
A Multi-Objective Technique
to Prioritize Test Cases

Alessandro Marchetto, Md. Mahfuzul Islam, Waseem Asghar,

Angelo Susi, and Giuseppe Scanniello,Member, IEEE

Abstract—While performing regression testing, an appropriate choice for test case ordering allows the tester to early discover faults in

source code. To this end, test case prioritization techniques can be used. Several existing test case prioritization techniques leave out

the execution cost of test cases and exploit a single objective function (e.g., code or requirements coverage). In this paper, we present

a multi-objective test case prioritization technique that determines the ordering of test cases that maximize the number of discovered

faults that are both technical and business critical. In other words, our new technique aims at both early discovering faults and reducing

the execution cost of test cases. To this end, we automatically recover links among software artifacts (i.e., requirements specifications,

test cases, and source code) and apply a metric-based approach to automatically identify critical and fault-prone portions of software

artifacts, thus becoming able to give them more importance during test case prioritization. We experimentally evaluated our technique

on 21 Java applications. The obtained results support our hypotheses on efficiency and effectiveness of our new technique and on the

use of automatic artifacts analysis and weighting in test case prioritization.

Index Terms—Regression testing, requirements, testing, test case prioritization

Ç

1 INTRODUCTION

THE intent of regression testing is to ensure that enhance-
ments, patches, or configuration changes have not intro-

duced new faults in source code. Relevant activities in
regression testing are [1]: (i) test case selection; (ii) test case
minimization; and (iii) test case prioritization. The goal of
test case selection is to choose test cases that are relevant for
a specific part of an application or for performed changes.
On the other hand, test case minimization aims at reducing
the number of test cases to be executed by removing redun-
dant test cases, thus preserving the capability of a test suite
in discovering faults. Finally, the goal of test case prioritiza-
tion is to determine test case ordering that maximizes the
probability to early discover faults in source code. In other
words, it is of primary importance to identify test case
orderings that are effective (in terms of capability in early
discovering faults) and efficient (in terms of execution cost).
These factors are relevant because they represent technical
and business criteria for the success of a software project [2].

Test case prioritization techniques [1], [3] exploit several
algorithms to prioritize test cases. These techniques are
mostly based on a single dimension (e.g., code or require-
ments coverage) and assume that faults have all the same
relevance and that all software artifacts (e.g., source code
and requirements) are equally relevant. That is, these tech-
niques do not identify test case orderings that early reveal

both technical (e.g., coding faults) and business critical
faults (e.g., due to the misunderstanding of requirements).

We presented in [4] a technique to prioritize test cases
that explicitly considers: low- and high-level information
about test cases. In particular, it was based on the three
following dimensions: structural that concerns information
on source code exercised by test cases under analysis;
functional that regards coverage of users’ and application
requirements; and cost that concerns time to execute test
cases. A test case ordering was attained as a multi-objective
optimization problem to balance considered dimensions
with respect to traceability links among software artifacts
(i.e., application code, test cases, and requirements specifi-
cations). These links were recovered by applying Latent
Semantic Indexing (LSI) [5]. It is an established Information
Retrieval (IR) technique largely exploited to recover trace-
ability links (e.g., [6], [7]). A limitation for our previous pre-
sented technique [4] is that it equally weighted all portions
of application artifacts (i.e., source code and requirements)
during test case prioritization. However, it is often the case
in which different portions of application artifacts have dif-
ferent fault-proneness or testers have specific needs (e.g., a
given requirement or function has to be tested first).
To overcome that limitation, testers could be asked to man-
ually identify critical portions of application artifacts, thus
becoming able to give them more importance during test
case prioritization. However, this approach is costly for
human testers and also error-prone. In this paper, we
improve the solution highlighted before by leveraging the
capability of automatically identifying fault-prone portions
of software artifacts, according to some characteristics of the
source code of a given application (e.g., McCabe Cyclomatic
Complexity) and its requirements (e.g., the number of
classes that implement a requirement). Summarizing our
approach provides the following new research contribu-
tions: (i) a novel multi-objective test case prioritization

� A. Marchetto, M.M. Islam, and W. Asghar are independent researchers.
E-mail: {alex.marchetto, fuzul.islam, waseem960}@gmail.com.

� A. Susi is with the Fondazione Bruno Kessler. E-mail: susi@fbk.eu.
� G. Scanniello is with the DiMIE - University of Basilicata.

E-mail: giuseppe.scanniello@unibas.it.

Manuscript received 28 July 2014; revised 3 Aug. 2015; accepted 15 Dec.
2015. Date of publication 21 Dec. 2015; date of current version 21 Oct. 2016.
Recommended for acceptance by M. Cohen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2510633

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

mailto:
mailto:
mailto:

technique; (ii) the definition of a metric-based approach to
automatically identify potential critical and fault-prone por-
tions of application code and requirements; and (iii) a large
experimental evaluation.

As for our experimental evaluation, we have conducted
an experiment on 21 Java applications. We also compared
results obtained by applying our technique and those by
baseline approaches for test case prioritization, namely
random prioritization, code and additional code coverage
techniques, and a multi-objective approach based on code
coverage and test case execution cost [8], [9], [10], [11].
Another baseline technique for comparison was that we
previously presented in [4]. Outcomes suggested that our
technique is able to identify test case orderings that are
effective in terms of early fault discovery and efficient in
terms of test case execution cost.

In Section 2, we discuss related work, while the outline of
our approach is given in Section 3. The approach exploited
to recover traceability links is introduced in Section 4. In
Section 5, we present metrics and measurements used
in our technique, which is successively shown in Section 6.
In Section 7, we summarize the design of our investigation
and present and discuss achieved results. Final remarks
conclude the paper.

2 RELATED WORK

To prioritize and select test cases a number of techniques
have been proposed and empirically investigated [8], [9],
[10], [12], [13], [14], [15], [16], [17]. Yoo and Harman [1] and
Mohanty et al. [3] survey existing research work in these
fields. Results suggest that existing techniques mostly use
either structural or functional coverage criteria with respect
to source code executed by test cases. This is one of the
aspects that makes our proposal different from those in the
literature.

A number of approaches use code coverage and addi-
tional code coverage1 to prioritize test cases with respect to
their capability of executing the source code of software
under test (e.g., [10], [18]). Most of these approaches identify
test case orderings based on a single objective function
(e.g., code coverage). Only a few approaches based on
multi-objective optimization exist (e.g., [11], [12]). These
approaches mainly consider code coverage information and
execution cost of test cases: (i) optimize test cases by means
of a Pareto front using both code coverage and execution
cost or (ii) reduce a multi-objective problem to a single-
objective by using an optimization function. For example,
Yoo and Harman [11] show same benefits of a Pareto-front
optimality for test case selection. The authors present a two-
objective test case selection approach, where code coverage
and execution cost are explicitly considered when conduct-
ing test case selection. The approach can be also directly
applied to test case prioritization. This work presents some
similarities with that we present in this paper, namely the
objective formulation takes into account source code cover-
age as a measure of test adequacy and execution time as a
measure for cost. The most remarkable differences between
these two approaches can be summarized as follows: we

also consider the coverage of application requirements, to
link them with source code we applied an IR technique, and
we apply a metric-based approach to automatically identify
critical and fault-prone portions of software artifacts (both
source code and requirements). Another multi-objective test
case prioritization approach is proposed by Sun et al. [19]
for ordering test cases in GUI-based applications. In fact,
code (statement) coverage is traditionally used to test case
prioritize, while event coverage criteria are largely adopted
for GUI applications testing [20]. Hence, Sun et al. propose
a multi-objective test case prioritization approach that
exploits both criteria: statement and event coverage.

More traditionally, Salehie et al. [13], Kavitha et al. [21],
Arafeen and Do [22], and Nguyen et al. [23] propose techni-
ques to prioritize test cases according to application require-
ments. Test cases are mapped to requirements using a text-
to-text traceability links recovery technique and then test
cases are prioritized with the aim of maximizing user satis-
faction. In contrast with our proposal, the most critical
aspect of such techniques is that they mainly prioritize test
cases according to the sole information coming from
requirements, so ignoring the structure and the behavior of
application under test.

Yoo et al. [15] propose an approach to prioritize test cases
according to tester’s needs, while considering structural
information of software under test. Authors ask testers to
prioritize test cases conducting a pair-wise comparison of
them. To limit human effort, authors combine this manual
pair-wise comparison of test cases with test clustering based
on coverage information, thus improving scalability of their
technique. Then, testers are asked to prioritize groups of
test cases (according to the group representative test case)
rather than every test case. The authors also assume that
testers have complete knowledge on each test case. This
could not be true, e.g., in functional testing or in case of a
huge test suite.

Walcott et al. [14] present a technique to prioritize test
cases with respect to time constraints. This is typical for
those contexts in which execution time is limited by envi-
ronment constraints. This technique achieves good results
in terms of effectiveness. However, a few assumptions are
taken: different types of faults have same severity and exe-
cution cost of every test case is uniform. These assumptions
might be true only in a few specific contexts (e.g., applica-
tions based on the composition of third-party services).

Fang et al. [24] propose a similarity-based technique that
uses execution profiles of test cases to maximize diversity of
test cases. The execution frequency profiles of test cases are
collected and transformed into ordered sequences. Then,
test case diversity is computed by applying string edit dis-
tances between each pair of execution sequences of test
cases. This dis/similarity measure is used to establish test
case prioritization.

Li et al. [12] empirically assess effectiveness of greedy
and meta-heuristic algorithms to prioritize test cases using
code coverage measures. Conversely to other works, that
focused on the best criteria (e.g., code coverage, time) to pri-
oritize test cases, Li et al. mainly focus on the algorithm
used to compute optimal test case orderings. Results
suggest that meta-heuristic algorithms seem to be quite
efficient and effective for traversing the solution space, thus

1. Additional code coverage techniques evaluate each test case
according to the code portion that is uniquely covered by it.

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 919

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

promising to define optimal test orderings. According to
these results, we propose in our work the use of a meta-heu-
ristic algorithm to prioritize test cases according to the three
considered dimensions.

Unlike the studies discussed before, we propose a tech-
nique to prioritize test cases that considers low- (e.g.,
code coverage) and high-level (e.g., requirements cover-
age) information about test cases and that uses automati-
cally recovered traceability links among requirements,
source code, and test cases. Another remarkable differ-
ence between our work and those in the literature is that
we have conducted a more extensive experimentation on
several test suites and a large number of applications.

3 APPROACH OUTLINE

We present a multi-objective test case prioritization tech-
nique that determines the ordering of test cases that maxi-
mize the number of discovered faults that are both technical
and business critical. This approach automatically recovers
traceability links among software artifacts and applies a met-
ric-based approach to automatically identify critical and
fault-prone portions of software artifacts. In Fig. 1, we show
a behavioral view of our approach in terms of an UMLActiv-
ity Diagram with object flow [25]. Ellipses are phases of our
process, while rectangles are software artifacts produced
and/or consumed in each phase.

For each test case, the ExecutingTestCase phase provides
details on covered code statements and execution cost (the
artifacts : CodeCov and : ExecCost in Fig. 1), namely two of
the dimensions on which our approach is based on. The
RecoveringTraceabilityLinks phase is in charge of recover-
ing links between requirements and source code
(: LinksReqsCode) and between requirements and JUnit

test cases (: LinksReqsTestCases). Source code is consid-

ered as text and also requirements since they are described
in natural language. In Figs. 2 and 3, we show a fragment of
the class calculator.Exam and requirement addExam of
the application AveCalc,2 respectively. LSI allowed us to
find a link between calculator.Exam and addExam.
Links between requirements and classes estimate the
coverage of requirements that represents the third dimen-
sion of our approach. We provide details on the approach
used for the recovery of traceability links in Section 4.

Source code and requirements metrics (: CodeMetrics
and : ReqsMetric, respectively) are computed in the

ComputingMetrics phase. Traceability links between requi-
rements and source code are also used to compute require-
ments-level metrics. These links and both source code and
requirements metrics are then used to estimate maintainabil-
ity indexes (: MaintIndexCode and : MaintIndexReqs) for the

Fig. 1. Process outline modelle with an UML activity diagram with object flow.

2. It is one of the applications used in our empirical assessment.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

classes and the requirements of a given subject software in the
phase EstimatingMaintainability. Requirements and source
code classes are ordered according to their maintainability
indexes, respectively. These orderings are then used together
with covered code statements and execution costs (i.e., the
output of ExecutingTestCase) and recovered traceability
links between requirements and test cases to compute
cumulative measures for traceability links and both code cov-
erage and execution costs of test cases. These measures are
exploited to identify portions of application code and require-
ments that are potentially critical and fault-prone in the phase
IdentifyingCumulativeReqsAndCode. In Section 5,we describe
the three phases of our approachwe described just before. It is
worth remarking that the support provided by these three
phases represents the most important difference between our
current contribution and that we previously presented [4],
where testers had to manually identify critical portions of
application artifacts (e.g., source code and requirements).

The performance evaluation of all possible test case
orderings on the three choose dimensions is expensive in
case of test suites containing a large number of test cases. To
deal with this issue, the PrioritizingTestCase phase exploits
a multi-objective optimization method to prioritize test
cases according to our three dimensions. Several possible
evolutionary algorithms are available and applicable to the
problem of test case prioritization. In the work presented
here, we rely on the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II [26]). In fact, NSGA-II is widely used in
the solution of optimization problems in software engineer-
ing and demonstrated to be particularly suited for the prior-
itization problem [27], [28]. In Section 6, we provide details
on how NSGA-II has been used in our new approach.

4 TRACEABILITY RECOVERY

Requirements traceability regards the documentation of bi-
directional links among various related requirements and

associated software artifacts produced in the entire develop-
ment process. In other words, requirements traceability
refers to the ability to describe and follow the life of a
requirement, from its origins, through its development and
specification, to its subsequent deployment and use, and
through all periods of on-going refinement and iteration in
any of these phases [29]. This allows a software engineer to
understand relationships that exist within and across differ-
ent kinds of software artifacts. For example, documentation
of traceability links might be crucial to be aware about:
(i) source code in charge of implementing a given applica-
tion requirement; (ii) requirements implemented by a spe-
cific part of the source code; and (iii) source code exercised
by a test case.

Traceability links are very often not documented at all
and if this information exists it might be not updated or not
aligned with the current implementation and documenta-
tion (e.g., [30], [31], [32], [33]). Therefore, methods and tools
might be needed to infer traceability links among software
artifacts and requirements and source code, in particular. In
this regard, researchers have successfully applied IR techni-
ques [6], [33], [34], [35]. These approaches are mostly based
on lexical similarity of text contained in these artifacts [36].
In particular, artifacts are indexed by extracting information
about occurrences of terms within them and then a lexical
similarity measure is computed to establish whether or not
a traceability link might exist between two artifacts. Inde-
pendently from the IR technique, the process to recover
traceability links among software artifacts is similar.

