organizational business needs. Software
startups favor the use of agile principles in support of
creativity and flexibility instead of one-size-fits-all SPI.

Further, Coleman describes a management approach
oriented towards “embrace and empower”, consisting of
trust in the development staff to carry out tasks with less
direct supervision [16]. Nevertheless, software development
managers and founders still have an impact on management
style and indirectly on the software development process. In
early-stage startups, founders are mainly software develop-
ment managers as CEOs/CTOs and technical practitioners
at the same time. As Coleman identified the influence of
the founders’ and managers’ background on the software



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 14

TABLE 2
GSM categories mapped to concepts reported in related models

Category Coleman [34]

CAT1 Experience the lack of rigid engineering activities and documentation. Flexibility and process erosion maintaining simple and
informal work-flows.

CAT4 CTOs’ and CEOs’ background has a great impact on the adopted development process. Nevertheless, team members remain
self-organized, able to intervene in all the aspects of the development process without any direct supervision.

CAT5 Verbal communication and lack of heavy documentation and bureaucracy.
CAT6 Nimble and ad-hoc solutions prevent the use of heavy bureaucracy and formal communication strategies, even though the

accumulated tacit knowledge is hard to manage and transfer to new hires.

Category Baskerville [98]

CAT1 Make heavy use of simple tools and existing components.
CAT2 Uncertain conditions make long-term planning not viable. Speed-up development by releasing more often the software and

“implanting” customers in the development environment.
CAT3 Tailor the development process daily according to the intense demands for speed, skipping phases or tasks that might impede

the ability to deliver software quickly even though producing lower quality software.
CAT5 Invest time in facilitating development of scalable systems by the use of simple but stable architectural solutions.
CAT7 A desperate rush-to-market. A lack of experience developing software under the conditions this environment imposes.

Category Brooks [99]

CAT1 The most radical possible solution for constructing software is not to construct it at all, taking advantage of what others have
already implemented. It is the main strategy, which enables companies to externalize complexity to third party solutions.

CAT2 Avoid deciding precisely what to build but rather iteratively extract and refine the product requirements from customers and
users.

CAT3 Starting from simple solutions allows creating early prototypes and control complexity over time.
CAT4 People are the center of a software project and it is important to empower and liberate their creative mind.

development process, the GSM similarly identifies that the
CEOs/CTOs background shapes the high-level strategies
adopted in developing the initial product.

Baskerville [98] refers to rigid SPI approaches as typi-
cally effective only in large-scale, long-term development
efforts with stable and disciplined processes. Internet-
speed software development (oriented towards daily builds,
aimed at developing a product with high speed) differs
from traditional software development. Baskerville studied
10 companies using a Grounded Theory approach. He found
that the major causal factors that influence development are
a desperate rush to market, a new and unique software
market environment, and a lack of experience developing
software under the conditions this environment imposes.
Even though with different research focus and study con-
text, Baskerville revealed similar causal factors as the GSM
(see Table 2). He argues that the dawn of the Internet era has
intensified software development problems by emphasizing
shorter cycle times as a strategy to efficiently validate a
product to the target market.

With a wider focus, Brooks [99] discusses the chal-
lenges involved in constructing software products. Brooks
divides difficulties in development into essence (inherent
to the nature of the software), and accidents (difficulties
attending software production that are not inherent). In
other words, essence concerns the hard part of building
a software through activities such as specification, design,
testing. Accidents refer to the labor of representing the
software or testing its representation. Brooks claims that the
major effort applied by engineers was dedicated towards ac-
cident problems, trying to exploit new strategies to enhance
software performance, reliability and simplicity of develop-
ment, such as the introduction of high-level languages for
programming. Despite the great achievements in improving
development performance, the “essence” property of the

software remained unaltered. The basic mitigation strategies
presented by Brooks on the essence (i.e. buy versus build; re-
quirements refinement and rapid prototyping; incremental
development; and great teams) accurately fit the GSM (see
Table 2), forecasting the state-of-practice in modern startups.

6.2 Theoretical categories and existing literature

In this subsection we extend the theory validation by map-
ping the categories of the GSM to empirical studies that
investigated startup companies. We map the studies’ main
contributions to one or more GSM categories (Table 3). We
sorted the table according to the number of GSM categories
covered by the studies.

Seven out of 37 studies address all GSM categories
in their discussion. All studies address at least one GSM
category. The majority of the retrieved studies (29) mention
issues related to speed up development (CAT1), the core cate-
gory of the GSM. Another common category, addressed by
26 studies, is the team is the catalyst of development (CAT4).
The importance of people has been widely discussed in
other software engineering studies (e.g. Cooper [109], De-
Marco [110], Coleman [111], Valtanen [112], Adolph and
Kruchten [113], and Cockburn [114]), advocating for the
need to empower people. Less than half of the studies
mention results related to product quality has low priority
(CAT3), accumulated technical debt (CAT5), and initial grow
hinders performance (CAT6). This indicates a potential lack of
research and suggests directions for future work.

6.3 Confounding factors

The purpose of this subsection is to identify which con-
founding factors might threaten the validity of the GSM.
While the mapping in subsection 6.2 validated the litera-
ture coverage of GSM’s categories, here we are interested



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 15

TABLE 3
GSM categories’ overlap with the SMS [2]

Author (year) CAT1 CAT2 CAT3 CAT4 CAT5 CAT6 CAT7 Count Ref.

