Efficient Dynamic Updates of Distributed
Components Through Version Consistency

Luciano Baresi, Carlo Ghezzi, Fellow, IEEE, Xiaoxing Ma, Member, IEEE, and Valerio Panzica La Manna

Abstract—Modern component-based distributed software systems are increasingly required to offer non-stop service and thus their
updates must be carried out at runtime. Different authors have already proposed solutions for the safe management of dynamic
updates. Our contribution aims at improving their efficiency without compromising safety. We propose a new criterion, called version
consistency, which defines when a dynamic update can be safely and efficiently applied to the components that execute distributed
transactions. Version consistency ensures that distributed transactions be served as if they were operated on a single coherent version
of the system despite possible concurrent updates. The paper presents a distributed algorithm for checking version consistency
efficiently, formalizes the proposed approach by means of a graph transformation system, and verifies its correctness through model
checking. The paper also presents ConUpr, a novel prototype framework that supports the approach and offers a viable, concrete
solution for the use of version consistency. Both the approach and ConUr are evaluated on a significant third-party application.
Obtained results witness the benefits of the proposed solution with respect to both timeliness and disruption.

Index Terms—Component-based distributed system, dynamic update, version-consistency

1 INTRODUCTION

MANY modern software systems are increasingly
required to offer continuous, non-stop services. For
example, large information systems in the medical domain,
financial transaction processing applications, and critical
systems that control flights and trains must be continuously
available and cannot be shut down. Traditional software
maintenance supports software evolution by providing
updates that are applied off-line. That is, the system is shut
down, updated, and restarted. This solution, however, is
not applicable when the system must always be on. Dynamic
updates, that is, changes that are applied while the system is
in operation, become mandatory.

Compared to off-line maintenance, safe dynamic updates
are more difficult: in addition to the correctness of the new
version, they must also preserve the correct completion of all
on-going activities. At the same time, dynamic updates must
be efficient. The interruption of (part of) the system service
(usually called disruption) must be minimal as well as the
delay with which the system is updated (called timeliness).

This paper addresses the timeliness and disruption of
dynamic changes in Component-Based Distributed Systems

o L. Baresi and C. Ghezzi are with the Dipartimento di Elettronica, Informa-
zione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
E-mail: {luciano.baresi, carlo.ghezzij@polimi.it.

o X. Ma is with the State Key Laboratory for Novel Software Technology and
the Collaborative Innovation Center of Novel Software Technology and
Industrialization, Nanjing University, Nanjing, Jiangsu 210093, China.
E-mail: xxm@nju.edu.cn.

e V. Panzica La Manna is with Holst Centref/imec the Netherlands, Eind-
hoven 5656 AE, The Netherlands.

E-mail: valerio.panzicalamanna@imec-nl.nl.

Manuscript received 8 Oct. 2014; revised 2 July 2016; accepted 4 July 2016.
Date of publication 18 July 2016; date of current version 24 Apr. 2017.
Recommended for acceptance by M. Dwyer.

(CBDSs), which have already been widely studied in the past
[1], [2], [3]. Kramer and Magee [1] proposed a seminal solu-
tion where components can only be updated when they
reach a quiescent status. To ensure the consistency of an
update, this approach preventively blocks all computations
that may traverse the components affected by the reconfigu-
ration. This is achieved by analyzing the static dependencies
between the components of the distributed architecture. The
approach is conservative and may bring more disruption
than necessary. Since static dependencies pessimistically
include all the potential interactions between components,
disruption might be mitigated by considering dynamic
dependencies. These are temporal relationships between
components caused by on-going computations, and they
only indicate the current constraints on the reconfigurability
of the system. At runtime, this information helps identify a
less conservative condition that reduces the degree of dis-
ruption and improves the timeliness of the update.

In [4] we proposed version consistency as a criterion for the
safe and efficient dynamic updates of the components of
transactional CBDSs. We introduced a condition that only
checks the dynamic dependencies on the components-to-
update to ensure their correctness. Other approaches, like
the one based on tranquillity [3], and those presented in [5]
and [6], use dynamic dependencies to only ensure the con-
sistency of transactions and of their direct sub-transactions,
which may lead to unsafe updates. In contrast, our criterion
exploits dynamic dependencies to ensure the consistency of
transactions, along with their direct and indirect sub-
transactions.

Version consistency can be used to update existing com-
ponents at runtime. As the other approaches, it assumes
that the old and new versions of components be correct and
that updates be atomic and instantaneous (no delays and
interleaving are taken into account) to avoid considering
the possible internal states of components during the

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. To access the final edited and published work see https://doi.org/10.1109/TSE.2016.2592913

Auth

Portal
DB

e

e
N

Fig. 1. Components of the running example.

Proc

update. The safety of all these approaches relies on the basic
design principles of isolation and consistency [7], that is, the
executions of the different distributed transactions do not
interfere with one another.

As the other approaches, version consistency also
assumes that the system architecture does not change, that
is, static dependencies are given, while new versions of
components can change their behavior, and thus dynamic
dependencies can vary while the system executes. The
paper only considers that single components be changed,
but the extension to multiple components is trivial: atomic
updates can deal with sets of components-to-update seen as
single “virtual” components.

Since version consistency exploits dynamic dependen-
cies, it requires information about the execution logic of
components to achieve better efficiency. Our prototypical
framework shows how this information can be retrieved
automatically, without posing additional burden on the
software engineer.

In summary, version consistency ensures the same guar-
antees as the quiescence-based solution [1], but with less
disruption and more timeliness. In contrast, it extends the
guarantees provided by the tranquillity-based solution [3]
to the case of multi-party distributed transactions. If the sys-
tem does not comprise this kind of transactions, the tran-
quillity-based solution provides enough guarantees and,
being narrower in scope, is lighter than version consistency.

This paper' extends our previous work in the following
directions:

e We polish the proposed approach and formalize it
by means of a graph transformation (GT) system [8];

e Weuse GROOVE [9] as graph transformation model-
ing and verification tool to prove the correctness of
our approach and to implement Version Consistency
Checker (VCC), a viable solution for reasoning on
dynamic updates;

e We present ConUp, a novel implementation of the
approach based on Service Component Architecture
(SCA), [10];

e We evaluate the approach and CoNUP on a signifi-
cant, third-party example application to show the
benefits in terms of disruption and timeliness with
respect to the quiescence-based solution.

The rest of the paper is organized as follows. Section 2

introduces a running example used to illustrate our

1. The original technical report, the graph transformation rules we
defined, ConUp, VCC, and more data about the evaluations we carried
out are available here: https:/ /github.com /brickinwall/ conup

:Portal :Auth Proc DB
T T T
™ i i i
A - getToken(cred) - -+ --xv=eerrnnneeres P RRERERES Beeeeee
i i
| SRREEEEE [CUPPERPPRPPRRRS T eeemeemmeeeenns oo b
|
return token ! }
-------- | |
C Boeoerecacnasncaanne L .
process(token, data) : }
TO ' verify(token) 1
| Il
T3 i
OK !
5 Y [SO ToIIIIIII Rl R
1 dbOperation() |
!
} T4
P
P SR L]
i
'

Fig. 2. Detailed scenario.

proposal and to highlight the limitations of the two refer-
ence approaches in the field. Section 3 describes our model
of CBDS and the challenges posed by dynamic updates.
Section 4 presents version consistency and the management
framework. Section 5 proposes the algorithm for the distrib-
uted management of dynamic dependencies. Section 6
describes how we used a graph transformation system to
model the algorithm and verify its correctness through
model checking. Section 7 introduces ConUr, our prototypi-
cal framework for managing the dynamic updates (version
consistency) of SCA-based systems. Section 8 summarizes
the assessment we conducted. Section 9 surveys related
approaches and Section 10 concludes the paper.

2 RUNNING EXAMPLE

Let us consider a simple web system whose components
and interconnections are shown as graph nodes and edges
in Fig. 1. A portal component (Portal) interacts with an
authentication component (Auth) and a business processing
component (Proc), while Proc interacts with both Auth and
a database component (DB).

Fig. 2 shows a detailed usage scenario to exemplify the
dynamic dependencies required by our approach. The com-
plete, explicit elicitation of the distributed transactions that
may be run on the system is not required by our approach.
The sequence diagram is provided here only to focus on a
concrete intuitive case. Transactions are described by rec-
tangles Tj---Ty: Portal first gets an authentication token
from Auth and then uses it to require the service from Proc.
Proc verifies the token through Auth and then starts com-
puting and interacting with DB.

Let us now suppose that Auth be updated to exploit a
stronger encryption algorithm. Although the new algorithm
is incompatible with the old one, the other components
remain unaware of it because all encryption/decryption
operations are done within Auth. The problem is that if we
update Auth at runtime, we must ensure that all running
transactions execute correctly before, during, and after the
update. If the update happens at any time, it is impossible
to ensure correctness automatically [11].

An obvious restriction on when the update can happen is
to impose that the component targeted for update be idle,
that is, the component is not busy executing transactions.
However, being idle is often insufficient for a component to
be safely updated. For example, considering the scenario of
Fig. 2, an update of Auth at time C, i.e., when the component

is idle, would be unsafe since the security token would be
created with an algorithm and validated by another.

The quiescence-based approach proposed by Kramer
and Magee [1] states a sufficient condition for a node to
be safely manipulated in dynamic reconfigurations. A
node cannot be quiescent before the completion of all the
transactions initiated by dependent nodes. This means
that the actual update could be deferred significantly. In
our example, Auth cannot be quiescent before the end of
the transactions hosted on Portal and Proc (T, and T5).
Moreover, the progress of all the other nodes that could
potentially initiate transactions, which require service
from Auth, directly or indirectly, has to be blocked till the
end of the update. Again, in our example Portal and Proc
cannot proceed before changing Auth. This means that the
adoption of this approach could introduce significant dis-
ruption in the service provided by the system.

To reduce disruption, Vandewoude et al. [3] proposed
the concept of tranquillity, as alternative to quiescence.
The idea is that there is no need to wait that a transac-
tion completes its execution if it will not require the ser-
vice provided by the component-to-update anymore,
even if the component was involved in the transaction. It
is also permitted to update a node even if some on-going
transactions will require the service provided by the
node in the future, but they have not interacted with it
yet. While claimed to be “a sufficient condition for appli-
cation consistency during a dynamic reconfiguration” [3],
the notion of tranquillity is based on a rather strong
assumption. In fact, a distributed transaction can only
contain a root transaction and the sub-transactions
directly initiated by the root transaction. A sub-sub-
transaction (i.e., a sub-transaction initiated by another
sub-transaction) must be independent of the root transac-
tion, and can thus use any version of a component. In [3]
the authors argue that this assumption is correct for sys-
tems made of reusable components that follow the black-
box principle. However, as witnessed by our running
example, and later also by the example application used
in Section 8, this assumption does not hold in many
practical scenarios. In addition, it can be difficult for a
software engineer to decide whether this assumption
holds or not. Incautious applications of the approach to
the scenario of Fig. 2 would permit unsafe updates. In
fact, after Auth returns the token to Portal, it does not
participate in the session initiated by Portal anymore. In
addition, before the request for verification is sent, Auth
has not participated in the session initiated by Proc yet,
and thus Auth is tranquil at time C. However, if Auth
were updated at this time, the verification would fail
because the token was issued by the old version of
Auth—with a different encryption algorithm. This failure
would not happen if the system entirely complied with
either the old or the new system configuration.