LSI (sometimes referred to as Latent Semantic Analysis)
has been successfully applied in traceability field (e.g., [6],
[36]). Other text retrieval and IR techniques have been suc-
cessfully applied to the problem of recovering traceability
links among software artifacts. However, existing research
is contradictory on which text retrieval model and tech-
nique work best with source code data. For example, Mar-
cus and Maletic [6] experimentally observed that LSI
performs at least as well as Vector Space Model (VSM) [37]
and in some cases LSI outperforms VSM in recovering doc-
umentation-to-source-code traceability links. Conversely,
Abadi et al. [38] observed that VSM provides better results
than LSI in the recovery of traceability links among different
kinds of software artifacts. Similar results were also
obtained by Wang et al. [39]. Other authors advocate for the
use of Latent Dirichlet Allocation (LDA) [40]. We decided to

Fig. 2. The class calculator.Exam in AveCalc.

Fig. 3. The requirement AddExam in AveCalc.

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 921

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

use LSI because it is efficient and widely used in traceability
recovery field. The used approach is close to that proposed
by Marcus and Maletic [6] and then assessed by De Lucia
et al. [36]. The use of a different text retrieval model would
not alter the results of our test case prioritization approach.
The use of a different IR technique represent a possible
future direction for our research.

4.1 Latent Semantic Indexing

LSI assumes that there is some underlying or latent struc-
ture in word usage that is partially obscured by variability
in word choice, and uses statistical techniques to estimate
this latent structure. LSI uses information about co-occur-
rence of terms (latent structure) to automatically discover
synonymy between two or more terms. The latent structure
of the content is obtained by applying a Singular Value
Decomposition (SVD) to a m� n matrix C (also named
term-by-document matrix), where m is the number of
terms and n is the number of documents (artifacts in our
case). By applying SVD, each term and each artifact could
be represented by a vector in the k space (i.e., the
dimensionality reduction of the latent structure) of under-
lying concepts. Indeed, we use SVD to construct a low-
rank approximation Ck to the term-document matrix, for a
value of k that is far smaller than original rank of C. Thus,
we map each row/column to a k�dimensional space,
which is defined by k principal eigenvectors (correspond-

ing to the largest eigenvalues) of CCT and CTC. The matrix
Ck is itself still an m� n matrix, irrespective of k. The
selection of an appropriate value for k is an open issue. A
value for k should be large enough to fit the real structure
of text, but small enough so that we do not also fit the sam-
pling error or unimportant details.

4.2 IR-Based Traceability Recovery

In a typical text retrieval problem, a software engineer
writes a textual query and retrieves documents that are sim-
ilar to that query. In IR-based traceability recovery a set of
source artifacts (used as the query) are compared with set
of target artifacts (even overlapping). Hence, the number of
queries is equal to the number of source artifacts.

To compute similarities between vectors, we use the new
k-dimensional space as we did the original representation.
Similarity between vectors can be computed by different
measures (e.g., Euclidean distance) [41]. In traceability
recovery, the widely used measure is cosine similarity [36]
between each pair of source and target software artifacts.
The larger the cosine similarity value, the more similar the
source artifact to the target one is.

Source artifacts are normalized in the same way as tar-
get ones (i.e., the corpus). Different set of techniques could
be used (e.g., stop word removal and/or stemming). In
our case, normalization is performed by removing non-tex-
tual tokens, splitting terms composed of two or more
words, and eliminating all the terms from a stop word list
and with a length less than three characters. Finally, a Por-
ter stemmer [41] is applied on lexemes to reduce them to
their root form.

All possible pairs (candidate traceability links) are
reported in a ranked list. Irrelevant pairs of artifacts can be
removed using a threshold that selects only a subset of top

links, i.e., retrieved links. Well known strategies for thresh-
old selection are [36]: Constant Threshold, a constant thresh-
old is chosen; Scale Threshold, a threshold is computed as
percentage of best similarity value between two vectors;
Variable Threshold, all links among those candidate are
retrieved links whether their similarity values are in a fixed
interval. In this work, we use the Constant Threshold strat-
egy to limit possibility of loosing links by considering a
large number of link candidates. IR-based traceability recov-
ery approaches retrieve also links between source code and
target artifacts that do not coincide with correct ones: some
are correct and others not. This is why these approaches are
semi-automatic and require human intervention to remove
erroneously recovered traceability links. To reduce possible
biases in test case prioritization results due to human fac-
tors/decisions, we do not perform any further analysis to
remove erroneously recovered traceability links. It is worth
mentioning that a traceability recovery process could be
executed (e.g., in background) every time a tester want or
requirements and/or source code are modified in accor-
dance to maintenance tasks. In our case, this choice reduces
the impact of the overhead computational cost for the recov-
ery of traceability links on the execution of our test case pri-
oritization approach.

5 RELEVANT CODE AND REQUIREMENTS

In the following, we present metrics and algorithms
proposed to identify portions of application code and
requirements that are potentially critical and fault-prone.

5.1 Metrics

Code. Fault detection capability of a test suite cannot be
known before executing test cases. Therefore, we have to
resort to potential fault detection capability of a test suite. It
can be estimated considering the amount of code covered
by test cases in a test suite at run-time [8]. A test case that
covers a larger set of code statements has a higher potential
fault detection capability (i.e., potentially more faults
should be revealed) than one test case that covers a smaller
set of statements.

We define CCov(t) as the amount of code statements exer-
cised during the execution of a given JUnit test case t. A var-
iant of this code coverage measure is WCCov(t). For a given
test case, it is defined as a weighted source code coverage
measure in which the coverage of source code is computed
as follows:

WCCovðtÞ ¼
X

s2Statements

ws s 2 CodeCovered
0 otherwise;

�

where Statements is the set of source code statements. Code-
Covered is the set of statements covered by the execution of
the test case t, while s is a code statement of an application
and ws (0 � ws � 1) is a predefined weight associated to
each code statement. The higher the ws value, the greater
the relevance a tester gives to statements is. In our previous
work [4], we left the tester to manually specify such a
weight for different parts (e.g., Java classes and packages)
of code. In fact, this weight ws is expected to be useful to
customize the measurement of code coverage according to
testing needs. For example, a class implementing a critical

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

service for an application needs to be tested more than
other classes. In our approach, we exploit a metric-based
approach to automatically identify such a weight for each
Java class of the application under test by considering code
characteristics. Code metrics allow ordering application
classes according to their estimated fault-proneness when
computing artifact coverage.

Given a test suite S and an ordering OrdS for test cases in
this suite:

cumCCovðtiÞ ¼
[i

j¼1

CCovðtjÞ;

where ti is a test case in the suite. The cumulative code cov-
erage for ti is computed by summing single code coverage
(i.e., the code covered only by the test case) of all those test
cases from t0 to ti�1.

Requirements. The capability of a test case in exercising
users’ and/or application requirements depends on: (i) the
amount of requirements covered by this test case and (ii)
the relevance of covered requirements. Similarly to code
coverage measure, we defined and used RCov(t) and its
weighted variant WRCov(t). In particular, RCov(t) is the
measure of requirements coverage for test case t and meas-
ures application requirements exercised during the execu-
tion of t. On the other hand, WRCov(t) measures the
coverage for a test case as follows:

WRCovðtÞ ¼
X

r2Requirements

wr r 2 ReqsCovered
0 otherwise:

�

Requirements is a set containing the requirements of applica-
tion under test. ReqsCovered is the set of requirements cov-
ered by the execution of test case t, obtained by means
of traceability links recovered by applying our approach.
On the other hand, r is one of application requirements and
wr (0 � wr � 1) is weight associated to this requirement.
Requirements weight wr can be defined in several ways
according to fault-proneness of application requirements.
The larger wr, the greater the fault-proneness of require-
ment is. Our metric-based requirements prioritization
technique automatically identifies fault-prone application
requirements, thus to be highly weighted when computing
the coverage.

Given a test suite S and a possible ordering OrdS for test
cases of this suite, we define:

cumRCovðtiÞ ¼
[i

j¼1

RCovðtjÞ;

where ti is a test case of the suite. Cumulative requirements
coverage for test case ti is computed by summing single
requirements coverage (i.e., the requirements covered only
by the test case) of all those test cases from t0 to ti�1.

Execution cost. The execution cost of a test case can be
approximated by the time required to its execution. If
the implementation of test cases is available, their execu-
tion can be profiled to collect information about running
time. We defined Cost(t) as the time required to execute
test case t.

Given a test suite S and an ordering OrdS for test
cases of this suite, we defined cumCost(ti), where ti is

one of the test case of the suite. It represents the cumula-
tive execution of test case ti and it is computed as the
sum of execution costs of test cases preceding test case ti
2 OrdS .

Cost(suite) is the overall cost of test cases and is computed
as the sum of execution costs of all the test cases. We then
define:

InverseCostðtiÞ ¼ CostðsuiteÞ �
Xi

j¼1

CostðtjÞ:

5.2 Automatic Weighting

Our metric-based approach automatically weights both
code ws and requirements wr of the application under
test. In particular, we apply code metrics to measure a
Maintainability Index for each Java class (MIclass). This
index estimates the fault-proneness of each class. We use
such an estimation for defining an order of the applica-
tion classes. To prioritize all the requirements according
to how they are implemented, we also compute a Main-
tainability Index for each of these requirement (MIreq).
The idea that guides both code and requirements priori-
tization is to realize a most critical first strategy. That is,
we aim at increasing the possibility of testing the most
critical classes and requirements before the other classes
and requirements.

Our automatic weighting approach is composed of the
following steps:

1) Recovering traceability links. Links among software
artifacts (i.e., source code and requirements) are
recovered by applying LSI;

2) Computing metrics. For each class, we measure a set of
metrics such as: size, complexity, coupling, and
cohesion. For each requirement, a set of metrics is
also computed to measure properties characterizing
requirements: size, complexity, coupling, cohesion,
scattering, and tangling degree.

3) Estimating maintainability indexes. The computed met-
rics are used in a software quality model to compute
the maintainability index for each class and each
requirement based on their actual implementation in
the source code. Classes and requirements are
ordered by ranking according to their maintainabil-
ity index.

5.2.1 Computing Metrics

In Table 1, we summarize the used metrics. This table shows
the following information: the name of each metric, the ref-
erence to the paper that originally defined it, the measured
software property, and an intuitive definition of that metric.
A formal and precise definition of such metrics is beyond
the scope of our paper.

We adopt the Class-level Metrics (Table 1 top) to com-
puteMIclass. On the other hand, to computeMIreq, we adopt
two distinctive sets of metrics working at the following two
levels of granularity:

1) traditional object-oriented size metrics working at
class-level (Table 1 top), i.e., for each class of the target
application we measure each metric;

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 923

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

2) concern-oriented metrics3 working at requirements-
level (Table 1 bottom), i.e., for each requirement
we measure such metrics inspired to the concern
ones [45].

The rationale behind the use of these two types of metrics
is that class-level metrics measure the classes composing
each requirement in isolation, while requirements-level
metrics let us relate the requirements implemented with the
one of the other requirements of the application.

5.2.2 Estimating Maintainability Indexes

The maintainability index is obtained by means of the
following three steps:

Outliers identification. After computing the code and
requirements-level metrics, we identify outliers [47]. For a
given metric, outliers are elements (i.e., classes and require-
ments) whose values for such a metric exceed a given
threshold that is obtained on the base of the values the other
elements have for that metric. In our case, the outliers are
those elements having metric values within the highest/
lowest 15 percent of the value range defined by all elements

of the application [47]. For instance, if the CBO value ranges
between 0 and 56. Given two classes having CBOðc1Þ ¼ 52
and CBOðc2Þ ¼ 35, then c1 is an outliers for CBO (i.e., the
value of c1 is in the range 85-100 percent of CBO), while c2
is not an outliers.

Software quality model. In Table 2, we present the software
quality models (at class- and requirements-level) used to
compute the maintainability index MI for each class c and
requirements r, starting from the two sets of metrics in
Table 1. MIðcÞ represents an estimation of the maintain-
ability degree of each application code class c by consider-
ing its structural properties [47]. MIðrÞ represents an
estimation of the maintainability degree of the software
code implementing the requirements r by considering its
structural properties. The used models are inspired by
those by Lincke et al. [47]. In these models, the metrics are

TABLE 2
Software Quality Model

Maintainability: Software Quality Models

Class-level Model

CBO RFC LCOM LOCs NOM DIT NOC MCC WMC
2 2 2 1 1 2 1 1 1

Requirements-level Model
NC CDC CDC+ ShR ShR+ IN
2 2 2 1 1 1

TABLE 1
Metrics Used for the Automatic Weighting

Metric Ref. Property Definition

Class-level Metrics
(CBO) Coupling Between Objects [42] Coupling It is the number of classes to which a class is coupled
(RFC) Response For a Class [42] Coupling It is the set of methods that can potentially be executed in

response to a message received by an object of the class
(LCOM) Lack Of Cohesion on
Methods

[42] Cohesion It describes the lack of cohesion among methods of a class

(LOCs) Lines of Code - Size It counts the lines of code of a class
(NOM) Number of methods - Size It counts the number of methods of a class
(DIT) Depth of Inheritance Tree [42] Inheritance It is the length of the class from the root of the inheritance tree
(NOC) Number of Children [42] Complexity It is the number of immediate subclasses of the class in the class

hierarchy
(MCC) McCabe Cyclomatic Com-
plexity

[42] Complexity It is (median of) the number of flows thought the code of the
method of a class

(WMC) Weighted Methods per
Class

[42] Complexity It is the sum of theMCC for all methods in a class

Requirements-level Metrics

(NC) Number of Classes [43] Size It is the number of classes implementing a requirements
(CDC) Requirements diffusion over
components

[43] Scattering It is the number of classes that contribute to the implementation
of the target requirements, among those of the application

(CDCþ) CDC with similarity - Scattering It is a variant of CDC in which the contribution of each class is
weighted according to the similarity of each class with the
requirements definition

(ShR) Shared among Requirements [44] Tangling It expresses the degree of classes that implement a require-
ments and that are shared with, at least, another requirements
of the application

(ShRþ) ShRwith similarity - Tangling It is a variant of ShR in which the contribution of each class is
weighted according to the similarity of each class with the defi-
nition of the requirements under analysis

(IN) Contained Requirements [44] Inheritance It is the number of requirements whose implementation is
entirely contained in the target requirements

3. Their common goal regards the association of concern property
quantification with the impact on modularity flaws [45]. A concern is
any consideration that might impact the implementation of a program,
whilst concern measures lead to a shift in the measurement process
instead of quantifying properties of a particular module. These meas-
ures quantify properties of one or multiple concerns with respect to the
underlying modular structure [46].