Sutton (2000) X X X X X X X 7 [6]
Kajko-Mattson (2008) X X X X X X X 7 [9]
Crowne (2002) X X X X X X X 7 [3]
Coleman (2008) X X X X X X X 7 [17]
Coleman (2008) X X X X X X X 7 [16]
Coleman (2007) X X X X X X X 7 [34]
Carmel (1994) X X X X X X X 7 [35]
Yoffie (1999) X X X X X X 6 [39]
Zettel (2001) X X X X X 5 [101]
Jansen (2008) X X X X X 5 [59]
Heitlager (2007) X X X X X 5 [19]
Deias (2002) X X X X X 5 [43]
Ambler (2002) X X X X X 5 [38]
Wood (2005) X X X X 4 [102]
Tingling (2007) X X X X 4 [40]
Taipale (2010) X X X X 4 [46]
da Silva (2005) X X X X 4 [42]
Mirel (2000) X X X X 4 [56]
Midler (2008) X X X X 4 [48]
Tanabian (2005) X X X 3 [22]
Stanfill (2007) X X X 3 [103]
Mater (2000) X X X 3 [55]
Kuvinka (2011) X X X 3 [47]
Deakins (2005) X X X 3 [104]
Yogendra (2002) X X 2 [50]
Wall (2001) X X 2 [60]
Su-Chuang (2007) X X 2 [105]
Steenhuis (2008) X X 2 [106]
Sau-ling Lai (2010) X X 2 [107]
Kakati (2003) X X 2 [24]
Himola (2003) X X 2 [49]
Häsel (2010) X X 2 [108]
Hanna (2010) X X 2 [58]
Bean (2005) X X 2 [61]
Kim (2005) X 1 [57]
Fayad (1997) X 1 [54]
Chorev (2006) X 1 [23]

Count 29 22 13 26 18 14 20

in those variables that are not covered by the GSM and
might interfere with the theoretical model positively or neg-
atively [75]. We report those factors identified by the SMS,
but not considered by the GSM: creativity and innovation,
market requirements and application type, and developer
experience, summarized in Table 4.

Understanding the impact of a confounding factor on the
interpretation of the model is important for further analyses
and use of the GSM. A researcher, using the GSM (Section 4)
and its implications (Section 5), has to contextualize his
analysis with the startups’ basic demographic and back-
ground characteristics. For example, market requirements
(see Table 4) might undermine the generalizability of the
GSM. In such a scenario, avoiding minimum expectations
of quality assurance in “quality critical markets”, such as
security in banking services, would profoundly affect the
customers’ satisfaction.

7 THREATS TO VALIDITY

In this section we discuss the validity of the overall re-
search methodology. We structure the discussion according
to Wohlin’s taxonomy [115].

7.1 External validity

One threat to external validity is the selection of subjects
interviewed for the study. This threat affects GT, a qual-
itative research method using semi-structured interviews,
and centered on respondent’s opinions. To mitigate this
threat we selected interviewees that covered the positions of
CTOs and CEOs. Their broad perspectives on their startup
organization was the only data taken into consideration in
the study.

The majority of the studied startups are successful web
companies, introducing a potential bias in the develop-
ment of the GSM. In particular, we lack the perspective of
failed startups that potentially could have provided stronger
evidence for the relationships in the GSM. We partially
mitigated this threat by comparing the GSM with similar
models. The comparison helped in establishing the context
to which the study findings can be generalized. In particular
the previous model developed by Coleman [16] has allowed
us to identify similarities and differences, enabling a broader
reasoning related to factors that hinder maturing processes
in startups. In addition, we analyzed literature covered by
the SMS on startups. However, including companies focus-
ing on e.g. embedded real time systems or failed startups
might have led to different results.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 16

TABLE 4
Confounding factors in the GSM

Confounding factors Description

Creativity and innovation ([19]) The study reports how product-oriented development, in contrast to process imposition,
provides a degree of freedom to the development team that enhances the creativity of developers
and augments the innovation capability of the company in the early-stage.

Market requirements ([34]) and applica-
tion type ([6], [16], [17])

Their main impact is related to the adoption of flexible and reactive solutions for the develop-
ment process. In particular, the studies refer to the necessity of fulfillment of quality concerns
that goes beyond scalability and UX, when requirements are rigidly imposed or the application
domain is well-known. In these cases providing low-quality products to final users might
determine the failure of a startup.

Developer experience ([3], [39]) Startups often rely at the beginning on clever, but inexperienced developers. However, having
team members with deep experience would be a “double-edged sword”. Experience might
quickly provide structure and maturity to the development process; yet it might cause challenges
in managing self-confident overachievers that almost inevitably clash. Consequently, team
management might require control and coordination activities that hinder flexibility of the
development environment which is essential in early-stage startups.

7.2 Internal validity

To enhance internal validity, we created a three-dimensional
research framework. Through a Grounded Theory ap-
proach, supported by a systematic mapping study, inter-
views and follow-up questionnaires, we searched for con-
vergence among different sources of information to confirm
or contradict the generated theory. Our strategy included
also the collection of supporting artifacts (e.g. project plans,
meeting notes, bug repositories) to verify the statements
made by the interviews. However, none of the companies
could provide access to this information. Furthermore, the
only a subset (9 out of 13) of the interviewees returned the
questionnaire.

