
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

The Role of Ethnographic Studies in
Empirical Software Engineering

Helen Sharp, Yvonne Dittrich and Cleidson de Souza

Abstract— Ethnography is a qualitative research method used to study people and cultures. It is largely adopted in disciplines
outside software engineering, including different areas of computer science. Ethnography can provide an in-depth
understanding of the socio-technological realities surrounding everyday software development practice, i.e., it can help to
uncover not only what practitioners do, but also why they do it. Despite its potential, ethnography has not been widely adopted
by empirical software engineering researchers, and receives little attention in the related literature. The main goal of this paper
is to explain how empirical software engineering researchers would benefit from adopting ethnography. This is achieved by
explicating four roles that ethnography can play in furthering the goals of empirical software engineering: to strengthen
investigations into the social and human aspects of software engineering; to inform the design of software engineering tools; to
improve method and process development; and to inform research programmes. This article introduces ethnography, explains
its origin, context, strengths and weaknesses, and presents a set of dimensions that position ethnography as a useful and
usable approach to empirical software engineering research. Throughout the paper, relevant examples of ethnographic studies
of software practice are used to illustrate the points being made.

Index Terms— D.2.2 Design Tools and Techniques, D.2.14 Human Factors in Software Design, D.2.18 Software Engineer-
ing Process, K.4.3.b Computer-supported collaborative work

—————————— � ——————————

1 INTRODUCTION
thnography is a research method recognized as a sig-
nificant qualitative empirical approach suited to un-

derstanding people and cultures, and their associated
social and work practices [2]. Ethnographic studies are
commonly performed in the Social Sciences [59]. In the
context of Computer Science ethnography has been
adopted within the CSCW (Computer-Supported Co-
operative Work) and HCI communities to conduct studies
of the workplace and inform the design of computer ap-
plications e.g. [8]. Ethnographic studies are also used eve-
ry day in the practical development of technology [133],
specifically in the context of user experience design. In
contrast, ethnography is hardly used at all in empirical
software engineering. Proponents of empirical software
engineering appear to have limited experience with eth-
nography and hence there is little support in the literature
for applying ethnography to software practice. This in
turn leads to a lack of awareness in the community and
hence unfamiliarity with the approach. This paper aims to
address this situation.

Several articles and journal collections focusing on the
use of qualitative methods in software engineering re-
search e.g. [37], [116], [120], and several sets of guidelines
for empirical work in software engineering have been
published, e.g. [122] and [45], but ethnography receives

only tangential or partial treatment. Sjøberg et al [122], for
example, do not mention ethnography in their discussion
of the future of empirical methods in software engineer-
ing. Kitchenham et al’s [74] guidelines for empirical re-
search mention observational studies but the discussion is
mostly about experiments conducted in “in situ industrial
settings”. Similarly, Seaman [104] discusses participant
observation, which is a central concept in ethnography,
but does not discuss ethnography itself. Easterbrook et al
[45] emphasize that ethnography aims to understand cul-
ture (of a community, or an organization or a team), but
they don’t explore the potential that understanding such
cultures may have for improving software practice. The
key strength of ethnography that is overlooked by these
and other empirical software engineering articles is the
support it provides to explicate the rationalities of prac-
tice from an insider’s point of view – to capture both what
practitioners do in which context, and why.

While there are some ethnographic studies of software
practice, only a few of them were run by software engi-
neering researchers. In addition to the lack of awareness
and familiarity, applying ethnographic methods as part of
software engineering research is challenging, partly be-
cause ethnology and sociology – the homesteads of eth-
nography – are descriptive and analytical disciplines,
whereas software engineering, as an engineering disci-
pline, is interested in improving the way software is de-
veloped and built. Practitioners and fellow researchers
expect empirical software engineers to discuss possibili-
ties for improvement or new methods and technologies
[30], [37], [115] and are puzzled by ethnography that ap-
pears to focus only on understanding and describing a

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
x Helen Sharp is with The Open University, Walton Hall, Milton Keynes,

MK7 6AA, UK. E-mail: helen.sharp@open.ac.uk.
x Yvonne Dittrich is with Software and Systems Section, IT University of

Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S. E-mail:
ydi@itu.dk.

x Cleidson R. B. de Souza is with Vale Institute of Technology and the Feder-
al University of Pará, Tv. Boaventura da Silva, 955, Belém, PA, Brazil,
66055-090. E-mail: cleidson.desouza@acm.org.

E

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

situation. Dittrich [34] reports how the software engineer-
ing researchers’ role was co-constructed by practitioners
and management to be associated with change as well as
research, i.e. they expected recommendations for change
to be made.

The lack of software engineering researchers’ familiarity
with ethnography has been recognized before, e.g. in his
contribution to the software engineering encyclopedia,
Rönkkö [97] emphasises the differences in “style, mindset
and expectations” between ethnography and software
engineering. Ethnographic approaches can be misunder-
stood or misapplied, leading to results being dismissed
with a “so what?” response. In our experience, other
forms of field study such as observational study, case
study and fieldwork are more commonly used in empiri-
cal software engineering. An ethnographic stance would
add a different perspective to these approaches. Indeed,
case study research is observational rather than transfor-
mational, but Runeson et al [102] does not regard ethnog-
raphy as a major research method, instead considering
ethnographic studies as a specialized type of case study
with a focus on cultural practices, or long duration stud-
ies with large amounts of participant-observer data. We
will address these aspects throughout the paper.

Empirical software engineering aims to improve soft-
ware practice through evidence-driven research that
evaluates or develops tools, methods, processes and other
aspects of practice. Understanding software development
practice and the rationale underlying it is key to this aim,
not only so that any changes will be proposed in full
knowledge of the context within which it needs to exist,
but also in order for practitioners themselves to feel con-
fident in the feasibility of proposals. Two of the funda-
mental characteristics of ethnography support this aim.
Firstly, ethnography takes an empathetic perspective, in
which the researcher gains insight into social and work
practices as seen through the eyes of those under study.
Secondly, ethnography provides an analytical focus that
allows the capture of not only what is done in practice, but
also why things are done the way they are. This provides
a valuable opportunity in the context of empirical soft-
ware engineering, because capturing both the ‘what’ and
the ‘why’ of practice provides a solid foundation for iden-
tifying sustainable improvements. In addition, if software
engineering researchers conduct the studies themselves,
then valuable and practical insights can be achieved.
Software engineers are in a unique position compared to
social scientists or those “outside” the discipline [88] to be
able to adopt the role of a participant observer and to feed
back valuable insights and practical consequences into
software practice [115].

In this article we argue that ethnographic studies con-
ducted by empirical software engineering researchers
would be both valuable and insightful. In addition, we
explain why this is the case by illustrating different roles
that ethnography can play in empirical software engi-
neering research. Furthermore, and to facilitate a wider
uptake of ethnography, we present a set of five dimen-

sions to be considered in the design of any ethnographic
study, and specifically those aimed at software practice.
These dimensions provide a practical framework to be
used by researchers planning to adopt the ethnographic
method. As such, they are one of the contributions of this
paper.

The rest of the paper is structured as follows. Section 2
introduces ethnography: its history and applicability, its
main features and the above-mentioned five dimensions
of an ethnographic study. Section 3 focuses on four roles
that ethnography could have within empirical software
engineering, drawing on existing ethnographic studies of
software practice to illustrate the roles. Section 4 discusses
four questions relating to the use of ethnography in soft-
ware engineering: addressing the significance of ethnog-
raphy’s analytical stance; how to know when ethnogra-
phy is an appropriate research method; why an empirical
software engineer should consider being the ethnog-
rapher; and how to design an ethnographic study. Section
5 concludes the paper.

Throughout the paper we reference existing studies of
software practice to illustrate the points being made.
These studies are not always published within the soft-
ware engineering community, were not necessarily con-
ducted by software engineers, and in some cases re-
searchers implementing ethnographic research do not
report them as such including [31]. Despite that, all the
studies we reference have had some level of impact in
software engineering research and practice. In addition,
eight key examples have been selected to illustrate the
five dimensions of ethnographic studies and the four
roles of ethnography within empirical software engineer-
ing. An overview of these eight is in Table 1; the rest of
the paper will refer to these studies as Example <short
name>, e.g. Example Testing.

TABLE 1
OVERVIEW OF EXAMPLE ETHNOGRAPHIC STUDIES IN SOFT-

WARE ENGINEERING

2 AN INTRODUCTION TO ETHNOGRAPHY
Ethnography has its origins in sociology but has been
applied successfully outside its ‘home’ discipline. This
section introduces ethnography: what is it? where did it
come from? where has it been applied? Four main fea-
tures of ethnography are presented, and five dimensions
across which ethnographic studies vary are introduced.
These dimensions have been distilled from existing eth-
nographic studies and related literature, and tailored for
presentation to a software engineering audience in order
to facilitate the implementation of ethnographic studies
by empirical software engineering researchers.

2.1 The origins of ethnography
The word ‘ethnography’ can be translated as ‘writing
(about) a culture’. The roots of ethnology and anthropol-
ogy, where ethnography has been developed go back to
the enlightenment period. With the ‘discovery’ of the
Americas and development of trading relationships

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 3

around the world, knowledge about other peoples be-
came valued. At the same time, understanding of human-
ity and its variety of cultures and languages was growing
[65].

Ethnography, as we know it today, goes back to Mali-
nowski’s research of an island outside Australia during
the 1st World War [76]. The central tenet of this approach
is to describe another culture from a member’s point of view.
That requires the ethnographer to become a member of
the culture he is researching. In the process of becoming a
member of the culture the ethnographer needs to learn
the language, the social norms and rules and the artefacts
of the culture that is being investigated. In this process
their own cultural norms are challenged. The understand-
ing of and the ability to describe the new culture develop
through these learning experiences. In this process, the
ethnographer uses herself as an instrument. That is, she
experiences directly, and captures the ways in which the
foreign culture differs from her home culture. These dif-
ferences are the central findings of an ethnographic
study1.

During the second half of the 20th century, with the
growing importance of qualitative research methods, eth-
nography became an approach to social research in gen-
eral, not only of foreign cultures. Hammersley and Atkin-
son [59] define ethnography as “… a particular method or
set of methods. In the most characteristic form it involves
the ethnographer participating, overtly or covertly, in
people’s daily lives for an extended period of time,
watching what happens, listening to what is said, asking
questions – in fact, collecting whatever data is available to
throw light on the issues that are the focus of the re-
search” (p. 9). Especially the Chicago School of Sociology
[10] started to use ethnography to research and under-
stand urban sub-cultures and their rationalities. Further-
more, the Chicago School of Sociology “ … introduced a
concern with work practices, with how work is carried
out by social actors. This eventually led to the adoption of
ethnography in the study of use, design, development,
and deployment of computational tools” [42:60].

In the area of CSCW, ethnography became one of the
sociological methods used to inform the design of com-
puter applications e.g. [2], [24], [107]. This was led by Lu-
cy Suchman’s [123] seminal ethnographic work on Xer-
ox’s machine repair personnel. According to Anderson [2]

1At this point you might be asking: “If we’re trying to
uncover the perspectives of our informants, why is it not
enough to just ask them, e.g. through interviews?” There
are two main reasons. First, people tend to say what they
think their interviewer wants to hear. Second, they are
inclined to create a rationalised account which may (or
may not) reflect what is wanted, and to have selective
memory. Both of these are natural and not malicious, but
it means that using interviews on their own yields only a
partial view of the picture, no matter how skilled is the
interviewer [96].

this was “a pivotal moment in the understanding of what
social science might offer the design of interactive compu-
tational systems”. Note that Suchman was not the first
one to adopt approaches from social sciences, but rein-
forced the interest in them [42].

2.2 Ethnographic studies outside sociology
Ethnography originated in sociology but it has been suc-
cessfully applied and adopted in other disciplines too. In
Information Systems and Organizational Studies, ethno-
graphic studies are rather unproblematic to the communi-
ties, although researchers who were concerned with the
design and implementation of information technology
had to account for the role of technology in organizations.
Traditional ethnography includes the description of tools
of the trade, however, it does not address the influence of
tools on the culture studied.

Ethnographic studies are part of HCI’s methodological
repertoire [93], and variants of ethnography are routinely
used in research and practice to, for example, investigate
existing activity and develop supporting technologies e.g.
[13], [128], to co-design systems with users e.g. [67], and
to evaluate interactive products and systems e.g. [17]. In
recognition of the need to conduct studies under com-
mercial and other time pressures, ethnography has been
adapted to the time-pressured settings of product and
software development, e.g. contextual inquiry [62] which
relies on a two-hour apprentice-style session with the
user doing his usual work in his place of work, and ‘rap-
id’ ethnography [82] which is based on identifying key
informants, using multiple observers and keeping a tight
focus.

