
Reasoning about Identifier Spaces:
How to Make Chord Correct

Pamela Zave
AT&T Laboratories—Research

Bedminster, New Jersey 07921, USA
Email: pamela@research.att.com

Abstract—The Chord distributed hash table (DHT) is well-
known and often used to implement peer-to-peer systems. Chord
peers find other peers, and access their data, through a ring-
shaped pointer structure in a large identifier space. Despite
claims of proven correctness, i.e., eventual reachability, previous
work has shown that the Chord ring-maintenance protocol is
not correct under its original operating assumptions. Previous
work has not, however, discovered whether Chord could be
made correct under the same assumptions. The contribution
of this paper is to provide the first specification of correct
operations and initialization for Chord, an inductive invariant
that is necessary and sufficient to support a proof of correctness,
and two independent proofs of correctness. One proof is informal
and intuitive, and applies to networks of any size. The other proof
is based on a formal model in Alloy, and uses fully automated
analysis to prove the assertions for networks of bounded size. The
two proofs complement each other in several important ways.

I. INTRODUCTION

Peer-to-peer systems are distributed systems featuring de-
centralized control, self-organization of similar nodes, fault-
tolerance, and scalability. The best known peer-to-peer system
is Chord, which was first presented in a 2001 SIGCOMM
paper [1]. This paper was the fourth-most-cited paper in
computer science for several years (according to Citeseer),
and won the 2011 SIGCOMM Test-of-Time Award.

The Chord protocol maintains a network of nodes that can
reach each other despite the fact that autonomous nodes can
join the network, leave the network, or fail at any time. The
nodes of a Chord network have identifiers in an m-bit identifier
space, and reach each other through pointers in this identifier
space. Because the network structure is based on adjacency in
the identifier space, and 2m − 1 is adjacent to 0, the structure
of a Chord network is a ring.

A Chord network is usually used to maintain a distributed
hash table (DHT), which is a key-value store in which the
keys are also identifiers in the same m-bit space. In turn, the
hash table can be used to implement shared file storage, group
directories, and many other purposes. Chord has been imple-
mented many times, and used to build large-scale applications
such as BitTorrent. And the continuing influence of Chord is
easy to trace in more recent systems such as Dynamo [2].

The basic correctness property for Chord is eventual reach-
ability: given ample time and no further joins, departures, or
failures, the protocol can repair all defects in the ring structure.
If the protocol is not correct in this sense, then some nodes
of a Chord network will become permanently unreachable

from other nodes. The introductions of the original Chord
papers [1], [3] say, “Three features that distinguish Chord
from many other peer-to-peer lookup protocols are its sim-
plicity, provable correctness, and provable performance.” An
accompanying PODC paper [4] lists invariants of the ring-
maintenance protocol.

The claims of simplicity and performance are certainly true.
The Chord algorithms are far simpler and more completely
specified than those of other DHTs, such as Pastry [5],
Tapestry [6], CAN [7], and Kademlia [8]. Operations are fast
because there are no atomic operations requiring locking of
multiple nodes, and even queries are minimized.

Unfortunately, the claim of correctness is not true. The
original specification with its original operating assumptions
does not have eventual reachability, and not one of the seven
properties claimed to be invariants in [4] is actually an
invariant [9]. This was revealed by modeling the protocol in
the Alloy language and checking its properties with the Alloy
Analyzer [10].

The principal contribution of this paper is to provide the
first specification of a version of Chord that is as efficient as
the original, correct under reasonable operating assumptions,
and actually proved correct. The new version corrects all the
flaws that were revealed in [9], as well as some additional
ones. The proof provides a great deal of insight into how
rings in identifier spaces work, and is backed up by a formal,
analyzable model.

Some motivations and possible benefits of this work are pre-
sented below. They are categorized according to the audience
or constituency that would benefit.

For those who implement Chord or rely on a Chord imple-
mentation: It seems obvious that implementers should have
a precise and correct specification to follow. They should
understand the operating assumptions so as not to undermine
them. They should also know the invariant for Chord, as
dynamic checking of the invariant is a design principle for
enhancing security in distributed systems [11].