To validate the GSM we conducted a comparison of the
emergent theory with existing literature and previously de-
veloped models. With the theory validation we highlighted
and examined similarities, contrasts and explanations [116].
In this regard, Eisenhardt stated: “Tying the emergent theory
to existing literature enhances the internal validity, general-
izability, and theoretical level of the theory building from a
case study research [. . . ] because the findings often rest on
a very limited number of cases.” We identified important
confounding factors, related to innovation, market require-
ments and developer experience (see subsection 6.3). These
factors are not catered for in the GSM, even though they
are regarded (by other studies) to be relevant for the startup
context.

We mitigated reporting bias by packaging all needed
material for conducting new studies, providing an interview
package with instructions available in the supplemental
material of this paper [72]. Moreover, two researchers not
involved in the execution of the study conducted a peer-
review analysis of the theory’s constructs. To control dis-
tortion during analysis we made extensive use of memos
and comparative analysis, through which we were able to
check if data fit into the emerging theory and countered
subjectivity.

7.3 Construct validity

One threat to this study is a possible inadequate descrip-
tion of constructs. To diminish this risk, the entire study
constructs have been adapted to the terminology utilized

by practitioners and defined at an adequate level for each
theoretical conceptualization. For instance, we defined Time
shortage in terms of Investor pressure, CEO/business pressure,
Demo presentations at events and internal final deadline as used
by most of the interviewees in the study. Moreover, during
the coding of interview transcripts, we adopted explanatory
descriptive labels for theoretical categories, to capture the
underlying phenomenon without losing relevant details.

The second important threat is caused by the fact that
interviewees might already be aware of the possible emer-
gent theories analyzed by researchers. To reduce this risk,
we did not disclose any goal or emergent results to the
interviewees.

7.4 Conclusion validity

Grounded Theory has been applied by other researchers in
similar contexts to attest relationships among conceptual-
izations of an examined phenomenon (see [34], [117], [17]).
Those relationships should be verified in such a way that
emerging findings remain consistent as further data is col-
lected. In particular we were prepared to modify generated
categories so that the new data could be adapted into the
emerging theory according to the concepts of theoretical
sampling and saturation.

According to the theoretical sampling concept, we ad-
justed our study design and the emergent theory until
only marginal results were generated. Moreover, to enhance
reliability of the outcome conceptualizations and relations,
we conducted the coding of interviews by following a
systematic process.

An important issue is related to the fact that the limited
number of interviews might not represent the complete sce-
narios in our study context. This issue is partially mitigated
as result of the theoretical saturation concept. Ramer [118],
comparing quantitative to qualitative studies, states that:
“reaching data saturation, which involves obtaining data
until no new information emerges, is critical for obtaining
applicability in qualitative research”. After attesting that no
more relevant information could be gathered from executing
additional interviews, we iterated the Grounded Theory
cycle one more time, verifying that the explanatory power
of the core category was fulfilled.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 17

8 CONCLUSION

Startups are able to produce cutting-edge software products
with a wide impact on the market, significantly contributing
to the global economy. Software development, especially
in the early-stages, is at the core of the companies’ daily
activities. Despite their high failure rate, an earlier sys-
tematic mapping study [2] found that the proliferation of
startups is not matched by a scientific body of knowledge.
To be able to intervene on software development strategies
of startups with scientific and engineering approaches, the
first step is to understand startups’ behavior. Hence, in this
paper, we provide an initial explanation of the underlying
phenomenon by means of a Grounded Theory study based
on 13 cases. We focused on early engineering activities, from
idea conception to the first open beta release of the product.

We grounded the Greenfield Startup Model (GSM) on
the hindsight knowledge collected from practitioners with
the aim of explaining how development strategies are en-
gineered and practices are utilized in startups. The ex-
planatory capability and correctness of the model has been
validated through systematic comparisons with the state-
of-the-art. The SMS revealed a multi-faceted state-of-the-
art, lacking support for software development activities in
startup companies. On the other hand, the study presented
in this paper, provides a broad set of empirical evidence
obtained by a Grounded Theory approach.

The overall results of this study found that the driv-
ing characteristics of startups were uncertainty, lack of
resources, and time-pressure. These factors influence the
software development to an extent that transforms every
decision related to the development strategies into a diffi-
cult trade-off for the company. Moreover, although startups
share characteristics with similar SE contexts (e.g. market-
driven development, small companies and web engineer-
ing), a unique combination of factors poses a whole new set
of challenges that need to be addressed by further research.
When bringing the first product to market, startups’ most
urgent priority is releasing the product as quickly as possi-
ble to verify the product/market fit, and to adjust the busi-
ness and product trajectory according to early feedback and
collected metrics. At this stage, startups often discard formal
project management, documentation, analysis, planning,
testing and other traditional process activities. Practitioners
take advantage of an evolutionary prototyping approach,
using well-integrated tools and externalizing complexity to
third party solutions.

However, the need to restructure the product and con-
trol the engineering activities when the company grows
counterbalances the initial gain of flexibility and speed. If
successful, the startup will face growth of customers, em-
ployees and product functionalities that leads to the neces-
sity of controlling the initial chaotic software development
environment. The most significant challenge for early-stage
startups is finding the sweet spot between being fast enough
to enter the market early and controlling the amount of
accumulated technical debt.

What follows from the GSM are four software develop-
ment objectives that need to be considered by early-stage
startups and researchers seeking to improve state-of-the-art:

• Integration of scalable solutions with fast iterations and
minimal set of functionalities.