In the context of CSCW, ethnographic studies help to
understand why collaboration and cooperation support is
more problematic than anticipated. Observations of peo-
ple collaborating have become a major source for under-
standing the difficulties of designing support for them.
Though the ethnographic studies themselves often do not
easily translate to concrete designs of computer support
[41] they help to understand the details of the collabora-
tive practices observed. For instance, the study of the
London underground control room [60] showed how op-
erators made their action visible to each other, thus pro-
moting mutual awareness of relevant aspects of the on-
going activity as a base for coordination. Later studies
indicated that this mutual awareness is also relevant for
software developers [125]. In the context of Participatory
Design, ethnography has been widely accepted as a re-
source in the design process [9].

Altogether the experiences from neighbouring disci-
plines show that ethnographic methods can be successful-
ly adapted to different contexts and used for ‘unintended’
purposes. Similarly to other qualitative research methods,
it seems clear that applying ethnographic methods in
software engineering requires a careful design so that
they are implemented correctly and important aspects are
highlighted in the results. By doing so, the deployment of
ethnographic methods will provide a strong foundation
to explicate the rationalities of software development

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

practices and thus provide a base to develop and devise
adequate processes, tools and techniques.

2.3 Four main features of ethnographic research
There are four main features of ethnographic research: the
members’ point of view, a focus on the ordinary detail of
life, the analytical stance, and production of ‘thick de-
scriptions’ for academic accountability. These features
distinguish ethnographic studies from other observation-
al research. In the following sub-sections, each one is de-
scribed generally first, and then it is interpreted in the
context of empirical software engineering research. Along
the way, some important misunderstandings about eth-
nographic studies are clarified.

The members’ point of view
The distinguishing feature of ethnography is its focus on
the informants’ point of view, i.e., ethnography aims to
understand what is, or is not, relevant, important, and
painful for the informant. An ethnographer will take into
account whatever the informant judges as important ra-
ther than what he thinks is important. In the anthropological
tradition, this can only be achieved by participant obser-
vation: an ethnographer spends time working, discussing,
participating, living or in more general terms, engaging
with the informants. By doing that, she is able to get an
understanding of what matters to the informant. This also
means that ethnographies traditionally take a long time to
be conducted – from months to years. The reason for this
is partially explained in the previous section where we
describe the context in which ethnography arose: the
study of exotic cultures [42]. In this context, ethnog-
raphers need to learn a new language, a new way of liv-
ing, as well as learn to adapt to new food and health con-
ditions which often resulted in ethnographers getting sick
in their new “lifestyles”. Because of all these aspects, eth-
nographies took longer [84]. Nowadays, ethnographers
are being employed to study informants that are not exot-
ic, who are from the same culture, and live in similar
conditions. Therefore, ethnographies do not need to last
long anymore: in general, a couple of weeks is enough
time to produce good results [84]. Assuming that studies
require a long time to be conducted is a very common
myth about ethnographic research.

In empirical software engineering, if the researchers al-
ready have some understanding about the setting being
studied, e.g. since they understand software develop-
ment, then ethnographies might be conducted in shorter
periods of time. For instance, in Example Agile the ethno-
graphic study of agile practices was conducted over a
period of three weeks, with one week of full-time obser-
vation followed by two one-day visits over the following
two weeks. This period was chosen in this case because
the agile team under study had a three-week iteration
cycle and hence three weeks was a significant ‘chunk’ of
development time.

The fact that people from a culture can, and often do,
perform ethnographic studies of their own culture is both
an advantage and a limitation. It is an advantage because

it allows the ethnographer to grasp more quickly what
matters for that culture since she can use prior knowledge
to understand what is taking place. On the other hand,
the ethnographer must be aware of his own assumptions
and biases. He needs to recognise and take account of
these in order to understand the important aspects of the
culture being studied. Ethnographic researchers talk
about ‘bracketing’ their assumptions (i.e. putting assump-
tions aside until later) until they are confirmed (or not)
with respect to the specific context in which the study
takes place. There are techniques that can be used to
bracket assumptions and avoid biases, but they are out of
the scope of this paper.

The ordinary detail of life as it happens
Ethnographies often focus on the ordinary detail of life [2]. In
other words, ethnographers are interested in all the de-
tails of what members of a culture do in their daily ac-
tions, since a culture is enacted through these details. As
with the Chicago School of Sociology, empirical software
engineering is concerned with working life, i.e. in software
developers’ daily work achievements. This has two im-
portant implications. Firstly, ethnographers will initially
collect several types of data about different aspects of
their informants’ work because they do not yet know
what is or is not important. Secondly, even though an
ethnographer has a research focus to address, she must
keep ‘open’ for new possibilities.

As more time is spent at the site, the ethnographer will
gain a better understanding of the informants’ work, in-
cluding concerns, frustrations, expectations, preferences
and the like, and therefore will be able to identify aspects
that might be more interesting, relevant, and worth ex-
ploring for the informant than the original research ques-
tions. So because an ethnographer is aiming to see the
world from the members’ point of view, data collection
plans and expectations need to be flexible. Rigidly stick-
ing with a plan for the day which ignores changes as they
happen ‘on the ground’ is not productive. This flexibility
is often confounded with lack of rigour, a second myth
about ethnographic research. Fetterman [49:1] describes
this aspect of ethnography very wisely when he argues:
“Ethnographers are noted for their ability to keep an open
mind about the group or culture they are studying. This
quality, however, does not imply any lack of rigor. The
ethnographer enters the field with an open mind not an
empty head.”

In the context of empirical software engineering, Dit-
trich and Giuffrida [36] describe an ethnographic study
where they were initially focusing on the usage of social
software tools by software developers, but then their fo-
cus evolved. They started looking not only at these tools,
but more importantly at how they were used in the con-
text of an ecology of communication channels used by
software developers, including issue-tracking systems,
video-conferencing and screen sharing. The importance of
attending to the ordinary details of life lies in the role
these details play in relation to how the everyday tasks
are addressed. In other words, it is important that the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 5

activities be seen in the real context: who, why, what and
how of the moment, rather than be abstracted away into
constrained empirical studies.

The analytical stance
Ethnographers are not journalists who solely report what
they have observed in a particular situation. Conducting
an ethnographic study, especially when writing up its
results, involves the interpretation and analysis of what was
seen, heard, felt, and found in the field [2], [42]. Anderson
[2] is very clear in this point when he illustrates how Ma-
linowski described the “Kula Ring”:

“The centrepiece of this work [Malinowski’s work] is a
famous description and explanation of “The Kula Ring”;
that is the practice among Trobrianders of sailing hun-
dreds of miles across dangerous seas simply to ex-
change in very strictly ritualised ways apparently
worthless amulets and necklaces. What on earth are the
Trobrianders up to in doing this? By dint of his detailed
descriptions of what is exchanged, with whom and how
often; how the amulets and necklaces circulate around
the islands; what the required formulae are; what asso-
ciated activities may be carried out in association with
Kula; what magic governs the journeys; and so forth,
Malinowski demonstrates how Kula promotes social in-
tegration. In carrying out the Kula, Trobrianders, willy-
nilly, are solving one of the central problems of all socie-
ties. The function of the Kula is social cohesion.” [2: 7]
The analytical feature of ethnographies is fundamental

and powerful, and has been overlooked by research
methods articles in empirical software engineering. In
fact, this feature has also been neglected by researchers in
human-computer interaction [14]. In other words, there is
a misconception that ethnography is purely descriptive;
that it is only concerned with the description of what has
been seen in the field. This is not correct. A true ethnog-
raphy will not only present the evidence acquired in the
field, but will provide an analysis of the results explain-
ing how this evidence is, or is not, relevant for a particu-
lar purpose.

Example Awareness demonstrates this analytical aspect
of ethnography. de Souza et al [30] discuss the roles of
application programming interfaces (APIs) in the coordi-
nation of software development work in a large-scale or-
ganization. This account reports what was seen during
the study, but most importantly, it is reported in an ana-
lytical way that demonstrates how APIs are artefacts that
can facilitate or hinder the coordination of large software
development teams. So ethnography not only provides a
detailed account of how software development takes
place, but also highlights the local rationalities of the de-
velopers’ actions and behaviour, i.e. it explains why
things are the way they are, from the community’s point
of view. The rationalities are vital because they provide
the deep insight upon which future improvements can be
built. An ethnographic study in empirical software engi-
neering will aim not simply to observe activity but to de-
termine rationalities and explanations: what causes frus-
tration, stops progress, or makes the team work well; why

certain notations are used for certain tasks; why are dif-
ferent communication channels in a distributed project
team used for different situations; why is an office laid
out in a particular way even though it impacts collabora-
tion; and so on. An ethnographic analysis in empirical
software engineering needs to extend findings into in-
sights that can inform the improvement of software de-
velopment practice through tools or processes, although
not all ethnographic work looking at software practice
has achieved this.

Thick descriptions for academic accountability
The result of an ethnography is often more comprehen-

sive and detailed when compared to results using other
research methods. This is because it aims to communicate
the broad picture. This comprehensive and detailed set of
data is often referred to as a “rich picture”, or a “thick
description” [53] of the community and culture studied.
This assures that the results obtained with an ethnogra-
phy are realistic2, have high internal validity, but, on the
other hand, have weak external validity, i.e. do not neces-
sarily generalize to other contexts [80]. This causes some
empirical software engineering researchers concern as
they are seeking generalizability. However, the richness
obtained through an ethnographic study allows a detailed
investigation of the situation that may yield significant
insights that can be transferred to other ‘similar’ contexts.
For example, Ferreira et al’s [48] findings emerged from
ethnographic studies in just three organisations, but the
resulting list of guidelines has been recognised as useful
in several other contexts, e.g. [43]. In other words, because
of its analytical nature, the results of an ethnographic
study are suitable for analytical generalization, but not
suitable for statistical generalization.

As Anzai and Simon have commented [3]: “[Even if]
one swallow does not make a summer, ... one swallow
does prove the existence of swallows. And careful dissec-
tion of even one swallow may provide a great deal of reli-
able information about swallow anatomy”

2.4 Five dimensions of ethnographic studies
Especially with the adoption of ethnography outside of its
original sociological context, a diversity of ethnographic
research designs have emerged. There is not a single right
way to do ethnography; the following is a key set of five
dimensions along which ethnographic studies differ.
These dimensions have been distilled from existing eth-
nographic studies and related literature, and tailored spe-
cifically for a software engineering audience. The balance
of dimensions chosen for any one study will be influ-
enced by the community or practice to be studied, and by
the research question to be answered. This means that
these dimensions will provide a starting point for any
empirical software engineering researcher interested in

2 Realistic in as far as the situation or context within
which the evidence is gathered is comparable to the con-
texts in which you want your evidence to apply [80].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

conducting an ethnography study. Table 2 maps these
dimensions to the eight example studies used throughout
the paper.

TABLE 2
DIMENSIONS OF ETHNOGRAPHY MAPPED TO EXAMPLE STUD-

IES

Participant or non-participant observation
Observation is key to ethnographic studies and both par-
ticipant and non-participant observation are legitimate
forms of ethnography. Observation is almost always
complemented with other forms of data collection such as
interviews or document analysis. The role the researcher
takes with respect to the observed community will partly
define which areas of the community can be accessed.

Participant observation involves the researcher effec-
tively performing the same actions as the informants [69].
In contrast, non-participant observation involves the eth-
nographer observing the actions, but not necessarily do-
ing them as well [69]. Participant observation can be im-
practical in a work-based situation such as software engi-
neering as there are practical concerns about being able to
perform all activities a professional software engineer
would do in the field site. Participant observation in this
context is more often interpreted as taking on a meaning-
ful role within the community and engaging with the
community’s everyday business. For instance, when ob-
serving software engineering practices, companies are
very wary of letting non-employees access their source-
code repositories, although some kind of participation is
usually necessary in order to keep up with a fast moving
project. In this case the researcher might take over docu-
mentation tasks [129] or support the project through ad-
ministration [75].