Critics of this work have claimed that all the flaws in origi-
nal Chord are either obvious and fixed by all implementers, or
extremely unlikely to cause trouble during Chord execution. It
is a fact that some implementations retain original flaws, citing
[12] not because it is a bad implementation, but simply because
the code is published and readable. Concerning whether the
flaws cause real trouble or not, Chord implementations are

ar
X

iv
:1

61
0.

01
14

0v
2

 [
cs

.D
C

]
 2

5
Ju

l 2
01

9

certainly reported to have been unreliable. It is in the nature
of distributed systems that failures are difficult to diagnose,
and no one knows (or at least tells) what is really going on.
Any means for increasing the reliability of distributed sys-
tems, especially without sacrificing efficiency, is an unmixed
blessing.

For those interested in building more robust or more
functional peer-to-peer systems based on Chord: Due to its
simplicity and efficiency, it is an attractive idea to extend orig-
inal Chord with stronger guarantees and additional properties.
Work has already been done on protection against malicious
peers [13], [14], [15], key consistency and data consistency
[16], range queries [17], and atomic access to replicated data
[18], [19].

For those who build on Chord, and reason about Chord
behavior, their reasoning should have a sound foundation.
Previous research on augmenting and strengthening Chord,
as referenced above, relies on ambiguous descriptions of
Chord and unsubstantiated claims about its behavior. These
circumstances can lead to misunderstandings about how Chord
works, as well as to unsound reasoning. For example, the
performance analysis in [20] makes the assumption that every
operation of a particular kind makes progress according to a
particular measure, which is easily seen to be false [9].

For those interested in encouraging application of formal
methods: This project has already had an impact, as developers
at Amazon credit the discovery of Chord flaws [9] with con-
vincing them that formal methods can be applied productively
to real distributed systems [21].

The proof of correctness is also turning out to be an impor-
tant case study. In this paper there are two independent proofs,
one informal and one by model checking. The informal proof
applies to networks of any size, and provides deep insight into
how and why the protocol works. The Alloy model with its
automated checking applies only to networks of bounded size,
and offers limited insight, but it is an indispensable backup to
the informal proof because it guards against human error. Also,
it was an indispensable precursor to finding the general proof,
because it indicated which theorems were likely to be true.

For those interested in formal proofs, the Alloy-only proof
in [22] has been used as a test case for the Ivy proof system
[23], and the new proof given here is being used as a test case
for the Verdi proof system [24].

Finally, there are other possible uses for ring-shaped pointer
structures in large identifier spaces (e.g., [25], [7]). The
reasoning about identifier spaces used in this paper may also
be relevant to other work of this kind.

The paper begins with an overview of Chord using the
revised, correct ring-maintenance operations (Section II), and
a specification of these new operations (Section III). Although
the specification is pseudocode for immediate accessibility, it
is a paraphrase of the formal model in Alloy.

Correct operations are necessary but not sufficient. It is also
necessary to initialize a network correctly. Original Chord is
initialized with a network of one node, which is not correct,
and Section IV shows why. This section also introduces the

1648

3037

10
62 62

48

50

53

16

3037

10

9

63

Fig. 1. Ideal (left) and valid (right) networks. Members are represented by
their identifiers. Solid arrows are successor pointers.

inductive invariant for the proof, because a Chord network can
safely be initialized in any state that satisfies the invariant.

Summarizing the previous two sections, Section V compares
the revised Chord protocol with the original version, explain-
ing how they differ. Together Sections IV and V present most
of the problems with original Chord reported in [9] (as well as
previously unreported ones). The problems are not presented
first because they make more sense when explained along with
their underlying nature and how to remove them.

The proof of correctness is largely based on reasoning about
ring structures in identifier spaces. Section VI presents some
useful theorems about these spaces and shows how they apply
to Chord. The actual proof in Section VII follows a fairly
conventional outline. Section VIII discusses the formal model
and model-checked version of the proof, while Section IX
covers related and future work.