• Empowerment of the team-members granting them
the responsibility and autonomy to be involved in all
activities of the development phase.

• Improvement of workflow patterns through the initia-
tion of a minimal project management.

• Adaptation of Lean and Agile development practices
after the initial chaotic startup phase.

In this paper we discussed a number of novel challenges
for both practitioners and researchers, while presenting a
first set of concepts, terms and activities for the rapidly
increasing startup phenomenon. By making a comparison
with Berry’s definition of SE [119], we would like to see
the rise of a new discipline - startup engineering - which
can be defined as the use of scientific, engineering, managerial
and systematic approaches with the aim of successfully developing
software systems in startup companies.

ACKNOWLEDGMENTS

The authors would like to thank the Blekinge Institute of
Technology (Sweden) and the Free University of Bolzano
(Italy), all the participants for their support of this research,
and Philip Stastny for proofreading the manuscript.

REFERENCES

[1] D. Smagalla, “The truth about software startups,” MIT Sloan
Manage. Rev. (USA), vol. 45, no. 2, p. 7, 2004.

[2] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software development in startup com-
panies: A systematic mapping study,” Information and Software
Technology, vol. Volume 56, no. Issue 10, pp. 1200–1218, October
2014.

[3] M. Crowne, “Why software product startups fail and what to
do about it,” in Proceedings International Engineering Management
Conference (IEMC), 2002, pp. 338–343.

[4] A. Maccormack, “How Internet Companies Build Software,” MIT
Sloan Management Review, vol. 42, no. 2, pp. 75–84, 2001.

[5] K. M. Eisenhardt and S. L. Brown, “Time pacing: competing in
markets that won’t stand still.” Harvard Business Review, vol. 76,
no. 2, pp. 59–69, 1998.

[6] S. M. Sutton, “The role of process in software start-up,” IEEE
Software, vol. 17, no. 4, pp. 33–39, Aug. 2000.

[7] G. Coleman, “An empirical study of software process in prac-
tice,” in Proceedings Hawaii International Conference on System
Sciences (HICSS), 2005, p. 315c.

[8] S. Blank, The four steps to the epiphany, 1st ed. CafePress, Feb
2005.

[9] M. Kajko-Mattsson and N. Nikitina, “From Knowing Nothing to
Knowing a Little: Experiences Gained from Process Improvement
in a Start-Up Company,” in Proceedings International Conference on
Computer Science and Software Engineering (CSSE), 2008, pp. 617–
621.

[10] T. W. Archibald, L. C. Thomas, and E. Possani, “Keep or return?
Managing ordering and return policies in start-up companies,”
European Journal of Operational Research, vol. 179, no. 1, pp. 97–
113, May 2007.

[11] R. Frigg and S. Hartmann, “Models in science,” in The Stanford
Encyclopedia of Philosophy, fall 2012 ed., E. N. Zalta, Ed., 2012.

[12] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model
of technical debt and interest,” in Proceedings 2nd Workshop on
Managing Technical Debt (MTD), 2011, pp. 1–8.

[13] C. Izurieta, A. Vetrò, and N. Zazworka, “Organizing the tech-
nical debt landscape,” in Proceedings 3rd Workshop on Managing
Technical Debt (MTD), 2012, pp. 23–26.

[14] R. Grimaldi and A. Grandi, “Business incubators and new ven-
ture creation: an assessment of incubating models,” Technovation,
vol. 25, no. 2, pp. 111–121, Feb. 2005.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 18

[15] C. M. Christensen, The Innovator’s Dilemma. Harvard Business
School Press, 1997.

[16] G. Coleman and R. O’Connor, “An investigation into software
development process formation in software start-ups,” Journal
of Enterprise Information Management, vol. 21, no. 6, pp. 633–648,
2008.

[17] ——, “Investigating software process in practice: A grounded
theory perspective,” Journal of Systems and Software, vol. 81, no. 5,
pp. 772–784, May 2008.

[18] J. Bach, “Microdynamics of process evolution,” Computer, vol. 31,
pp. 111–113, 1998.

[19] I. Heitlager, R. Helms, and S. Brinkkemper, “A tentative tech-
nique for the study and planning of co-evolution in product,”
in 3rd International Workshop on Software Evolvability, 2007, pp. 42
–47.

[20] K. Martin and B. Hoffman, “An open source approach to devel-
oping software in a small organization,” Software, IEEE, vol. 24,
no. 1, pp. 46 –53, Jan. 2007.

[21] A. Cockburn, Surviving Object-Oriented Projects. Addison-Wesley
Professional, 1998.

[22] M. Tanabian, “Building high-performance team through effective
job design for an early stage software start-up,” in Proceedings
International Engineering Management Conference (IEMC), 2005, pp.
789–792.

[23] S. Chorev and A. R. Anderson, “Success in Israeli high-tech start-
ups; Critical factors and process,” Technovation, vol. 26, no. 2, pp.
162–174, Feb. 2006.

[24] M. Kakati, “Success criteria in high-tech new ventures,” Techno-
vation, vol. 23, no. 5, pp. 447–457, May 2003.

[25] M. Marmer, B. L. Herrmann, E. Dogrultan, R. Berman, C. Eesley,
and S. Blank, “The startup ecosystem report 2012,” Startup
Genome, Tech. Rep., 2012.