The duration of the field study
Traditionally, an ethnographic study in ethnology would
require a long-term participation in the field and extend-
ed visits with the community studied, often abroad, and
often for many months. The adoption of ethnography by
HCI and CSCW researchers led to the acceptance that
both long-term and short-term ethnographic studies
could provide important insights and meaningful input
for design [84]. Examples of long-term ethnography in
software engineering include Low et al’s [75] 15 month-
long study (4 days a week) of a water utility company
and Prior et al’s [94] 20 month-long study (45 days in to-
tal) of a group of professional software developers. An
example of short-term ethnography in software engineer-
ing is Example Agile, which consisted of 7 days of study
over a three-week period. These examples illustrate that
the researcher does not need to be located full-time at the
study site, but that fewer days may be spent at the site,
allowing time to start analyzing the data during the field
study time. This supports development of the analytical
stance and allows for flexibility (see previous section).

Space and location
This dimension focuses on where you can find and study

your community. Ethnography is traditionally perceived
as a method practiced in a delimited geographical space
by engaging in face-to-face interactions. However the
internet and globalisation have changed that, challenging
ethnographic anthropologists and sociologists research-
ing topics such as globalizations, migrations, nationalism
and other issues not typically present just in one single
site [77]. In global and open source software projects,
online environments play a crucial role, and the concept
of a field site changes: alongside the physical workplaces,
the virtual environment needs to be regarded as a field-
site e.g. [61], and online observation will be required [91].
In these settings, the ethnographer cannot be physically
present in different sites at the same time [92]. To support
this situation, Marcus [77] developed the practice of mul-
ti-site ethnography for studies that involve more than one
fieldsite and where the ethnographer moves between
fieldsites following people, artefacts, metaphors, the plot,
life and conflicts. As an example in empirical software
engineering, O’Riain [89] investigated software develop-
ers in Ireland and Silicon Valley deploying an approach
that conducted ethnographies wherever key people were
to be found. An alternative strategy is to choose one site
from which to study participants, and another is to follow
the traces of communication, physical or digital artifacts,
and emails, instant messaging logs and intranet blog
posts [54]. Most researchers will apply a hybrid approach
– observing real settings, participating in the virtual envi-
ronment and collecting and analyzing documents of dif-
ferent kinds [68], [109], [119].

The use of theoretical underpinnings
Ethnographic research does not come with a specific the-
oretical underpinning that should be used. However,
there are several that are commonly used. Table 3 pre-
sents the theoretical underpinnings most used in software
engineering and related scientific discourses. These theo-
ries act as lenses that focus on specific aspects of the field
while de-emphasizing others. This means that a theoreti-
cal framework strongly influences not only how data
analysis is conducted, but also which data is collected. For
example, an Activity Theory-informed ethnography
would use the notion of activity as the scope for observa-
tions and focus on the central elements of an activity sys-
tem identified by the theory: actors, objects and outcomes,
tools involved, written or unwritten rules governing the
collaboration, the community the actors belong to, and
division of labor involved in achieving the intended out-
come. In constrast, ethnography using a distributed cog-
nition underpinning would focus on how the environ-
ment, including other people, artefacts and the physical
world, supports an activity through the exchange and
transformation of information. More details, including
examples are in Table 3.

While some ethnographic studies of software engineers
do adopt these frameworks, e.g. Martin et al [78] and
Rönkkö et al [99] apply an ethnomethodological under-
pinning, others, e.g. de Souza and Redmiles [29], present
their research without adopting a theoretical framework

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 7

during data collection or analysis.
Whether or not to use a theoretical underpinning de-

pends on the research question and the ethnographer’s
intent (see below). As ethnography applied in software
engineering focuses on understanding software engineer-
ing as social practice and the rationalities of practice, a
group of theories categorized under the term ‘practice
theories’ [87] offer themselves as most compatible with
the main features of ethnographic research (section 2.3
above). This family of theories regards social practice as
constitutive of social organisation and structures. So far,
only a few contributions towards a software engineering
specific theoretical underpinning have been published.
For example, Dittrich [35] suggests initial steps to adopt
and adapt practice theory to the software engineering
context.

TABLE 3
THE THEORETICAL UNDERPINNINGS MOST USED IN SOFTWARE

ENGINEERING AND RELATED SCIENTIFIC DISCOURSES

The ethnographers’ intent in undertaking the study
Traditionally, ethnography investigates an unfamiliar
culture and aims to understand it. In this case, how that
understanding is acted upon, if at all, was not part of the
ethnographers’ intent. However in the early days of eth-
nography, there were some cases of commercial exploita-
tion of the understanding achieved through ethnographic
studies, e.g. with the results being used for targeted mar-
keting. To guard against this and other misuses, many
proponents of ethnography today reject the notion of eth-
nographic results being used to exploit or change the cul-
ture it observes [56]. However, in the context of CSCW for
instance, ethnographic studies are intended to provide
not only an in depth understanding of a work practice
and organizational culture, but also support for the de-
sign of specific functionality which may then change
ways of working.

In the context of software engineering, it may be valua-
ble simply to understand and capture a description of
practice. For example, if a community-wide practitioner-
driven change has occurred, such as the adoption of agile
methods [110], then explicating and disseminating that
practice can be informative for empirical researchers;
where programmes of reform are driven by government
or industry standards, such as software quality manage-
ment systems [63], then understanding why they are or
are not accepted by practitioners can be informative for
researchers and practitioners. In these cases, those other
than the ethnographers themselves, including the practi-
tioners under study, may use that information to im-
prove, evaluate or modify practice.

On the other hand, simply understanding practice may
not satisfy all empirical software engineering researchers,
and may also puzzle those under study. For empirical
researchers, understanding observed practices is only the
starting point to improve them, maybe through evaluat-
ing methods, or developing tools and so on. Practitioners
being studied may expect help with improving their prac-
tices, or addressing their problems and be puzzled if the

researchers do not help them to improve, as they are per-
ceived as peers with access to relevant knowledge about
methods and tools.

The intent of the ethnographers will change the interac-
tion between the researcher and the field [34]. It is there-
fore important that the researcher both is open about her
research interest and her intent and also takes into ac-
count the way her research might impact the observed
software development practice.

Designing the ethnographic study
When designing an ethnographic study the dimensions
discussed above need to be taken into account. These di-
mensions are not independent, and it is common for one
to impact on the other. Location and space, for example,
might define intensity and duration of a study. Observing
an online community such as in Example PyPy might not
require full time observation even over a short time, but if
the observed community meets for a sprint, participatory
observation might require travelling and participation for
as long as the meeting takes place. We will address this
aspect in more detail in section 4.4.

Some researchers and practitioners have crystallized
certain balances of dimensions and condensed the result-
ant adaptation of ethnography into an identifiable ap-
proach. Examples include rapid ethnography [82] and
contextual inquiry [62], mentioned in 2.2 above, and cog-
nitive ethnography [5] This last one is tailored for goal-
directed development of technology through data collec-
tion in timeslices of observation, tight focus and verifia-
bility through multiple data sets. Making such compro-
mises is not easy or straightforward, and there remain
many challenges to designing an ethnographic study for
software practice [90]. It is important that any adaptation
or design does not compromise the central idea of eth-
nography, which is to uncover the participants’ view-
point.

3 ETHNOGRAPHY IN SOFTWARE
ENGINEERING

Some of the most well-known research using ethnogra-
phy in software engineering tried to integrate ethno-
graphic studies into software engineering as a technique
for requirements engineering [131]. This paper takes a
different stance, it focuses on ethnographic studies as a tech-
nique to study the community of software engineers and im-
prove the way in which they work.

The first studies using ethnographic methods to investi-
gate software practice, conducted from a software engi-
neering perspective, were implemented and published in
the mid 1990s, often by interdisciplinary groups of re-
searchers including software engineers and sociologists
e.g. [63], [75], [121]. For instance, Example Bug Report
focused on the concept of a coordination mechanism and
has been influential in global software engineering recent-
ly (see Table 2). Another example is the work of
Hovenden and colleagues [63], who describe a study of
quality management that lasted just one week, and was

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

largely non-participative.
This section presents four different roles for ethno-

graphic studies in empirical software engineering. The
discussion is illustrated using the eight example studies
introduced above; the way in which they relate to each of
these four roles is shown in Table 4. These four roles are:
1. To strengthen investigations into the social and hu-

man aspects of software engineering
2. To inform the design of software engineering tools
3. To improve process development
4. To inform research programmes by articulating more

specific research questions and complementing other
research methods, such as code analysis and quanti-
tative studies, thereby providing context grounded in
practice

One study or series of studies may address more than
one of these roles.

TABLE 4
THE ROLE OF ETHNOGRAPHIC STUDIES MAPPED TO EXAMPLE

STUDIES

3.1 To strengthen research on social and human
aspects of software practice
People and their interactions are central to software de-
velopment, and the significance of the social and human
aspects of software practice is well-established. In the
early 1970s Weinberg [134] highlighted the importance of
social interaction in code development, Nygaard [88]
proposed a set of dimensions of ‘Program Development
as a Social Activity’, and later, Floyd [50] emphasized the
importance of focussing on the software development
process as it unfolds in reality as a basis for supporting
developers with adequate tools and techniques. Other
notable writers were: Scacchi who based software engi-
neering tool development on empirical studies and find-
ings from sociology [7], [81]; and Naur [85] who ques-
tioned the value of documentation as a sole communica-
tion tool, and emphasized the need to directly communi-
cate the rationale behind the design.

Research on the human and social aspects of software
development has quite a broad scope, but its key charac-
teristic is that it covers any aspect that is related to people
involved in software development, or their interactions
[32]. For example, psychological aspects of individual
developers e.g. [33], [103], developer behaviour e.g. [135],
teams e.g. [6], users e.g.[1], and so on, would all be con-
sidered under this theme. Given its focus on culture and
the informants’ perspectives, it is not surprising that eth-
nography can strengthen investigations of the social and
human aspects of software practice.

Research in this area often relies on interview data. In-
terviews are a good approach to use because they can
elicit data from people relating to their thoughts and ra-
tionales, which are difficult to obtain through other
means. When used on their own or with other self-
reporting instruments such as questionnaires, they rely
on the informant’s account of events, and any such ac-
count is necessarily partial and rationalized [96] (see also

footnote 1 above). Ethnography’s focus on daily activity
as it unfolds in the real context helps to capture a holistic
view of key social and human events relevant to the
study of software practice, and hence complements inter-
views. Together with ethnography’s emphasis on the in-
formants’ perspective, this approach overcomes any limi-
tations of using self-reporting instruments alone. Ques-
tions in this area which might be answered using ethnog-
raphy include How do developers manage to produce quality
code in a complex environment? What is it important not to
change? Why do problems, conflicts and successes occur? What
is behind compliance and non-compliance with espoused meth-
ods?

Example Agile indicates one set of studies where an
ethnographic approach has been used to explore the so-
cial and human aspects of software engineering, in par-
ticular focusing on team interactions. A key finding from
these studies was that the social behaviour of teams
helped to enforce the disciplined use of supporting arte-
facts [111], [112]. This finding was based on a number of
individual studies in different settings, all with XP (ex-
treme programming) practitioners and a range of under-
pinning theories including distributed cognition [66] and
cognitive dimensions [57]. One of the consequences of
this finding for practice is the need to compensate for so-
cial discipline when the social context of the team chang-
es, e.g. through distribution [109]. Another consequence is
the need to consider the impact of virtual rather than
physical artefacts [108].

Several of the Example studies’ results show that soft-
ware development is a social process as much as a tech-
nical process, e.g. Example Coordination and Example
Bug Report, and there are several other ethnographic
studies that exemplify this role. For example, Dittrich and
Lindeberg [38] identified a rich set of practices that pro-
mote user-developer cooperation. Their findings particu-
larly highlight how the dynamics of a participatory and
evolutionary process can be accommodated while at the
same time making the process accountable and managea-
ble from an organizational perspective. Avram et al’s
study emphasises the role of ethnography in uncovering
the rationale for certain practices [4]. They used partici-
pant observation, among other methods, to investigate
workflow at the project level and at local level, within a
distributed team. Their results confirmed that imposing
processes or workflows does not necessarily support the
organization in meeting its goals, and that local arrange-
ments may be supportive rather than obstructive.

In short, ethnographic studies of software practice fo-
cused on social and human aspects can expose the mech-
anisms used to make things work, explicating practices
that may be taught and shared, explanations that allow
key activities or artefacts to be protected, and potential
problems to be detected early.

3.2 To inform the design of software engineering
tools
The relationship between ethnographic research and de-
sign is by no means a simple one. In fact, it has been dis-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 9

cussed in the CSCW community since its very beginning.
For instance, in 1994 Hughes et al [64] suggested four
practical strategies to using ethnography in design. As an
example, one of these approaches is called concurrent
ethnography, which means that the ethnographic investi-
gation of the work and the systems design proceed in
parallel (see Figure 1). Debriefing meetings between eth-
nographers and designers are held to “identify, discuss,
and elaborate issues of relevance to design” [22: 91].