To conclude, we can say that the quiescence-based
approach provides a general and safe solution, but it can be
highly disruptive. The tranquillity-based approach is less
disruptive, but its assumption is too restrictive to be appli-
cable to a wide set of systems (e.g., our example). Our goal
is to get the best of the two proposals and add efficiency
and timeliness to safety.

3 PROBLEM SETTING

This section presents the definitions required to introduce
version consistency. We first describe both the architectural
and computational models of a component-based distrib-
uted system. We then define when a dynamic update is cor-
rect and prove that, for an arbitrary update, we cannot
derive a necessary and sufficient condition that ensures its
correctness.

3.1 Preliminary Definitions
The static configuration of a component-based distributed
system is defined as follows:

Definition 1 (Static Configuration). A static configuration
of a component-based distributed system is a directed graph
whose nodes represent versioned components. A directed edge
from a given node ¢, to another node c, is called static edge and
represents a static dependency, that is, the possibility for c; to
require a service provided by cs.

Besides the static configuration, our approach requires
information about the dynamic interactions between com-
ponents. To this end, a transaction is a sequence of actions
that accomplishes a given task and completes in bounded
time. Actions include local computations and message
exchanges.

Our notion of transaction is weaker than Atomic, Consis-
tent, Isolated, and Durable (ACID) transactions of database
systems [7]. Since this paper focuses on the consistency of
dynamic updates, we only assume that all local transactions
are consistent and isolated. This assumption generally applies
to existing component-based frameworks such as the ones
based on Enterprise Java Beans [12] and Web Services [13].

A transaction T', executed on component A7, can be initi-
ated by an external client or by another transaction 7". 1" is
called a root transaction in the former case and a sub-transac-
tion (of T”) in the latter case. A root transaction has a unique,
system-wide identifier. For each transaction 7', hy must
know root(T'), which is the identifier of the root transaction
of T. For example, T} is a sub-transaction of 7, in the
sequence diagram of Fig. 2. The term sub(7, T") denotes that
T' is a direct sub-transaction of 7. A transaction can be a
direct sub-transaction of at most one transaction,” and by
definition a root transaction is not a sub-transaction of any
other transaction. All the messages exchanged between a
transaction 7' and its sub-transaction 7’ are temporally
scoped between the two corresponding messages that initi-
ate 7" and notify its completion. We also assume that trans-
actions are always notified of the completion of their sub-
transactions and that a transaction cannot end before the
termination of its sub-transactions.

The set ext(T) = {z|x =TV sub™(T,z)} is the extended
transaction set of T, which contains 7" and all its direct and
indirect sub-transactions. The extended transaction set of a
root transaction models the concept of distributed transaction
that can span over multiple components. For example, if we
consider the root transaction 7; on Portal, its extended
transaction set is ext(Ty) = {7y, T1, T, 15,7}, where T; on

2. This constraint refers to the relationships between running enti-
ties, not to their definitions.

Auth is in response to the getToken request, 75 on Proc in
response to process, T3 on Auth in response to verify, and 7
on DB for 75’s request of database operations.

3.2 Correct Dynamic Updates
The dynamic update of a single component can be defined
as follows:

Definition 2 (Dynamic Update). A dynamic update of a com-
ponent c can only occur when c is idle. The update is specified
as a tuple (X, ¢, , T, s) where X is the original system configu-
ration, ¢ is a component of 3. to be replaced with a new version
, s is the current state of component c and T is a state transfer
function. T (s) yields the initial state of ¢ after replacement.

Note that the definition takes into account the general
case in which components have an internal state.” Should
components be purely functional, no state transformation
function would be needed.

As already stated at the beginning of the paper, since we
assume that for a given dynamic update (%, ¢, ¢, 7, s), the
corresponding off-line* update (3, ¢, ¢’) be correct, the trans-
actions running on ¥ satisfy the old system specification S
and the transactions on ' = 3[¢/] satisfy the new specifi-
cation S'. Given the distributed nature of these transactions
we can only adopt a weak definition of correctness of
dynamic updates, which is defined as follows:

Definition 3 (Correct Dynamic Update). A dynamic update
(3,¢,c,T,s) is correct iff:

The transactions that end before the update satisfy S;
The transactions that begin after the update satisfy S';
The transactions that begin before the update, and end
after it, satisfy either S or S'.

Note that the first bullet is implied by the correctness of
the corresponding off-line update, while the other two bul-
lets add the runtime dimension. This definition of correct-
ness also applies to the quiescence-based approach; the idea
is to propose a more efficient way to enforce it, not a new
definition of correctness.

In general, we cannot have an automatically checkable
condition that is sufficient and necessary for the correctness
of a dynamic update that occurs at any time [11]. This is
true even if the corresponding off-line update is guaranteed
to be correct and the dynamic update only happens when
the component is idle.

Proposition 1. Given an arbitrary dynamic update
(2,¢,d,T,s), such that the corresponding off-line update
(2, ¢,dY is correct and component c is idle in state s, the cor-
rectness of the dynamic update is undecidable.

Proof. Let us assume a system that consists of two compo-
nents A and B. A provides a function f whose

3. The state of a component is nothing but a set of values stored
within the component that: (a) are properly initialized when the com-
ponent is enacted, (b) are accessed and modified by operations exe-
cuted within the component, (c) are always accessed atomically, and
(d) can persist the execution of different (distributed) transactions.

4. The difference between a dynamic update and its corresponding
off-line update is that the former is carried out while the system is in
operation; the latter after its shutdown.

implementation uses a function g provided by B. The
specification of the system is that A. f() returns 0.

Component A:

int £() { returnB.g(B.g(2)); }
Component B:

int g(int x) { returnO; }

Now component B is about to be dynamically updated
with B’ that provides ¢'. The new system specification is
the same as the old one. Let us suppose there is an algo-
rithm D that can decide, for an arbitrary ¢ that ensures
that the off-line update be correct, whether the dynamic
update that happens when B is idle is correct or not. Then
we could use D to decide whether an arbitrary program
h() will eventually halt as follows. Let us construct ¢ as

int g’ (int x) {
switch (x){
case2: returnl;
casel: returnO;
default: { h(), returnO };
}
}

Note that ¢ ensures the correctness of the off-line update
because B'.¢'(B'.¢'(2)) returns 0. Let us consider that the
update happens after A. f calls B.g the first time but before
the second time. In that moment, B is idle if the transac-
tion were the only one in the system. In this situation D
must be able to decide whether B'.¢/(B.g(2)) returns 0.
Since B.g(2) returns 0, the result of D(¢) is the same as
whether k() will eventually halt. Because whether an arbi-
trary program will eventually halt is undecidable, such an
algorithm D cannot exist. The correctness of dynamic
updates is then generally undecidable because at least it is
undecidable in this special case.

4 VERSION CONSISTENCY

Since the correctness of arbitrary dynamic updates is unde-
cidable, we can only derive some automatically checkable
conditions that are sufficient for the correctness by con-
straining when the runtime update can be performed. These
conditions must be: (a) strong enough to ensure the correct-
ness of dynamic updates, (b) weak enough to allow for effi-
cient and timely changes, and (c) automatically checkable in
a distributed setting (without enforcing unnatural central-
ized solutions).

To this end, the paper proposes the notion of version con-
sistency as a sufficient condition for the correct and efficient
dynamic update of CBDSs:

Definition 4 (Version Consistency). Transaction T is ver-
sion consistent with respect to an update (%,¢,d,T,s) iff
BT, T € ext(T) | hr, =cANhp, =¢. A dynamic update
(2,¢,d,T,s) is version consistent if c is idle in s and all the
transactions in the system are version consistent.

Given the correctness of the off-line update and the inde-
pendence among distributed transactions, this condition is
sufficient for the correctness of dynamic updates. This is
because any extant transaction with all its (direct and indi-
rect) sub-transactions is entirely executed in the old or in
the new configuration. Also note that a transaction that

ends before (starts after) the update cannot have a sub-
transaction hosted on the new (old) version of a component
being updated.

Back to our example, if the update of Auth happens after
transaction 7j begins but before it sends a getToken request to
Auth (time A), all the transactions in exzt(7}) (i.e., all the trans-
actions in Fig. 2) are served in the same way as if the update
happened before they all began. If it happens at any time after
Auth replies to the verify request issued by Proc (time D), all
the transactions in ext(7}) are served in the same way as if the
update happened after they all ended. However, if it happens
at time C, then hy, = Auth, but hy, = Auth’. As both 7} and
T; € ext(Ty), Ty would not be version-consistent.

4.1 Dynamic Dependencies

Since the definition of version consistency predicates on dis-
tributed transactions, it cannot be checked on single compo-
nents. We need to identify a condition that is checkable
locally, that is, on the component(s)-to-update, and yet
ensures version consistency.

To define such a condition, we introduce the notion of
dynamic dependency, represented by properly labelled
edges added to the static configuration of the system.
Dynamic edges are added and removed on demand and
they are labelled with either f (future) or p (past). A future
edge represents the possibility for the source node to initiate
a transaction 7" on the target node; a past edge witnesses the
fact that a transaction 7" initiated by the source node has
already been executed on the target node. Future and past
edges are also labelled with the identifier of the root transac-

. p
tion of T. We use ¢; — ¢y (¢; — ¢») to denote a future

(past) edge, labelled with the identifier of root transaction
T, from component ¢; to component c;.

Definition 5 (Valid Configuration). A static configuration
decorated with past/future edges (hereafter, a configuration) is
valid if these edges are created and removed at runtime accord-
ing to the following constraints:

(1) (rocarry) Any future or past edge between two nodes
cannot be created if there does not exist a static edge
that connects the same two nodes;

(2) (rurure-vALDITY) A future edge ¢; — ¢y must be
added before the first sub-transaction 1" € ext(T),
where T' #+ T, is initiated and it cannot be removed as
long as transactions hosted on ¢, may initiate further
T" € ext(T) on cy; p/T

(3) (past-vaLDITY) A past edge ¢, — ¢y must be added at
the end of the first transaction T" € ext(T') on ¢y, initi-
ated by a transaction hosted on c¢; and cannot be
removed at least until the end of T'.

Fig. 3 shows some configurations of the example system.
Active components, that is, components that are executing
transactions in ext(7}), are marked with a x, and numbers
mimic the order with which edges are added.

The configuration of Fig. 3a corresponds to time A in Fig. 2:
transaction Tj is executing on Portal, which is *-annotated.
The dynamic edges indicate that to serve transactions in
ext(Ty), Portal might use Auth and Proc in the future, and also

*

1470 3| Auth / Auth
* 1Y * I3 —
Portal 3:' o DB Portal 3 ' o DB

\ ! /'4 \ ! /'4

\\ S \\ S

Z:f/tQ_, Proc [--4:1/T0 2:ff[Q_> Proc [--4:f/TO

(a) Time A. (b) Time B.

s w Auth s prr/o7 Auth
* Iy * i

\ \

Portal 3170 DB Portal 6:p/To DB
. 4 * /
210 & prog --4:1T0 Proc F--4:T0

(c) Time C. (d) Time D.