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

weighted according to the software property they measure.
As for class-level and consistently with Lincke, we chose: 2
for coupling, cohesion, and inheritance metrics, while 1 for
the other metrics. As for requirements-level, we chose: 2 for
size and scattering, while 1 for the other metrics.

By knowing the outliers and using a software quality
model such as the one in Table 2, we can compute a main-
tainability index for each application element by aggregat-
ing the metrics in Table 1 according to their weights in the
used models as follows:

MIðelementÞ ¼
P

m2MetricsðWm �OmÞPðWmÞ :

Metrics is the set of metrics, Wm is the weight of the met-
rics m in the model and Om is the number of outliers ele-
ments for the metrics in the considered model. The
MIðelementÞ value ranges in between 0 and 1. The value
0 is the best possible index (i.e., no outliers elements), while
1 is the worst (i.e., all elements are outliers). For instance,
if a class c1 is an outliers only for CBO, LOCs, and DIT,
then, referring to Table 2, MIðc1Þ ¼ 5=13 ¼ 0:385, so, c1 has
a maintainability index of 0.385, i.e., 38.5 percent.

Maintainability index computation. To compute the main-
tainability index MIclassðcÞ, we use the class-level quality
model (Table 2 top). Then, we compute a maintainability
index MIreqðrÞ for each requirement r of the target applica-
tion. To this aim, two additional maintainability indexes are
computed: MICðrÞ and MIRðrÞ. MICðrÞ is computed by
averaging the maintainability index MIclass of the classes
that implement r (on the base of traceability links), while
MIRðrÞ is computed by applying the requirements-level
quality model for r (i.e., using the requirements-level met-
rics in Table 1). By averaging MICðrÞ and MIRðrÞ for each
requirement r, we estimate the maintainability for r by con-
sidering the properties, at the same time, of the code imple-
menting r in isolation and the implementation of r with
respect to the other requirements [48].

Application source code classes and requirements are
ordered by ranking the classes and the requirements
according to their estimated maintainability index (MIclass
andMIreq, respectively).

5.3 Identifying Cumulative Test Orderings

For each test case ti of a given test ordering OrdS , the meas-
ures cumCCov(ti), cumRCov(ti) and InverseCost(ti) are com-
puted considering the position of ti in OrdS . Then, we
computed the area of the curves obtained by plotting the
values of the metric (onX axes) with respect to the test cases
in OrdS (Y axes) in a Cartesian plan. To get a numerical
approximation of that area, we used the Trapezoidal rule
[49]. It computes the area of a curve as the area of a linear
function that approximates that curve.

For OrdS and each cumulative measure, the area (Area
Under the Curve, AUC, from here on) estimates the code
coverage AUCcode(OrdS), the requirements coverage
AUCreq(OrdS), and the execution cost AUCcost(OrdS),
respectively. The area indicates how fast the test ordering
OrdS converges. The larger AUC, the faster this test case
ordering converges.

5.4 Example

As an example, let us consider a system that implements
three requirements (r1-r3) and that is composed of four clas-
ses (c1-c4) and five statements (s1-s5). Table 3 (top) details
relationship among statements, classes and requirements.
For instance, statement s1 is part of class c1 and it contrib-
utes to realize r2. Table 3 (middle) shows a test suite com-
posed of three test cases (t1, t2, t3) and it shows cost and
coverage information for each test case as well. For instance,
test case t1 costs 20 (seconds) and it covers s1 and s2, and it
tests requirements r1 and r2. We assume that coverage
information contained in Table 3 has been achieved by
applying our IR-based traceability recovery approach.
Table 3 (bottom) shows possible values of maintainability
index MI computed for each class and each requirement of
system under test and used in test suite prioritization
to weight metrics for measuring code and requirements
coverage of each test case. We assume that such values have
been automatically computed. Considering two possible
test orderings for test cases shown in Table 3, namely
Ord1S ¼ t1; t2; t3h i and Ord2S ¼ t3; t1; t2h i. Values of AUC
for the two test case orderings are shown in Table 4. This
table also reports some details for the computation of each
measure adopted to compute AUC values. In particular, the
table shows measures computed for two test orderings by
non-weighting (column wx ¼ 1) measures and by automati-
cally weighting (column wx ¼ MI) such measures with
maintainability indexMI. For example, we can see in Table 4
that cumCCov(t1) corresponds to 2 in non-weighted meas-
ures (where each weight wx ¼ 1) for test ordering Ord1S .
On the other hand, cumCCov(t1) corresponds to 0.32
(MIclass(c1)jfs1gj þMIclass(c2)jfs3gj ¼ 0.02*1 þ 0.3*1) in MI-
based weighted measures (where each weight wx ¼
MIclassðxÞ). By comparing Ord1S and Ord2S according to the
three AUC measures computed using both non-weighted
and weighted approaches, we can note that Ord1S and
Ord2S have the same AUCcode, but they are different in
terms of AUCreq and AUCcost, namely Ord2S has a higher
AUC in both AUCreq and AUCcost. In addition, we can

TABLE 3
Example: Statements, Classes, Requirements,

and Test Case Definition

S ¼ fSt; C;Rg
St ¼ s1; s2; s3; s4; s5h i
C ¼ c1; c2; c3; c4h i
R ¼ r1; r2; r3h i

Statements Class Reqs

s1 c1 r2
s2 c2 r3
s3 c2 r1
s4 c3 r3
s5 c4 r3

Test Case Cost (seconds) Statements Reqs.

t1 20 s1, s3 r1, r2
t2 100 s3, s4, s5 r1, r3
t3 50 s1, s2, s3 r1, r2, r3

MIclass MIreq

MIclass(c1)¼0.02 MIclass(c2)¼0.3 MIreq(r1)¼0.5 MIreq(r2)¼0.2
MIclass(c3)¼0.2 MIclass(c4)¼0.8 MIreq(r3)¼0.75

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 925

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

note that Ord1S has a higher AUCcode than Ord2S while this
former still preserve a higher value for both AUCreq and
AUCcost. Hence, we can deduce that: (i) if we consider non-
weighted approach,Ord2S outperformsOrd1S having greater
or, at least, not inferior values in all three measures and (ii) if
we consider weighted approach, no one test ordering outper-
forms other one, in all three considered dimensions. This
example suggests that our automatic weighting lets us to
work actually at a fine-grained granularity and gives more
relevance to key portions of source code and requirements.

6 MULTI-OBJECTIVE PRIORITIZATION

NSGA-II uses a set of genetic operators (i.e., crossover, muta-
tion, and selection) to iteratively evolve an initial population
of candidate solutions. In our case, candidate solutions are
test cases orderings. Evolution is guided by an objective
function (i.e., the fitness function) that evaluates each candi-
date solution along considered dimensions. In each iteration,
the Pareto front of best alternative solutions is generated
from evolved population. The front contains the set of non-
dominated solutions, i.e., those solutions that are not inferior
(dominated) to any other solution in all considered dimen-
sions. Population evolution is iterated until a (predefined)
maximumnumber of iterations is reached.

In our case, a Pareto front represents the optimal trade-off
between the three dimensions determined by NSGA-II. The
tester can then inspect a Pareto front to find the best compro-
mise between having a test case ordering that balances code
coverage, requirements coverage, and execution cost or
alternatively having a test case ordering that maximizes
one/two dimension/s penalizing the remaining one/s.

Our proposed process can be summarized as follows:

1) Solution encoding. A solution is a possible ordering of
the test cases under analysis. OrdS represents an exe-
cution order for the test cases of suite S. The solution
space for the test case prioritization problem is the
set of permutations of test case orderings. A test case
ordering is represented as an ordered sequence of
integers, where each integer represents the identifier
of a test case.

2) Initialization. The starting population is initialized
randomly selecting a sub-set of possible test case
orderings among all possible permutations of test
cases (i.e., the solution space).

3) Genetic operators. For the evolution of permutation-
based encoding for the solutions, we exploited stan-
dard operators as described in [50]. As mutation
operator, we used SWAP-Mutation in which two ran-
domly chosen permutation elements of the solution
are swapped. The adopted crossover operator is
PMX-Crossover in which a pair of solutions is recom-
bined by randomly choosing an intermediate point
and swapping permutation elements at that point
among both solutions. Finally, we used binary tourna-
ment as selection operator. Two solutions are ran-
domly chosen and the fitter of the two is the one that
survives in the next population.

4) Fitness functions. Since our goal is to maximize the
three considered dimensions, each candidate solu-
tion in the population is evaluated by our objective
function based on: AUCcode(OrdS), AUCreq(OrdS),
and AUCcost(OrdS). The larger these values, the
faster the convergence of a test case ordering is.

7 EXPERIMENTAL ASSESSMENT

To evaluate of our approach, we have developed a proto-
type of a supporting system. It integrates and extends the
following two tool prototypes: (i) MOTCP [51] that imple-
ments our previous proposed prioritization technique [4]
and represents the base for our new approach and (ii)
SWTMetrics [48], which implements our automatic weight-
ing approach to prioritize software artifacts. MOTCP+ is
the name of the tool implementing our new prioritize tech-
nique. It is composed of a number of software components
having the purpose of preparing data related to metrics and
traceability links and executing the prioritization process as
shown in Fig. 1. In particular, there is a component in charge
of recovering traceability links among software artifacts. It
integrates and extends Traceclipse [30]. We implemented a
component to compute class-level metrics and require-
ments-level metrics and a component to compute the main-
tainability index of each code class and requirement and
to determine their orderings. Finally, our three-objective
test case prioritization algorithm was implemented in

TABLE 4
Example of AUC Measures and Comparison between
Different Test Cases Orderings (Ord1S and Ord2S)

Ord1S=ht1; t2; t3i
Measure Computation wx

1 MIx

cumCCov(t1) wxjfs1gj+ wxjfs3gj 2 0.32
cumCCov(t2) cumCCov(t1)+wxjfs4gj + wxjfs5gj 4 1.32
cumCCov(t3) cumCCov(t2) +wxjfs2gj 5 1.62
AUCcode 8.5 2.45

cumRCov(t1) wxjfr1gj+ wxjfr2gj 2 0.7
cumRCov(t2) cumRCov(t1) +wxjfr3gj 3 1.45
cumRCov(t3) cumRCov(t2) 3 1.45
AUCreq 6.5 2.875

Cost(suite) 170
InvCost(t1) 150
InvCost(t2) 50
InvCost(t3) 0
AUCcost 200

Ord2S=ht3; t1; t2i
Measure Computation wx

1 MIx

cumCCov(t3) wxjfs1gj+wxjfs2gj+wxjfs3gj 3 0.62
cumCCov(t1) cumCCov(t3) 3 0.62
cumCCov(t2) cumCCov(t1)+wxjfs4gj + wxjfs5gj 5 1.62
AUCcode 8.5 2.05

cumRCov(t3) wxjfr1gj+wxjfr2gj+wxjfr3gj 3 1.45
cumRCov(t1) cumRCov(t3) 3 1.45
cumRCov(t2) cumRCov(t1) 3 1.45
AUCreq 7.5 3.625

Cost(suite) 170
InvCost(t3) 120
InvCost(t1) 100
InvCost(t2) 0
AUCcost 220

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

a component that integrated the implementation of NSGA-
II available in JMetal4 meta-heuristics library [52].

According to the Goal Question Metrics (GQM) template
by Basili et al. [53], the goal of our experiment can be sum-
marized as follows:

1) Analyze the use of our proposal for the purpose of
evaluating its support in the prioritization of test
cases with respect to effectiveness, sensitivity, and
robustness from the point of view of the researcher in
the context of Java applications and from the point of
view of the practitioner assessing whether our pro-
posal is a viable solution in the context of his/her
own company.

The GQM formalism ensures that important aspects are
defined before planning and execution of our experiment
took place [54].

According to our experiment goal, we compare our pro-
posal with traditional test cases prioritization techniques [8],
[9], [10], namely random prioritization (Rand), code cover-
age (CodeCov), and additional code coverage (AddCodeCov)
prioritization. Similarly to Yoo and Harman [11], we also
applied NSGA-II on the dimensions: code coverage and exe-
cution cost of test cases. This represents another baseline for
comparison (NSGAIIdim2). An additional baseline for com-
parison is our previous multi-objective technique [4]. It
used code coverage, requirements coverage, and execution
time of test cases without applying the automatic weighting
scheme we present in this paper.

The comparison has been performed with respect to the
following criteria:

� Effectiveness. It concerns the capability of test case
orderings in revealing faults.

� Sensitivity. From a tester’s perspective, this criterion
provides an indication on the capability of test case
orderings in revealing faults with a high severity and
relevancewith respect to application requirements.

Only in the case of our proposal, we also analyzed its
Robustness with respect to the goodness of recovered trace-
ability links. Robustness gives us an idea about the capabil-
ity of our test case prioritization approach of adequately
working in presence of incomplete or spurious/wrong
traceability links.

To have a deeper understanding of results, we also per-
form: (i) an analysis of the generated Pareto Fronts and of
impact of each metric used by our tool to find optimal solu-
tions and (ii) an analysis of possible co-factors characterizing
experimental objects and artifacts as well as relationships
among them. Among analyzed co-factors, we consider: the
size of applications and their test suites, the number of
requirements, the relationships between test cases and
requirements, the capability of test suites in revealing faults,
the test case redundancy, and the distribution of faults in
source code and requirements.

7.1 Evaluation Measures

The Average Percentage of Fault Detected (APFD) is the
measure conventionally adopted to evaluate test case

orderings [9]. Given a test suite S containing n test cases and
let F be the set of m faults revealed by S. For an ordering S’
of S, let SFi be the position of first test case s 2 S’ that reveals
the ith fault. The APFD value for S’ is computed as follows:

APFD ¼ 1� SF1 þ � � � þ SFm

nm
þ 1

2n
:

We run an approach (e.g., AddCodeCov or MOTCP+) on a
given application, thus obtaining an ordering S’. A number
of versions of that application are obtained seeding one
fault per time in its source code [9]. That is, each version
contains only one injected fault. To assess the capability of
S’ in detecting faults the APFD value is computed with
respect to the obtained versions of the original application.
A high APFD value signifies a fast fault-detection rate of
the ordering S’.

The APFD-based test case prioritization evaluation
assumes that test costs and fault severity and relevance are
all uniform [55]. However, test costs and fault severity can
vary widely in a real-life context. Hence, to get a quantita-
tive measure of Effectiveness and Sensitivity, we consider
three variants of that measure: APFDall computed checking
all injected faults, APFDftype1 computed checking the subset
of severe faults; and APFDftype2 computed checking the sub-
set of faults related to relevant requirements. In particular,
Effectiveness is estimated by APFDall, while APFDftype1 and
APFDftype2 estimate Sensitivity.

We statistically analyze results achieved byMOTCP+ and
baseline techniques. The tested null hypothesis is:

NHfaults - there is no difference in the APFD values
obtained on the suites generated by applying the different
approaches.