Figure 1. Concurrent Ethnography and Design

Other authors have also discussed this relationship.
Anderson [2] concludes that “Ethnography has been
drawn into the circle of design. […] The task we now face
is to try to understand what the incorporation of this and
other modes of social science might mean and just what
their investigative methods can contribute. I do not be-
lieve this is a straightforward, quick, or painless process.”
Dourish and Button [42] highlighted an issue which is
crucial to software engineering research too: can a de-
tailed account of how some work takes place be used to
provide ‘design recommendations’ for the software that
will inevitably also change the work on which the study
was based, i.e. the software that will affect the culture and
the practice once it is adopted (as discussed in section
2.2)? The debate has continued for several years and
Crabtree et al [23] caution designers “to carefully consider
the contributions different approaches <to ethnography>
make to design. They are not all the same and widespread
adoption of new approaches may undermine the practical
relationship ethnography has developed with design as
the computer moves into new contexts.”

However, it is important to have in mind that this dis-
cussion assumes that ethnograhers do not possess design
skills [22:95], and therefore, that ethnographers and de-
signers are different stakeholders. This translates the rela-
tionship between ethnography and design into an issue of
information exchange and communication, i.e., how can
the ethnographers report, in a meaningful way, to the
designers? And, how can designers address the important
aspects of the work highlighted by the ethnographers?

When conducting an ethnographic study of software
practice from a software engineering perspective, these roles
are not different, i.e., the ethnographer and the designer
are one and the same person. Example Awareness illus-

trates this aspect. The initial study showed that APIs play
multiple roles in collaborative software development:
they are at the same time contracts between developers,
reification of organizations’ boundaries and communica-
tion mechanisms, therefore both facilitating and hinder-
ing the coordination of software development teams. This
resulted from an analyisis of the data collected, i.e., this
example also illustrates the analytical aspect of the ethno-
graphic work (see section 2.3). This means that building a
tool to support these results should not focus on the data
per se, but instead on the analytical results.

In Example Awareness, the same authors built and
evaluated the tool Ariadne [26], [127]. This illustrates the
use of a typical software analysis technique (in this case
dependency analysis) to facilitate the coordination of
complex software engineering projects. Results of the de-
pendency analysis are used to support the identification
of software developers who are working on similar is-
sues, developing redundant parts of the code, and so on.
The study was one of the first to establish a research focus
on socio-technical dependencies in software engineering
and how to manage them. Later on, Cataldo and col-
leagues [20] extended this approach by focusing on
(un)matched coordination needs.

The explicit link between an ethnographic study and
tool development is not always made within one piece of
work, but it is more common for an ethnographic study to
identify areas requiring new tools, or to explain how the
existing tool is used and hence how it might be improved:
Example Awareness, for instance, focuses on the ethno-
graphic analysis while the results of the tool construction
and evaluation are presented in other papers [26], [127].
Similarly, Boden et al [11] studied two teams in small
software development German companies and later on
implemented the concept of Articulation Spaces [12] to
address some of the coordination problems they had ob-
served in these companies.

Being a software engineering researcher and an ethnog-
rapher in the context of tool design is not without prob-
lems, however. The most important problem to be ad-
dressed is the need to be cautious about when to start
designing, or better yet, not to start designing too soon. In
other qualitative research, hypotheses to be tested in one
data collection step may be created in the previous one. In
the beginning of the process, software engineers then
should avoid making design decisions or even imple-
menting something, when it is unclear which of these
hypotheses is true. Instead, the researcher should hypoth-
esize about tools, or features, that could be useful for
software developers and seek ways to validate them with
the informants. By this, we mean collecting additional
data to support, or reject, the hypothesis that a particular
set of designs would be useful for the informants. Fur-
thermore, the appropriation of the design will provide
additional information about which aspects of the sup-
ported practice interact with the task the tool is designed
to support. Another risk associated with early design de-
cisions is giving too much emphasis on the data per se

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

instead of the focus on the analytical results. For instance,
de Souza and colleagues [31] faced this situation during
one of their studies. They observed a situation in which
the versioning systems and email could be “integrated” to
facilitate the studied team’s work. However, as the re-
search progressed they realized it was more important to
focus in the overall communication among the different
teams. Combining these two tools would be only one lim-
ited part of the solution. Again, they reached this conclu-
sion by hypothesizing about solutions and tools, and later
on validating them in following data collection periods.

3.3 To inform software process and method
improvement

Designing tools for software development is only one
way in which software engineering aims to improve
software development practice. Methods, processes, and
techniques also package research results for practitioners.
Ethnographic research provides a unique opportunity to
better understand the interaction between methods and
the situated context of their deployment and to use that
understanding to improve the practice at hand, as well as
the methods and processes adopted. If the researcher be-
comes involved in the deliberation of change and the ex-
ploration of methods, though, the role of the researcher
changes from a pure observer to an actor and sometimes
even a change agent.

The way methods are used informs practice in a differ-
ent, less visible and less accountable form than tool de-
sign and usage. This has been discussed in research fo-
cussing on cooperative aspects of software engineering,
e.g. [51] and [79]. As other ethnographic research has
shown, the application of methods is not as straightfor-
ward as many software engineering textbooks imply [15]:
methods, processes and techniques, despite their pre-
scriptive nature, are still subject to interpretation in the
specific context. Applying ethnographic research to focus
on the situated implementation and adaptation of meth-
ods, processes and tools in software practice leads to an
understanding of how methods, processes and techniques
actually influence that practice, what specifically influ-
ences the interpretation and appropriation of methods,
what makes them work, and what prohibits their applica-
tion. Two examples that illustrate this role of ethnogra-
phy are a study by Dittrich and Lindeberg looking at use-
oriented software development [38] and Rönkkö et al.’s
study on the applicability of personas in specific circum-
stances [100]. The former is an example of how different
processes and techniques together facilitate a participa-
tory design and development process. The latter indicates
how external factors impact the applicability of a method,
in this case the use of personas.

The rationality of engineering disciplines, though, aims
not only at understanding but also improving human
affairs by developing technology. Software engineering
researchers are interested in developing and evaluating
methods, processes and tools as practitioners are interest-
ed in improving their practice by applying these innova-
tions. This sometimes leads to the situation that software

practitioners as well as their managers expect recommen-
dations and improvement when engaging with software
engineering researchers implementing an ethnographic
study. For example, in Example Scientist, the software
engineering researcher was invited to observe the project
specifically in order to provide a reflective account and
help the team to solve communication and cooperation
problems.

This expectation influences the participants’ interaction
with the researcher, and this may be negative as well as
positive. For example, the researcher might be perceived
as a managerial agent who will provide recommenda-
tions to improve control. In turn, the practitioners in-
volved might hide aspects of their practice they do not
want to have documented for management. One way to
address this situation is to be explicit about the intention
of the research and the interaction with the involved
stakeholders.

In response to this, Dittrich and colleagues adapted ac-
tion research as a framework for making the research and
intervention accountable both towards the research com-
munity and the research setting [34], [40]. Their Coopera-
tive Method Development is based on five guidelines to
keep the member’s point of view and the focus on the
day-to-day activities when deliberating, implementing
and evaluating improvements:
1. an action research cycle consisting of three phases:

empirical studies, deliberation of changes, and intro-
duction and research of the changes decided;

2. the empirical research is ethnographically inspired;
3. focusing on the everyday shop floor software devel-

opment practice ;
4. improvements are deliberated and evaluated from

the shop floor software development perspective;
and

5. the changes are deliberated and implemented togeth-
er with the practitioners.

Example Architecture illustrates this role for ethno-
graphic studies in empirical software engineering. The
study focused on the processes and practices around agile
architecture, and applied the above-described Coopera-
tive Method Development approach [40]. The study pro-
vided an understanding of the architectural practices that
were used in this context, and showed how heavyweight
architecture practices that focus on comprehensive docu-
mentation might not be suitable in a context where the
architect needs to be aware of how the code architecture
is evolving. It proposes and evaluates lightweight archi-
tecture practices and methods that are in line with the
software development practices observed. More widely,
Example Architecture shows that when proposing and
introducing methods and tools to support architectural
practices, the social practices that are to be supported by
the tools need to be adapted explicitly.

3.4 To inform research programmes
Ethnographic accounts have the potential to highlight
under-researched areas of software engineering, to identi-
fy more specific research questions, and to complement

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 11

other research methods by providing context for them.
For example, Example Agile highlighted the importance
of physical artefacts plus social practices to maintain dis-
cipline in agile software teams. In this case, the role of
physicality in certain tasks had been researched within
CSCW, but the findings there had not been translated or
applied in this “new” context, software engineering.
Questions remained regarding what is lost and what is
gained when teams need to become distributed or dis-
persed, and hence physical artefacts are not feasible [109].
An ethnographic study may form the core of a research
project or programme of research (as described in Sec-
tions 3.1-3.3) or it may be used to generate new research
questions or complement other methods by providing
context.

To articulate more specific research questions
Because data collection plans need to be flexible within an
ethnographic study, and more importantly, because of the
focus on the informants’s point of view, it is very com-
mon for such a study to identify more specific research
questions once it is underway. These questions may be
investigated within the same ethnographic study or
through other methods of data collection and analysis as
a separate study.

Example Scientist was originally aiming to investigate
cooperation problems, believed to be caused by the dis-
tributed nature of the project. It was hoped that formal
and informal discussions prompted by the researchers
would support team members to reflect on their own
practices. However this initial focus on distribution was
overridden by the research analysis which pointed to con-
flicting cultural values and practices between the profes-
sional software developers and the scientists as scientific
end-user developers. The analysis of Example PyPy be-
gan with an industrial case study looking at how Open
Source teams handle the challenges of distributed devel-
opment. This initial study led to a more specific focus on
how changes to common practice are negotiated, and im-
plemented in order to address these challenges.

To complement other research methods
Ethnography may be the main research approach taken,
or it may be used to complement other methods. When
used as a complementary approach, ethnographic studies
can bring context to more quantitative findings, or other
qualitative investigations. For example, Capiluppi et al
[16] report a quantitative analysis of code evolution that
was developed by one of the Example Agile teams.
Through the deep understanding gained of the team un-
der study, useful contextual information was available to
help interpret the quantitative findings. Other contextual
information such as team facts and figures, practitioners’
descriptions, organizational characterisations etc usually
collected through case study research also provides a use-
ful context, but it is of a different nature.

Instead of collecting just measurements or reported ac-
tivities, the ethnographic investigation reveals how the
measurements come about and what the reported activi-

ties look like in practice. Observations may also support
making connections between various data sets. For in-
stance, when investigating the use of instant messaging in
distributed software engineering [55], observation helped
understand the relationship between what happened on
the instant messaging channel and what happened on
other channels like the issue tracker, audio calls, and e-
mail.

Several of our Examples illustrate the use of ethnogra-
phy to complement other research methods. Example Bug
report form used interviews and elements of case study
research; Example Coordination complemented ethnog-
raphy with interviews and document analysis; and Ex-
ample PyPy used open-ended questionnaires.

With the member’s perspective, ethnographic studies
contribute an understanding of the rationalities of the
observed practice. This facilitates the capture of not only
deviation or adherence to methods, but also an under-
standing of why experienced practitioners might deviate.
Based on ethnographic studies and complementary inter-
views, Example Architecture proposes that there might be
good reasons why software architects do not use architec-
tural documentation: they are afraid that they will not be
kept up-to-date about the state of the product if team
members can access the documented architecture without
consulting them.

4 DISCUSSION
The examples throughout this paper illustrate what can
be achieved when ethnography is used to investigate
software practice, but are these achievable uniquely
through an ethnographic approach? It is not possible to
state categorically that the findings gleaned through an
ethnographic study cannot be uncovered using another
empirical method. However it is extremely unlikely that
such a deep, rich and detailed understanding of practices
and their justifications will be forthcoming unless an eth-
nographic approach is taken.

4.1 Why the analytical stance matters
An ethnographic study does not produce just an account
of activity; it also supports the generation of insights and
consequences (through the analytical stance). The core of
ethnography in software engineering is to investigate the
everyday activities of software engineering practice and
to articulate the rationalities of those activities from a
members’ point of view. An ethnographic study provides
insight into the fine-grained activity through which soft-
ware practitioners achieve useful and usable software in
an imperfect environment: what difficulties they are fac-
ing and what, for them, has proven beneficial to address
these difficulties. This fine-grained activity often only
becomes visible when it becomes problematic, e.g. when
coordinating software engineering practices fail over dis-
tances [25].