Fig. 3. Some configurations of the example system with explicit dynamic
dependencies.

Proc might use Auth and DB. Fig. 3b corresponds to time B
and says that a transaction in ext(7p) (T7) is currently running
on Auth, but no further transaction in ext(7}) hosted on Portal
will initiate any sub-transaction on Auth anymore because
there is no Tj-labelled future edge between the two nodes.
Fig. 3c, which corresponds to time C in Fig. 2, indicates that
Auth might have hosted transactions in ext(7y) initiated by
Portal in the past, and might host further transactions in
ext(Ty) initiated by Proc in the future. Fig. 3d corresponds to
time D in Fig. 2 and shows that Auth, although it might have
hosted transactions in ext(Tj), is not hosting and will not host
these transactions anymore.

Note that to keep a configuration valid, and consider
alternative execution flows, one can adopt a conservative
management of future/past edges between components.
For example, if 75 on Proc needs to evaluate the results
from DB before deciding whether to ask Auth for verifica-
tion, one can keep the future edge from Proc to Auth till 75
does not need Auth anymore. In the worst case, it could be
kept till the end of 75. This flexibility makes our approach
generally applicable in different situations with diverse
degrees of accuracy.

4.2 Freeness

Given a valid configuration, we can identify a locally check-
able sufficient condition for the version consistency of
dynamic updates, called freeness:

Definition 6 (Freeness). Given a configuration X, a compo-
nent c is said to be free of dependencies with respect to a root
transaction T iff c is not hosting any transaction in ext(T) and
there does not exist a pair of T-labelled future/past edges enter-
ing c. c is said to be free in %, iff it is free with respect to all the
root transactions in the configuration.

In our example, Auth is free with respect to 7j in the con-
figurations of Figs. 3a and 3d, but not in the one of Fig. 3¢
since there exist two edges f/T; and p/T} that enter Auth.
Moreover, since Auth is active in Fig. 3b, this trivially falsi-
fies its freeness. Intuitively, for a valid configuration 2, the
freeness condition for a component c—with respect to a root
transaction 7—means that the distributed transaction mod-
eled by ext(T) either has not used c yet (otherwise there

should be a past edge), or it will not use ¢ anymore (other-
wise there should be a future edge). This leads to the follow-
ing proposition.

Proposition 2. Given a valid configuration % of a system, a
dynamic update of a component c is version consistent if it hap-
pens when c s free in 3.

Proof. By contradiction, let us assume that ¥ is valid, ¢ is
free, but version consistency does not hold. Because c is
free, it must be idle when the update occurs. So there
must be a transaction 7" that is not version consistent, that
is, 311, T, € emt(T) | th =c A hT2 =/.

First, T' is not hosted on c. Because 1" begins no later
than 7 and T; begins before the update since hy, = ¢, T
begins before the update. Similarly 7" ends after the
update because of T5. However c is idle when the update
happens, hence hy # c.

Second, there is a T-labelled past edge entering c. Con-
sidering the sub-transaction chain from 7" to 7j, there
must exist 7;,7; such that sub(T;,T;) A hp #c
A hr; = c. According to the past-validity of % and the fact
that 7 must have already ended when the update hap-
pens, such a past edge must exist.

Third, there is a 7-labelled future edge entering c.
Without any loss of generality, let T be the first transac-
tion in ext(7T) initiated on ¢. Let us consider the sub-
transaction chain from 7" to 75. Although some of the
ancestor transactions of 75 may run after the update hap-
pens, their behavior is not changed by the update because
they are independent of transactions not in ext(7"). Thus
at the time of the update, c is expected to host transac-
tions in ext(T) in the future. According to the future-
validity of 3, there must be a T-labelled future edge
entering c that has already been created and has not been
removed yet.

So there is a pair of 7-labelled past/future edges
entering c. This contradicts the freeness of c.

5 DYNAMIC DEPENDENCIES

The definition of valid configuration constrains the time inter-
vals during which dynamic edges should exist to keep a
configuration valid. One can satisfy all the conditions
straightforwardly by creating all the future and past edges
at the beginning of a root transaction and by removing them
at the end of it. Although version consistency would be
ensured, disruption could be excessive.

Our solution proposes a distributed algorithm for effi-
ciently managing dynamic dependencies that: (1) keeps the
configuration valid and (2) ensures version consistency
with limited disruption. We assume that components be
split into two parts: application logic and container. The for-
mer must be provided by the implementor, while the latter
is added automatically by the underlying middleware infra-
structure and is responsible for managing dependencies.
Although our solution leverages some information from
application logic, containers are transparent to it and keep
the separation between application and adaptation logic—
as proposed by the other approaches.

Dynamic dependencies are maintained in a distributed
way. Each component only has a local view of the

configuration that includes itself and its direct neighbors. A
component is responsible for the creation and removal of
the outgoing dynamic edges, but it is also always notified of
the creation and removal of the incoming ones. This is
achieved by exchanging management messages that keep
the consistency among the views of neighbor components.

The management of dynamic dependencies may slightly
delay the execution of the actual transactions, but it guaran-
tees that no transaction will be blocked forever. The under-
lying message delivery is assumed to be reliable, and the
messages between two components are kept in order.
Dynamic edges are labelled with the identifiers of the corre-
sponding root transactions to allow for the management of
the dynamic edges of a root transaction independently of
those of other transactions.

We require that given a transaction 7', its host component
hr always knows f(T'), the set of static edges through which
it might initiate sub-transactions on neighbor components
in the future, and p(7T'), the set of static edges through which
it has initiated sub-transactions in the past. It is safe to over
estimate f(T") and p(T), but better accuracy means better
timeliness and less disruption in dynamic updates. This
information can be derived from design documents, be
obtained by monitoring the execution, or even be automati-
cally extracted from the implementation of application com-
ponents, as exemplified by our ConUr framework
(Section 7). The same is required for deciding the tranquillity
of components [3].

If we consider a distributed transaction ezt(T), our algo-
rithm consists of three steps. Setup is carried out after the
root transaction 7' is initiated and before it initiates any sub-
transaction. During this phase, hr creates a future edge for
each of its out-going static edges that 7" might use to initiate
sub-transactions according to f(T'), notifies the correspond-
ing neighbor components, and waits for their acknowledge-
ments. Only after receiving all these acknowledgements, 7'
is allowed to initiate its sub-transactions.

Whenever a component ¢; is notified of the creation of an
incoming future edge by ¢y, it creates new future edges
towards its statically-dependent components. Again, it noti-
fies the neighbor components, waits for their acknowledge-
ments, and then acknowledges ¢, back. The rationale is that
by accepting the creation of a future edge, ¢; “promises” ¢; to
host some T, € ext(T) in the future, but to make such a
promise c; first needs to get the promises from those compo-
nents that 7., might need to use. Loops in the static configura-
tion are handled by avoiding creation and notification of
duplicated future edges. This conservative way creates future
edges to achieve a valid configuration with respect to 7" when
the set up step finishes. For example, Fig. 3a shows the result
of setting up future edges for transaction 7y of Fig. 2.

While in Progress, the transactions in ext(T') execute, past
edges are created to register have-used relationships, and
future edges are gradually removed as soon as a component
will-not-use another one anymore. To record the have-used
information, when a sub-transaction 7" originally initiated by
T ends, the corresponding past edge is created immediately.
This is done by letting h; first notify hr the end of 77, and by
keeping 7" alive till by is notified of the creation of the edge.

In our example scenario, Portal removes the future edge
to Auth after it initiates 77 on Auth as Tj will not initiate

such transactions anymore (Fig. 3b). When 7} ends, Portal
immediately creates a past edge to record the fact that it has
used Auth (Fig. 3c). Eventually, the system reaches the con-
figuration of Fig. 3d, where Auth is free with respect to 7.
Cleanup is carried out only when 7" ends. The algorithm
recursively removes all remaining past and future edges.
This step does not affect the validity of the configuration.

5.1 Achieving Freeness

Checking a valid configuration for freeness is straightforward
since the condition is local to the component that is to be
updated, but freeness can be achieved in different ways.

The first strategy, called waiting for freeness (WF), is sim-
ply opportunistic. The system just waits for freeness to man-
ifest itself. This strategy has no extra overhead other than
setting up and maintaining the valid configuration and
checking for the freeness of the component. However,
although every transaction completes in finite time, the free-
ness of a component could never be reached—for example,
there could always be transactions running on it.

To improve timeliness, other strategies may be devised.
The strategy called concurrent versions (CV) lets two versions
cand ¢ of a component co-exist during the update. The use
of multiple versions of the same component is not new (e.g.,
HERCULES [14] and Upstart [15] adopt it), but our proposal
adds version consistency as a means to choose which ver-
sion must serve a request and to decide when a version can
be decommissioned. Given a valid configuration, one can
choose component ¢ to serve the requests that come from a
transaction 7" only if ¢ has already an incoming past edge
labeled with root(T'), or ¢ is currently hosting a transaction
T" with root(T") = root(T), and let ¢’ serve the others. This
means that ¢ cannot have incoming past edges labelled with
new root transactions, and it will eventually become free
since old transactions will reach a stage where they will not
use it anymore. As soon as this component becomes free, it
can be safely removed from the system.

However, if multiple versions cannot coexist, e.g., due to
limited resources, another strategy called blocking for freeness
(BF) can be adopted. It requires that some of the requests to
component ¢ be temporally blocked to avoid creating past
edges labelled with new root transactions. This component
will eventually become free when all existing transactions
do not use it anymore. More precisely, the initiation of any
transaction on component c is blocked unless it belongs to
an extended transaction set in which a member transaction
has already been hosted on c. This comes from the fact that
the first T-labelled past edge entering c is created the first
time a transaction in ext(7T') is being initiated on c. As soon
as ¢ becomes free, it is substituted by the new version ¢,
and all blocked transactions are resumed.

Back to our example, if Auth receives the request for
update before 7 on Portal initiates 77 on Auth, the initiation
of T} is blocked because there is no 7j-labelled past edge
entering Auth. Note that there can be Tj-labelled future
edges entering Auth (e.g., see Fig. 3a), but by blocking the
initiation of any T € ext(T)) on Auth the freeness of this
component will not be hindered by 7} since no Tj-labelled
past edge needs to be created. However, if the request for
update arrived at time C, the initiation of 73 by 7> on Proc
would be allowed because there is already a 7j-labelled

past edge entering Auth (created when 7 ended). In this
case, Auth must wait for all Tj-labelled future edges to be
removed, that is, at time D, which corresponds to the con-
figuration presented in Fig. 3d.

This last strategy relies on the assumption that the prog-
ress of a transaction in an extended transaction set will not
be blocked by a transaction in another extended transaction
set—otherwise, we may have deadlocks. For example, this
happens when two transactions are concurrently hosted on
the same component and need to access some shared
resources. If one blocked the transaction that holds the lock
(to avoid creating new past edges to the component-to-
update), the other would be blocked as well (since it does
not hold the lock), blocks would never be released, and the
system would enter a deadlock.