To test this null hypothesis, we conducted pairwise com-
parisons among results achieved for test suites generated
by the techniques by using the non-parametric one-tailed
Mann-Whitney test since we expect that our novel approach
will obtain better results than other techniques. We use the
Benjamini-Hochberg [56] correction for the compensation of
repeated statistical tests.

To analyze Pareto Front’s metrics, we adopt the
Spearman’s Rank correlation coefficient (r) to estimate col-
linearity, if any, of the three metrics used to build Pareto
fronts. The Spearman’s Rank correlation coefficient meas-
ures correlation between a pair of variables. The returned
value ranges in between �1 and +1, where +1 indicates per-
fect correlation and �1 indicates a perfect inverse correla-
tion. We also apply Principal Components Analysis (PCA)
to check whether metrics used to built each front are corre-
lated each other, thus discovering those metrics that are
dominant and those redundant. PCA is a non-parametric
statistical technique that estimates interrelation degree of
variables for identifying underlying structures, if any, and
combining variables into smaller sets of linearly uncorre-
lated variables, called principal components (PCs). By apply-
ing PCA, we aim at checking the presence of interrelations
among metrics on test suites composing Pareto fronts. The
defined null hypothesis is:

NHpareto - no correlations exist among our Pareto’s
metrics.4. http://jmetal.sourceforge.net/

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 927

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

http://jmetal.sourceforge.net/

To evaluate the impact of possible co-factors on achieved
results, we mainly applied a two-way permutation test [57].
Our null hypothesis is:

NHco�factors—there is no significant impact of the consid-
ered co-factor/s on APFD values.

In all performed statistical tests, we decided (as custom-
ary) to accept a probability of 5 percent of committing a
Type-1-Error [54], namely a null hypothesis is rejected if the
p-value returned by a statistical test is less than 0.05.

7.2 Experimental Objects

We considered 21 Java applications form different applica-
tion domains as experimental objects. These applications
range from small to large in terms of size and implemented
functionality. Table 5 summarizes the size of each applica-
tion in terms of lines of code, as well as the number of test
cases, requirements, and faults, and shows links to applica-
tion websites. The considered 21 Java applications were
chosen primarily because of the availability of software
artifacts we needed to apply our technique (e.g., textual
description of the application requirements).

7.3 Procedure

For each application, we applied the following experimental
procedure:

1) Collecting available artifacts. For each application,
we collected requirements specifications, source
code, and JUnit test cases.

2) Recovering the traceability links. We used the
following set-up: k=300; constant threshold=0.1.

3) Applying MOTCP+, MOTCP, Rand, CodCov, Add-
CodeCov, and NSGAIIdim2. We ran MOTCP,
MOTCP+, and NSGAIIdim2 with the following
set-up: population size=2*’test suite size’; max itera-
tions=1,000; crossover probability=0.9; mutation

probability=1/’test suite size’. Since Rand has a non-
deterministic behavior, we ran it several times (i.e.,
30 times) and then we evaluated all generated solu-
tions. We report descriptive statistics on the values
of obtained solutions (min,median,mean, andmax).
On the other hand, since MOTCP, MOTCP+, and
NSGAIIdim2 are expected to generate sets of equiva-
lent good solutions per execution (Pareto front),
we evaluated all solutions in an obtained front by
considering the following descriptive statistics on
used measures: min, median, mean, and max. This
allowed us to better analyze the behavior of studied
techniques. It easily follows that the meaning of min,
median, mean, and max is different between Rand
and MOTCP, MOTCP+, and NSGAIIdim2.

4) Injecting m faults of different severity (i.e., high
and low) in the source code of a given application,
thus producing m buggy versions. For example, m is
equal to 12 for LaTazza (see Table 5), meaning that
we obtained 12 different faulty versions for that
application. The injection of faults is critical because
hand-seeded faults may not be representative of real
faults [58]. Therefore, we applied a repeatable pro-
cess to inject faults that are similar as much as possi-
ble to actual ones [59]. This process is based on the
following steps that are executed sequentially:
a) Analyzing online bug tracker of a given applica-

tion to find documented failures.
b) Faults generated these documented failures are

selected according to the following criteria:
(i) status of the fault is closed/solved; (ii) devia-
tion between observed and specified behaviors
is clearly described from a functional point of
view; and (iii) it is possible to link the fault to the
code where this fault was present. To get this
link, we needed the following information: appli-
cation version where a failure was observed;

TABLE 5
Objects under Study

Application Size (LOCs) Test Cases Req.s Faults Web site

LaTazza 2 k 33 10 12 -
AveCalc 2 k 47 10 15 -
CommonsProxy 5 k 179 10 10 http://commons.apache.org/proxy
DBUtils 5 k 225 12 14 http://commons.apache.org/dbutils
iTrust 15 k 919 15 21 http://agile.csc.ncsu.edu/iTrust
CommonsCodec 17 k 608 19 20 http://commons.apache.org/codec
JTidy 20 k 289 25 15 http://jtidy.sourceforge.net
Woden 22 k 263 24 19 http://ws.apache.org/woden
Log4J 25 k 1,029 24 20 http://logging.apache.org/log4j
Betwixt 25 k 325 18 20 http://commons.apache.org/dormant/commons-betwixt
JXPath 25 k 386 20 20 http://commons.apache.org/jxpath
CommonsIO 25 k 859 18 20 http://commons.apache.org/
CommonsBcel 30 k 75 20 20 http://commons.apache.org/bcel
CommonsBeanUtils 32 k 1,556 26 22 http://commons.apache.org/beanutils
XMLGraphics 34 k 196 24 15 http://xmlgraphics.apache.org
XMLSecurity 40 k 92 23 15 http://santuario.apache.org
CommonsCollections 50 k 798 17 20 http://commons.apache.org/collections
Pmd 55 k 698 20 20 http://pmd.sourceforge.net
CommonsLang 60 k 2,307 16 20 http://commons.apache.org/lang
Jabref 70 k 213 31 20 http://jabref.sourceforge.net
Xerces 138 k 376 20 20 http://xerces.apache.org

928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

http://commons.apache.org/proxy
http://commons.apache.org/dbutils
http://agile.csc.ncsu.edu/iTrust
http://commons.apache.org/codec
http://jtidy.sourceforge.net
http://ws.apache.org/woden
http://logging.apache.org/log4j
http://commons.apache.org/dormant/commons-betwixt
http://commons.apache.org/jxpath
http://commons.apache.org/
http://commons.apache.org/bcel
http://commons.apache.org/beanutils
http://xmlgraphics.apache.org
http://santuario.apache.org
http://commons.apache.org/collections
http://pmd.sourceforge.net
http://commons.apache.org/lang
http://jabref.sourceforge.net
http://xerces.apache.org

code (i.e., class name at least) containing that
fault; version of application where that fault was
fixed and how it was fixed.

c) Analyzing code patches posted to fix a fault (if
any) and code affected by this fault. The goal
here is to recover information on how to repro-
duce the original failure.

d) Replicating each failure by injecting a fault in the
source code of the original application. As men-
tioned before, one fault per time is injected in
that code, so obtaining one faulty version for
each injected fault. We check the capability of a
test suite in revealing the failure associated to
each injected fault. If at least one test case fails
(i.e., the failure is detected by our test suite), we
add the injected fault to the set of faults of our
experimental investigation.

e) Examining each injected fault to understand if it
can be considered severe and/or related to relevant
requirements. To classify a fault as severe, we pri-
mary consider its severity and priority fields in
bug report. For example, a fault is severe if both
its priority and its severity are high. To classify
faults with respect to relevant requirements, we
considered which application functionality is
affected by fault and relevance of that functional-
ity from the user’s perspective. For example, a
fault is considered related to a relevant require-
ment if application documentation lists this
requirement as one of most important ones.

To reduce as much as possible threats related to representa-

tiveness of hand-seeded faults, the injection process was per-

formed by an author involved neither in the definition of our

prioritization technique nor in the execution of experiment. In

the Appendix A, we show an example of application of the

described injection process.

5) Executing test case orderings. Test case orderings
obtained by the techniques is executed for testing
each version of the application.

6) Computing APFDall, APFDftype1 and APFDftype2 for
each studied test prioritization technique, applica-
tion, and ordering.

7) Executing steps from 2 to 7. In the second iteration,
we randomly changed and/or removed 10 percent
of the recovered traceability links (step 2) to estimate
the Robustness of the approach.

8) Analyzing collected data. Our analysis procedure is
applied on these data.

7.3.1 Threats to Validity

Used experimental objects (i.e., applications) and artifacts
(i.e., source code, test cases, and requirements) might
threaten the validity of our results. To deal with these
threats, we used a large set of applications having different
characteristics (e.g., from small to large) and application
domains (e.g., bibliography reference manager). As far as
application artifacts are concerned, we exploited as much as
possible those provided by original developers. If not avail-
able, we reconstructed them by looking at the documenta-
tion provided by the developers in user manuals and APIs.

Another threat to validity is the set of injected faults, as
well as their distribution in application code. We are con-
scious that different sets of faults could lead to different
results. With the aim of limiting such a threat, we used an
experimental process [59] that exploits actual faults
described into application bug tracker systems. Therefore,
we analyzed the bug tracker of each application and
selected not-trivial and critical faults that we were able to
reproduce. Since it is rare to have an application with
many faults, we produced a version for each fault injected.
As for test case execution cost, we only considered the
time needed to execute test cases. This choice represents a
limitation for the applicability of our approach [60], [61].
However, our approach can be easily extended to take also
into account additional related costs for regression testing
(e.g., the time to inspect the results). This is the subject of
future work.

The set up of the experiment represents another threat to
the validity of results. In particular, the number of runs for
Rand and parameters chosen for the recovery of links
among software artifacts and the parameters chosen in the
multi-objective algorithm could potentially affect results.

7.4 Results

In the following sections, we show obtained results by
grouping them for each of considered criteria.

7.4.1 Effectiveness

Tables 6, 7, 8, 9, and 10 (column APFDall of Traceability
Links) report collected APFD values for the 21 applications
object of our experiment, in presence of recovered traceabil-
ity links (top) and considering all injected faults. These
tables report results in terms of minimal, median, mean,
and maximal APFD values achieved for each technique. In
Table 11 (columns all), we report the number of times (i.e.,
applications) in which each technique outperformed others.
To perform this comparison, we considered: (i) mean and
median values (columns on the left), thus limiting the
impact of possible outliers, (ii) and maximum values (col-
umns on the right). For example, Rand achieved the highest
mean and median values for APFD in one case (i.e., Woden)
considering all injected faults. MOTCP+ obtained the best
results for seven applications. In some cases, more than one
technique obtained the best mean and median values for
APFD, so justifying why the sum of values in each column
(i.e., all, ftype1, and ftype2) is greater than 21.

On the basis of values reported in Tables 6, 7, 8, 9, 10 and
11, we can observe that MOTCP+ tends to outperform other
techniques. APFD values for MOTCP+ are slightly better.
The results achieved by CodeCov and Rand are worse and
tend to have high variability (APFD values vary in the
range: 0:19� 0:83), with respect to those achieved by other
techniques. This trend is not statistically confirmed by the
Mann-Whitney test results (see Table 12). In particular,
results suggest a statistically significant difference between
MOTCP+ and MOTCP (p-value < 0.001) also applying the
Benjamini-Hochberg correction. It is worth mentioning that
paired comparisons not listed in Table 12 have all p-values
greater than 0.05. Overall, results suggest that our approach
improves MOTCP by increasing the capability of test case

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 929

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

TABLE 7
APFD of JTidy, CommonsCodec, Woden, Log4J and Betwixt

APFD

CommonsCodec JTidy Woden Log4J Betwixt

all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links

Randmin 0.36 0.31 0.35 0.43 0.19 0.19 0.44 0.38 0.25 0.55 0.4 0.51 0.46 0.5 0.29
Randmean 0.57 0.57 0.6 0.57 0.51 0.54 0.56 0.55 0.53 0.63 0.61 0.67 0.58 0.63 0.57
Randmedian 0.58 0.6 0.62 0.57 0.47 0.47 0.57 0.55 0.51 0.63 0.64 0.66 0.58 0.63 0.59
Randmax 0.66 0.75 0.73 0.65 0.73 0.73 0.65 0.71 0.71 0.75 0.78 0.88 0.69 0.8 0.77
CodeCov 0.58 0.46 0.4 0.46 0.27 0.27 0.5 0.53 0.57 0.48 0.58 0.7 0.52 0.66 0.5
AddCodeCov 0.53 0.43 0.44 0.5 0.24 0.24 0.54 0.44 0.58 0.76 0.69 0.84 0.58 0.66 0.52
NSGAIIdim2 min 0.49 0.45 0.45 0.63 0.6 0.55 0.39 0.27 0.18 0.61 0.52 0.53 0.48 0.49 0.43
NSGAIIdim2 mean 0.59 0.6 0.58 0.71 0.68 0.62 0.42 0.39 0.34 0.7 0.67 0.65 0.56 0.69 0.54
NSGAIIdim2 median 0.59 0.64 0.59 0.73 0.71 0.57 0.42 0.41 0.39 0.71 0.66 0.64 0.56 0.71 0.52
NSGAIIdim2 max 0.66 0.71 0.69 0.8 0.75 0.81 0.44 0.46 0.4 0.78 0.78 0.83 0.68 0.82 0.77
MOTCPmin 0.42 0.32 0.43 0.58 0.46 0.46 0.43 0.39 0.35 0.5 0.45 0.54 0.48 0.55 0.4
MOTCPmean 0.56 0.55 0.57 0.64 0.56 0.71 0.49 0.48 0.48 0.65 0.59 0.72 0.6 0.7 0.58
MOTCPmedian 0.56 0.55 0.56 0.61 0.59 0.59 0.5 0.47 0.48 0.65 0.59 0.71 0.61 0.71 0.59
MOTCPmax 0.67 0.77 0.73 0.71 0.68 0.68 0.57 0.61 0.64 0.75 0.7 0.92 0.67 0.86 0.68
MOTCP+ min 0.45 0.35 0.37 0.47 0.43 0.43 0.43 0.32 0.27 0.54 0.54 0.49 0.5 0.49 0.47
MOTCP+ mean 0.54 0.5 0.54 0.62 0.58 0.58 0.54 0.5 0.53 0.67 0.66 0.72 0.61 0.67 0.67
MOTCP+ median 0.54 0.48 0.51 0.62 0.59 0.59 0.53 0.48 0.54 0.66 0.67 0.71 0.61 0.66 0.61
MOTCP+ max 0.69 0.78 0.79 0.77 0.85 0.85 0.68 0.76 0.74 0.76 0.82 0.87 0.74 0.86 0.83