[26] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm,
“An industrial case study on distributed prioritisation in market-
driven requirements engineering for packaged software,” Re-
quirements Engineering, vol. 6, no. 1, pp. 51–62, 2001.

[27] J. Natt Och Dag, “Elicitation and management of user require-
ments in market-driven software development,” Ph.D. disserta-
tion, Department of Communication Systems Lund Institute of
Technology, 2002.

[28] P. Sawyer, I. Sommerville, and G. Kotonya, “Improving market-
driven re processes,” in International Conference on Product-Focused
Software Process Improvement (PROFES), 1999, pp. 222–236.

[29] C. Potts, “Invented requirements and imagined customers: re-
quirements engineering for off-the-shelf software,” in Proceedings
2nd International Symposium on Requirements Engineering (ISRE),
mar 1995, pp. 128 – 130.

[30] L. Karlsson, Å. G. Dahlstedt, J. Natt Och Dag, B. Regnell, and
A. Persson, “Challenges in market-driven requirements engi-
neering - an industrial interview study,” in Proceedings 8th In-
ternational Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ), 2002.

[31] A. Dahlstedt, “Study of current practices in marketdriven re-
quirements engineering,” in Third Conference for the Promotion of
Research in IT, 2003.

[32] M. Keil and E. Carmel, “Customer-developer links in software
development,” Commun. ACM, vol. 38, no. 5, pp. 33–44, May
1995.

[33] C. Alves, S. Pereira, and J. Castro, “A Study in Market-Driven Re-
quirements Engineering,” Universidade Federal de Pernambuco,
Tech. Rep., 2006.

[34] G. Coleman and R. O’Connor, “Using grounded theory to under-
stand software process improvement: A study of Irish software
product companies,” Information and Software Technology, vol. 49,
no. 6, pp. 654–667, 2007.

[35] E. Carmel, “Time-to-completion in software package startups,”
Proceedings of the System Sciences, pp. 498–507, 1994.

[36] M. Lehman, “Programs, life cycles, and laws of software evolu-
tion,” in Proceedings of the IEEE, vol. 68, no. 9, Sep. 1980, pp. 1060
– 1076.

[37] R. Banker and G. Davis, “Software development practices, soft-
ware complexity, and software maintenance performance: A field
study,” Management Science, vol. 44, no. 4, pp. 433–450, 1998.

[38] S. Ambler, “Lessons in agility from Internet-based development,”
IEEE Software, vol. 19, no. 2, pp. 66–73, 2002.

[39] D. Yoffie, “Building a company on Internet time: Lessons from
netscape,” California Management Review, vol. 4, no. 3, 1999.

[40] P. Tingling, “Extreme programming in action: a longitudinal
case study,” Proceedings 12th International Conference on Human-
computer Interaction: Interaction Design and Usability (HCI), pp.
242–251, 2007.

[41] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[42] A. da Silva and F. Kon, “XP south of the equator: An experi-
ence implementing XP in Brazil,” in Proceedings 6th International
Conference on Extreme Programming and Agile Processes in Software
Engineering (XP), 2005, pp. 10–18.

[43] R. Deias and G. Mugheddu, “Introducing XP in a start-up,”
European Internet Services Company, 2002.

[44] N. Gautam and N. Singh, “Lean product development: Max-
imizing the customer perceived value through design change
(redesign),” International Journal of Production Economics, vol. 114,
no. 1, pp. 313–332, Jul. 2008.

[45] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile soft-
ware development methods,” Relatório Técnico, Finlândia, 2002.

[46] M. Taipale, “Huitale - A story of a Finnish lean startup,” in Lean
Enterprise Software and Systems, ser. Lecture Notes in Business
Information Processing, 2010, vol. 65, pp. 111–114.

[47] K. Kuvinka, “Scrum and the Single Writer,” in Proceedings of
Technical Communication Summit, 2011, pp. 18–19.

[48] C. Midler and P. Silberzahn, “Managing robust development
process for high-tech startups through multi-project learning: The
case of two European start-ups,” International Journal of Project
Management, vol. 26, no. 5, pp. 479–486, Jul. 2008.

[49] O.-P. Hilmola, P. Helo, and L. Ojala, “The value of product
development lead time in software startup,” System Dynamics
Review, vol. 19, no. 1, pp. 75–82, 2003.

[50] S. Yogendra, “Aligning business and technology strategies: a
comparison of established and start-up business contexts,” in
Proceedings Internal Engineering Management Conference (IEMC),
2002, pp. 2–7.

[51] C. McPhee and A. Eberlein, “Requirements engineering for time-
to-market projects,” in Proceedings 9th International Conference on
Engineering of Computer-Based Systems (ECBS), 2002, pp. 17–24.

[52] M. A. Cohen, J. Eliasberg, and T.-H. Ho, “New product devel-
opment: The performance and time-to-market tradeoff,” Manage-
ment Science, vol. 42, no. 2, pp. 173–186, Feb. 1996.

[53] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Contin-
uous Innovation to Create Radically Successful Businesses. Crown
Business, 2011.

[54] M. Fayad, “Process assessment considered wasteful,” Communi-
cations of the ACM, vol. 40, no. 11, pp. 125–128, 1997.

[55] J. Mater and B. Subramanian, “Solving the software quality
management problem in Internet startups,” in Proceedings 18th
Annual Pacific Northwest Software Quality Conference, 2000, pp.
297–306.