In the case of dependent distributed transactions, one can
rely on existing mechanisms for the avoidance, prevention,
or detection of distributed deadlocks. For example, accord-
ing to the Wait-for Graph used for deadlock detection [16],
one can resume the initialization of blocked transactions if
their initializers are waited for by some transactions that
must proceed to free shared resources. Note that such a
mechanism is very likely already provided by the system
infrastructure since distributed deadlocks are an important,
potential problem in distributed systems. One can also use
a more conservative blocking policy, and delay the creation
of future (past) edges labelled with new root transactions.
This method prevents the initialization of any new root
transaction that may use the targeted component, thus
introducing more disruption.

Generally, strategy CV is preferred when applicable.
Strategies WF and CV do not introduce disruption other
than that caused by setting up and maintaining the valid
configuration, while strategy BF imposes extra disruption
due to its temporal blocking of some transactions. As for
timeliness, strategies CV and BF are essentially equivalent.
BF should then be used when CV is not applicable, for
example because of constraints on deployed components.
CV is preferable every time there are no constraints on the
number of active components, on their deployment, and on
the policies for switching from one version to another.

5.2 On-Demand Setup

The above algorithm for managing dynamic dependencies
assumes that configurations be always kept up-to-date no
matter whether there is any request for update. However,
configuration management does not come for free. If
updates are rare, a valid configuration can be set up on
demand only when a request is planned or expected.

Establishing the validity of the configurations of a root
transaction is not difficult, as we can safely create enough
future/past edges. However, the creation of these edges
must be coordinated with the execution of existing transac-
tions, and the initialization of new ones. These activities
must take into account all the transactions that could be
affected by the update, but they must also avoid unneces-
sary constraints (serialization) among unrelated ones.

To this end, each component is associated with one of the
following working modes: NORMAL, ONDEMAND, or VALID.
NORMAL means that the component is not managing
dynamic dependencies, VALID means that it is managing

A —b—| C A

Matched and preserved Forbidden

A A t-b -» C

Matched and deleted Created

Fig. 4. Elements of GROOVE graph transformation rules.

dynamic dependencies, and the validity of the configuration
has been established for all the distributed transactions it is
involved in, and ONDEMAND is an intermediary mode. It
imposes that the component: (1) manages the dynamic
dependencies for all the new root transactions that are initi-
ated locally, (2) blocks the initiation and termination of
locally hosted sub-transactions temporarily, and (3) for each
locally-hosted ongoing root transaction 7', creates future
(past) edges towards the components that might host in the
future (might have hosted in the past) transactions in ext(T)
in a way similar to the one described above.

At the beginning, all components operate in mode
NORMAL. When a component receives a request for update,
it starts the process and waits for its mode to become VALID
before using the proposed approach for achieving freeness.
Upon receiving a request for set up, a component ¢ switches
to mode ONDEMAND and sends set up requests to all the
components ¢; that statically depend on it. Once c has finished
the set up of dynamic edges for its local root transactions, and
has received all the acknowledgements from ¢;, it switches to
mode VALID, resumes all blocked transactions, and the valid-
ity of the configuration is established. Then, ¢ can be updated
once its freeness is achieved.

6 SPECIFICATION AND VERIFICATION

Our formalization exploits a graph transformation system to
model the proposed algorithm for managing dynamic depen-
dencies and to verify its correctness. The graph transforma-
tion system is also the basis of Version Consistency Checking,
a tool for reasoning on the dynamic update of CBDSs.

We decided to use a graph transformation system because
we wanted to specify the different steps of our solution and
graph transformations provide a formal, concise, and execut-
able means to specify the creation and evolution of graph-like
structures. They have been used in the past to model, among
others, software architecture [17], distributed systems [18],
and visual languages [19]. The analysis capabilities provided
by tools like GROOVE [9] and AGG [20] also allow for the for-
mal verification of significant properties of designed systems.
It is true, however, that all these verification tools must cope
with the intrinsic exponential growth of the problems at
hand [21], and in many cases they can only address partial, or
simplified ones. We do not have investigated different verifi-
cation solutions since our goal was mainly the formalization
of the approach, and the (partial) verification of designed sys-
tems was almost a side effect.

A graph transformation system can be used to describe
the evolution of distributed entities: nodes represent the dif-
ferent elements and graph transformation rules define how
pieces (entities) of the whole system can evolve. Different

Rule 1: Add Node | Rule 2: Add Static Edge

r - staticEdge - -»
11 staticEdge 1 1

c . c.C

1

c,C

Fig. 5. GT rules for creating static configurations.

rules can be applicable at the same time non-deterministi-
cally and in some cases the application of a rule may pre-
clude the execution of another. There is thus a dichotomy
between the centralized nature of a graph and the local
nature of the different rules that govern its evolution, thus
mimicking the behavior of a distributed system where dif-
ferent parts can evolve independently and in parallel.

In this paper we use GROOVE as modeling and verifica-
tion tool. A GROOVE graph transformation rule can include
the following elements (visually summarized in Fig. 4): (i) a
sub-graph (i.e., nodes and edges) that must exist in the target
(host) graph, and that remains untouched, to enable the appli-
cation of the rule (continuous black line); (ii) a sub-graph that
must not exist in the host graph to enable the application of
the rule (grey vertical lines); (iii) a sub-graph that will be
deleted from the host graph by applying the rule (grey dashed
line); and (iv) a sub-graph that will be added to the host graph
by applying the rule (black dotted line).

The rules presented in the rest of the paper are based on
the following node and edge types. As for nodes, types C
and T correspond to components and transactions, while F
and P mimic future and past edges. FCreated and PCreated
are used to render the cases in which an F or P node has
already been created, and THostedOnNewVersion and
THostedOnOldVersion to identify the version of a compo-
nent on which a transaction is running. The meaning of
edges is the following: staticEdge, in, out, old, and new are
self-explanatory. hosted and subTx help understand the
component on which a transaction is running and its possi-
ble sub-transactions, while mayUseInFut is used to identify
the transactions that may use a given component in the
future. A mayUselnFut edge from a transaction 7" to a com-
ponent ¢ models the potential future initiation of sub-trans-
actions on ¢ by 7 its absence indicates that 7" will not use ¢
anymore. In other words, these edges materialize sets f(7'):
for each static edge from hy to a neighbor component ¢ in
f(T), there exists a mayUselnFut edge in the graph from T to
c. Since the graph transformation system has no knowledge
of the internals of components, it can only abstract them as
creations and removals of mayUselnFut edges, whose corre-
sponding rules are trivial and omitted here.

During verification, we create a mayUselnFut edge for
each outgoing static edge of the component of interest. This
way f(T) is initialized with all possible static edges. A sec-
ond rule removes mayUselnFut edges, one by one, and it is
applied non-deterministically. This non-determinism is
used to mimic any possible dynamic evolution of a transac-
tion that starts using a component and then, given its inter-
nal evolution, does not use it anymore.

Rule 1 and Rule 2 of Fig. 5 allow for the generation of
any arbitrary static configuration. Rule 1 states that it is
always possible to add a new component. Rule 2 describes
the creation of static edges. A static edge can be created if
there exist two distinct components (positive application

Rule 3: InitRootTx

+ isRoot

assign rootID
..... g o om e

hosted
h J

c.C

Rule 4: InitSubTx

c:C

! :

staticEdge ———

hosted mayUselnFut hosted
T /subTx . . » SubTT

“rootID := t.rootID .

Fig. 6. GT rules for creating transactions.

condition) and they are not already connected. Needless to
say, the configuration of Fig. 1 can be created by applying
Rule 1 and Rule 2 four times each.

The notions of transaction, root transaction, and sub-trans-
action are formalized by Rule 3 and Rule 4 of Fig. 6. Rule 3
creates a root transaction on a given component and assigns it
a unique identifier rootID. Rule 4 formalizes the fact that a
sub-transaction can be initiated by a transaction ¢ hosted by
component ¢; onto a component c; if there exists a static edge
between ¢; and ¢; and a mayUselnFut edge between ¢ and c;.
If the conditions specified by Rule 4 are met, a new transac-
tion (of type T) is created with the same rootID as the initiating
transaction, and a new edge, named subTx, states that the initi-
ated transaction is a sub-transaction of T.

Rule 5 of Fig. 7 describes the creation® of a future edge
from the component that initiated the root transaction ¢; to
a statically dependent component c,. Besides creating an f
edge, it also adds an FCreated node to mark the existence of
the edge. This node is added when the f edge is created,
and removed at the end of the distributed transaction. Note
that FCreated (and PCreated) nodes are placeholders needed
for verifying the algorithm. They are added the first time
the f/p edge between two components is created, and used
to know whether the edge has already been created, and
maybe removed, or it has never existed.

Whenever a component ¢; is notified of the creation of an
incoming future edge, it creates new future edges towards
its statically-dependent components (obtained by repeat-
edly applying Rule 6).

Rule 7 of Fig. 8 models the creation of a past edge—along
with a PCreated node—just after the termination of the first
sub-transaction subl initiated by ¢; on c¢;. Rule 8 models the
termination of the other sub-transactions when a past edge
with the same 7ootID between the two nodes already
exists. This rule only removes node subl" and the associated

5. Acknowledgements are left implicit for the sake of simplicity.

Rule 5: AddDirectF

. FCreated L.
- * rootlD := t.RootID =
out « = = = = & & . . in
. v L
. rootlD := t.RootID -)
Ol;]t --------- in
i ¥
c,C |— staticEdge —| ¢,C

hosted /

| mayUselnFut

tT /

isRoot
Rule 6: AddRecursiveF

. FCreated S
. * rootlD := f.RootID =
out = = = = = = = = = in
. F
. rootID := f.RootID
Ol-,lt --------- in
¥
£F |—in — ¢:C |— staticEdge — ¢,C
\\\\\(/’/ \‘
hosted ou/t_||||||||||||||_\‘In
oY <{ oldF: F -
RN —rootID == frootlD=
T - =t

rootlD == f.rootIDE
frrrrrmrrrrr—

Fig. 7. GT rules for Setup.

edges. Rule 9 models the removal of a future edge from ¢, to
¢2, which occurs when a component ¢; will not use the other
component ¢, in the context of the same distributed transaction
anymore (absence of mayUselnFut edge), and there is no future
edge, associated with the same transaction, that enters c;.

Note that, even if the rules show different components,
they all model a local decision of component ¢y, its currently
hosted transaction, and its f(7") (represented by means of
mayUselnFut edges).

After explaining how to render the management of
future/past edges, we can define a special-purpose rule
(Rule 10 of Fig. 9) that checks for the freeness of a compo-
nent ¢ with respect to a transaction 7" and updates it through
the addition (4) of flag updated. The rule is applicable, and
thus the component is free, if the component is not hosting
any transaction 7" and there is no pair of f/p edges with the
same identifier of root transactions.

The formalization of the clean up step, which we simply
omit for brevity, consists of a set of rules that remove the
remaining future and past edges after the termination of a
root transaction.