Incomplete Traceability Links

MOTCP+ min 0.45 0.36 0.37 0.5 0.38 0.38 0.39 0.38 0.27 0.47 0.37 0.38 0.55 0.59 0.47
MOTCP+ mean 0.59 0.58 0.6 0.66 0.58 0.62 0.54 0.52 0.47 0.62 0.59 0.66 0.61 0.73 0.6
MOTCP+ median 0.6 0.6 0.61 0.65 0.68 0.61 0.55 0.51 0.49 0.61 0.58 0.65 0.61 0.72 0.59
MOTCP+ max 0.71 0.77 0.81 0.81 0.79 0.77 0.63 0.71 0.7 0.8 0.84 0.86 0.69 0.87 0.71

TABLE 6
APFD of AveCalc, LaTazza, DBUtils, CommonsProxy and iTrust

APFD

AveCalc LaTazza DBUtils CommonsProxy iTrust

all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links

Randmin 0.59 0.74 0.62 0.66 0.54 0.58 0.41 0.41 0.27 0.37 0.34 0.17 0.52 0.49 0.47
Randmean 0.73 0.82 0.84 0.75 0.74 0.83 0.52 0.57 0.47 0.53 0.55 0.5 0.63 0.65 0.63
Randmedian 0.74 0.85 0.8 0.75 0.75 0.72 0.51 0.57 0.46 0.53 0.56 0.5 0.63 0.66 0.66
Randmax 0.83 0.93 0.91 0.81 0.88 0.88 0.65 0.8 0.75 0.65 0.77 0.74 0.73 0.81 0.79
CodeCov 0.77 0.78 0.81 0.6 0.72 0.56 0.4 0.34 0.47 0.56 0.62 0.45 0.56 0.6 0.58
AddCodeCov 0.79 0.8 0.92 0.6 0.72 0.56 0.55 0.71 0.4 0.59 0.65 0.47 0.7 0.71 0.69
NSGAIIdim2 min 0.72 0.79 0.75 0.78 0.7 0.83 0.46 0.43 0.28 0.39 0.27 0.35 0.52 0.51 0.51
NSGAIIdim2 mean 0.78 0.82 0.84 0.78 0.7 0.83 0.52 0.56 0.46 0.48 0.45 0.46 0.6 0.62 0.6
NSGAIIdim2 median 0.79 0.83 0.86 0.78 0.7 0.83 0.52 0.53 0.52 0.47 0.41 0.47 0.61 0.64 0.61
NSGAIIdim2 max 0.87 0.91 0.94 0.78 0.7 0.83 0.61 0.75 0.54 0.59 0.75 0.57 0.63 0.67 0.64
MOTCPmin 0.72 0.75 0.76 0.75 0.65 0.72 0.46 0.62 0.25 0.42 0.35 0.38 0.49 0.4 0.49
MOTCPmean 0.78 0.84 0.83 0.77 0.7 0.75 0.53 0.71 0.43 0.53 0.47 0.53 0.63 0.64 0.65
MOTCPmedian 0.79 0.84 0.83 0.77 0.7 0.75 0.51 0.71 0.44 0.52 0.49 0.5 0.63 0.63 0.63
MOTCPmax 0.86 0.92 0.94 0.79 0.75 0.79 0.65 0.9 0.52 0.65 0.77 0.8 0.72 0.73 0.7
MOTCP+ min 0.62 0.69 0.69 0.77 0.77 0.76 0.45 0.42 0.31 0.31 0.27 0.21 0.52 0.6 0.52
MOTCP+ mean 0.79 0.83 0.87 0.82 0.82 0.88 0.57 0.7 0.47 0.47 0.41 0.45 0.61 0.67 0.61
MOTCP+ median 0.8 0.82 0.88 0.82 0.84 0.91 0.56 0.7 0.48 0.47 0.46 0.46 0.61 0.66 0.61
MOTCP+ max 0.9 0.94 0.94 0.85 0.86 0.93 0.67 0.84 0.63 0.67 0.69 0.72 0.8 0.81 0.81

Incomplete Traceability Links

MOTCP+ min 0.69 0.72 0.82 0.71 0.75 0.76 0.44 0.44 0.35 0.3 0.25 0.19 0.53 0.53 0.52
MOTCP+ mean 0.79 0.81 0.88 0.75 0.8 0.79 0.56 0.59 0.52 0.5 0.5 0.49 0.6 0.65 0.62
MOTCP+ median 0.79 0.8 0.89 0.75 0.79 0.79 0.56 0.57 0.53 0.5 0.5 0.53 0.59 0.63 0.61
MOTCP+ max 0.88 0.92 0.92 0.78 0.87 0.82 0.62 0.77 0.59 0.65 0.76 0.59 0.69 0.76 0.71

930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

TABLE 8
APFD of JXPath, CommonsIO and CommonsBcel, CommonsBeanUtils and XMLGraphics

APFD

JXPath CommonsIO CommonsBcel CommonsBeanUtils XMLGraphics

all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links

Randmin 0.45 0.26 0.41 0.36 0.32 0.2 0.37 0.29 0.29 0.44 0.24 0.27 0.38 0.28 0.24
Randmean 0.53 0.52 0.57 0.52 0.54 0.5 0.51 0.51 0.47 0.56 0.48 0.51 0.49 0.49 0.48
Randmedian 0.53 0.52 0.57 0.52 0.55 0.47 0.51 0.53 0.46 0.56 0.5 0.53 0.5 0.48 0.48
Randmax 0.63 0.67 0.77 0.65 0.81 0.85 0.63 0.71 0.8 0.63 0.7 0.74 0.61 0.76 0.68
CodeCov 0.54 0.57 0.49 0.59 0.63 0.69 0.48 0.39 0.56 0.52 0.54 0.61 0.55 0.45 0.5
AddCodeCov 0.55 0.63 0.47 0.52 0.54 0.42 0.49 0.59 0.45 0.75 0.9 0.67 0.49 0.42 0.53
NSGAIIdim2 min 0.51 0.43 0.54 0.45 0.31 0.41 0.5 0.32 0.32 0.54 0.42 0.54 0.48 0.39 0.4
NSGAIIdim2 mean 0.6 0.59 0.63 0.52 0.47 0.55 0.58 0.5 0.65 0.61 0.51 0.65 0.55 0.55 0.57
NSGAIIdim2 median 0.6 0.62 0.63 0.5 0.45 0.52 0.58 0.53 0.65 0.61 0.51 0.69 0.53 0.54 0.55
NSGAIIdim2 max 0.73 0.83 0.76 0.62 0.73 0.73 0.66 0.64 0.85 0.65 0.6 0.75 0.68 0.72 0.84
MOTCPmin 0.44 0.33 0.36 0.46 0.42 0.34 0.39 0.39 0.41 0.5 0.28 0.33 0.4 0.37 0.25
MOTCPmean 0.55 0.54 0.6 0.56 0.56 0.53 0.52 0.53 0.51 0.6 0.51 0.57 0.54 0.62 0.51
MOTCPmedian 0.54 0.54 0.6 0.57 0.59 0.51 0.52 0.52 0.54 0.59 0.51 0.58 0.54 0.62 0.53
MOTCPmax 0.7 0.76 0.79 0.6 0.66 0.74 0.65 0.65 0.67 0.7 0.78 0.71 0.7 0.83 0.84
MOTCP+ min 0.41 0.46 0.39 0.41 0.44 0.33 0.37 0.33 0.22 0.49 0.35 0.36 0.45 0.37 0.3
MOTCP+ mean 0.56 0.62 0.6 0.54 0.62 0.54 0.53 0.48 0.5 0.61 0.52 0.57 0.55 0.56 0.58
MOTCP+ median 0.57 0.63 0.58 0.53 0.63 0.54 0.53 0.47 0.49 0.6 0.52 0.55 0.55 0.56 0.62
MOTCP+ max 0.67 0.81 0.88 0.68 0.79 0.73 0.68 0.73 0.76 0.71 0.68 0.82 0.71 0.78 0.89

Incomplete Traceability Links

MOTCP+ min 0.47 0.28 0.38 0.41 0.44 0.44 0.41 0.33 0.22 0.5 0.3 0.3 0.45 0.44 0.24
MOTCP+ mean 0.56 0.57 0.62 0.55 0.54 0.51 0.5 0.5 0.53 0.6 0.51 0.57 0.51 0.56 0.44
MOTCP+ median 0.56 0.58 0.63 0.53 0.63 0.5 0.53 0.47 0.49 0.59 0.5 0.58 0.55 0.56 0.44
MOTCP+ max 0.65 0.79 0.76 0.68 0.79 0.62 0.68 0.73 0.76 0.72 0.78 0.76 0.71 0.69 0.68

TABLE 9
APFD of XMLSecurity, CommonsCollections, Pmd and CommonsLang

APFD

XMLSecurity CommonsCollections Pmd CommonsLang

all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links

Randmin 0.33 0.26 0.22 0.43 0.27 0.37 0.43 0.34 0.32 0.46 0.37 0.33
Randmean 0.5 0.47 0.52 0.54 0.53 0.56 0.52 0.56 0.46 0.58 0.58 0.59
Randmedian 0.5 0.46 0.47 0.55 0.52 0.55 0.52 0.56 0.43 0.58 0.59 0.58
Randmax 0.63 0.66 0.76 0.64 0.54 0.82 0.63 0.77 0.69 0.66 0.7 0.8
CodeCov 0.52 0.61 0.52 0.66 0.54 0.49 0.54 0.3 0.69 0.54 0.66 0.54
AddCodeCov 0.51 0.67 0.48 0.52 0.56 0.8 0.63 0.6 0.61 0.54 0.31 0.59
NSGAIIdim2 min 0.38 0.47 0.35 0.51 0.44 0.54 0.43 0.51 0.4 0.46 0.46 0.35
NSGAIIdim2 mean 0.51 0.6 0.49 0.55 0.5 0.65 0.54 0.62 0.46 0.54 0.54 0.48
NSGAIIdim2 median 0.53 0.64 0.49 0.55 0.49 0.65 0.54 0.61 0.46 0.54 0.47 0.46
NSGAIIdim2 max 0.58 0.69 0.67 0.62 0.58 0.77 0.58 0.78 0.51 0.63 0.64 0.58
MOTCPmin 0.38 0.34 0.26 0.35 0.41 0.41 0.37 0.33 0.23 0.51 0.47 0.4
MOTCPmean 0.5 0.55 0.56 0.55 0.59 0.6 0.49 0.54 0.47 0.61 0.62 0.58
MOTCPmedian 0.51 0.53 0.47 0.54 0.6 0.61 0.49 0.55 0.48 0.6 0.63 0.55
MOTCPmax 0.58 0.73 0.77 0.69 0.76 0.76 0.59 0.7 0.67 0.71 0.82 0.82
MOTCP+ min 0.4 0.22 0.2 0.42 0.28 0.2 0.41 0.33 0.36 0.51 0.42 0.45
MOTCP+ mean 0.52 0.49 0.47 0.53 0.5 0.57 0.55 0.56 0.59 0.61 0.61 0.65
MOTCP+ median 0.52 0.48 0.47 0.53 0.51 0.57 0.55 0.57 0.59 0.59 0.53 0.66
MOTCP+ max 0.66 0.65 0.64 0.69 0.76 0.84 0.65 0.78 0.75 0.73 0.78 0.85

Incomplete Traceability Links

MOTCP+ min 0.3 0.22 0.23 0.41 0.28 0.32 0.41 0.33 0.33 0.49 0.43 0.4
MOTCP+ mean 0.5 0.54 0.51 0.53 0.53 0.62 0.52 0.55 0.49 0.6 0.58 0.62
MOTCP+ median 0.48 0.47 0.46 0.55 0.51 0.64 0.55 0.57 0.57 0.6 0.57 0.63
MOTCP+ max 0.65 0.65 0.78 0.69 0.76 0.87 0.65 0.78 0.78 0.72 0.75 0.8

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 931

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

orderings in early revealing faults and tends to outperform
other approaches.

The results of a two-way permutation test suggest that
observed outcomes depend on the applications object of our
experiment (p-value< 0.001). In particular, we noted a not-
trivial variability of results for all the techniques (on average
30 percent). For MOTCP+ and CodeCov, this variability was
34 and 38 percent, respectively. Results were comparable
and less variable for Rand, MOTCP, NSGAIIdim2 and Add-
CodeCov (less than 30 percent). In addition, we noted that
for a few applications (e.g., Log4J, iTrust, LaTazza, DBUtils)
considered prioritization techniques achieved results very
different (20 to 25 points).

7.4.2 Sensitivity

Tables 6, 7, 8, 9, and 10 (columns APFDftype1 and
APFDftype2) report collected APFD measures for all the
applications, in presence of all automatically recovered

traceability links and considering severe faults (column
APFDftype1) and faults related to relevant requirements (col-
umn APFDftype2). MOTCP+ tends to outperform other tech-
niques for both APFDftype1 and APFDftype2 in most of the
applications as descriptive statistics suggest (see descriptive
statistics reported in Tables 6, 7, 8, 9, 10 and summary in
Table 11). For example, MOTCP+ outperforms, or at least
achieves comparable results, on the following applications:
AveCalc, LaTazza, DBUtils, CommonProxy, iTrust, Woden,
Log4J, Betwixt, JXPath, CommonsIO, XMLGraphics, and
CommonsLang. On other applications, there is not a clear
winner even if often either MOTCP or NSGAIIdim2 seems
to be slightly better than others. Results of the Mann-Whit-
ney test suggest that a significant difference exists between
MOTCP+ and both MOTCP and Rand in terms of
APFDftype1 as well as APFDftype2 (p-values are 0.01, 0.01
and 0.008, 0.04, respectively). On the other hand, no statisti-
cal significant difference was observed between MOTCP
+ and both AddCodeCov and CodeCov even if a trend in
favor of MOTCP+ is present. Note that pairs of other con-
sidered techniques (e.g., AddCodeCov vs. Rand) not listed
in the Table 12 have p-values greater than 0.05. These results
suggest that the application of MOTCP+ allows the identifi-
cation of test case orderings with a higher severity and rele-
vance with respect to baseline approaches. The results of a
two-way permutation test seem to confirm the fact that
APFDftype1 and APFDftype2 values depend on the applica-
tion on which test case ordering techniques have been
applied. That is, achieved outcomes significantly depend on
considered applications (p-value < 0.001).

7.4.3 Robustness

Tables 6, 7, 8, 9, and 10 show also collected APFD measures
obtained by MOTCP+ in presence of incomplete traceability
links. MOTCP+ preserves the capability in early detecting
faults considering incomplete traceability links. In fact, we
observed that only in a few cases MOTCP+ decreases its
capability of early detecting faults. For instance, in case of
APFDall, the difference between the APFD values obtained
by MOTCP+ using complete or incomplete traceability links
is on average less than 10 points. That is, the overall result
for Robustness suggests that the capability of defining ade-
quate test case orderings of MOTCP+ is quite robust with
respect to the goodness of traceability links.