[56] B. Mirel, “Product, process, and profit: the politics of usability
in a software venture,” ACM Journal of Computer Documentation
(JCD), vol. 24, no. 4, pp. 185–203, 2000.

[57] E. Kim and S. Tadisina, “Factors impacting customers’ initial trust
in e-businesses: an empirical study,” in Proceedings 38th Hawaii
International Conference on System Sciences (HICSS), vol. 07, 2005,
pp. 1–10.

[58] R. Hanna and T. U. Daim, “Information technology acquisition in
the service sector,” International Journal of Services Sciences, vol. 3,
no. 1, p. 21, 2010.

[59] S. Jansen, S. Brinkkemper, and I. Hunink, “Pragmatic and Oppor-
tunistic Reuse in Innovative Start-up Companies,” IEEE Software,
vol. 25, no. 6, pp. 42–49, 2008.

[60] D. Wall, “Using open source for a profitable startup,” Computer,
vol. 34, no. 12, pp. 158 –160, dec 2001.

[61] L. Bean and D. D. Hott, “Wiki: A speedy new tool to manage
projects,” Journal of Corporate Accounting & Finance, vol. 16, no. 5,
pp. 3–8, Jul. 2005.

[62] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical
debt,” Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516,
2013.

[63] W. Cunningham. The WyCash Portfolio Management Sys-
tem. [Online]. Available: http://c2.com/doc/oopsla92.html (Ac-
cessed : Nov. 25, 2013).

[64] Fourth International Workshop on Man-
aging Technical Debt. [Online]. Available:
http://www.sei.cmu.edu/community/td2013/ (Accessed :
Nov. 25, 2013).

http://c2.com/doc/oopsla92.html
http://www.sei.cmu.edu/community/td2013/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 19

[65] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman,
K. Sullivan, and N. Zazworka, “Managing technical debt in
software-reliant systems,” in Proceedings FSE/SDP Workshop on
Future of Software Engineering Research (FoSER), 2010, pp. 47–52.

[66] Microsoft, Microsoft Application Architecture Guide. Microsoft
Press, 2009.

[67] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. K. Cheng, R. Per-
madi, and R. Feldt, “Evaluation and measurement of software
process improvement:a systematic literature review,” Software
Engineering, IEEE Transactions on, vol. 38, no. 2, pp. 398–424,
March 2012.

[68] B. G. Glaser, Theoretical sensitivity : advances in the methodology of
grounded theory. Sociology Press, 1978.

[69] H. M. Edwards, S. McDonald, and S. Michelle Young, “The reper-
tory grid technique: Its place in empirical software engineering
research,” Information and Software Technology, vol. 51, no. 4, pp.
785–798, Apr. 2009.

[70] A. L. Strauss and J. M. Corbin, Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory, P. Labella,
Ed. Sage Publications, 1998.

[71] J. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13,
no. 1, pp. 3–21, 1990.

[72] C. Giardino, N. Paternoster, M. Unterkalmsteiner,
T. Gorschek, and P. Abrahamsson, “Supplemental material
to ”Software development in startup companies: The
greenfield startup model”,” 2015. [Online]. Available:
http://www.bth.se/com/mun.nsf/pages/greenfield

[73] C. W. Dawson, Projects in Computing and Information Systems A
Student ’ s Guide. Pearson Prentice Hall, 2009.

[74] R. K. Yin, Case study research: design and methods. Sage Publica-
tions, 1994.

[75] Colin Robson, Real World Research: A Resource for Social Scientists
and Practitioner-Researchers. John Wiley and Sons, 2009.

[76] W. J. Orlikowski, “CASE Tools as Organizational Change: Inves-
tigating Incremental and Radical Changes in Systems Develop-
ment,” MIS Quarterly, vol. 17, no. 3, p. 309, Sep. 1993.

[77] G. Coleman and R. O’Connor, “Software process in practice: A
Grounded Theory of the Irish software industry,” in Proceedings
13th European Conference on Software Process Improvement (Eu-
roSPI), 2006, pp. 28–39.

[78] A. Davis, “Operational prototyping: a new development ap-
proach,” IEEE Software, vol. 9, no. 5, pp. 70 –78, 1992.

[79] S. Borodovsky and S. Rosset, “A/b testing at SweetIM: The
importance of proper statistical analysis,” in Proceedings 11th
International Conference on Data Mining Workshops (ICDMW), 2011,
pp. 733–740.

[80] S. Zhong, C. Liping, and C. Tian-en, “Agile planning and de-
velopment methods,” in 3rd International Conference on Computer
Research and Development (ICCRD), 2011, pp. 488 –491.

[81] R. Pooley and P. King, “The unified modelling language and
performance engineering,” IEE Proceedings Software, vol. 146,
no. 1, pp. 2 –10, 1999.

[82] M. Poppendieck and T. Poppendieck, Implementing Lean Software
Development: From Concept to Cash. Addison-Wesley Professional,
2006.

[83] F. Maurer and S. Martel, “Extreme programming. rapid devel-
opment for web-based applications,” IEEE Internet Computing,
vol. 6, no. 1, pp. 86–90, 2002.

[84] C. F. Kurtz and D. J. Snowden, “The new dynamics of strategy:
Sense-making in a complex and complicated world,” IBM Sys-
tems Journal, vol. 42, no. 3, pp. 462 –483, 2003.