Understanding the fine-grained activity of software
practice, and its rationalities increases the chance that
improvements in software practices built on these find-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ings will be sustainable, because they take account of lo-
cal conditions and embed existing local expertise. Specifi-
cally, this understanding helps to: identify what not to
disturb when introducing new methods, tools and tech-
niques; explain what has happened when things go
wrong; uncover the local adaptations necessary in order
for methods to be adopted and accepted; design tools to
address some of the issues identified; and appreciate the
ongoing changes applied to keep projects working suc-
cessfully.
What not to disturb: In Example Architecture, the reason
for not adopting recommended software architecture
documentation practices was that they interfere with the
software architects’ practices that keep themselves up-to-
date with emerging issues and concerns that might re-
quire changes to the considered software architecture.
Why things go wrong: Example Agile provided insights
into the role of physical artefacts in a co-located agile
software development team, and how the move to a dis-
tributed setting disturbs this role. Damian et al. [25] also
show that a very little difference in the way a distributed
team used the set of tools rendered locally well-
established, awareness-creating, coordination mecha-
nisms useless when moving to a distributed setting.
How methods are interpreted and adopted locally: Button and
Sharrock [15] report the appropriation of methods and
techniques beyond what the method authors would un-
derstand as a proper implementation of this method.
However, the appropriation takes place for good profes-
sional reasons. Rather than being read as a sign of incom-
petence, these appropriations can be seen as a reaction to
the mismatch of the rationalities of practice and the
method to be applied [98].
How to design software tools: Example Awareness illus-
trates the different roles played by APIs in the coordina-
tion of software development work. Furthermore, its
analysis suggested the usage of dependency analysis
techniques, a traditional technical approach, to uncover
social aspects that would be relevant to collaborative
software development practice.
How projects are kept on track: Example PyPy investigated
how distributed development projects, private as well as
open source, change their practices in order to react to
contextual changes or to address problems identified by
the project members. Similarly, Avram et al. [4] show
how a commercial distributed team adjusts its local prac-
tice to the common infrastructure in order to “keep the
local work flowing”. Cohn et al [21] show how software
engineers negotiate the boundaries of the project defining
what is and what is not part of it.

4.2 When is ethnography appropriate
Ethnography is not the only, nor the best qualitative ap-
proach to be used in all circumstances, but the more thor-
ough understanding of software practice that ethnogra-
phy brings has great advantages. For example, software
engineering research often develops methods, tools and
techniques that are designed to improve practice, but are
rarely adopted. Why is this? There has been much debate

concerning the evidence required by practitioners to
adopt research outcomes, and to adapt their practice e.g.
[44]. Although questions remain, it is clear that apprecia-
tion of practice and practitioners’ points of view will im-
prove the chances of adoption, and hence these research
outcomes can only benefit from the insights ethnography
can bring.

Qualitative research has long been discussed as a way
to generate hypothesese and problem formulations that
then can be investigated using quantitative research
methods. Seaman [104] was one of the first within soft-
ware engineering to promote qualitative research with
this idea. However it is also appropriate even within are-
as that have been well-researched because ethnographic
studies (within and outside software practice) provides a
different perspective that can produce new insights [121].

In Example PyPy, earlier observations of how members
of a distributed industrial project coped with distributed
software engineering led the ethnographic researcher to
understand that distributed teams consciously adjust
their practices when contingent changes in cross-site col-
laboration arise. Similar practices of articulation and me-
ta-work were thereafter observed in the PyPy project.
Such re-negotiation of coordination and cooperation prac-
tices have not been reported previously from studies in
empirical software engineering. Similarly, Example
Awareness looked at a technical construct (APIs) and un-
covered their role in the coordination of software devel-
opment work, which was a new insight. In both examples
we see that the ethnographic research unearthed unex-
pected, innovative research questions, which in turn led
to a better understanding of the cooperative and social
aspects of software engineering.

Ethnography puts cooperative, social and human as-
pects of software engineering practice in the centre, and is
therefore very well-suited to any research question focus-
ing on these aspects. Whether or not, more broadly, an
ethnographic study is appropriate as the main source of
data depends largely on the research question to be an-
swered [95]. For example, asking ‘How do software prac-
titioners develop systems using XP?’ rather than ‘Is single
programmer coding more productive than pair pro-
gramming?’ or ‘Why don’t scientists adhere to a company
manual of software development practice?’ rather than
‘Does structuring the manual this way help scientists
produce more lines of code an hour?’

However all empirical phenomena take place within a
context, and that context will influence the phenomenon,
and hence its study. Using ethnography as a contextual
research method is therefore relevant for a much wider
set of research questions, especially if sustainable im-
provements are sought, because they can then take ac-
count of local conditions and embed existing local exper-
tise.

There are many (empirical) software engineering ques-
tions that an ethnographic study may address: What is so
interesting about discussions of APIs (Example Aware-
ness)? How do software engineers use graphical repre-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 13

sentations in design [124]? How do they use artefacts in
their environments in Agile Development? And can they
replace these tangible artefacts when working in a dis-
tributed manner without losing the benefits of physicality
(Example Agile)? How do software engineers involve
their users throughout the software development that is,
on first sight, governed by a waterfall model [38]? Why
do steering committees carefully re-plan a delayed devel-
opment project using the terminology of the company-
wide project model while at the same time violating the
rules of this very model [99]? What is the meaning of ‘ap-
plying object oriented design’ [15] in a way that is not
recognizable as such, when looking from the outside?

We would like to add a reservation here, though. Radi-
cal changes in tools, techniques, methods and processes,
cannot be supported by ethnographic research. Ethno-
graphic methods rely on existing practices. If a tool, tech-
nique or method is supposed to radically change a prac-
tice, ethnographic research is of little help in effecting that
change, although it can be used to evaluate the proposed
practices in pilot studies.

4.3 Why a software engineer should consider being
the ethnographer

The relationship between the ethnographer and her in-
formants is key. If the ethnographer is a software engi-
neer, then to some extent he is already a member of the
community being studied, which brings both advantages
and disadvantages. A key advantage is that the insights
produced from the study are more likely to be relevant
and of interest to other software engineers. Another is
that access to the informants’ discussions and rationalities
will be more meaningful, which in turn leads to more
meaningful analysis. Like other professionals, peer re-
spect is a significant force in the software practitioner
community, and we have found that software practition-
ers react differently to a researcher who has technical
credibility rather than someone from a different discipline
[34], [114].

Two key disadvantages of a software engineer being the
ethnographer are corollaries to the advantages above.
From the ethnographer’s point of view, a software engi-
neer may be tempted to make assumptions or to be
judgmental [115]. From the practitioners’ point of view,
they will expect someone knowledgeable in the area to
offer guidance, especially comparative comments if the
ethnographer is visiting several organisations [114]. It can
be difficult for the ethnographer to keep a research stance
and a suitable scientifically accountable manner. One
framework to handle this (the Co-operative Development
Method) was discussed in Section 3.3.

4.4 How the dimensions and roles relate to each
other

The previous sections highlighted five dimensions of an
ethnographic study (section 2.4) as well as four different
roles for ethnographic studies of empirical software engi-
neering (section 3). So how do these dimensions and roles
relate to each other? First of all, it needs to be said that

there are no strict guidelines about this, i.e., this is not
about building a 5x4 matrix of dimensions and roles and
filling the cells with recommendations. As ethnographic
studies recognize, the context where the research takes
place is very important, therefore, a matrix like that
would be a huge simplification. In any case, the im-
portant point is that these aspects relate to and impact
upon each other. Their relationships are quite complex.

For instance, if the goal of the study is to investigate the
relevance of social and humans aspects of software de-
velopment practice, a researcher may spend less time in
the field, because even short periods might be enough
time to reach a good understanding about the site and
gain useful insights. Examples Agile and Testing both
illustrate this. In Example Agile, time spent in the field
was short but intense and related to the length of agile
iterations, whereas in Example Testing, the study was
dispersed over months with shorter periods of data col-
lection on site.

In contrast, using ethnographic studies to inform soft-
ware process and method improvement will typically
require intense fieldwork in the beginning, followed by
workshops and deliberations of the changes, followed
again by intense fieldwork and evaluative interviews and
focus groups. In other words, this will likely be a longer
ethnographic study – compared to others with different
goals – requiring more engagement from the researchers
and informants. Example Architecture illustrates such a
study design.

Finally, it is important to have in mind that ethnograph-
ic research allows the adaptation of the research design
based on initial findings, therefore the kind of engage-
ment and participation often will need to be adapted dur-
ing the course of the study.

5. CONCLUSION
Ethnographic studies can and have already contributed to
the goals of empirical software engineering. The four
main features of ethnography underpin the value of these
studies to an engineering discipline such as empirical
software engineering as follows:
1. a focus on the members’ point of view allows the ra-

tionalities of practice to be made explicit, and hence
exposes why software engineers do what they do;

2. a focus on the ordinary detail of life emphasises local
context and local expertise which can be overlooked
when using other research approaches;

3. the analytical stance makes the results of an ethno-
graphic study more than a simple account of activity;
and

4. the production of ‘thick descriptions’ supports aca-
demic accountability.

 Section 3 highlighted four significant roles that ethno-
graphic studies of software practice can and have ful-
filled. Each of these roles is substantial and contributes to
the goals of empirical software engineering, but this list is
not exhaustive and might be extended through future
studies. Many examples of ethnographic studies that have

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

focused on software engineering have been referred to in
this paper. Eight of these are focused on in more detail to
illustrate the implications that such studies have had (see
Table 1), the five dimensions of an ethnographic study
(see Table 2), and the four roles that ethnographic studies
may play in empirical software engineering (see Table 4).
 By investigating and articulating both the work behav-
iour and the rationalities behind that behaviour, meaning-
ful and sustainable improvements can be researched, de-
vised and introduced to practice. Moreover, if software
engineers undertake the ethnographic study themselves,
then this can increase the likelihood of the findings being
of use within an empirical software engineering context.
 Adopting paradigms that have a different disciplinary
origin can be daunting, and adopting ethnography is no
different. Each study design requires a number of deci-
sions about the usage of the ethnographic method within
the specific context and circumstances. In section 2.4, we
discussed five dimension along which the studies re-
viewed for this article differ: the degree and kind of par-
ticipation, the duration of the study, the space and loca-
tion of the study, the theoretical underpinning applied,
and the researchers intent. Approaching the design of an
ethnographic study with these five dimensions provides a
practical framework for the newcomer, supporting the
design according to the research question being investi-
gated, the context of the fieldwork and the characteristics
of the main focus of the study. As mentioned above, eth-
nographic research allows adaptation as new data and
findings unfolds. This means that the study does not need
to be over-engineered; the researcher needs to start and
be aware of and sensible to the circumstances of the study
and adapt her research accordingly.
 The central contribution of ethnographic studies is their
ability to uncover the rationalities of the observed prac-
tices. Therefore, ethnographic studies provide an im-
portant complement to other empirical research methods,
like experiments, that rely on prior formulation of hy-
potheses. Ethnographic studies help understand how, and
more importantly, why, software teams do the things that
they do, such as organize themselves in a specific way,
coordinate their activities, apply or not apply methods,
and use, or not, specific tools and techniques. These find-
ings not only improve our insight into the subject of our
discipline but can and should also be used to inform tool
design and method development.

ACKOWLEDGMENT
The authors wish to thank attendees at their tutorials dur-
ing ICSE over the last 5 years, and all the collaborators
who have supported our ethnographic studies.

REFERENCES
[1] Abelein, U., Sharp, H., and Paech, B. (2013) ‘Does Involving

Users in Software Development Really Influence System
Success?’, IEEE Software, Nov/Dec 2013 pp13-19.

[2] Anderson, B. (1997) Work, Ethnography and System Design.
The Encyclopedia of Microcomputers, Vol. 20 (A. Kent and J. G.
Williams, eds.), Marcel Dekker, New York, pp. 159-183.

[3] Anzai, Y., and Simon, H. A. (1979). The theory of learning by
doing. Psychological Review, 86, 124-140

[4] Avram, G., Bannon, L., Bowers, J., Sheehan, A. and Sullivan,
D.K. (2009) ‘Bridging, Patching and Keeping the Work Flowing:
Defect Resolution in Distributed Software Development’, Com-
puter Supported Cooperative Work (CSCW), 18(5-6), 477-507.

[5] Ball, L.J. and Ormerod, T.C. (2000) ‘Putting ethnography to
work: the case for a cognitive ethnography of design’, Interna-
tional Journal of Human-Computer Studies, 53(1), 147-168.