7.4.4 Analysis of the Pareto Front’s Metrics

Fig. 4 shows examples of generated Pareto fronts for Ave-
Calc, CommonsBcel, and CommonsCollections. Similar

TABLE 10
APFD of Jabref and Xerces

APFD

Jabref Xerces

all ftype1 ftype2 all ftype1 ftype2

Traceability Links

Randmin 0.47 0.38 0.26 0.4 0.25 0.37
Randmean 0.57 0.61 0.58 0.55 0.5 0.48
Randmedian 0.56 0.59 0.48 0.56 0.47 0.53
Randmax 0.67 0.74 0.82 0.63 0.84 0.71
CodeCov 0.43 0.38 0.38 0.52 0.61 0.5
AddCodeCov 0.43 0.38 0.38 0.63 0.46 0.72
NSGAIIdim2 min 0.5 0.52 0.41 0.49 0.35 0.35
NSGAIIdim2 mean 0.54 0.62 0.55 0.53 0.54 0.48
NSGAIIdim2 median 0.54 0.64 0.53 0.53 0.54 0.48
NSGAIIdim2 max 0.58 0.68 0.7 0.61 0.75 0.65
MOTCPmin 0.51 0.51 0.47 0.41 0.23 0.28
MOTCPmean 0.59 0.64 0.63 0.54 0.45 0.51
MOTCPmedian 0.55 0.55 0.48 0.54 0.42 0.52
MOTCPmax 0.6 0.65 0.54 0.67 0.75 0.69
MOTCP+ min 0.49 0.37 0.34 0.51 0.33 0.43
MOTCP+ mean 0.62 0.66 0.68 0.6 0.52 0.58
MOTCP+ median 0.62 0.54 0.46 0.59 0.54 0.58
MOTCP+ max 0.74 0.77 0.82 0.71 0.68 0.75

Incomplete Traceability Links

MOTCP+ min 0.51 0.37 0.52 0.49 0.38 0.4
MOTCP+ mean 0.59 0.6 0.55 0.56 0.58 0.52
MOTCP+ median 0.58 0.54 0.61 0.56 0.55 0.52
MOTCP+ max 0.65 0.77 0.76 0.64 0.79 0.64

TABLE 11
Summary of Results for Best APFD Results

Mean and Median Maximum

all ftype1 ftype2 all ftype1 ftype2

Rand 1 2 0 0 5 4
CodeCov 5 1 4 0 0 0
AddCodeCov 4 8 4 1 1 0
NSGAIIdim2 6 4 4 3 1 1
MOTCP 3 4 3 1 6 3
MOTCP+ 7 5 6 17 12 15

TABLE 12
APFD: Mann-Whitney Results (in Bold Values Significant
at 5 percent, While � Indicates Values Still Significant
by Applying the Benjamini-Hochberg Correction)

APFDall APFDftype1 APFDftype2

MOTCP+ vs. Rand 0.02 0.01� 0.008�
MOTCP+ vs. CodeCov 0.05 0.12 0.14
MOTCP+ vs. AddCodeCov 0.59 0.74 0.16
MOTCP+ vs. NSGAIIdim2 0.093 0.096 0.02
MOTCP+ vs. MOTCP < 0.001� 0.01� 0.041

932 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

plots have been obtained for other applications and for all
measured APFDs.

By applying the Spearman’s rank correlation on the met-
ric values obtained for each Pareto front, we observed that
collinearity does not hold for the three metrics used to build
the front. In fact, we observed high collinearity (> 85 per-
cent of correlation) only in three cases: (i) CommonsBeanU-
tils, between AUCcode and AUCcost and (ii) JabRef and
CommonsBcel, between AUCcode and AUCreq.

Results of the PCA analysis are summarized in Table 13.
This table reports: the amount of variance accounted by
identified principal components (column Var); how AUC-
code, AUCreq, and AUCcost contribute to these principal
components (columns PC); and the corresponding loading
value (column Load, values range in between 0 and 1 and
represent the impact of a metric on a given component).
For instance, 91.3 percent of the variance for Betwixt is
explained by the first two principal components (i.e., in the
columns PC for Betwixt we can see 1 and 2 representing
two principal components); AUCcode and AUCcost mainly
load on the first component (the value of columns PC these

two metrics is 1), while AUCreq mainly loads on the second
component (the value of column PC for this metric is 2). All
the three metrics do not have a trivial impact on compo-
nents (their Load value is 	0.5 for all metrics). A similar
trend is shown for most of the other applications, but for a
few of them (e.g., CommonsIO, LaTazza) not all metrics sig-
nificantly load on principal components (see the symbol - in
column PC). In the case of CommonsIO, for example, AUC-
cost and AUCreq load respectively on the first and the sec-
ond component, instead AUCcode does not load on a
specific component. Overall, results in table confirms that
our three metrics contribute to principal components with a
clear impact and that a trend exists for which such metrics
share a conceptual meaning on their impact on the compo-
nents: AUCcode and AUCcost seem to refer to software exe-
cution, while AUCreq to software specification.

In Fig. 4, filled circles represent the best solutions (those
having at least 80 percent of the maximum APFD in
the front) we found in three Pareto fronts, that is test
suites having higher APFD values in the Pareto Fronts. In
Table 14, we summarize the distribution of these best solu-
tions in their respective fronts, where each axis of the front
has been divided by three with the aim of identifying
three areas in the front having respectively: low, medium,
and high AUC value. The results suggest that most of best
solutions have high values of AUCcode (71 percent of the
best solutions), AUCreq (85 percent of them), and AUC-
cost (66 percent of them). In other words, best solutions
can be frequently found in the top-right part of obtained
Pareto Front.

7.4.5 Impact of Application Objects and Artifacts

We analyzed the impact of some aspects of both applica-
tions and used artifacts. In particular, we considered: (i) size
(i.e., size of the considered applications, number of require-
ments, and size of test suites); (ii) distribution of injected
faults (e.g., number of faults injected in code that imple-
ments a requirement, number of requirements not tested by
any test case, and density of the faults per requirements);
and (iii) capability of test cases in revealing faults (e.g., num-
ber of test cases revealing one fault, number of test cases
revealed one or more than one fault, number of test cases
that reveal two or more than three faults, and functional test
case redundancy).

In Table 15, we summarize results concerning how
injected faults impact on application requirements. The table
reports (second column) the percentage of requirements

Fig. 4. Pareto fronts of APFDall for AveCalc, CommonsBcel and CommonsCollections. Filled circle represent test suites having higher APFD.

TABLE 13
PCA Summary of Results for Each Application

Application Var AUCcode AUCreq AUCcost

% PC Load PC Load PC Load

AveCalc 77.3 1 0.6 1 0.5 1 0.5
Betwixt 91.3 1 0.6 2 0.8 1 0.6
CommonsBcel 85 1 0.6 1 0.5 1 0.5
CommonsBeanUtils 79 1 0.6 1 0.5 1 0.6
CommonsCodec 88.4 1 0.7 2 0.9 1 0.7
CommonsCollections 89.2 1 0.6 2 0.8 1 0.6
CommonsIO 91.7 - - 2 0.72 1 0.67
CommonsLang 94.7 1 0.71 - - 2 0.73
DBUtis 89.2 2 0.95 1 0.68 1 0.71
iTrust 94.6 1 0.69 2 0.87 1 0.71
Jabref 78.1 1 0.62 1 0.6 1 0.49
JTidy 92.1 1 0.67 2 0.9 1 0.62
JXPath 95.9 1 0.66 2 0.94 1 0.7
LaTazza 97.6 - - 1 0.97 2 0.97
Log4J 94.6 1 0.64 2 0.89 1 0.71
Pmd 91.8 1 0.72 2 0.92 1 0.67
Woden 93.2 1 0.71 2 0.78 - -
Xerces 74.7 1 0.61 1 0.6 1 0.51
XMLGraphics 92.7 1 0.73 2 0.75 - -
XMLSecurity 92.9 1 0.71 2 0.96 1 0.69
CommonsProxy 93.7 1 0.7 2 0.99 1 0.7

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 933

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

affected by at least one fault. For instance, 40 percent (i.e., 4
out 10) of requirements considered for AveCalc were
affected by at least one fault.Moreover, this table also reports
(third column) the percentage of test cases that do not impact
considered requirements. For examples, 3 out of 20 faults (15
percent) of CommonsCollections did not impact on the set of
considered application requirements. The percentage of not
tested requirements is reported in the fourth column. In the
fifth column, the table shows fault density (FaultDensity ¼
P

r2reqð
jNumFaultsr �meanðNumFaults

NumReqs
Þj

NumReqs Þ).High values of fault density

indicate an application inwhich faults are concentrated in a
few requirements of the application, while a low level
represents an application in which faults are spread
among many requirements. In the last column, we report
the percentage of requirements in which 80 percent of
faults have been injected, e.g., 80 percent of faults in
LaTazza have been injected into 40 percent (i.e., 4)
requirements out of 10 considered.

From Table 15, we can also observe that injected faults
were evenly distributed among application requirements
(i.e., distributed in more than 51 percent of requirements—
median value for Reqs affected by faults—and with a
fault density lower or equal than 1.8—median value for
FaultDensity) in case of: LaTazza, CommonsProxy, DBUtils,
iTrust, Betwixt, CommonsBeanUtils, and Xerces. Con-
versely, injected faults seem to be concentrated in a few
requirements (i.e., distributed in less than 51 percent of
requirements and with a fault density higher or equal than
1.8) in: AveCalc, Woden, CommonsIO, XMLSecurity, and
CommonsCollections.

On the base of results shown in Table 15 (fourth col-
umn), for LaTazza and DBUtils a high number of require-
ments, 40 percent (4 out of 10) and 25 percent (3 out of 12)

respectively, were not linked to any test case. This indi-
cates that test cases are mainly focused on a subset of con-
sidered requirements. As for iTrust, Woden, Betwixt,
JXPath, CommonsIO, CommonsBcel, XMLSecurity, Com-
monsLang, and Xerces, all the requirements were linked to
at least one test case, while for the other applications few
requirements (on average 7.7 percent for each application)
were not linked with test cases, even if some links were
present. These results suggest that the set of used traceabil-
ity links could be incomplete.

TABLE 14
Distribution of Best Solutions (Higher APFD) in the Pareto Fronts

Application Best AUCcode AUCreq AUCcost

Solutions High Medium Low High Medium Low High Medium Low

AveCalc 7 2 1 4 4 3 0 7 0 0
Betwixt 3 2 1 0 3 0 0 1 0 2
CommonsBcel 4 3 1 0 4 0 0 4 0 0
CommonsBeanUtils 6 6 0 0 4 2 0 0 3 3
CommonsCodec 3 3 0 0 1 2 0 2 1 0
CommonsCollections 4 3 0 1 2 0 2 2 2 0
CommonsIO 3 2 1 0 3 0 0 0 2 1
CommonsLang 3 0 2 1 2 1 0 2 1 0
CommonsProxy 2 2 0 0 1 0 1 0 1 1
DBUtils 4 2 0 2 3 0 1 2 1 1
iTrust 1 1 0 0 1 0 0 0 1 0
Jabref 3 3 0 0 3 0 0 2 1 0
JTidy 6 4 0 2 2 3 1 5 0 1
JXPath 9 4 5 0 7 2 0 4 4 1
LaTazza 2 0 2 0 1 0 1 1 1 0
Log4J 10 7 3 0 7 2 1 2 6 2
Pmd 7 5 0 2 4 2 1 2 4 1
Woden 3 0 1 2 3 0 0 3 0 0
Xerces 3 3 0 0 3 0 0 3 0 0
XmlGraphics 6 2 2 2 3 3 0 5 1 0
XmlSecurity 4 1 1 2 1 1 2 2 1 1

- 15(71%) 4 (19%) 5(23%) 18(85%) 3(14%) 4(19%) 14(66%) 9(42%) 3(14%)

TABLE 15
Impact of Faults on Requirements

Application Reqs affected

by fault (%)

Faults not

impacting

reqs (%)

Not tested

reqs (%)

Fault

Density

Req 80%

faults (%)

LaTazza 60 13 40 1.8 40

AveCalc 40 0 10 3.2 30

CommonsProxy 80 0 10 1.7 40

DBUtis 58 14 25 1.6 50

iTrust 80 23 0 1.8 40

CommonsCodec 57 35 10 2 31

JTidy 36 6 8 1.7 24

Woden 41 21 0 1.8 29

Log4J 41 0 4 1.7 16

Betwixt 77 10 0 1.8 33

JXPath 55 15 0 2 30

CommonsIO 50 0 0 3.4 22

CommonsBcel 25 0 0 1.6 10

CommonsBeanUtils 57 22 7 1.8 30

XMLGraphics 50 20 12 4.3 12

XMLSecurity 13 0 0 1.9 39

CommonsCollections 41 15 5 1.8 29

Pmd 50 10 10 2 25

CommonsLang 80 5 0 2.2 31

Jabref 51 50 22 1.5 32

Xerces 80 0 0 1.6 30

934 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

Results reported in Table 16 (second column) suggest
that the test suites of AveCalc, LaTazza, CommonsBcel,
and XMLSecurity have a non-trivial percentage of test
cases revealing at least one fault. Conversely, a large num-
ber of test suites (i.e., the ones of: iTrust, JTidy, Log4J,
CommonsIO, CommonsBeanUtils, CommonsCollections,
Pmd, CommonsLang) have less than 5 percent of fault-
revealing test cases. For each application, the third and the
fourth column of Table 16 show the percentage of test
cases revealing only one and more than one fault, respec-
tively. We can see that: a limited percentage of test cases
(less than 25 percent) of considered suites reveals one fault.
Only in case of AveCalc and LaTazza, a large percentage of
test cases (about 50 percent) reveal more than one fault,
while in the remaining applications almost all test cases
reveal only one of injected faults.

In the last column of Table 16, results for test case redun-

dancy (TCSRedundancy) are shown. This measure is com-

puted as follows: TCSj j
TestClassesj j. TCS is the number of test cases

composing a test suite and TestClasses represents the JUnit
classes that functionally group test cases. We assume that
JUnit classes group functionally correlated test cases, i.e.,
JUnit test methods. Results suggest that the test suites
with high redundancy are those of: Log4j, CommonsLang,
CommonsBeanUtils, JTidy, and CommonsCodec.