[85] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for
technology transfer in practice,” IEEE Software, vol. 23, no. 6, pp.
88–95, 2006.

[86] W. Randolph, “Navigating the journey to empowerment,” Orga-
nizational Dynamics, vol. 23, no. 4, pp. 19 – 32, 1995.

[87] Y. Seung-Bum and C. Sang Ok, “Employee empowerment and
team performance: Autonomy, responsibility, information, and
creativity,” Team Performance Management, vol. 15, no. 5/6, 2009.

[88] S. Fricker, T. Gorschek, C. Byman, and A. Schmidle, “Handshak-
ing with implementation proposals: Negotiating requirements
understanding,” IEEE Software, vol. 27, no. 2, pp. 72–80, 2010.

[89] S. Fricker, T. Gorschek, and M. Glinz, “Goal-oriented require-
ments communication in new product development,” in Proceed-

ings 2nd International Workshop on Software Product Management (
IWSPM), 2008, pp. 27–34.

[90] M. Aoyama, “Persona-and-scenario based requirements engi-
neering for software embedded in digital consumer products,”
in Proceedings 13th International Conference on Requirements Engi-
neering (RE), 2005, pp. 85–94.

[91] J. Rasmusson, “Agile project initiation techniques - the inception
deck and boot camp,” in Proceedings of the Conference on AGILE,
2006, pp. 337–341.

[92] M. Svahnberg, T. Gorschek, T. Nguyen, and M. Nguyen,
“Uni-repm: validated and improved,” Requirements Engineering,
vol. 18, no. 1, pp. 85–103, 2013.

[93] P. Kruchten, R. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” Software, IEEE, vol. 29, no. 6,
pp. 18–21, 2012.

[94] R. Rohrbeck, J. Heuer, and H. Arnold, “The technology radar -
an instrument of technology intelligence and innovation strat-
egy,” in International Conference on Management of Innovation and
Technology (ICMIT), 2006, pp. 978–983.

[95] N. Shehabuddeen, D. Probert, and R. Phaal, “From theory to
practice: challenges in operationalising a technology selection
framework,” Technovation, vol. 26, no. 3, pp. 324 – 335, 2006.

[96] G. Azzone and R. Manzini, “Quick and dirty technology as-
sessment: The case of an italian research centre,” Technological
Forecasting and Social Change, vol. 75, no. 8, pp. 1324 – 1338, 2008.

[97] G. Aranda, A. Vizcaino, A. Cechich, and M. Piattini, “Technology
selection to improve global collaboration,” in Proceedings Interna-
tional Conference on Global Software Engineering (ICGSE), 2006, pp.
223–232.

[98] R. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje, and S. Slaugh-
ter, “Is ”internet-speed” software development different?” IEEE
Software, vol. 20, no. 6, pp. 70–77, 2003.

[99] F. Brooks Jr, “No Silver Bullet — Essence and Accidents of
Software Engineering,” Computer, vol. 20, no. 4, pp. 10–19, 1987.

[100] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, and
R. Murphy, “An exploratory study of why organizations do not
adopt CMMI,” Journal of Systems and Software, vol. 80, no. 6, pp.
883–895, Jun. 2007.

[101] J. Zettel, F. Maurer, J. Münch, and L. Wong, “LIPE: a lightweight
process for e-business startup companies based on extreme pro-
gramming,” in Proceedings 3rd International Conference on Product
Focused Software Process Improvement (PROFES). Springer, 2001,
pp. 255–270.

[102] D. Wood, “Open Source Software Strategies for Venture-Funded
Startups,” MIND Laboratory, University of Maryland, Tech. Rep.
TR-MS1287, 2005.

[103] R. Stanfill and T. Astleford, “Improving Entrepreneurship Team
Performance through Market Feasibility Analysis, Early Iden-
tification of Technical Requirements, and Intellectual Property
Support,” in American Society for Engineering Education Annual
Conference, 2007.

[104] E. Deakins and S. Dillon, “A helical model for managing in-
novative product and service initiatives in volatile commercial
environments,” International Journal of Project Management, vol. 23,
no. 1, pp. 65–74, Jan. 2005.

[105] S.-C. Li, “The role of value proposition and value co-production
in new internet startups: How new venture e-businesses achieve
competitive advantage,” in Portland International Center for Man-
agement of Engineering and Technology (PICMET), 2007, pp. 1126
–1132.

[106] H.-J. Steenhuis and E. de Bruijn, “Innovation and technology
based economic development: Are there short-cuts?” in Proceed-
ings 4th International Conference on Management of Innovation and
Technology (ICMIT), 2008, pp. 837–841.

[107] S.-l. Lai, “Chinese Entrepreneurship in the Internet Age : Lessons
from Alibaba.com,” World Academy of Science, Engineering and
Technology, vol. 72, pp. 405–411, 2010.

[108] M. Häsel, N. Breugst, and T. Kollmann, “IT Competence in
Internet Founder Teams An Analysis of Preferences and Product
Innovativity,” Business & Information System Engineering, vol. 52,
no. 4, pp. 210–217, 2010.

[109] R. Cooper, “An Investigation into the New Product Process :
Steps, Deficiencies, and Impact,” Journal of product innovation
management, vol. 3, no. 2, pp. 71–85, 1986.