The graph transformation rules presented in this section
refer to strategy WF. Strategies CV and BF can be reduced
to WF by dividing the sub-transactions running on the

Rule 7: AddDirectP

.- PCreated
. rootlD :=trootlD
OUt ------------------- In
. P ..
) rootlD := t.rootlD :
Ol;Jt i[]
A
cC staticEdge ——{ ¢,C
hosted
tT

Rule 8: EndSubTx

p
/| rootlD == trootiD [\
out in

N

staticEdge ——{ ¢,C

Rule 9: RemoveF

staticEdge —| ¢.C

Fig. 8. GT rules for Progress.

component-to-update in two groups: those that belong to
the extended transaction sets (i.e., distributed transactions)
the component has already served or is serving, and those
that do not. As for the freeness of a component, the differ-
ence between strategy WF and strategies CV and BF is then
that in the former case, we consider both sets of sub-transac-
tions, while in the latter we only consider the first one.®

6.1 Correctness of Algorithm

We used the graph transformation rules to verify that the
application of the proposed algorithm for managing dynamic
dependencies satisfies the constraints of a valid configuration
and that it finally guarantees version consistency.

If we go back to the definitions of Section 4.1, locality is
imposed by construction. Since there is no rule that adds
f/p edges without a corresponding static edge, and no rule
that removes static edges, the property can never be vio-
lated. We verified the other properties (future-validity,

6. The rules that formalize strategies CV and BF are part of our com-
plete formalization available at https://github.com/brickinwall/
conup

Rule 10: Freeness

C
+updated
Fig. 9. Update with freeness as GT rule.
Rule 11:FutureViolation1
cC staticEdge ————| ¢,C
hosted hosted
subTT
tT ——— subTx ——— subT.rootID == t.rootID

Rule 12: FutureViolation2

FCreated
root|D == t.rootID

- F Y
Out -rootlD == t.rootID= N
. \(l trrrrrrmrrrerrn ///
out n
v 4
cC staticEdge c,C
hOTed mayUselnFut

tT

Fig. 10. GT rules that negate future validity.

past-validity, and version consistency) by negation. We
used GROOVE to model the graph transformation rules
that represent the negation of the properties of interest, and
we fed the analyzer with the following CTL formulae:
AG(IruleViolated Property), where ruleViolatedProperty is the
actual rule that negates the property of interest.

Fig. 10 shows the graph transformation rules that negate
future validity. The property is divided in two parts, one

Rule 13: IdentifyOldVersion Rule 14: IdentifyNewVersion

cC cC |
lupdated| updated| *
f old . - THostedOnOldVersion - t

hosted 4. complD := c.ComponentlD =| hosted
| - rootID := t.rootlD . |

new - Lo

« -THostedOnNewVersion-

= complD := c.ComponentID =
rootID := t.rootlD

tT tT

Rule 15: VersionConsistencyViolation

/'I old: THostedOnOldVersion

old

oc new new:THostedOnNewVersion|
~.| complD == old.ComponentID
rootID == old.rootID

Fig. 11. GT rules that negate version consistency.

describing when a future edge is added and the other
describing when it is removed, respectively. Rule 11 neg-
ates the first part of the property and it is applicable if there
exists a sub-transaction without any corresponding future
edge. The second part of the property is negated by Rule 12
and it can be applied if there exists a component hosting a
transaction that may use the destination component in the
future without a corresponding future edge, but with the
FCreated marker in place. Future validity is verified if both
rules are never applicable. Similar rules (omitted here) have
been defined to model past validity.

In addition to checking configuration validity, we also
analyzed how the dependency management algorithm
ensures version consistency. Fig. 11 shows the graph trans-
formation rules used for the verification. Rule 13 and Rule
14 create two auxiliary nodes to identify the version of the
component that hosts a given transaction. Flag updated is
used to identify the most recent version of the component
and is added when a component is updated (see Rule 10).
The absence of this flag (i.e., lupdated) is used to identify
the version of a component before the update. Version con-
sistency is violated if transactions that belong to the same
distributed transaction are hosted on different versions of
the same component. This violation is modeled by Rule 15,
which is only applicable if both the old and new versions
have hosted at least one of the transactions that belong to a
given distributed transaction (identified by rootID).

The verification of the three properties (i.e., future valid-
ity, past validity, and version consistency) has been per-
formed by running the model checker provided by
GROOVE to exhaustively search for all possible applica-
tions of the graph transformation rules for systems with a
fixed number of components, static edges, root transactions,
and sub-transactions. Searching for all possible static config-
urations with a given number n of components is quite com-
plex and the state space (of the model checker) tends to
explode even with a small n.

We conducted our experiments on a Mac computer with
a 1.7 GHz Intel Core 7 and 8 GB of memory, and we were
only able to exhaustively explore static configurations with
up to three components and four edges.” We then proved

7. Given three nodes, one needs four edges to create at least one loop
in the static configuration.

TABLE 1
State Spaces Explored for All Possible Static Configurations
with Three Components and Four Static Edges

#root #sub-txs State Exploration # explored # explored
txs Space (MB) Time (s) states transitions

1 1 0.645 13 2,141 3,689

1 2 1.8 2.4 5,291 10,355

1 3 3.9 4.1 10,397 22,547

2 1 27.7 19.5 62,759 161,417

2 2 123.6 86.8 249,857 715,709

2 3 423.8 341.5 769,307 2,458,043

the three properties through model checking for the gener-
ated configurations.

The results we obtained are shown in Table 1, where each
line corresponds to the same system with three nodes and
four edges, but with a different number of concurrently exe-
cuting transactions and sub-transactions. Besides stating the
size of the state spaces generated by the model checker (.e.,
the memory used by the model checker) and the time
needed to conduct the analysis, we also counted the number
of states generated by the model checker, that is, the number
of different host graphs, and the transitions between them,
that is, the number of applied rules. Obtained results say
that (i) the algorithm satisfies the properties in the presence
of concurrently executing root transactions; (ii) the algo-
rithm satisfies the properties even in the presence of loops
in the static configuration. Even though we could not
explore large models, due to intrinsic limitations of the veri-
fication engine, the small scope hypothesis [22] reinforced our
confidence in the correctness of the proposed approach.

We also tried to verify the properties on larger systems in
a different, less general, way. We generated 100 random
static configurations with 100 components, and 101 edges,
each. For each configuration, we then activated one single
root transaction with 100 sub-transactions running concur-
rently and randomly. We also decided that when a compo-
nent was free, it had to be updated to a newer version. We
then let each system evolve, that is, we had a random linear
exploration of the (possible) state space, and we verified the
three properties. Each exploration represents one possible
behavior of the system and one corresponding evolution of
the algorithm. We were always able to prove the properties,
and each exploration took on average 50 ms and 58 KB of
memory. We repeated the exploration 100 times to prove
the properties for 100 possible evolutions of the algorithm.

6.2 VCC: Version Consistency Checking

The graph transformation rules and GROOVE have been
embedded in Version Consistency Checking,® a tool that
helps engineers select the approach that is more suitable for
their dynamic updates. VCC allows engineers to model the
business logic of each component through state machines.
Special-purpose graph transformation rules combine these
separate models and materialize all the possible behaviors
by matching outgoing and incoming method invocations
and replies.

8.The interested reader can refer to https://github.com/
brickinwall/conup for a detailed video presentation of the tool.

load activate v sto
p @
request for update reactlvate
On- demand Managing Achieving
set up Dependences Freeness

ConUp
C] Non-blocking state C] Partially blocking state - Blocking state

Fig. 12. Lifecycle of ConUp components.

VCC then uses another graph transformation rule to
automatically check whether the application of the tranquil-
ity-based approach violates version consistency, that is, the
safe update of the system. If version consistency is violated,
the tool provides a counter example that shows when and
how the violation occurs.

7 ConUP

ConUr is the prototype framework we developed to imple-
ment our approach. It is a component-based framework
that allows for the safe, timely, and low-disruptive dynamic
updates of components on top of the Service Component
Architecture, [10] component model.

SCA is a lightweight component model, where compo-
nents are specified in terms of the services they offer and
the services they require. The resulting model can then eas-
ily be mapped onto the static configuration required by our
approach. The specification is completely decoupled from
the implementation and favors interoperability. Compo-
nents can be implemented in a wide set of programming
languages—such as Java, C++, and PHP—frameworks, and
environments—such as BPEL, EJB and Spring. SCA also
allows components to communicate through different
standards, including SOAP, JMS and RPC. This decoupling
eases the porting of existing systems on top of SCA, and
thus fosters the dynamic update of legacy systems that
were not conceived for run-time maintenance.

ConUr extends SCA with the following capabilities:

e Transaction management handles the lifecycle of
transactions and helps propagate the identifiers of
root transactions and the notifications of creation
and completion of sub-transactions.

e Dependency management maintains a runtime
model of the system, which reifies the dynamic
dependencies between components, and helps
understand when a component can be safely
updated.

e Component lifecycle management improves native
management with (i) a versioning mechanism that
distinguishes among the different versions of a com-
ponent at runtime, (ii) a finer-grained component
lifecycle model (Fig. 12), and (iii) a management
interface for managing update requests at runtime.

The lifecycle model of Fig. 12 extends the common life-

cycle of SCA components with the states needed for the
management of dynamic updates and highlights how the
management of dependencies is key for the dynamic update
of components. State On-demand set up refers to the on-
demand set up of dynamic dependencies. Note that the con-
figuration is not valid in this state yet, but it is always valid

1
SCA Companent |
Business [> >
Component
R > _ Implementation interceptors I
_ (Automatically |
interceptors Instrumented)) >)
Tuscany Container I
TransactionManager . |
Component Life- Component
TxDepMonitor | | TxlifeCycleManager Cycle Manager Update Service | |
z S T
Conup SPI e =
onup <<interface>> <interface>> <<interface>>
TxManager DynDepManager CompManager

ConUp Core

DynamicDependenceManager }O— DynamicUpdateApproach

Version
consistency

Tranquility

+ OnDemandSetup()
+ MaintainDependence()
+ DynamicUpdate()

Quiescence

Fig. 13. ConUp architecture.

in state Managing Dependencies. State Achieving Freeness is
actually a composite state whose internals depend on the
actual strategy used for achieving freeness.

7.1 Design and Implementation of ConUp

ConUpr extends Apache Tuscany,” a well-known lightweight
implementation of the SCA specification, but it is designed to
easily be ported onto other component frameworks, like JBoss
or Tomcat. Moreover, CoNUr supports quiescence, tranquil-
ity,' and version consistency, as possible approaches for
updating components at runtime, and BF, CV, and WF as
strategies for achieving freeness (Section 5.1).

Fig. 13 presents the three-layered architecture of CoNUr.
At the bottom, layer ConUrCore implements the actual
dynamic dependency management and is responsible for
making the component become free of dependencies and
thus for enabling its safe update. The modules in this layer
are also responsible for the adoption of the different
approaches and strategies.