[6] Belbin, R.M. (2010) Team Roles at Work, 2nd ed., Butterworth
Heinemann.

[7] Bendifallah, S. and Scacchi, W. (1987) "Work structures and
shifts: An empirical analysis of software specification team-
work." In Proceedings of the 11th international conference on Soft-
ware engineering, pp. 260-270. ACM, 1989

[8] Blomberg, J. and Karasti, H. (2013) “Reflections on 25 Years of
Ethnography in CSCW, Computer Supported Cooperative
Work, 22:373–423

[9] Blomberg, J., and Karasti H. (2012) Positioning ethnography with-
in Participatory Design. In: Simonsen, J. and Robinson T.
Routledge International Handbook of Participatory Design.
Routledge, London.

[10] Blumer, M. (1984). The Chicago School of Sociology: Institutionali-
zation, Diversity, and the Rise of Sociological Research. Chicago:
University of Chicago Press.

[11] Boden, A., Avram, G., Bannon, L. and Wulf, V. (2012):
"Knowledge sharing practices and the impact of cultural fac-
tors: Lessons from two case studies of offshoring in SME". In
Software Maintenance and Evolution: Research, and Practice,
vol. 24, no. 2, pp. 139-152.

[12] Boden, A., F. Rosswog, G. Stevens, and V. Wulf (2014): ‘Articu-
lation Spaces: Bridging the Gap Between Formal and Informal
Coordination’. In: Proc. of the 17th Conf. on Computer Supported
Cooperative Work & Social Computing. pp. 1120–1130.

[13] Bondarenko and Janssen, (2005) ‘Documents at Hand: Learning
from Paper to Improve Digital Technologies’, In Proceedings of
CHI’05, pp 121-130

[14] Button, G. (2000) The Ethnographic Tradition and Design.
Design Studies, 21, 319-332.

[15] Button, G. and Sharrock, W. (1994) ‘Occasioned practices in the
work of software engineers’, in Requirements Engineering:
social and technical issues edited by M. Jirotka and J. Goguen,
pp 217-240, Academic Press

[16] Capiluppi, A., Ramil, J.F., Higman, J., Sharp, H. and Smith, N.
(2007) ‘An empirical study of evolution patterns for an agile
system, that combines qualitative and quantitative approaches’
in Proceedings of ICSE 2007, ACM, pp 511-518

[17] Carroll, J. and Rosson, M.B. (2001) ‘Better Home Shopping or
New Democracy? Evaluating Community Network Outcomes’,
In Proceedings of CHI ’01, pp 372-379.

[18] Carstensen, P.H. and Sørensen, C. (1996) From the social to the
systematic. Comput. Supported Coop. Work 5, 4 (December 1996),
387-413.

[19] Carstensen, P.H., Sorensen, C. and Tuikka, T. (1995) "Let's talk
about bugs." Scandinavian Journal of Information Systems 7: 33-33.

[20] Cataldo, M., Wagstrom, P.A., Herbsleb, J.B. and Carley, K.M.
(2006) Identification of coordination requirements: implications
for the Design of collaboration and awareness tools. In
Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work (CSCW '06). ACM, New York, NY,
USA, 353-362.

[21] Cohn, M. L., Sim, S. E. and Lee, C. P. (2009). What counts as
software process? Negotiating the boundary of software work

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 15

through artifacts and conversation. Computer Supported
Cooperative Work (CSCW), 18(5-6), 401-443.

[22] Crabtree, A. (2003) Designing Collaborative Systems, Springer
[23] Crabtree, A., Rodden, T., Tolmie, P., & Button, G. (2009). Eth-

nography considered harmful. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (pp. 879-888).
ACM.

[24] Crabtree, A., Rouncefield, M., Tolmie, P. 2012. Doing Design
Ethnography. Springer.

[25] Damian, D., Izquierdo, L., Singer, J. and Kwan, I. (2007)
Awareness in the wild: Why communication breakdowns
occur. In Second IEEE International Conference on Global Software
Engineering, 2007. ICGSE 2007. pp. 81–90. IEEE.

[26] de Souza, C. R. B. (2005) On the Relationship between Software
Dependencies and Coordination: Field Studies and Tool
Support . Ph.D. dissertation, Donald Bren School of Information
and Computer Sciences, University of California, Irvine, Irvine,
CA, USA.

[27] De Souza, C., Froehlich, J., & Dourish, P. (2005) ‘Seeking the
source: software source code as a social and technical artifact’
In Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work, ACM, pp. 197-206.

[28] de Souza, C. R. B.; Redmiles, D. F. (2008) ‘An Empirical Study
of Software Developers Management of Dependencies and
Changes’, in Proceedings of International Conference on Software
Engineering, Leipzig, pp 241-250.

[29] de Souza, C. R. B. and Redmiles, D. F. (2009) ‘On The Roles of
APIs in the Coordination of Collaborative Software
Development’, Computer Supported Cooperative Work, 18, 445-
475.

[30] de Souza, C. R. B., Redmiles, D., Cheng, L.-T., Millen, D. and
Patterson, J. (2004) ‘How a Good Software Practice thwarts
Collaboration - The Multiple roles of APIs in Software
Development’, in Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engineering,
Newport Beach, CA. pp 221-230.

[31] de Souza, C. R. B., Redmiles, D. F., Mark, G., Penix, J., Sierhuis,
M. (2003) ‘Management of Interdependencies in Collaborative
Software Development’, in Proceedings of ACM-IEEE
International Symposium on Empirical Software Engineering, Rome,
IEEE Computer Society, pp 196-203.

[32] de Souza, C.R.B., Sharp, H., Singer, J., Cheng, L-T., Venolia, G.
(2009) ‘Guest Editors' Introduction: Cooperative and Human
Aspects of Software Engineering’, IEEE Software, November
2009

[33] Detienne, F. and Bott, F. (2002) Software design-cognitive aspects,
Springer Verlag

[34] Dittrich, Y. (2002) ‘Doing empirical research on software
development: finding a path between understanding,
intervention, and method development’, in: Dittrich, Y., Floyd,
C. and Klischewski, R. (eds.) Social Thinking – Software Practice,
MIT Press, pp 243-262.

[35] Dittrich, Y. (2016) ‘What does it mean to use a method?
Towards a practice theory for software engineering’, Information
and Software Technology 70, 220–231..

[36] Dittrich, Y. and Giuffrida, R. (2011) ‘Exploring the role of in-
stant messaging in a global software development project’, in
Proceedings of Global Software Engineering (ICGSE), 2011 6th IEEE
International Conference on (pp. 103-112). IEEE Computer Socie-
ty, Washington, DC, USA, pp 103-112.

[37] Dittrich, Y., John, M., Singer, J. and Tessem, B. (2007) ‘Editorial
for the special issue on qualitative software engineering
research’, Information and Software Technology 49(6), 531–539.

[38] Dittrich, Y. and Lindeberg, O. (2004) ‘How use-orientated
development can take place’, Information and Software
Technology 46, 603-617.

[39] Dittrich, Y., Randall, D. W. and Singer, J. (2009) ‘Software
engineering as cooperative work.’ Computer Supported
Cooperative Work (CSCW), 18(5-6), 393-399

[40] Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C. and
Lindeberg, O. (2008) ‘Cooperative method development’
Empirical Software Engineering, 13(3), 231-260.

[41] Dourish, P. and Button, G. (1998) "On technomethodology:
Foundational relationships between ethnomethodology and
system design." Human-Computer Interaction 13.4 (1998): 395-
432.

[42] Dourish, P. (2004) Where the Action Is: The Foundations of Embod-
ied Interaction. Cambridge: MIT Press.

[43] DSDM (2015) DSDM and UX Design, DSDM Consortium, ISBN
978-1-910961-00-1

[44] Dybå, T., Kitchenham, B.A., and Jørgensen, M. (2005) Evidence-
based Software Engineering for Practitioners, IEEE Software,
22(1): 58-65.

[45] Easterbrook, S., Singer, J., Storey, M-A and Damian, D. (2008)
‘Selecting Empirical Methods for Software Engineering
Research’ in Guide to Advanced Empirical Software Engineering, F.
Shull, J. Singer and D. Sjøberg (eds), pp 285-311, Springer.

[46] Engeström, Y. (1999). Expansive visibilization of work: An
activity-theoretical perspective. Computer Supported Cooperative
Work (CSCW), 8(1), 63-93.

[47] Engeström, Y., Miettinen, R, Punamäki, R.-L. (1999) Perspectives
on Activity Theory. Cambridge University Press.

[48] Ferreira, J., Sharp, H. and Robinson, H. (2012) ‘Agile Develop-
ment and User Experience Design Integration as an On-going
Achievement in Practice’, in Proceedings of Agile 2012

[49] Fetterman, D. M., (1998) Ethnography. Second Ed. Sage Publica-
tions, Thousand Oaks, CA.

[50] Floyd, C. (1987) Outline of a Paradigm Change in Software
Engineering. In: Bjerknes, G., Ehn, P., Kyng, M. (Eds.) Comput-
ers and Democracy. Aldershot 1987, pp. 192-210.

[51] Floyd, C. (1992) Software Development as Reality Construction.
In: Floyd, C., Züllighoven, H., Budde, R., Keil-Slawik, R. (Eds.)
Software Development and Reality Construction. Springer Verlag,
Berlin, pp. 86-100

[52] Garfinkel (1967) Studies in Ethnomethodology, Wiley
[53] Geertz, C. (1988) Works and Lives: The Anthropologist as Author.

Stanford University Press.

[54] Geiger, R.S. and Ribes, D. (2011) Trace ethnography: Following
coordination through documentary practices. In 44th Hawaii
International Conference on System Sciences (HICSS), pp 1–10.
IEEE.

[55] Giuffrida, R., Dittrich, Y. (2011) Exploring the role of instant
messaging in a global software development project. In: Global
Software Engineering (ICGSE), 2011 6th IEEE International
Conference on, IEEE, pp. 103-112

[56] Goh, D.P.S. (2007) States of Ethnography: Colonialism,
Resistance, and Cultural Transcription in Malaya and the
Philippines, 1890s–1930s. Comparative Studies in Society and
History, 49, pp 109-142. doi:10.1017/S0010417507000424.

[57] Green, T.R.G. (1989) Cognitive dimensions of notations. In:
Sutcliffe, A., Macaulay, L. (Eds.), People and Computers V.
Cambridge University Press, pp. 443–460.

[58] Grinter, R. E. (2003). Recomposition: Coordinating a web of
software dependencies. Computer Supported Cooperative Work
(CSCW), 12(3), 297-327

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[59] Hammersley, M. and Atkinson, P. 1995 What is Ethnography.
In: Ethnography: Principles in Practice. Routledge, London 9-
25.

[60] Heath, C., Luff, P. (1992) Collaboration and control: crisis man-
agement and multimedia technology in London underground
line control rooms. Computer Supported Cooperative Work
(CSCW) 1 (March (1–2)), 69–94.

[61] Hine, C. (2000) Virtual ethnography. Sage Publications Ltd.

[62] Holtzblatt, K. and Jones, S. (1993) Contextual Inquiry: a
participatory approach for systems design’, in D. Schuler and
A. Namioka (eds) Particiopatory Design: Principles and
practice. Lawrence Erlbaum and Associates, Hillsdale, NJ, pp
177-210.

[63] Hovenden, F.M., Walker, S., Sharp, H.C. and Woodman, M.
(1996) ‘Building quality into scientific software’, The Software
Quality Journal, 5, 25�32, Chapman & Hall, ISSN 0963-9314

[64] Hughes, J., King, V., Rodden, T., & Andersen, H. (1994).
Moving out from the control room: Ethnography in system
design. In Proceedings of the 1994 ACM conference on Computer
supported cooperative work (pp. 429-439). ACM.

[65] Humboldt, W. v. (1836) The Heterogeneity of Language and its
Influence on the Intellectual Development of Mankind. 1836. (orig.
Über die Verschiedenheit des menschlichen Sprachbaus und ihren
Einfluss auf die geistige Entwicklung des Menschengeschlechts).
1836. New edition: On Language. On the Diversity of Human
Language Construction and Its Influence on the Mental
Development of the Human Species, Cambridge University
Press, 2nd rev. edition 1999.

[66] Hutchins, E. (1995) Cognition in the Wild. MIT Press, Cambridge,
MA.