II. OVERVIEW OF CORRECT CHORD

Every member of a Chord network has an identifier (as-
sumed unique) that is an m-bit hash of its IP address. Every
member has a successor list of pointers to other members. The
first element of this list is the successor, and is always shown
as a solid arrow in the figures. Figure 1 shows two Chord
networks with m = 6, one in the ideal state of a ring ordered
by identifiers, and the other in the valid state of an ordered
ring with appendages. In the networks of Figure 1, key-value
pairs with keys from 31 through 37 are stored in member 37.
While running the ring-maintenance protocol, a member also
acquires and updates a predecessor pointer, which is always
shown as a dotted arrow in the figures.

The ring-maintenance protocol is specified in terms of four
operations, join, stabilize, rectify, and fail. Each operation is
executed by a member and changes only the state of that
member. In executing an operation, the member often queries
another member or sequence of members, updating its own
pointers as necessary after getting the result of each query. The
specification of Chord assumes that inter-node communication
is bidirectional and reliable, so we are not concerned with
Chord behavior when inter-node communication fails.

A node becomes a member in a join operation. A member
is also referred to as a live node. When a member joins, it
contacts some existing member to look up a member that is
near to it in identifier space, and gets a successor list from that

10
joins

10
stabilizes

19
rectifies

7
stabilizes

10
rectifies

7

19

10

7

19

10

7

19

10

7

19

10

7

19

10

Fig. 2. A new node becomes part of the ring. A gray circle marks the pointer updated by an operation, if any. Dotted arrows are predecessors.

nearby member. The first stage of Figure 2 shows successor
and predecessor pointers in a section of a network where 10
has just joined.

When a member stabilizes, it learns its successor’s prede-
cessor. It adopts the predecessor as its new successor, provided
that the predecessor is closer in identifier order than its current
successor. Because a member must query its successor to sta-
bilize, this is also an opportunity for it to update its successor
list with information from the successor. Members schedule
their own stabilize operations, which should be periodic.

Between the first and second stages of Figure 2, 10 stabi-
lizes. Because its successor’s predecessor is 7, which is not a
better successor for 10 than its current 19, this operation does
not change the successor of 10.

After stabilizing (regardless of the result), a node notifies
its successor of its identity. This causes the notified member
to execute a rectify operation. The rectifying member adopts
the notifying member as its new predecessor if the notifying
member is closer in identifier order than its current predeces-
sor, or if its current predecessor is dead. In the third stage of
Figure 2, 10 has notified 19, and 19 has adopted 10 as its new
predecessor.

In the fourth stage of Figure 2, 7 stabilizes, which causes
it to adopt 10 as its new successor. In the last stage 7 notifies
and 10 rectifies, so the predecessor of 10 becomes 7. Now the
new member 10 is completely incorporated into the ring, and
all the pointers shown are correct.

The protocol requires that a member or live node always
responds to queries in a timely fashion. A node ceases to be
a member in a fail operation, which can represent failure of
the machine, or the node’s silently leaving the network. A
member that has failed is also referred to as a dead node. The
protocol also requires that, after a member fails, it no longer
responds to queries from other members. With this behavior,
members can detect the failure of other members perfectly by
observing whether they respond to a query before a timeout
occurs. Failed nodes can rejoin later by executing a new join
operation.

Failures can produce gaps in the ring, which are repaired
during stabilization. As a member attempts to query its succes-
sor for stabilization, it may find that its successor is dead. In
this case it attempts to query the next member in its successor
list and make this its new successor, continuing through the
list until it finds a live successor.

Chord relies on a critical operating assumption that a
member always has a live successor in its list. In practice,
an implementer must maintain the truth of this assumption
by adjusting the length of successor lists (a parameter of the
algorithm) and the rate of stabilization (which is not formally
specified) to compensate for the failure rate. If successor
lists are long enough to provide adequate redundancy, and
stabilization occurs often enough to replace dead successors
with live ones quickly, then a successor list should always
have at least one live member remaining, even after an entry
in its list fails.