ConUr Core cannot accomplish its tasks without the help
of the component framework. Layer Tuscany Container
augments the standard Tuscany runtime with module
Transaction Manager for the creation, management, and
monitoring of local transactions. This module also takes
care of sets f(1') and p(7") for dependency management. It
also adds module Component Lifecycle Manager, which sup-
ports the lifecycle model of Fig. 12 and is responsible for the
deployment of new versions of components and for the un-
deployment of old ones.

When a component needs to be updated, the user (.e.,
the system administrator) initiates the update process by
invoking Component Update Service with the indication of the
new version of the component-to-update.

To improve the reusability of CoNUp core, we introduced
layer CoNUPSPI between the two layers above. It reifies the

9. http:/ /tuscany.apache.org/

10. ConUr implements tranquility by simply restricting the consis-
tency scope of each transaction to the transaction itself and its direct
sub-transactions.

aforementioned extensions to SCA as a set of service provider
interfaces. In principle any component framework that
implements these interfaces can use CoNUr to perform
dynamic updates.

7.2 Declaration of Transactions

The algorithm described in Section 5 assumes that the host
component of each transaction 7' knows f(T') and p(T).
While p(T') can easily be recorded when sub-transactions
terminate, f(7') must properly be computed at runtime. Our
approach is flexible and f(7T') can be conservatively esti-
mated. If no information about dynamic dependencies is
available, our approach degenerates into something similar
to the quiescence-based one.

CoNUpr requires that (local) transactions be explicitly
declared. Currently CoNUP supports Java as implementa-
tion language for SCA components and supplies a special-
purpose annotation @ConupTx to mark the public methods
that correspond to transactions. However, one can also
implement a mechanism that exploits external configuration
files to designate transaction boundaries automatically.
Such a mechanism would be completely non-intrusive and
also applicable to legacy systems.

We have then developed a fully automated solution for
the estimation of f(1") based on basic control-flow analysis.
Given a particular node n of the control flow graph of trans-
action 7" on component c;, the static edge se, which connects
¢ and ¢y, is kept in f(T), iff ¢, is reachable from n, that is, T’
will use ¢; in the future. The implementation of this idea is
based on byte-code level control-flow analysis and load-
time instrumentation, and the runtime overhead is well con-
trolled. Interested readers can refer to [23] for a detailed
presentation.

All the experiments presented in the next section exploit
this solution. Obtained results indicate that even this
straightforward estimation is sufficient to witness significant
efficiency improvements over the quiescence-based solution.

8 [EVALUATION

This section summarizes the experiments we conducted to
evaluate the timeliness and degree of disruption of our
approach and of its companion implementation ConUp.

In previous work [4], we used simulation to evaluate the
timeliness and disruption of our approach for a wide set of
randomly generated CBDSs that varied in the number of
components, service time, and network latency. The results
show that dynamic updates based on version consistency
are on average 20 percent more timely and 50 percent less
disruptive than those based on quiescence. In this paper, we
use travel sample,'’ an existing SCA-based application to
show how our approach and CoNUP can be effective in prac-
tice. We also applied the approach based on tranquillity on
this application, but found that, unlike the approaches
based on quiescence and version consistency, it cannot
always guarantee consistency: the possibility of being
inconsistent varies between 5 and 10 percent and depends
on the workload. This is why we decided not to consider

11. The original implementation of the application can be found
at: http:/ /tuscany.apache.org/sca-java-travel-sample-1x-releases.html

Travel .| Currency a
Catalog “| Converter 2
o
7 z
Node B
., Hotel Customer |
Partner Registry
- Flight Email
CeiE 7| Partner Gateway ||
Node A
3 N Car w Credit o
Partner 9 Card
Trip 2
Booking
Node C L1 Ui = Payment
Partner 3
o
z
L, Shopping N Cart
Cart I Store
Node G

Fig. 14. Travel sample: Static configuration.

this approach in our evaluation. On the other hand, when
the tranquility-based solution is known to be sufficient, one
should use it, maybe through ConUp.

8.1 Travel Sample

This application is a travel booking web system released
with the Tuscany runtime. We extended the original appli-
cation and tested the dynamic update of a few components.
We used ConUr to apply version consistency-, quiescence-,
and tranquility-based updates.

Fig. 14 shows the static configuration of the system, which
consists of fourteen SCA components. Users send requests to
Coordination to search for travel offers, to book the desired
travel combination, to add it to the cart, and to conclude with
the payment. A travel offer is constructed as a combination of
different third-party services managed by separate compo-
nents: HotelPartner, FlightPartner, CarPartner, and
TripPartner are in charge of interacting with the third-party
services devoted to deal with hotels, flights, cars and trips,
respectively. Component TravelCatalog returns a list of avail-
able combinations of the different services and interacts with
CurrencyConverter if the resulting offers require currency
conversions. Component TripBooking manages the booking
of the desired offer and interacts with ShoppingCart and with
the single providers for confirmation. When the travel offer is
booked, ShoppingCart adds it to the CartStore and proceeds
with Payment (the scenario is shown in Fig. 15).

A number of possible updates may happen at run-time:
(i) HotelPartner, FlightPartner, CarPartner, and TripPartner
may be dynamically reconfigured to substitute the services
they offer or to include new ones; (ii) CurrencyConverter
could be changed to support more currencies or to change
the frequency for checking the conversion rates; (iii)
Payment and CreditCard could be changed to introduce
new security countermeasures or to support different pay-
ment services. Even with these simple scenarios, improper

:HotelPartne

:Coordination ‘ :TravelCatalog ‘ :CurrencyConverter

‘ :CartStore

‘ :TripBooking‘ :ShoppingCart ‘ :Payment

:FlightPartner|
TripPartner

I

|

} search }

search
>

VJ
convert

Loop J
T >

return

return

newCart

I
|
I
|
newCart }
;
|
I
|
1
|

return

return

book

return

addTrip

addTrip

S —— return

return

checkout

makePa‘yment

|
|
|
|
|
|
r‘pturn
|
|
T
|
|
|
|

A J

‘ 1]

reset

return
T

Fig. 15. Travel sample: Scenario.

dynamic updates may lead to inconsistencies. As an exam-
ple, after finding a car to rent, this would not be available
anymore if the CarPartner were updated, or if the currency
conversion were not valid anymore before the actual
payment.

8.2 Experimental Results

The experiments we carried out were based on the fol-
lowing setting. The 14 components of the application
were deployed on seven nodes as shown in Fig. 14. Each
node was a virtual machine configured with a dual-core
2.66 GHz CPU and 4 GB of memory, and the network
was a virtualized Gigabit ethernet. The underlying soft-
ware environment was Ubuntu 12.04 (64 bit) with JDK
1.7.0_05.

Our first goal was a comparison between quiescence- and
version consistency-based updates in terms of timeliness
and disruption. We implemented quiescence on top of
ConUp by recursively passivating all the components that
statically depend on the ones-to-update. CoNUP can also
simulate tranquility by restricting the scope of consistency
for each transaction to itself and its direct sub-transactions.
However, the tranquility-based solution is not included in
the comparison because the example application is beyond
its scope. For example, the use of a tranquillity-based solu-
tion for the dynamic update of TripPartner would allow one
to book trips that do not exist anymore or that have become
more expensive.

We ran the application with different workloads by gen-
erating requests to Coordination. Requests arrived according
to a Poisson process whose inter-arrival times satisfy an

|

1

| |
return |

| |

| |

| |

| |

| |

exponential distribution. To simulate the typical delays
associated with the invocation of external services, we intro-
duced a 200 ms delay for the search methods of HotelPartner,
FlightParter, CarPartner and TripPartner, and a 2,000 ms
delay for method makePaymentMember of Payment.'?

The timeliness of dynamic updates is measured as the
timespan between receiving a request for update and its
actual completion. If the dynamic update of a component
happens while a transaction is running, that transaction is
said to be affected by the update. The total disruption is then
the sum of the delays caused by affected transactions with
respect to the response time of the same transactions with-
out update. Finally, the average disruption is the total disrup-
tion divided by the number of affected transactions.

The results presented in this paper are for the update
of two representative components, CurrencyConverter
and TripPartner. Fig. 15 shows that component
CurrencyConverter was only used once (although within a
loop) in the same distributed transaction, and the prediction it
would have not been used anymore can be done at a very
early stage because CurrencyConverter is only used by
TravelCatalog, which is only used by Coordination, and
Coordination finishes its use of TravelCatalog early. Thus the
dynamic dependency between TravelCatalog and
CurrencyConverter only held for a limited amount of time
with respect to the total duration of the distributed transac-
tion. This is why, intuitively, our approach was significantly
more efficient than the quiescence-based one in this case.

12. We use fixed values instead of randomized delays to ease the
measurement of the disruption caused by dynamic updates.

CurrencyConverter
6500

—o&— Normal

6000
2 5500 —=—VC-BF
g 5000 VC-WF
= 4500 ve-ev
wv
S 4000 —<—Quiescence
o
& 3500
o
3000 smidunmmessmiiNG-s R
2500
0 5000 10000 15000 20000 25000
Request initiate time (ms)
TripPartner
6500
6000 —a— Normal
’g 5500 —=—VC-BF
:E; 5000 VC-WF
= 4500 Vela
wv
§ 4000 —— Quiescence
Q.
& 3500
o
3000 s

2500
0 5000 10000 15000

Request initiate time (ms)

20000 25000

Fig. 16. Response times.

TripPartner, instead, was used multiple times by different
components and the prediction had to be very conservative
because of the iterative logic of TripBooking. This is more chal-
lenging for our approach.

The experiments also aimed to analyze the impact of the
different strategies for achieving freeness on the timeliness
and disruption of the actual update. Especially, we wanted
to see when WF (simply based on waiting) can be applied
and when we must use CV(concurrent versions) or BF
(blocking components).

8.2.1 Disruption and Timeliness

Fig. 16 plots the response times of root transactions continu-
ously initiated before, during, and after the dynamic update
of a component. Normal refers to the execution of transac-
tions without any attempt to update components and pro-
vides the baseline for evaluation. These experiments—-one
for CurrencyConverter and one for TripPartner—issued req-
uests at a rate following an exponential distribution with a
mean request interval of 150 ms. The request for update
was issued exactly at time 15 s, which resulted in some sig-
nificant delays in some cases (the spikes in the figure). Note
that the x-axes identify the time points when the corre-
sponding requests were initiated, not when responded. This
means that a request initiated at time 14 s could be served
by the system at time 15 s, then it could be affected by the
dynamic update and its response be higher than usual. This
higher value would be plotted at time 14 s although the
delay actually happened after time 15 s.