In Table 17, we summarize the results of a two-way per-
mutation test on considered co-factors and their interaction.
Results suggest that there is a significant effect of applica-
tion with respect to APFDall values. Moreover, other factors
that have shown some influence on experimental results
are: capability of revealing faults of used test cases in terms
of test cases that reveal only one fault (PercTcsRevealingO-
neBug); number of test cases composing test suites (Num-
berOfTCS) as well as number of requirements (NumReqs);
number of requirements containing 80 percent of injected

faults (PercReq80%faults) as well as fault density (Fault-
Density); and test case redundancy (TCSRedundancy). By
correlating such metrics with APFD values (using the
Spearman’s Rank Correlation Coefficient) we found rele-
vant and statistical impacts for: PercTcsRevealingOneBug
toward Rand (r=0.14) and MOTCP (r=-0.08), while in case
of NumReqs, PercReq80%faults, FaultDensity and TCSRe-
dundancy toward Rand (r=-0.23, r=0.26, r=-0.09 and
r=0.23), MOTCP (r=-0.13, r=0.14, r=-0.07 and r=0.4) and
MOTCP+ (no correlation, r=0.09, r=-0.13 and r=0.3). Notice
that CodeCov and AddCodeCov do not have any correla-
tion with these co-factors.

7.4.6 Additional Analysis

We performed an additional analysis to study possible over-
head of our proposal with respect to baseline approaches. In
Table 18, we report some descriptive statistics (i.e., minimal,
median, maximal, mean, and standard deviation values) of

TABLE 16
Percentage of Test Cases Revealing: At Least One Fault, Only
One Fault, and More than One Fault for Each Application; and

Functional Test Case Redundancy

Application TCS

revealing

	1 fault

TCS

revealing

¼1 fault

TCS

revealing

> 1 fault

TCS

Redundancy

LaTazza 68 17 51 8.2

AveCalc 53 4 49 11.7

CommonsProxy 8 7.8 0.2 5.6

DBUtils 8 7 1 10.5

iTrust 4 3.6 0.4 3.6

CommonsCodec 5 4.9 0.1 13.8

JTidy 4 3.7 0.3 14.4

Woden 8 7.2 0.8 4.2

Log4j 4 3.1 0.9 21

Betwix 9 8.4 0.6 2.9
JXPath 7 6.6 0.4 6.5

CommonsIO 3 2.8 0.2 10.8

CommonsBcel 26 24 2 4.1

CommonsBeanUtils 3 2.8 0.2 15.8

XMLGraphics 8 8 0 3.3

XMLSecurity 18 18 0 3.2

CommonsCollections 3 2.8 0.2 4.3

Pmd 3 2.9 0.1 3.8

CommonsLang 1.4 1.1 0.3 20

Jabref 13 13 0 9.4

Xerces 7 6.3 0.7 8.5

TABLE 17
Two-Way Permutation Test on the Relevant Co-Factors

Factor p-value

Technique < 0.001
Application < 0.001
Technique:Application < 0.001

Technique < 0.001
PercTcsRevealingAtLeastOneBug < 0.001
Technique:PercTcsRevealingAtLeastOneBug 1

Technique < 0.001
PercTcsRevealingOneBug 0.127
Technique:PercTcsRevealingOneBug 0.001

Technique < 0.001
PercTcsRevealingMoreThanOneBug < 0.001
Technique:PercTcsRevealingMoreThanOneBug 0.452

Technique < 0.001
PercReqAffectedByAtLeast1Bug < 0.001
Technique:PercReqAffectedByAtLeast1Bug 0.122

Technique < 0.001
PercFaultNotImpactingReq < 0.001
Technique:PercFaultNotImpactingReq 0.851

Technique < 0.001
AppSize 1
Technique:AppSize 0.5781

Technique 0.039
NumberOfTCS 0.047
Technique:NumberOfTCS 0.005

Technique < 0.001
NumReqs < 0.001
Technique:NumReqs < 0.001

Technique 0.048
PercReqNonLinkedToTCS < 0.001
Technique:PercReqNonLinkedToTCS 1

Technique < 0.001
PercReq80%faults 0.065
Technique:PercReq80%faults 0.006

Technique < 0.001
FaultDensity < 0.001
Technique:FaultDensity < 0.001

Technique < 0.001
TCSRedundancy < 0.001
Technique:TCSRedundancy < 0.001

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 935

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

the overall time for prioritizing test cases by applying our
proposal and baseline approaches on the studied applica-
tions. In the experimentation, we used a PC equipped by
2.20 GHz Intel Core i7 with 8 GB of RAM and Windows 8
(64-bit) as operating system.

MOTCP, NSGAIIdim2, and MOTCP+ required a compa-
rable time to prioritize test cases and CodeCov and Rand
were faster with respect to other approaches. As for AddCo-
deCov, we observed that it is either fast or slow to prioritize
test cases. This seems to depend on the application. In par-
ticular, we noted that for medium to large applications (e.g.,
CommonsLang and CommonsBeanUtils), AddCodeCov
required more time than other approaches. In the case of
CommonsLang, MOTCP+ required 580.9 seconds, while
AddCodeCov required 1,794.2 seconds.

Another result of our analysis is that MOTCP and
MOTCP+ required more time than other approaches
because of the time needed to recover traceability links.
This time is, on average, 36 percent of the overall time
required to multi-objective algorithms to get final test case
prioritization. However, we can postulate that the time to
recover traceability links is hidden to the user if the recov-
ery process is executed in background every time require-
ments, test cases, or source code are modified. For such a
reason, we report in Table 19 some descriptive statistics on
the time to recover traceability links. In particular, the sec-
ond column reports the time to recover traceability links
between requirements and test cases, while the third col-
umn reports the time to recover links between requirements
and source code. As shown in Table 19, the recovery of
traceability links requirements and test cases is more expen-
sive since it required on average 163.4 seconds. The recov-
ery of traceability links between requirements and source
code required on average 49.9 seconds. We argue that this
is due to the kind of artifacts on which LSI was applied. It is
useful to observe that in a real project, requirements and
test cases change less frequently than source code.

7.4.7 Analysis

We summarize achieved results, their interpretation, and
observed trends as follows:

- Capability to find faults. By considering the three sets of
faults used to evaluate both effectiveness and sensitivity,
MOTCP+ mostly outperforms other techniques. In detail,
by considering the median of APFD values we see that
MOTCP+ outperforms: (i) MOTCP 80 percent of the appli-
cations, (ii) AddCodeCov 66.6 percent of the applications,
and (iii) NSGAIIdim2 62 percent of the applications. Only
for two applications (i.e., CommonsProxy and iTrust) the
median value achieved by MOTCP+ is lower than the

one of baselines and, in particular, of AddCodeCov,
NSGAIIdim2 and MOTCP. Hence, by trying to balance
between low- and high-level information, MOTCP+ tends
to outperform the traditional multi-objective technique
based on two dimensions (code-coverage and execution
time). By applying automatic weighting, it seems that
MOTCP+ is more efficient than MOTCP in finding faults. In
fact, test orderings produced by MOTCP+ in almost all cases
are better that those produced by MOTCP. This could be
mainly due to distribution of the faults. In this concern, we
observed that AddCodeCov and MOTCP tend to achieve
better results if faults are evenly spread in a high number of
application requirements. MOTCP+ tends to achieve better
results if faults are concentrated in a few requirements.
NSGAIIdim2 seems quite stable with respect to fault distri-
bution. These findings seem to be in line with our initial
hypothesis about the use of automatic weighting of applica-
tion code and requirements to give more relevance to
specific and fault-prone portions of the application. Indeed,
we measured a positive correlation (Spearman’s Rank corre-
lation coefficient is equal to 0.36 and p-value< 0.001)
between requirements rankings obtained by applying auto-
matic weighting and distribution of injected faults into
requirements. In other terms, our metric-based automatic
weighting approach is reasonably able to identify fault-
prone requirements.

- Robustness. MOTCP+ seems to be able to support a lim-
ited amount of spurious traceability links. That is, the qual-
ity of traceability links might affect ordering results even if
not in significant way.

- Pareto’s metrics. All three considered metrics seem to
have a relevant impact on our results. In a few applications,
we observed that two metrics could be considered instead
of three without loosing information. In general, we
observed that all the metrics significantly contributed to test
case ordering results in terms of high values of AUCcode,
AUCreq, and AUCcost.

- Co-factors. As for the APFD values, we observed that
results can vary with respect to the studied applications,
namely our experimental objects. In particular, a variance
around 30 percent for all techniques was observed. Test
suite composition (e.g., percentage of test cases revealing
one or more than one fault, percentage of requirements
linked to test cases, and test case redundancy) and fault
distribution can impact on achieved results. In particular,
we see that fault density has only a (negative) limited
impact on results achieved by our approach. This result
suggests that our approach can achieve reasonably good
results if faults are spread in code and requirements as
well as if they are concentrated in a few requirements. In

TABLE 18
Descriptive Statistics of the Overall Execution
Time (in Seconds) of Prioritization Approaches

MOTCP+ MOTCP NSGAIIdim2 AddCodeCov CodeCov Rand

Min 14.8 13.9 14.0 0.8 0.8 0.0

Mean 160.5 161.3 162.0 48.6 20.9 1.2

Median 319.7 317.6 318.6 150.4 41.7 2.0

Max 2,160.0 2,026.4 2,022.2 1,794.2 297.5 9.9

StDev 488.7 464.6 463.8 387.1 65.3 2.5

TABLE 19
Time to Recover Links between Requirements and Code

and Requirements and Test Cases

Reqs - TestCases Reqs - Code

Min 2.0 10.0
Mean 163.4 49.9
Median 90.0 25.0
Max 1,505.0 430.0
StDev 320.5 91.5

936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

fact, AddCodeCov and MOTCP achieve better results than
MOTCP+ if faults are evenly spread across a high number
of requirements. However, an increase of fault density in a
few requirements lets decrease capability of AddCodeCov
and MOTCP in early revealing faults. NSGAIIdim2 seems
to be less sensitive than other techniques to changes in bug
density. Moreover, test case redundancy can increase the
performance of our approach, while it does not signifi-
cantly impact on AddCodeCov. Another aspect that seems
to negatively impacts capability of AddCodeCov in early
detecting fault is the number of test cases of a suite that
discovers at least one faults: at increase of such a number
test orderings generated by AddCodeCov decrease their
APFD values. Instead, APFD values of multi-objective
approaches tends to increase if we observed an increase of
the number of test cases revealing one fault. An aspect that
seems to penalize the multi-objective approaches, while it
favors performance of AddCodeCov, is the number of test
cases to be ordered. We indeed observed that a strong
increase of the number of test cases in a test suite can
decrease APFD values of test orderings obtained by the
considered multi-objective approaches while the APFDs of
test ordering produced by AddCodeCov increase, as well
as computation time required to AddCodeCov to find final
test case orderings.

7.4.8 Implications

We distilled the findings of our experiment adopting a per-
spective-based approach [62]. We focus on the practitioner/
consultant (simply practitioner in the following) and
researcher’s perspectives [63]:

1) The results support our initial hypothesis about effi-
ciency and effectiveness of our technique as well as
about the use of automatic artifacts analysis and
weighting during the prioritization of test cases.
That is, test case orderings obtained by applying our
approach are able to early recover faults that are
both technical and business relevant. This result is
relevant for the practitioner interested in using our
approach in his/her company.

2) The experiment is focused on different kinds of appli-
cations and the magnitude of benefits deriving from
the use of three dimensions suggests that obtained
result could be also generalized in different contexts.
This point deserves further investigations and it is rel-
evant for both the practitioner and the researcher.

3) The experimental objects were realistic enough for
small- to medium-sized software projects. Although
we are not sure that achieved results scale to real
commercial/industrial projects, the results seem to
reassure us that the outcomes might be generalized
to larger projects. This point is clearly relevant for
the practitioner and deserves future investigations.

4) By explicitly considering functional-dimension dur-
ing the test case prioritization, our technique can
give more relevance to those test cases capable to
reveal severe and requirement-relevant fault, thus
outperforming traditional techniques that conversely
tend to give the same relevance to each fault. This
point is relevant for the researcher.

5) To let our test prioritization technique consider func-
tional aspects, application artifacts (e.g., require-
ments and source code) have to be analyzed before
doing the test case orderings definition. Hence, the
collected information can let us produce more effi-
cient test case orderings but they introduce addi-
tional and not-trivial cost required to identify
adequate test ordering. This aspect is clearly relevant
for the practitioner interested in reducing the cost for
performing regression testing and for identifying
effective test case orderings. The researcher could be
interested in investigating possible strategies to iden-
tify a trade-off between these two concerns.

6) From the execution time point of view, the recovery
of traceability links is the most expensive part of the
process underlying our approach. This aspect is par-
ticularly relevant for the researcher. In particular, the
researcher could be interested in studying either dif-
ferent text retrieval model and technique or improv-
ing the performances of the used IR technique. The
practitioner interested in our approach has to take
into account the additional execution cost introduced
by LSI use or has to explicitly document traceability
links.

7) The diffusion of a new technology/method is made
easier when empirical evaluations are performed
and their results show that such a technology/
method solves actual issues [64]. Therefore, results
from our experiment could speedup the transferring
of our solution to the industry. In addition, its intro-
duction should not require a complete and radical
process change in a given company because of the
use of automatically recovered traceability links.
This point has particular interest for the practitioner.

8 CONCLUSIONS

We propose a multi-objective technique to identify test case
orderings that are effective (in terms of capability in early
discovering faults) and efficient (in terms of execution cost).
To this end, our proposal takes into account the coverage
of source code and application requirements and the cost
to execute test cases. An IR-based traceability recovery
approach has been applied to link software artifacts (i.e.,
requirements specifications) with source code and test cases.
A test case ordering is then determined by using a multi-
objective optimization, implemented in terms of NSGA-II.
The proposed technique applies a metric-based approach to
automatically identify critical and fault-prone portions of
software artifacts, thus becoming able to give them more
importance during test case prioritization. Our technique
has been validated on 21 Java applications. The most impor-
tant take-away result of our experimental evaluation is: our
approach is able to identify test case orderings that early
recover faults both technical and business relevant.

APPENDIX

In this Appendix, we present an instantiation of the fault
injection process described in Section 7.3. In particular, let
us consider a fault having BCEL-172 as identification num-
ber of bug tracker of CommonsBcel. Fig. 5 shows how this

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 937

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

fault appeared in the online bug tracker system. This fault
caused an ArrayOutOfBoundsException when the sea-
rch functionality is executed with a given input.

From the analysis of fault report, we can observe that
the chosen fault affected version 5.2 of CommonsBcel and
it was fixed in version 6.0 (RC1). Hence, by looking at
posted patch and also at code of CommonsBcel version 5.2
(see Fig. 6a) and version 6.0_RC1 (see Fig. 6b, we identified
where the fault was present in the code, thus understand-
ing how and where to inject it to get a faulty version of
CommonsBcel to be used in our experiment. Once that
fault was injected, we verify capability of our test suite in
detecting it. That is, if at least one test case failed, we
choose fault BCEL-172.

The fault BCEL-172 was considered severe because its
priority and severity were high and because that fault
completely compromised CommonsBcel behavior. Chosen
fault was also related to a relevant requirement. In fact, it

compromised a functionality critical for the user of Com-
monsBcel library. The application documentation5 lists
search functionality as one of the key provided functionality
and several users identified the faults and reported it in the
application bug-tracker (e.g., BCEL-172, 85, 114, 125).