As in the original Chord papers [1], [3], we wish to define a
correctness property of eventual reachability: given ample time
and no further disruptions, the ring-maintenance protocol can
repair defects so that every member of a Chord network is
reachable from every other member. Note that a network with
appendages (nodes 50, 53, 63, 9 on the right side of Figure 1)
cannot have full reachability, because an appendage cannot be
reached by a member that is not in the same appendage. The
correctness property here is slightly stronger, being based on
the definition of the property Ideal.

Definition: A Chord network is in the Ideal state if:

• every pointer points to a live node;
• every successor pointer is its node’s first successor in

identifier order;
• every predecessor pointer is its node’s first predecessor

in identifier order; and
• the tail of the successor list of a node (past its head entry

or successor) is the successor’s successor list, with the
last entry removed.

For example, on the right of Figure 1, the ideal successor of
48 is 50 because 50 is the closest successor to 48 in identifier
order. The correctness property we need to prove is:

Starting in any execution state, if there are no subsequent
join or fail operations, then eventually the network will become
Ideal and remain Ideal.

Defining a member’s best successor as its the first entry in
its successor list pointing to a live node, a ring member is a
member that can reach itself by following the chain of best
successors. An appendage member is a member that is not a
ring member. Of the seven invariants presented in [4] (and all

violated by original Chord), the following four are necessary
for correctness.

• There must be a ring, which means that there must be a
non-empty set of ring members (AtLeastOneRing).

• There must be no more than one ring, which means
that from each ring member, every other ring member
is reachable by following the chain of best successors
(AtMostOneRing).

• On the unique ring, the nodes must be in identifier order
(OrderedRing).

• From each appendage member, the ring must be reachable
by following the chain of best successors (ConnectedAp-
pendages).

If any of these properties is violated, there is a defect in
the structure that the ring-maintenance protocol cannot repair.
If there is no ring, then ring-based reachability will not
work. If there is more than one ring, then the network has
separated into disjoint subnetworks. If appendage members
cannot reach the ring, then the appendage is a disconnected
fragment. A network that violates OrderedRing does not seem
as catastrophic, but it impedes lookup, and the protocol cannot
fix it [4]. It follows that any inductive invariant must imply
these properties.

The Chord papers define the lookup protocol, which is
used to find the member primarily responsible for a key,
namely the ring member with the smallest identifier greater
than or equal to the key. The lookup protocol is not discussed
further here. Chord papers also define the maintenance and
use of finger tables, which greatly improve lookup speed by
providing pointers that cross the ring like chords of a circle.
Because finger tables are an optimization and they are built
from successor lists, their correctness relies on the correctness
of successor lists. Finger tables are not discussed further here.

III. SPECIFICATION OF RING-MAINTENANCE OPERATIONS

In this section, the operations, data structures, and related
material are presented in pseudocode. Although pseudocode is
not analyzable as the Alloy model is, it translates more directly
to implementation code.

A. Identifiers and node state

There is a type Identifier which is a string of m bits.
Implicitly, whenever a member transmits the identifier of a
member, it also transmits its IP address so that the recipient can
reach the identified member. The pair is self-authenticating, as
the identifier must be the hash of the IP address according to
a chosen function.

The Boolean function between is used to test the order
of identifiers. Because identifier order wraps around at zero,
it is meaningless to test the order of two identifiers—each
precedes and succeeds the other. This is why between has
three arguments:

Boolean function between (n1,nb,n2: Identifier)
{ if (n1 < n2) return (n1 < nb && nb < n2)

else return (n1 < nb || nb < n2)
}

For nb to be between n1 and n2, it must be equal to nei-
ther. Further properties of identifier spaces are presented in
Section VI.

Each node that is a member of a Chord network has the
following state variables. They are all initialized by the join
operation.

myIdent: Identifier;
prdc: Identifier;
succList: list Identifier; // length is r

Note that myIdent is the hash of its IP address, and prdc is
the node’s predecessor. succList is the node’s entire successor
list; the head of this list is its successor. The parameter r is
the fixed length of all successor lists.