[67] Hutchinson, H., Mackay, W., Westerlund, Bederson, B.B.,
Druin, A., Plaisant, C.,

Beaudouin-Lafon, M., Conversy, S.,

Evans, H., Hansen, H., Roussel, N., Eiderbäck, B., Lindquist, S.,
and Sundblad, Y. (2003) ‘Technology Probes: Inspiring Design
for and with Families’ In Proceedings of CHI ’03 pp 17-24.

[68] Jordan, B. (2009) Blurring boundaries: The “real” and the
“virtual” in hybrid spaces. Human Organization, 68(2):181–193.

[69] Jorgensen, D.L. (1989) Participant Observation: A Methodology for
Human Studies, Sage Publications Inc.

[70] Kitchenham, B., et al., Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on Software
Engineering, 2002. 28(8): p. 721-734.

[71] Klischewski, R. (2002) ‘Reaching out for Commitments: Systems
Development as Networking’ Dittrich, Y., Floyd, C. and
Klischewski, R. (eds.) Social Thinking – Software Practice, MIT
Press, pp 309-329.

[72] Latour, B. (1987).Science in Action: How to Follow Scientists and
Engineers Through Society. Milton Keynes: Open University
Press.

[73] Latour, B. (1994). Where are the missing masses? The sociology
of a few mundane artifacts. Shaping Technology / Building
Society: Studies in Sociotechnical Change. W. Bijker and J. Law.
Cambridge, MA, MIT Press: 225-258.

[74] Law, J., & Hassard, J. (1999) ‘Actor network theory and after’
Sociological review.

[75] Low, J., Johnson, J., Hall, P., Hovenden, F., Rachel, J., Robinson,
H. and Woolgar, S. (1996) ‘Read this and change the way you
feel about software engineering‘, Information and Software
Technology 38 77-87

[76] Malinowski, B. 1922. Argonauts of the Western Pacific. London:
Routledge (1967).

[77] Marcus, G.E. (1995) Ethnography in/of the world system: the
emergence of multi- sited ethnography. Annual review of
anthropology, pages 95–117.

[78] Martin, D., Rooksby, J., Rouncefield, M., & Sommerville, I.
(2007) 'Good'Organisational Reasons for'Bad'Software Testing:
An Ethnographic Study of Testing in a Small Software
Company. In Software Engineering, 2007. ICSE 2007. 29th
International Conference on (pp. 602-611). IEEE.

[79] Mathiassen, L., (1998) Reflective Systems Development.
Scandinavian Journal of Information Systems, 10(1&2), 67-118.

[80] McGrath, J.E. (1994) Methodology Matters: Doing Research in
the Behavioral and Social Sciences, in Human-computer interac-
tion, pp 152-169, Morgan Kaufmann, San Francisco.

[81] Mi, P. and Scacchi, W. (1991) ‘Modeling articulation work in
software engineering processes’, in Proceedings of First Interna-
tional Conference on the Software Process, pp 188-201, IEEE.

[82] Millen, D. (2000) ‘Rapid Ethnography: Time Deepening Strate-
gies for HCI Field Research’ in Proceedings of DIS ’00, pp 280-
286.

[83] Mursu, A. S., Luukkonen, I., Toivanen, M., & Korpela, M. J.
(2006). ‘Activity Theory in information systems research and
practice: theoretical underpinnings for an information systems
development model’, Information Research 12(3), 3.

[84] Nardi, B. (1997) The use of ethnographic methods in design and
evaluation. In Handbook of Human- Computer Interaction, M.
Helander, T. K. Landauer, e P. Prabhu, Eds., pp. 361-366.
Elsevier Science

[85] Naur, P. (1985) ‘Programming as Theory Building.’
Microprocessing and Microprogramming 15(1985), 253-261.

[86] Naur, P. and Randell, B. (1969) Software Engineering. Report of a
conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs
Division, NATO.

[87] Nicolini, D. (2013) Practice theory, work, and organization: An
introduction. Oxford University Press.

[88] Nygaard, K. (1986). Program Development as a Social Activity.
In: H.J. Kugler (eds.) Information Processing 86. IFIP, 189-198.

[89] O’Riain, S. (2000) Net-working for a living: Irish software
developers in the global workplace. The Blackwell cultural
economy reader, pages 15–39.

[90] Passos, C., Cruzes, D.S., Dybå, T. and Mendonça, M. (2012)
‘Challenges of applying ethnography to study software
practices’in Proceedings of ESEM '12, the ACM-IEEE international
symposium on Empirical software engineering and measurement,
Pages 9-18, ACM

[91] Poderi, G. (2012). Simple conversational practices in the case of
free and open source software infrastructure. In Proceedings of
the 12th Participatory Design Conference: Exploratory Papers,
Workshop Descriptions, Industry Cases-Volume 2 (pp. 45-48).
ACM.

[92] Poderi, G. (2013) Making Sense of Users Participation in Open
Source Projects: The case of a Mature Video Game. Diss. University
of Trento.

[93] Preece, J., Rogers, Y. and Sharp, H. (2015) Interaction Design,
Fourth edition, John Wiley.

[94] Prior, J.R., Robertson, T.J. & Leaney, J.R. 2008, 'Situated
Software Development: Work Practice and Infrastructure are
Mutually Constitutive', Australian Software Engineering
Conference, Perth, Western Australia, March 2008 in
Proceedings of 19th Australian Software Engineering Conference, ed
von Konsky, B.; Grundy, J., IEEE Computer Society, United
States, pp. 160-169.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 17

[95] Robinson, H.M., J. Segal, and H. Sharp (2007) Ethnographically-
informed Empirical Studies of Software Practice. Information
and Software Technology, 2007. 49(6): pp. 540-551.

[96] Robson, C. (2011) Real World Research (3rd ed), John Wiley and
Sons

[97] Rönkkö, K. (2010) ‘Ethnography’, in Laplante, P. (ed.)
Encyclopedia of Software Engineering, Taylor and Francis
Group, New York, 2010

[98] Rönkkö K., Dittrich Y. and Lindeberg O. (2002) “Bad practice”
or ‘‘bad methods”—are software engineering and ethno-
graphic discourses incompatible? Proceedings 1st International
Symposium on Empirical Software Engineering (ISESE’02),
Nara, Japan, pp 204–210

[99] Rönkkö, K., Dittrich, Y., & Randall, D. (2005). When plans do
not work out: How plans are used in software development
projects. Computer Supported Cooperative Work (CSCW), 14(5),
433-468.

[100] Ro ̈nkko ̈, K., Hellman, M., Kihlander, B. and Dittrich, Y., (2004)
Personas is not Applicable: Local Remedies Interpreted in a
Wider Context, Proceedings of the Participatory Design Con-
ference, PDC ’04, Artful Integration: Interweaving Media, Ma-
terials and Practice, Toronto, Canada, July 27-31, pp. 112-120.

[101] Rooksby, J., Rouncefield, M. and Sommerville, I. (2009) ‘Testing
in the wild: the social and organizational dimensions of real
world practice’, CSCW, 18:559-580

[102] Runeson, P. Host, M., Rainer, A. and Regnell, B. (2012) Case
Study Research in Software Engineering: Guidelines and Examples,
Wiley.

[103] Sach, R.J., Sharp, H., Petre, M. (2011) ‘Software Engineers’
Perceptions of Factors in Motivation’ in Proceedings of ESEM
2011

[104] Seaman, C. (1999) Qualitative Methods in Empirical Studies of
Software Engineering, In IEEE Transactions on Software
Engineering, 25(4), 557-572.

[105] Segal, J. (2009) Software development cultures and cooperation
problems: A field study of the early stages of development of
software for a scientific community. Computer Supported Cooper-
ative Work (CSCW), 18(5-6), 581-606.

[106] Segal, J. and Clarke, S. (2009) ‘Software engineers don’t know
everything about end-user programming’, IEEE Software, Sep-
tember/October

[107] Shapiro, D. 1994. The Limits of Ethnography: Combining Social
Sciences for CSCW. Proceedings of the CSCW 1994, ACM Press.

[108] Sharp, H. (2007) ‘The role of physical artefacts in agile software
development team collaboration’, Proceedings of Physicality 2007,
pp 61-64, UWIC Press, ISBN 978-1-905617-60-9

[109] Sharp, H., Giuffrida, R. and Melnik, G. (2012) ‘Information flow
in a dispersed agile team: a distributed cognition perspective’,
in Proceedings of XP 2012, Malmo, Sweden.

[110] Sharp, H. and Robinson, H.M. (2004) ‘An ethnographic study of
XP practices’, Empirical Software Engineering, 9(4) 353-375

[111] Sharp, H. and Robinson, H.M. (2008) ‘Collaboration and Co-
ordination in mature eXtreme Programming teams’
International Journal of Human-Computer Studies, 66, 506-518

[112] Sharp, H., Robinson, H.M. and Petre, M. (2009) ‘The Role of
Physical Artefacts in Agile Software Development: two
complementary perspectives’, Interacting with Computers, 21(1-
2) 108-116

[113] Sharp, H., Robinson, H. and Woodman, M. (2000) ‘Software
Engineering: Community and Culture’, IEEE Software, 17(1),
40�47, ISSN 0740-7459

[114] Sharp, H., Robinson, H. and Woodman, M. (2000a) ‘Using
Ethnography and Discourse Analysis to Address Software
Quality Issues’ Proceedings of ICSE 2000 workshop Beg, Borrow or

Steal: Using Multi-disciplinary Approaches in Empirical Software
Engineering Research

[115] Sharp, H., Woodman, M. and Hovenden, F. (2004) ‘Tensions in
the adoption and evolution of software quality management
systems: a discourse analytic approach’ International Journal of
Human Computer Studies, 61(2), 219-236

[116] Shull, F., J. Singer, D. Sjoberg, Shull, (Eds.) (2008) Advanced
topics in empirical software engineering: An edited volume.
Springer. F. Shull and J. Singer (eds) Guide to Advanced Empirical
Software Engineering , Springer.

[117] Sigfridsson, A. (2010) The purposeful adaptation of practice: an
empirical study of distributed software development. PhD thesis at
the University of Limmerick, Ireland.

[118] Sigfridsson, A., and Sheehan, A. (2011). On qualitative
methodologies and dispersed communities: Reflections on the
process of investigating an open source community. Information
and Software Technology, 53(9), 981-993.

[119] Sigfridsson, A., Avram, G., Sheehan, A., & Sullivan, D. (2007).
Sprint-driven development: working, learning and the process
of enculturation in the PyPy community. Open Source
Development, Adoption and Innovation, 133-146.

[120] Sim SE, Singer J, Storey M-A (2001) Beg, borrow, or steal: using
multidisciplinary approaches in empirical software engineering
research, an ICSE 2000 workshop report. Empirical Software
Engineering 6(1):85–93

[121] Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N. (1997).
An examination of software engineering work practices. Proc.
CASCON. IBM Toronto.

[122] Sjøberg, D.I.K., Dybå, T. and Jørgensen, M. (2007) The Future of
Empirical Methods in Software Engineering Research Future of
Software Engineering (FOSE'07) 0-7695-2829-5/07

[123] Suchman, L. (1987) Plans and Situated Actions, Cambridge
University Press.

[124] Suchman, L. and Trigg, R.H. (1993) Artificial Intelligence as
craftwork, in S. Chaiklin & J. Lave (eds). Understanding practice:
Perspectives on activity and context, Cambridge UK.

[125] Teasley, S., Covi, L., Krishnan, M.S. and Olson, J.S. (2000) How
does radical collocation help a team succeed?, Proceeding of the
ACM 2000 Conference on Computer supported cooperative
work, pp.339-346, Philadelphia, Pennsylvania, United States.

[126] Tell, P., & Babar, M. A. (2012). ‘Activity theory applied to global
software engineering: Theoretical foundations and implications
for tool builders’ Proceedings of the Seventh IEEE International
Conference on Global Software Engineering (ICGSE), IEEE, pp.
21-30.

[127] Trainer, E., Quirk, S., de Souza, C. and David Redmiles (2005)
Bridging the gap between technical and social dependencies
with Ariadne. In Proceedings of the 2005 OOPSLA workshop
on Eclipse technology eXchange (eclipse '05). ACM, New York,
NY, USA, 26-30

[128] Trimble, J., Wales, R. and Gossweiler, R. (2002) NASA position
paper for the CSCW 2002 workshop on Public, Community and
Situated Displays: MERboard

[129] Unphon, H. (2009) Re-engineering for Evolvability PhD Thesis. IT
University of Copenhagen.

[130] Unphon, H. and Dittrich, Y. (2010) Architecture Awareness in
Long-Term Software Product Evolution. Journal for Systems and
Software 83, 2211-2226.