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: A survey,” Softw. Testing, Verification Rel.,
vol. 22, pp. 67–120, 2010.

[2] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Softw., vol. 14, no. 5, pp. 67–74, Sep./Oct.
1997.

[3] S. Mohanty, A. Acharya, and D. Mohapatra, “A survey on model
based test case prioritization,” Int. J. Comput. Sci. Inf. Technol.,
vol. 2, no. 3, pp. 1002–1040, 2011.

[4] M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “Amulti-objec-
tive technique to prioritize test cases based on latent semantic
indexing,” in Proc. Eur. Conf. Softw. Maintenance Reeng., Mar. 2012,
pp. 21–30.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” J. Am.
Soc. Inf. Sci., vol. 41, no. 6, pp. 391–407, 1990.

[6] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,” in
Proc. 25th Int. Conf. Softw. Eng., 2003, pp. 125–137.

[7] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source code
lexicon via traceability and information retrieval,” IEEE Trans.
Softw. Eng., vol. 37, no. 2, pp. 205–227, Mar./Apr. 2011.

[8] V. R. Basili and R. W. Selby, “Comparing the effectiveness of soft-
ware testing strategies,” IEEE Trans. Softw. Eng., vol. 13, no. 12,
pp. 1278–1296, Dec. 1987.

[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prior-
itization: A family of empirical studies,” IEEE Trans. Softw. Eng.,
vol. 28, no. 2, pp. 159–182, Feb. 2002.

[10] G. Rothermel, R. Untch, C. Chu, andM. Harrold, “Test case priori-
tization: An empirical study,” in Proc. IEEE Int. Conf. Softw. Main-
tenance, 1999, pp. 179–188.

[11] S. Yoo and M. Harman, “Pareto efficient multi-objective test
case selection,” in Proc. Int. Symp. Softw. Testing Anal., 2007,
pp. 140–150.

[12] Z. Li, M. Harman, and R. Hierons, “Search algorithms for regres-
sion test case prioritization,” IEEE Trans. Softw. Eng., vol. 33, no. 4,
pp. 225–237, Apr. 2007.

[13] M. Salehie, S. Li, L. Tahvildari, R. Dara, S. Li, and M. Moore,
“Prioritizing requirements-based regression test cases: A goal-
driven practice,” in Proc. 15th Eur. Conf. Softw. Maintenance Reeng.,
Mar. 2011, pp. 329–332.

[14] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proc. Int. Symp. Softw.
Testing Anal., 2006, pp. 1–12.

[15] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to
achieve effective and scalable prioritisation incorporating expert
knowledge,” in Proc. 18th Int. Symp. Softw. Testing Anal., 2009,
pp. 201–212.

[16] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in Proc.
Int. Conf. Softw. Maintenance, 2013, pp. 540–543.

[17] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche,
“Coverage-based test case prioritisation: An industrial case
study,” in Proc. Int. Conf. Softw. Testing, Verification Validation,
2013, pp. 302–311.

[18] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging
the gap between the total and additional test-case prioritization
strategies,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 192–201.

[19] W. Sun, Z. Gao, W. Yang, C. Fang, and Z. Chen, “Multi-objective
test case prioritization for GUI applications,” in Proc. ACM Symp.
Appl. Comput., 2013, pp. 1074–1079.

[20] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria
for GUI testing,” SIGSOFT Softw. Eng. Notes, vol. 26, no. 5,
pp. 256–267, Sep. 2001.

Fig. 5. Screenshot of fault having id = BCEL-172 in the online bug-
tracker of CommonsBcel.

Fig. 6. (a) code with fault (b) code without fault.

5. http://commons.apache.org/proper/commons-bcel/manual.
html

938 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

http://commons.apache.org/proper/commons-bcel/manual.html
http://commons.apache.org/proper/commons-bcel/manual.html

[21] R. Kavitha, V. Kavitha, and N. Kumar, “Requirement based test
case prioritization,” in Proc. IEEE Int. Conf. Commun. Control Com-
put. Technol., Oct. 2010, pp. 826–829.

[22] M. Arafeen and H. Do, “Test case prioritization using require-
ments-based clustering,” in Proc. Int. Conf. Softw. Testing, Verifica-
tion Validation, Mar. 2013, pp. 312–321.

[23] C. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritization
for audit testing of evolving web services using information
retrieval techniques,” in Proc. IEEE Int. Conf. Web Serv., Jul. 2011,
pp. 636–643.

[24] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,”
Softw. Quality J., vol. 22, no. 2, pp. 335–361, 2014.

[25] OMG, “Unifiedmodeling language (OMGUML) specification, ver-
sion 2.3,” ObjectManagement Group, Tech. Rep. 2.3, May 2010.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[27] A. Marchetto, C. D. Francescomarino, and P. Tonella, “Optimizing
the trade-off between complexity and conformance in process
reduction,” in Proc. 3rd Int. Conf. Search Based Softw. Eng., 2011,
pp. 158–172.

[28] Y. Zhang and M. Harman, “Search based optimization of require-
ments interaction management,” in Proc. 2nd Int. Symp. Search
Based Softw. Eng., 2010, pp. 47–56.

[29] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the require-
ments traceability problem,” in Proc. Int. Conf. Requirements Eng.,
1994, pp. 94–101.

[30] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Traceclipse: An
eclipse plug-in for traceability link recovery and management,” in
Proc. 6th Int. Workshop Traceability Emerging Forms Softw. Eng.,
2011, pp. 24–30.

[31] M. Lormans and A. van Deursen, “Reconstructing requirements
coverage views from design and test using traceability recovery
via lsi,” in Proc. 3rd Int. Workshop Traceability Emerging Forms
Softw. Eng., 2005, pp. 37–42.

[32] A. Qusef, R. Oliveto, and A. De Lucia, “Recovering traceability
links between unit tests and classes under test: An improved
method,” in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2010,
pp. 1–10.

[33] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated
requirements trace retrieval: A study of term-based enhancement
methods,” Empirical Softw. Eng., vol. 15, pp. 119–146, Apr. 2010.

[34] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook,
“Assessing traceability of software engineering artifacts,” Require-
ments Eng., vol. 15, no. 3, pp. 313–335, 2010.

[35] R. Branda, A. Tolve, L. Mazzeo, and G. Scanniello, “Linking
e-mails and source code using BM25F,” in Proc. Int. Conf. Softw.
Eng. Adv., 2013, pp. 271–277.

[36] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 4, pp. 13:1–13:50, 2007.

[37] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, 1983.

[38] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability tech-
nique for specifications,” in Proc. Int. Conf. Program Comprehension,
2008, pp. 103–112.

[39] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using
information retrieval: An empirical study on Linux kernel,” in
Proc. Working Conf. Reverse Eng., 2011, pp. 92–96.

[40] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent Dirichlet allocation,” Inf. Softw. Technol., vol. 52, no. 9,
pp. 972–990, Sep. 2010.

[41] C. D. Manning, P. Raghavan, and H. Schtze, An Introduction to
Information Retrieval. England, U.K.: Cambridge Univ. Press, 2009.

[42] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493,
Jun. 1994.

[43] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Mur-
phy, N. Nagappan, and A. V. Aho, “Do crosscutting concerns
cause defects?” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 497–515,
Jul. 2008.

[44] B. C. da Silva, C. Sant’Anna, and C. Chavez, “Concern-based
cohesion as change proneness indicator: An initial empirical
study,” in Proc Workshop Emerging Trends Softw. Metrics, 2011,
pp. 52–58.

[45] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Caz-
zola, and A. Marchetto, “On the maintainability of aspect-oriented
software: A concern-oriented measurement framework,” in Proc.
Eur. Conf. Softw. Maintenance Reeng., 2008, pp. 183–192.

[46] R. E. Lopez-Herrejon and S. Apel, “Measuring and characterizing
crosscutting in aspect-based programs: Basic metrics and case
studies,” in Proc. Int. Conf. Fundam. Approaches Softw. Eng., 2007,
pp. 423–437.

[47] R. Lincke, J. Lundberg, and W. L€owe, “Comparing software met-
rics tools,” in Proc. Symp. Softw. Testing Anal., 2008, pp. 131–142.

[48] M. Asghar, A. Marchetto, A. Susi, and G. Scanniello,
“Maintainability-based requirements prioritization by using arti-
facts traceability and code metrics,” in Proc. Eur. Conf. Softw. Main-
tenance Reeng., Mar. 2013, pp. 417–420.

[49] K. Atkinson, An Introduction to Numerical Analysis, 2nd ed. New
York, NY, USA: Wiley, 1989.

[50] S. Sivanandam and S. N. Deepal, Introduction to Genetic Algorithms.
New York, NY, USA: Springer, 2008.

[51] M. M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “MOTCP: A
tool for the prioritization of test cases based on a sorting genetic
algorithm and latent semantic indexing,” in Proc. Int. Conf. Softw.
Maintenance, 2012, pp. 654–657.

[52] J. J. Durillo and A. J. Nebro, “jmetal: A Java framework for multi-
objective optimization,” Adv. Eng. Softw., vol. 42, no. 10, pp. 760–
771, 2011.

[53] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Met-
ric Paradigm, Encyclopedia of Software Engineering. New York, NY,
USA: Wiley, 1994.

[54] C. Wohlin, P. Runeson, M. H€ost, M. Ohlsson, B. Regnell, and
A. Wessl�en, Experimentation in Software Engineering. New York,
NY, USA: Springer, 2012.

[55] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioritization,”
in Proc. 23rd Int. Conf. Softw. Eng., May 2001, pp. 329–338.

[56] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: A practical and powerful approach to multiple testing,”
J. Roy. Statist. Soc. Series B, vol. 57, no. 1, pp. 289–300, 1995.

[57] R. Baker, “Modern permutation test software,” in Randomization
Tests, E. Edgington Ed. New York, NY, USA: Marcel Decker, 1995.

[58] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proc. Int. Conf. Softw.
Eng., 2005, pp. 402–411.

[59] A. Marchetto and P. Tonella, “Using search-based algorithms for
ajax event sequence generation during testing,” Empirical Softw.
Eng., vol. 16, no. 1, pp. 103–140, 2011.

[60] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of
time constraints on test case prioritization: A series of controlled
experiments,” IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 593–617,
Sep./Oct. 2010.

[61] H. Leung and L. White, “Insights into regression testing,” in Proc.
Int. Conf. Softw. Maintenance, 1989, pp. 60–69.

[62] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, L. S.
Sørumga

rd, and M. V. Zelkowitz, “The empirical investigation of

perspective-based reading,” Empirical Softw. Eng., vol. 1, no. 2,
pp. 133–164, 1996.

[63] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox,
J. Keung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu,
“Evaluating guidelines for reporting empirical software engineer-
ing studies,” Empirical Softw. Eng., vol. 13, pp. 97–121, 2008.

[64] S. L. Pfleeger andW. Menezes, “Marketing technology to software
practitioners,” IEEE Softw., vol. 17, no. 1, pp. 27–33, Jan./Feb.
2000.

MARCHETTO ET AL.: A MULTI-OBJECTIVE TECHNIQUE TO PRIORITIZE TEST CASES 939

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

Alessandro Marchetto received the PhD degree
in software engineering from the University of
Milano, Italy in 2007. He is currently an indepen-
dent researcher working in the field of software
engineering. From 2006 till the end of 2012 he
was a researcher at the Center for Information
Technology (CIT) of the Bruno Kessler Founda-
tion in Trento, Italy, working with the Software
Engineering group. His primary research inter-
ests concern software engineering and, in partic-
ular, include quality, verification, and testing of

software systems and of Internet-based systems. He published more
than 80 papers in primary international conferences and journals. He
regularly reviews papers for international conferences (e.g., ICSE,
ICSM, CSMR) and journals (e.g., IEEE Transactions on Software Engi-
neering, Information and Software Technology, Journal of Systems and
Software, IET). He collaborated to the organization of more than 10
international scientific events (e.g., SSBSE 2012, SCAM 2012, EmpiRE
2011-2012-2013-2014, and WSE 2008-2012).

Md. Mahfuzul Islam received the BSc degree in
computer science and engineering from American
International University Bangladesh, Bangladesh
and the MSc degree from the University of Trento,
Italy, specialized in software technologies. He is a
software developer in Create-Net and Exrade Srl.
His research interests include requirements engi-
neering and software design, software testing,
and data analytics. He has more than 5 years of
working experience in research projects (such as
Superhub and Seeinnova EU projects).

Waseem Asghar received the MSc degree in
computer science and engineering from the Uni-
versity of Trento, Italy, discussing a thesis about
prioritisation techniques in software testing. He is
a software analyst in TVEyes Language Technol-
ogy. His research interests include software
design and software testing.

Angelo Susi is a research scientist in the Soft-
ware Engineering group at Fondazione Bruno
Kessler in Trento, Italy. His research interests are
in the areas of requirements engineering, goal-
oriented software engineering, formal methods
for requirements validation, and search-based
software engineering. He published more than
90 refereed papers in journals and international
conferences such as IEEE Transactions on Soft-
ware Engineering, ACM Transactions on Soft-
ware Engineering and Methodology, Information

and Software Technology, International Journal on Software and Sys-
tems Modeling, FSE, ICSE, and RE. He participated in the organization
committee of several conferences, such as SSBSE’12 (general chair),
RE’11 (local and financial chair), and in program committees of interna-
tional conferences and workshops (such as AAMAS, ICSOC, CAiSE,
and SSBSE). He also served as a reviewer for several Journals such as
IEEE Transactions on Software Engineering, Romanian Economic Jour-
nal, Information and Software Technology, Journal of Systems and Soft-
ware. He is the scientific manager of the EU FP7 project RISCOSS.

Giuseppe Scanniello received the laurea and
PhD degrees, both in computer science, from the
University of Salerno, Italy, in 2001 and 2003,
respectively. In 2006, he joined, as an assistant
professor, the Department of Mathematics and
Computer Science at the University of Basilicata,
Potenza, Italy. In 2015, he became an associate
professor at the same university. His research
interests include requirements engineering,
empirical software engineering, reverse engi-
neering, reengineering, software visualization,

workflow automation, migration, wrapping, integration, testing, green
software engineering, global software engineering, cooperative supports
for software engineering, visual languages, and e-learning. He has pub-
lished more than 140 refereed papers in journals, books, and conference
proceedings. He serves on the organizing of major international confer-
ences and workshops in the field of software engineering (e.g., ICSE,
ICSME, ICPC, SANER, and others). He leads both the group and the
laboratory of software engineering at the University of Basilicata. He is a
member of the IEEE and IEEE Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

940 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on October 23,2020 at 08:10:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