When updating CurrencyConverter, the quiescence-
based solution caused a delay of up to 3 s to the response
time of affected transactions, while version consistency only
introduced a negligible disruption, no matter the strategy
used for achieving freeness. When updating TripPartner,
the quiescence-based solution behaved similarly as above,

CurrencyConverter
4000 B Quiescence NVC-BF @VC-CV BVC-WF
2970 2959
> 3000 2718
€ 2469 2372
2 2201
o 2000
=
2
F 1000
‘(t/)o/,\%‘? O, o V0 A o ,M © v, 0 OO
o, 3 NI SIS NS NN NNty
. N7 BN Bsom Bsos Baom Baos
100 150 300 500 750 1500
Request interval (ms)
TripPartner
4000 B
B Quiescence NVC-BF 7z\VC-CV
3044 > 2911
> 3000 ‘\/> $ > 2818 2713
2 S & & 2458
@ ~ < 1964
%] N o)
© 2000 %7 o°
F 1000 %é & BL =
) \" Y. B\
150 500 750 1500

Request interval (ms)

Fi

g. 17. Timeliness.

but version consistency exhibited different delays with
respect to the different strategies for achieving freeness.
BF caused delays of up to 2 s to affected transactions,
while CV was much better as it only caused delays shor-
ter than 500 ms. WF could not achieve freeness within
30 s, thus no update happened, and the only registered
overhead was the one consumed to maintain the dynamic
dependencies.

These diagrams intuitively show that version consis-
tency performs better than the quiescence-based solution,
and the gain is more significant when CV is used. It also
shows that the overhead introduced by version consis-
tency is negligible before and after the update. This is
due to the fact that the dynamic dependencies are set on-
demand and they are only maintained while the compo-
nent is updated.

We then conducted additional experiments with a mean
inter-arrival time between 100 ms and 1,500 ms. Fig. 17 shows
the timeliness of the aforementioned dynamic updates under
different levels of workload. The data are averages over
10 runs. Again, when updating CurrencyConverter, version
consistency is much more timely than the quiescence-based
solution, but its advantage is less significant when updating
TripPartner. Note that in the latter case, the adoption of WF
makes the update not finish within 30 s for root transaction
request intervals shorter than 500 ms. This is why we decided
to omit this series of columns from the diagrams that refer to
the update of TripPartner with WF.

This result is explained by the high sensitivity of WF
for high workloads. More running transactions mean
fewer opportunities for a spontaneous achievement of
freeness. Given these results, we recommend that CV be
adopted; BF could be a good alternative if the concurrent

CurrencyConverter

©
g 600 ©
o 2 B Quiescence VC-BF VC-CV B VC-WF
S 500
=3 e
= 400 2
5 2
B 300 N -
2 ,; =
2200 | ¢ —
— N~ o™ o >
5} |ow - I & i @
g0 Mlaey HE8S B398 i,"ERS 31355 R8]Y
i - N Mo o v~ o O o o oo
0 Mz A Rhishiis ST E o=
100 150 300 500 750 1500
Request interval (ms)
2 TripPartner
o 600
€ © B Quiescence VC-BF VC-CV
o 500
S -
o o
X 400 8 @
[32]
§ 300 © ©
= @ \ 28
2 200 S B 5 ~
@ - ~ - = ©
s % > 5 <8 > ©
BN giz Figosec
e, . 7 BN, B<® m >~ ~-°
100 300 500 750 1500

Request interval (ms)

Fig. 18. Total disruption.

presence of multiple versions of the same component is
not feasible. The adoption of WF is only suggested when
the workload is light.

Finally, Figs. 18 and 19 show the total and average
disruptions, respectively. Also in this case, the data are
averages over 10 runs. The results show that CV, BF,
and WF considerably reduce the average level of disrup-
tion with respect to the quiescence-based solution for
the dynamic update of both CurrencyConverter and
TripPartner. Among the three proposed strategies, BF is
more disruptive since new transactions are blocked to
ensure freeness. When CV or WF are used, our approach
only introduces negligible disruption, which is due to
the overhead of the on-demand set up and to the main-
tenance of configurations.

CurrencyConverter
1000
2 875 ®Quiescence NVC-BF @VC-CV BVC-WF
= 800 739 716
o 650 639
S 600
._‘é’ 422
o 400
(=)
o
@ 200
z 875 M2y Borny Moce B oge B o
0 N N s Bl e Bl e
100 150 300 500 750 1500
Request interval (ms)
TripPartner

1000
’g B Quiescence N VC-BF @Vve-cv
= 800 694 ggy
o
B 592
e 546
5- 600
k]
kel

400
% fal 172
o 200

73
3: 50 38 45 57
0 (ZZ] Nz N7z
300 500 750 1500

Request interval (ms)

Fig. 19. Average disruption.

TABLE 2
Overhead Imposed by ConUp
Req. Intvl. (ms) 1,500 750 500 300 150 100
Tuscany (ms) 2,943 2929 2933 2940 2941 2,944
ConNUP (ms) 2964 2977 2966 2974 2970 2,969
Overhead (%) 071 167 112 114 098 0.85

8.2.2 Costs of Our Approach

The advantages of our approach do not come for free. Com-
pared to “pure” Tuscany, CoNUP pays extra costs for: (1) ana-
lyzing and instrumenting the byte code of components at
load-time; (2) executing the code generated by the analysis at
runtime; (3) managing the lifecycle of transactions and propa-
gating root transaction ids among transactions; (4) setting up
dynamic dependencies on-demand; (5) managing dynamic
dependencies after on-demand setup and before update; and
(6) achieving freeness through strategies BF, CV or WF.

The first cost is small and one-off. For the example appli-
cation, the time for the analysis and instrumentation of each
component varies from 20 to 80 ms.

To evaluate the second and third costs, we ran the travel
sample application on “pure” Tuscany and on ConUr
respectively. Table 2 shows the response times of the appli-
cation running on the two platforms with different request
intervals (Req. Intvl). The data are averages of 200 root
transactions. The result indicates that the overhead is only
1-2 percent, and thus is negligible.

The remaining costs have already been described in
terms of disruption in Section 8.2.1. Here we further analyze
them in terms of number of management messages used to
ensure the consistency of dynamic updates.

The quiescence-based approach only needs 6 and 12 mes-
sages to update CurrencyConverter and TripPartner, respec-
tively. Version consistency may need many more messages
to setup and manage dynamic dependencies. Table 3 lists
the number of affected root transactions (Tx) and the corre-
sponding number of required messages (Msgs) using strate-
gies BF, WF and CV, respectively. The data are averages
over 10 runs. ‘N/A’ in the table means that freeness was not
achieved within 30 s.

Since in our example application each root transaction
causes the execution of 48 sub-transactions, and each of
them requires at least two messages, our approach only

TABLE 3
Management Messages

Req. Intvl. (ms) 1,500 750 500 300 150 100
Currency #Ix BF 21 39 82 95 224 337
Converter #MsgsBF 93 15.0 23.6 282 563 90.6
#Tx WF 1.7 32 52 111 215 307

#Msgs WF 8.0 13.0 169 351 626 844

#Ix CV 20 45 58 115 244 294

#Msgs CV 8.6 140 189 347 689 902

Trip #T'x BF 28 60 77 160 356 55.6
Partner #Msgs BF 33.1 50.5 59.5 105.1 250.9 372.8
#IxWF 28 41 N/A N/A N/A N/A

#Msgs WF 19.2 302 N/A N/A N/A N/A

#Ix CV 19 43 76 154 335 589

#Msgs CV 19.2 40.1 922 200.8 384.7 745.6

adds a small fraction (i.e., %, which is less than 13.6
o

percent) to the total number of messages exchanged during
a dynamic update.

However, we also observed rare cases in which actual
costs are higher and vanish the benefits of our approach.
This happens when many components depend on the same
component, the workload is high, and strategy BF is used.
For example, if we considered HotelPartner, and request
intervals of 100 and 150 ms, our approach, with strategy BF,
performs 20-30 percent worse than the quiescence-based
one in terms of average disruption. Compared with the
result of TripPartner shown in Fig. 19, one may conclude
that this is due to the only essential difference between the
two components: as shown in the configuration of Fig. 14,
HotelPartner is deployed together with two other similar
components on node E, and thus it becomes more sensitive
to high workloads than TripPartner, which is alone on node
F. In contrast, the use of strategy CV would outperform the
quiescence-based solution.

9 RELATED WORK

The dynamic update of running applications has been exten-
sively studied in different areas like programming languages
[11], [24], [25], [26], operating systems [27], [28], [29], and
software engineering [30], [31]. A common theme of these
works is the selection of proper time points when the state of
the system is steady and ready for applying a user-specified
state transformation. The result is a new valid state from
which the system is able to continue its execution. Since gen-
erally the validity of the resulting state is undecidable [11],
most research efforts focus on: (a) human-assisted identifica-
tion of proper time points and state transformers, by provid-
ing necessary analysis tools and runtime libraries, and (b)
improving the timeliness of updates by automatically deriv-
ing further safe time points from those specified by the user.

Instead of switching from the old to the new version
of the application, some researchers proposed intermedi-
ate versions to smooth the adaptation process. For exam-
ple, Zhang and Cheng [2] propose a model-based
approach for the development of adaptive software. The
behaviors of the different versions of an application are
modeled by different state machines, and the adaptation
behavior is rendered through states/transitions that con-
nect them. Biyani and Kulkarni [32] use adaptation latti-
ces to model transition paths from old to new programs,
and introduce the concept of transitional-invariant lattice
to verify the correctness of adaptation. Boyer et al. [33]
propose a reconfiguration protocol that incrementally
modifies the architecture of the system towards the new
target one and respects architecture invariants at each
step of the process.

As for CBDSs, it is possible to avoid the direct manipula-
tion of application-specific states of components and to
maintain a clear separation of concerns between reconfigu-
ration management and application logic. The focus is often
on identifying suitable conditions (abstract states) under
which components can be safely manipulated. The concept
of quiescence by Kramer and Magee [1] is a prominent early
work, but it may impose too high disruption on system ser-
vice. Subsequently, the dynamic reconfiguration service for

CORBA by Bidan et al. [5], the proposal by Chen [6], and
the idea of tranquillity by Vandewoude et al. [3] reduce dis-
ruption by considering dynamic dependencies, but they
only guarantee some local consistency properties or impose
stringent restrictions on the systems on which the
approaches can be applied.

Wojciechowski et al. [34], [35] study dynamic protocol
update (DPU) for distributed systems. In DPU the subject to
be updated at runtime is a horizontal layer of a protocol stack
that is installed on every node of the system. The goal is to
ensure a correct order of message delivery despite the
dynamic update. This work is complementary to ours in the
sense that we consider the update of a single entire node
(component), which is a vertical slice of the system.

It is also widely recognized that the dynamic adapta-
tion of software systems should be modeled, analyzed,
and managed at architectural level [36], [37]. Architec-
tural models provide abstract global views of systems
and explicitly specify system-level integrity constraints
that must be preserved by reconfiguration. However,
these models do not usually provide information about
the dynamic dependencies needed to perform safe and
low-disruptive runtime reconfigurations. There are few
formal models that cover both local computations and
architectural reconfigurations. For example, Wermelinger
et al. [38] propose a category theory-based approach for
the uniform modeling of the computations performed by
components and their architectural configurations, and
Taentzer et al. [18] propose the use of distributed graph
transformation systems to model configurable distributed
systems. Compared to these proposals, our approach
strikes a better balance in separating dynamic reconfigu-
ration from computation and allows for safe but efficient
dynamic reconfigurations. This is due to the use of
future and past edges as simple (but powerful) abstrac-
tion of the dynamic dependencies between components.