[110] T. DeMarco, Peopleware: Productive Projects and Teams, 2nd ed.
Dorset House, 1999.

http://www.bth.se/com/mun.nsf/pages/greenfield


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, XXXX XXXX 20

[111] G. Coleman, “eXtreme Programming (XP) as a ”Minimum”
Software Process : A grounded theory,” in Proceedings 28th An-
nual International Computer Software and Applications Conference
(COMPSAC), 2004, pp. 4–5.

[112] A. Valtanen, “Big Improvements with Small Changes : Improving
the Processes of a Small Software Company,” in Proceedings
9th International Conference on Product-Focused Software Process
Improvement (PROFES), 2008, pp. 258–272.

[113] S. Adolph and P. Kruchten, “Reconciling Perspectives: How Peo-
ple Manage the Process of Software Development,” in Proceedings
of the 2011 Agile Conference, 2011, pp. 48–56.

[114] A. Cockburn, “Characterizing people as non-linear, first-order
components in software development.” in Proceedings 4th Inter-
national Multi-Conference on Systems, Cybernetics and Informatics,
1999.

[115] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

[116] K. M. Eisenhardt and K. M. Eisenhardt, “Building Theories from
Case Study Research,” The Academy of Management Review, vol. 14,
no. 4, pp. 532–550, 2007.

[117] S. Basri and R. O’Connor, “Towards an Understanding of Soft-
ware Development Process Knowledge in Very Small Compa-
nies,” in Informatics Engineering and Information Science, ser. Com-
munications in Computer and Information Science, 2011, vol. 253,
pp. 62–71.

[118] L. Ramer, “Quantitative versus qualitative research?” Journal of
obstetric, gynecologic, and neonatal nursing, vol. 18, no. 1, pp. 7–8,
1989.

[119] D. Berry, “Academic Legitimacy of the Software Engineering Dis-
cipline,” Software Engineering Institute, Tech. Rep. November,
1992.

Carmine Giardino received a BSc degree
in Computer Science from the University of
Salerno in 2010, a MSc in Software Engineer-
ing at the Free University of Bolzano/Bozen
and Blekinge Institute of Technology in 2013.
He is a PhD student at the Free University
of Bolzano/Bozen. His research interests in-
clude software startups and information services
with focus on trading securities. Contact him at
carmine.giardino@gmail.com

Nicoló Paternoster received a BSc degree
in Applied Mathematics from the University of
Roma - Tor Vergata in 2009 and a MSc in
Software Engineering at the Free University of
Bolzano/Bozen and Blekinge Institute of Tech-
nology in 2013. He works as freelance software
engineer and consultant mainly for early-stage
startups. His research interest includes software
startups and blockchain technology. For more
information or contact: http://adva.io

Michael Unterkalmsteiner received a BSc de-
gree in Applied Computer Science from Free
University of Bozen-Bolzano in 2007, a MSc and
PhD degree in Software Engineering at Blekinge
Institute of Technology (BTH) in 2009 and 2015
respectively. He is a postdoctoral researcher at
BTH. His research interests include software
repository mining, software measurement and
testing, process improvement, and requirements
engineering. He is a member of the IEEE. For
more information or contact: www.lmsteiner.com

Tony Gorschek is a Professor of Software En-
gineering at Blekinge Institute of Technology
(BTH). He has over ten years industrial expe-
rience as a CTO, senior executive consultant
and engineer, but also as chief architect and
product manager. In addition he has built up five
startups in fields ranging from logistics to inter-
net based services. Currently he manages his
own consultancy company, works as a CTO, and
serves on several boards in companies develop-
ing cutting edge technology and products. His

research interests include requirements engineering, technology and
product management, process assessment and improvement, quality
assurance, and practical innovation. www.gorschek.com

Pekka Abrahamsson received the PhD degree
in software engineering from the University of
Oulu, Finland, in 2002. He is a full professor
of software engineering at the Department of
Computer and Information Science, Norwegian
University of Science and Technology, NTNU,
Trondheim, Norway. Prior to his current appoint-
ment, he has served in professor positions at the
Free University of Bozen Bolzano, University of
Helsinki and VTT Technical Research Centre of
Finland. His research interests are in the empir-

ical software engineering, software startups and innovation. He is the
recipient of Nokia Foundation Award in 2007 for his merits in agile
software development research and his European research project on
Agile methods in embedded systems received ITEA Achievement Silver
award in 2007. He heads today the global Software Startup Research
Network and is a member of the IEEE and ACM.

http://adva.io

	Introduction
	Background
	General lack of research in startups
	Software development in startups
	Software process improvement in startups
	Technical debt
	Terminology

	Research methodology
	Design and Execution
	Data collection
	Data analysis
	Paradigm model generation
	Theory Validation

	Results: Greenfield Startup Model
	Model overview
	Severe lack of resources
	Team as the development catalyst
	Evolutionary approach
	Product quality has low priority
	Speed-up development
	Accumulated technical debt
	Initial growth hinders performance
	Paradigm model

	Implications of the GSM
	Light-weight methodology
	Empowering the team members
	Focus on minimal set of functionalities
	Paying back the technical debt
	Synthesis

	Theory Validation
	Comparison with other models
	Theoretical categories and existing literature
	Confounding factors

	Threats to Validity
	External validity
	Internal validity
	Construct validity
	Conclusion validity

	Conclusion
	References
	Biographies
	Carmine Giardino
	Nicoló Paternoster
	Michael Unterkalmsteiner
	Tony Gorschek
	Pekka Abrahamsson