[131] Viller, S. and Sommerville, I. (1999) Coherence: an approach to
representing ethnographic analyses in systems design.
Human—Computer Interaction 14, Special issue on
representations in interactive systems development.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[132] Walsham, G. (2002). Cross-cultural software production and
use: a structurational analysis. MIS Quarterly, 26(4), 359–380.

[133] Weber, J. and Cheng, J. (2013) ‘Making the most of
ethnographic research’ in UX magazine (online), downloaded
from http://uxmag.com/articles/making-the-most-of-
ethnographic-research, accessed on 13.06.2015

[134] Weinberg, G. (1971) The Psychology of Programming. Dorset
House.

[135] Yoon, Y. and Myers, B. (2014) “A Longitudinal Study of Pro-
grammers’ Backtracking” in Proceedings of VL/HCC 2014

Helen Sharp BSc (Hons; 1981) MSc (1982) PhD (1988) PGCTHLE
(2003) is Professor of Software Engineering at The Open University.
Her research focuses on the study of professional software practice
and the effect of human and social aspects on software develop-
ment. She has been conducting qualitative studies of software prac-
tice since the early 1990s and has produced over 100 peer-reviewed
articles. She is very active in both the software engineering and in-
teraction design (HCI) communities and has had a long association
with practitioner-related conferences. Helen is joint author of one of
the leading textbooks on Interaction Design (id-book.com) now in its
fourth edition. She is associate editor of TSE, on the advisory board
of IEEE Software, the editorial board of JSS, and reviews for many
journals and conferences. Prof Sharp is a member of the IEEE
Computer Society, BCS and ACM.

Yvonne Dittrich Dipl-Inform (1989) PhD (1997) previously at Ble-
kinge Institute of Technology, Sweden, is an associate professor at
the IT University of Copenhagen, Denmark. Her research interests
are use-oriented design and development of software and software
development as cooperative work. She has been applying ethno-
graphically inspired empirical methods in research cooperation with
industrial partners since 1997 and developed ‘Cooperative Method
Development’, a research approach that combines ethnography and
software process improvement. Through editing special issues in
leading journals she contributed to the establishment of the research
area ‘Cooperative and Human Aspects of Software Engineering’.
Yvonne is contributing to Software engineering, Computer Supported
Cooperative Work and Participatory Design communities. Her publi-
cation list counts over 60 peer-reviewed articles. She is regularly
reviewing for major software engineering journals and is member of
the ACM, the German Informatics Society, and the Forum In-
formatikerInnen für Frieden und Gesellschaftliche Verantwortung.

Cleidson R. B. de Souza B.Sc. (1996), M.Sc. (1998) and Ph.D.
(2005), previously employed at IBM Research Brazil, is a Senior
Researcher at the Vale Institute of Technology and an Associate
Professor at the Federal University of Pará, Brazil. His main re-
search interest is computer-supported cooperative work (CSCW) as
applied to software engineering—that is, how software engineers
work together to develop software systems. He uses research ap-
proaches such as ethnographic studies, surveys, and tool develop-
ment and evaluation to understand and augment software develop-
ers’ work. His work has appeared at top conferences and journals in
both Software Engineering and CSCW, and he has helped to organ-
ize the series of CHASE (Cooperative and Human Aspects of Soft-
ware Engineering) workshops. He is a member of the ACM, the Bra-
zilian Computer Society and an affiliate member of the Brazilian
Academy of Science.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 19

Table 1 Overview of example ethnographic studies in software engineering
Example’s
short name

Main Publica-
tion(s)

Focus question(s)

Context Main finding(s) Implication for empirical
software engineering

Agile [110], [111], [112] How agile methods
(specifically XP) are
put into practice

Various organisations includ-
ing small start-ups and large
investment banks

Explication of agile methods in
practice
Mechanisms of co-ordination
and collaboration
The role of physical artefacts

Practice varies from written
descriptions
Specific new research ques-
tions

Architecture [129], [130] How can the software
architecture and the
architecture practices
in the company be
improved

The redevelopment of a soft-
ware product line for hydrau-
lic simulation software of one-
dimensional water systems
like rivers, water supply and
sewers.
The development team and
their cooperation with engi-
neers developing specific
modelling systems

An understanding of the de-
velopment practices and the
corresponding architectural
practices. Adaptation of archi-
tectural practices to the agile
development context

A set of methods for light
weight architecture. When
proposing and introducing
methods and tools support-
ing architectural practices,
the change of the social prac-
tices that are meant to be
supported by the tools need
to be considered explicitly

Awareness [26], [28], [29] How do software en-
gineers manage tech-
nical dependencies as
part of their day-to-
day development

Two different organizations
and teams. One in
NASA/Ames Research Center,
the other is one of the largest
software development compa-
nies in the United States with
products ranging from operat-
ing systems to software devel-
opment tools

APIs play multiple roles in
collaborative software devel-
opment: contracts between
developers, reification of or-
ganizations boundaries and
communication mechanisms

Management of dependen-
cies is an activity undertaken
by software developers on a
daily basis

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Bug report [18], [19] How do various pa-
per-, board- and com-
puter-based mecha-
nisms supported the
coordination of de-
bugging.

The beginning of the 1990s in
the IT unit of Foss Electric a
company providing process
technology before web-based
issue handlers like Bugzilla
were widely used.

Developers use a coordination
mechanism consisting of a
physical form (bug report) and
social protocol

The research informed the
concept of ‘coordination
mechanism’ as consisting of
social protocols supported
by an artefact. This concept
has widely informed the
CSCW discourse, and is in-
creasingly cited in research
on coordination in (global)
software engineering.

Coordination [58]

What are the practices
necessary to coordi-
nate the integration
and built procedure of
huge software prod-
ucts

Three organisations develop-
ing software products of dif-
ferent sizes. The software en-
gineers, the project managers,
architects and built managers
of the projects were studied.

To prevent development prob-
lems, software architects, pro-
ject managers and also soft-
ware engineers apply preven-
tive strategies, like designing
project organization and meet-
ing structures, involving rele-
vant actors bottom up in the
architectural design, or com-
municating changes that effect
others widely, that both take
organizational contingencies
into account and shape the
organization of the project

Re-composition of software
from components and mod-
ules is not just a technical
problem to be solved by in-
tegration, built tools and
procedures but needs to be
addressed in project man-
agement, meeting structures
and last but not least the ar-
chitecture

PyPy [117], [118], [119] How to adapt the
community’s process-
es, practices and con-
stitutions to welcome
new developers to the
OSS project

The way the PyPy open source
community discusses and im-
plements changes to its prac-
tices in order to address prob-
lems with the current organi-
zation identified by the com-
munity

The strategies developed by
especially distributed software
projects to cope with changes
in the environment

Software projects – open
source as well as corporate
ones – consciously adapt
their practice to accommo-
date changing circumstances.
The need for reflection and
improvement of the usage of
methods and tools becomes
visible as an integral part of
software engineering

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 21

Scientist [105], [106]

How to integrate
software engineering
practices into scientific
software development

Joint development of a Labora-
tory Information Management
System (LIMS) between sever-
al UK labs working with relat-
ed kinds of experiments. In
this project, professional soft-
ware developers were cooper-
ating with scientific end-user
developers, with scientists as
the customers/users also by-
and-large having experience of
scientific end-user develop-
ment

Change of problem focus away
from distribution and onto
culture clashes between scien-
tists and software engineers

Collaborations between pro-
fessional and end-user de-
velopers can be problematic
as these two groups might
have differing values and
practices. Software engineer-
ing needs to adapt its meth-
ods, tools and processes to
relate to different software
development cultures

Testing [78], [105]

What testing actually
involves

The fieldwork covers several
organisations. Researchers
focused on day-to-day ‘run of
the mill’ testing. Different
forms of testing were observed
in each project, including user
acceptance testing, unit and
regression testing

Testing is a cooperative activi-
ty that cannot be improved by
technical means alone

Testing is a co-operative ac-
tivity and improvements
need to take social and coop-
erative aspects into account
besides devising technical
innovations

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Table 2 Dimensions of ethnography mapped to Example studies
Short name Degree of participa-

tion
Duration Space and location Theoretical under-

pinning
Ethnographer’s intent

Agile mixed degrees of par-
ticipation across stud-
ies

at least one iteration per study
(one to three weeks)

co-located (mostly),
and dispersed

distributed cogni-
tion, cognitive di-
mensions and tech-
nological frames

To produce a detailed
account of a new area,
and identify practitioner-
relevant research ques-
tions

Architecture Participatory observa-
tion and participation,
workshops, light-
weight intervention.

the whole action research took
place over two years, with
periods of intense fieldwork (4
days a week) but also rather
sparse visits (once every sec-
ond week)

co-located none To improve practice, de-
velop and evaluate meth-
od development

Awareness Participation at the
first and non-
participation at the
second

8 weeks and 11 weeks (two
studies)

co-located (mostly),
and dispersed

none To understand and pro-
vide improved tool sup-
port

Bug report participation Fieldwork consisting of 21
interviews, participation in 10
project meetings and about 75
hours of observation over 6
months

co-located ethnomethodology,
practice theory

understanding

Coordination Participation and non-
participation

The study analyses field work
from 3 different sites:
Field site 1: 3 months part ob-
servation over 100 interviews;
Field site 2: 3 days participa-
tory observation 14 inter-
views;
Field site 3: consulting 3 pro-
jects about integration proce-
dures.

not stated none understanding

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 23

PyPy mixed degrees of par-
ticipation across study
timeline

7 days of observation (one
sprint) by several researchers;
prepared beforehand by read-
ing documentation about the
community; 4 months of par-
ticipant observation of the
community.

distributed Social Practice Theo-
ry, social theory of
learning, ethno-
methodology

understanding the reflec-
tive aspects of the ob-
served practices that led
to change decided and
implemented by the prac-
titioners

Scientist no participation 4 + years, although the obser-
vation was limited to project
meetings.

distributed none To help practitioners un-
derstand and solve a
problem

Testing no participation 30 days fieldwork over 10
months (in agile project)

co-located ethnomethodology To understand how test-
ing is conducted and to
emphasise the im-
portance of CSCW re-
search to SE

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

24 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Table 3 The theoretical underpinnings most used in software engineering and related scientific discourses

Theoretical
underpinnings

Basic concept Focus of analysis Main
References

Examples in SE and
related areas (not
necessarily ethno-
graphic studies)

Ethnomethodology The social order of a group or community
is continually reconstructed through the
social interaction of the group.

Fine grained interaction analysis of spe-
cific encounters; how do members of the
team, group or community (re)-establish
their social order in the interaction.

[52] [15], [78], [99], [117]

Distributed Cognition Most cognitively challenging tasks are
achieved through a ‘cognitive system,’
which entails interactions among people,
the artefacts they use, and the environ-
ment they are working in. This contrasts
with other cognitive approaches, by focus-
ing on what is happening across a system
of individuals and artefacts rather than
what is happening inside the head of one
individual.

How is information propagated through
interactions between different media, i.e.
how is information represented and re-
represented as it moves through the
cognitive system between individuals
and artefacts that are used during activi-
ties, e.g. code, diagrams, sketches, spo-
ken word.

[66] [110], [111], [112]

Activity Theory Human activity is purposeful, motivated
by an anticipated outcome. However, all
activity is mediated through technical or
semiotic tools and organisational struc-
tures

Analysis focuses on identifying interact-
ing activity systems consisting of actors,
objects and outcomes, mediating tools,
written or unwritten rules governing the
collaboration, the community the actors
belong to and the norms of this commu-
nity, and division of labor involved in
achieving the intended outcome

[47],[46] [126], [83]

Actor Network
Theory Understanding social institutions, like sci-

ence and academia or technology devel-
opment, and their evolution can be done

Analysis of empirical material focuses on
the interaction of human and non-
human actors (material objects like arte-

[73], [72], [74] [71], [27]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR ET AL.: TITLE 25

by studying the interaction of human and
non-human actors. The latter can be, e.g.
artefacts, tools, methods, or documents.
The non-human actors represent black-box
results of similar heterogeneous systems.

facts, tools, documents, and the like).
Human and non-human actors are ana-
lyzed similarly.

Table 4 Example studies mapped to their main role in empirical software engineering
Example’s
short name

Social and
human aspects

Software
engineering
tools

Process
improvement

Inform research programmes
New research
questions

Complement
other methods

Agile X X
Architecture X X
Awareness X X X
Bug report X X X
Coordination X X
PyPy X X X
Scientist X X X
Testing X X (but only later)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2519887

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