As the name suggests, our version consistency crite-
rion is inspired by the work on transactional version
consistency by Neamtiu et al. [39]. This work focuses on
the dynamic update of centralized programs at code
level, and its notion of transaction is a user-specified
scope in the code. Their approach ensures that the execu-
tion of the code in the scope comply with the same, sin-
gle version, no matter when the update happens. This
approach relies on static program analysis and cannot be
used in a distributed setting.

Modern application servers such as Tomcat and JBoss
often provide hot deployment capabilities. A component can
be updated to a new version without restarting the server.
Especially, FRASCATI [40] is a recent SCA implementation
with enhanced dynamic reconfiguration support and run-
time management features. However, these servers do not
manage the dynamic dependencies between components
and thus cannot ensure the global consistency of applica-
tions in the presence of dynamic updates.

Canavera et al. [41] propose an interesting approach to
obtain dependencies between components by mining sys-
tem execution logs. This approach can be used when the
logs are available. Differently from this approach, ConUp
derives dependencies automatically from the byte code of
components and always ensures consistency.

10 CONCLUSIONS

The dynamic update of system components is widely desired,
but its practical application is still limited. This is partly
because of the complexity of balancing the consistency of
changes with the disruption of provided service. The use of
version consistency as criterion for the safe dynamic update
of distributed component-based systems aims to alleviate the
problem. The approach does not compromise the correctness
of distributed transactions, but it allows for better timeliness
and lower disruption than previous approaches. ConUp pro-
vides the prototypical component framework to apply ver-
sion consistency on real systems, and to conduct experiments
with other approaches. An evaluation of the proposed
approach witnesses its merits. The evaluation presented in
the paper only compares our approach against the one based
on quiescence. We do not report the results we obtained with
the tranquility-based approach since, in our example, it is not
able to guarantee consistent updates in some 5-10 percent of
the cases we analyzed.

We believe that the approach proposed in this paper can
be further extended. For example, the current solution uses
a pessimistic tactic for avoiding inconsistency, but a more
optimistic one could be more efficient and lightweight,
especially when the underlying middleware platform
already provides some recovery mechanisms, like rollback
and compensation capabilities. These optimizations, along
with the extension to the update of sets of components
atomically will be the target of our future work.

ACKNOWLEDGMENTS

We want to thank Guochao Ren, Jiang Wang, and Yiqun
Wang for their contribution to the implementation of
ConUpr. The work presented in this paper has been partially
supported by the 973 Program of China under grant
No. 2015CB352202, NSFC under grants No. 61472177 and
91318301, by project EEB-Edifici a zero consumo energetico
in distretti urbani intelligenti (Italian Technology Cluster
For Smart Communities)-CTNO01_00034_594053, and by Tel-
ecom ltalia, which supported Valerio Panzica La Manna
while he was a postdoctoral researcher at the Politecnico.
The work presented in this paper was carried out while
Valerio was at the Politecnico di Milano, Italy. Xiaoxing Ma
is the corresponding author of this paper.

REFERENCES

[1]1 J. Kramer and]J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE Trans. Softw. Eng., vol. 16,
no. 11, pp. 1293-1306, Nov. 1990.

[2] J. Zhang and B. H. C. Cheng, “Model-based development of
dynamically adaptive software,” in Proc. 28th Int. Conf. Softw.
Eng., 2006, pp. 371-380.

[3] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt,
“Tranquility: A low disruptive alternative to quiescence for ensur-
ing safe dynamic updates,” IEEE Trans. Softw. Eng., vol. 33, no. 12,
pp. 856-868, Dec. 2007.

[4] X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, and J. Lu,
“Version-consistent dynamic reconfiguration of component-based
distributed systems,” in Proc. 8th Joint Meeting Eur. Softw. Eng.
Conf. ACM SIGSOFT Symp. Found. Softw. Eng., 2011, pp. 245-255.

[5] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras, “A dynamic
reconfiguration service for CORBA,” in Proc. 4th Int. Conf. Configu-
rable Distrib. Syst., 1998, pp. 35-42.

(6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

X. Chen and M. Simons, “A component framework for dynamic
reconfiguration of distributed systems,” in Proc. IFIP/ACM Work.
Conf. Compon. Deployment, 2002, pp. 82-96.

J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques (The Morgan Kaufmann Series in Data Management
Systems), 1st ed. San Mateo, CA, USA: Morgan Kaufmann,
Sep. 1992.

L. Baresi and R. Heckel, “Tutorial introduction to graph transfor-
mation: A software engineering perspective,” in Proc. 1st Int. Conf.
Graph Transformation, 2002, pp. 402-429.

A. Ghamarian, M. Mol, A. Rensink, E. Zambon, and M. Zimakova,
“Modelling and analysis using GROOVE,” Int. |. Softw. Tools Tech-
nol. Transfer, vol. 14, no. 1, pp. 15-40, 2012.

Service Component Architecture (SCA) | Oasis OpenCSA. (2011).
[Online]. Available: http:/ /www.oasis-opencsa.org/sca

D. Gupta, P. Jalote, and G. Barua, “A formal framework for on-
line software version change,” IEEE Trans. Softw. Eng., vol. 22,
no. 2, pp. 120-131, Feb. 1996.

M. Vatkina, Ed., JSR 345: Enterprise JavaBeans, Version 3.2. Red-
wood City, CA, USA: Oracle, 2013.

M. Papazoglou, Web Services and SOA: Principles and Technology,
2nd ed. London, U .K.: Pearson, 2012.

J. E. Cook and]J. A. Dage, “Highly reliable upgrading of
components,” in Proc. 21st Int. Conf. Softw. Eng., 1999, pp. 203-212.
S. Ajmani, B. Liskov, and L. Shrira, “Modular software upgrades
for distributed systems,” in Proc. 20th Eur. Conf. Object-Oriented
Programming, 2006, pp. 452—476.

D. P. Mitchell and M. J. Merritt, “A distributed algorithm for
deadlock detection and resolution,” in Proc. 3rd Annu. ACM Symp.
Principles Distrib. Comput., 1984, pp. 282-284.

D. Le Metayer, “Describing software architecture styles using
graph grammars,” IEEE Trans. Softw. Eng., vol. 24, no. 7, pp. 521-
533, Jul. 1998.

G. Taentzer, M. Goedicke, and T. Meyer, “Dynamic change man-
agement by distributed graph transformation: Towards configura-
ble distributed systems,” in Proc. Sel. Papers 6th Int. Workshop
Theory Appl. Graph Transformations, 2000, pp. 179-193.

R. Bardohl, M. Minas, G. Taentzer, and A. Schiirr, “Application of
graph transformation to visual languages,” in Handbook of Graph
Grammars and Computing by Graph Transformation, H. Ehrig, G.
Engels, H.-J. Kreowski, and G. Rozenberg, Eds. Singapore: World
Scientific, 1999, pp. 105-180.

G. Taentzer, “AGG: A graph transformation environment for
modeling and validation of software,” in Proc. 2nd Int. Workshop
Appl. Graph Transformations Ind. Relevance, 2004, pp. 446-453.

L. Baresi and P. Spoletini, “On the use of alloy to analyze graph
transformation systems,” in Proc. 3rd Int. Conf. Graph Transforma-
tions, 2006, pp. 306-320.

D. Jackson, Software Abstractions: Logic, Language, and Analysis.
Cambridge, MA, USA: MIT Press, 2006.

P. Su, C. Cao, X. Ma, and J. Li, “Automated management of
dynamic component dependency for runtime system reconfigu-
ration,” in Proc. 20th Asia-Pacific Softw. Eng. Conf., 2013, pp. 450-458.
M. Hicks and S. Nettles, “Dynamic software updating,” ACM Trans.
Programming Languages Syst., vol. 27, no. 6, pp. 1049-1096, 2005.

G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu,
“Mutatis mutandis: Safe and predictable dynamic software
updating,” ACM Trans. Programmming Languages Syst., vol. 29,
no. 4, Aug. 2007, Art. no. 22.

S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic soft-
ware updates: A VM-centric approach,” in Proc. 30th ACM SIG-
PLAN Conf. Programming Language Des. Implementation, 2009,
pp- 1-12.

A.Baumann, et al., “Providing dynamic update in an operating sys-
tem,” in Proc. Annu. Conf. USENIX Annu. Tech. Conf., 2005, pp. 32-32.
K. Makris and K. D. Ryu, “Dynamic and adaptive updates of non-
quiescent subsystems in commodity operating system kernels,” in
Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp- 327-340.

C. Giuffrida and A. S. Tanenbaum, “Cooperative update: A new
model for dependable live update,” in Proc. 2nd Int. Workshop Hot
Topics Softw. Upgrades, 2009, pp. 1-6.

H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “POLUS: A pow-
erful live updating system,” in Proc. 29th Int. Conf. Softw. Eng.,
2007, pp. 271-281.

S. C. Previtali, “Dynamic updates: Another middleware service?”
in Proc. 1st Workshop Middleware-Appl. Interaction, 2007, pp. 49-54.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

K. N. Biyani and S. S. Kulkarni, “Assurance of dynamic adapta-
tion in distributed systems,” |. Parallel Distrib. Comput., vol. 68,
no. 8, pp. 1097-1112, 2008.

F. Boyer, O. Gruber, and D. Pous, “Robust reconfigurations of
component assemblies,” in Proc. 35th Int. Conf. Softw. Eng., 2013,
pp- 13-22.

P. T. Wojciechowski and O. Riitti, “On correctness of dynamic
protocol update,” in Proc. 7th IFIP Conf. Formal Methods Open
Object-Based Distrib. Syst., 2005, pp. 275-289.

O. Ruitti, P. T. Wojciechowski, and A. Schiper, “Structural and
algorithmic issues of dynamic protocol update,” in Proc. 20th
IEEE Int. Parallel Distrib. Process. Symp., 2006, pp. 133-133.

D. Garlan, S.-W. Cheng, A -C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infra-
structure,” IEEE Comput., vol. 37, no. 10, pp. 46-54, Oct. 2004.

P. Oreizy, N. Medvidovic, and R. N. Taylor, “Runtime software
adaptation: Framework, approaches, and styles,” in Proc. Compan-
ion 30th Int. Conf. Softw. Eng., 2008, pp. 899-910.

M. Wermelinger, A. Lopes, and J. L. Fiadeiro, “A graph-based
architectural (re)configuration language,” in Proc. 8th Eur. Softw.
Eng. Conf. Held Jointly 9th ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2001, pp. 21-32.

I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis, “Contextual
effects for version-consistent dynamic software updating and safe
concurrent programming,” in Proc. 35th Annu. ACM SIGPLAN-
SIGACT Symp. Principles Programming Languages, 2008, pp. 37-49.
L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and
J.-B. Stefani, “A component-based middleware platform for recon-
figurable service-oriented architectures,” Softw.: Practice Experi-
ence, vol. 42, no. 5, pp. 559-583, 2012.

K. R. Canavera, N. Esfahani, and S. Malek, “Mining the execution
history of a software system to infer the best time for its
adaptation,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., 2012, pp. 18:1-18:11.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