B. Maintaining a shared-state abstraction

Reasoning about Chord requires reasoning about the global
state, so the protocol must maintain the abstraction of a shared,
global state. To do this, the algorithmic steps of the protocol
must behave as if atomic and interleaved. In each algorithmic
step, a node reads the state of at most one other node, and
modifies only its own state.

In an implementation, a node reads the state of another
node by querying it. If the node does not respond within a
time parameter t, then it is presumed dead. If the node does
respond, then the atomic step associated with the query is
deemed to occur at the instant that the queried node responds
with information about its own state.

To maintain the shared-state abstraction, the querying node
must obey the following rules:

• The querying node does not know the instant that its
query is answered; it only knows that the response was
sent some time after it sent the query. So the querying
node must treat its own state, between the time it sends
the query and the time it finishes the step by updating
its own state, as undefined. The querying node cannot
respond to queries about its state from other nodes during
this time.

• If the querying node is delaying response to a query
because it is waiting for a response to its own query,
it must return interim “response pending” messages so
that it is not presumed dead.

• If a querying node is waiting for a response, and is
queried by another node just to find out if it is alive or
dead, it can respond immediately. This is possible because
the response does not contain any information about its
state.

This covers all possibilities except that of a deadlock due to
circular waiting for query responses. Freedom from deadlock
is covered in the proof of correctness in Section VII.

C. Join and fail operations

When a node is not a member of a Chord network, it has no
Chord state variables, and does not respond to queries from
Chord members. To join a Chord network, a node must first
calculate its own Chord identifier myIdent. It must also know
some member of the network—it does not even matter whether

it is a ring member or appendage—and must ask the member
to use the lookup protocol to find a member newPrdc such
that between (newPrdc, myIdent, head(newPrdc.succList)).

Provided with this information, the node joins in a single
atomic step, by executing the following pseudocode:

// Join step

// newPrdc has value from previous lookup
newPrdc: Identifier;

query newPrdc for newPrdc.succList;
if (query returns before timeout) {

succList = newPrdc.succList;
prdc = newPrdc;

}
else abort;

If the query fails then newPrdc has died, and the node has no
choice but to try joining again later.

A fail operation is also a single atomic step. When a member
node fails or leaves a Chord network, it deletes its Chord state
variables and ceases to respond to queries. Fortunately, the
proof of correctness shows that a node can re-join safely even
if other nodes still have pointers to it from its former episode
of membership.

D. Stabilize and rectify operations

A stabilize operation may require a sequence of steps. First,
the stabilizing node executes a StabilizeFromSuccessor step:

// StabilizeFromSuccessor step

// newSucc not initialized
newSucc: Identifier;

query head(succList) for
head(succList).prdc and
head(succList).succList;

if (query returns before timeout) {
// successor live, adopt its list as mine
succList =

append (
head(succList),
butLast(head(succList).succList)

);
newSucc = head(succList).prdc;
if (between(myIdent,newSucc,head(succList)))

// predecessor may be a better successor
next step is StabilizeFromPredecessor;
// else stabilization is complete

}
// successor is dead, remove from succList
else

succList =
append(tail(succList),last(succList)+1);

next step is StabilizeFromSuccessor again;

First the node queries its successor for its successor’s
predecessor and successor list. If this query times out, then
the node’s successor is presumed dead. The node removes
the dead successor from its successor list and does another

StabilizeFromSuccessor step.1 We know that eventually it will
find a live successor in its list, because of the operating
assumption (from Section II) that successor lists are long
enough so that each list contains at least one live node.

Once the node has contacted a live successor, it adopts its
successor list (all but the last entry) as its own second and
later successors. It then tests the successor’s predecessor to
see if it might be a better first successor. If so, the node
then executes a StabilizeFromPredecessor step. If not, the
stabilization operation is complete.

The StabilizeFromPredecessor step is simple. The node
queries its potential new successor for its successor list. If the
new successor is live, the node adopts it and its successor list.
If not, nothing changes. Either way, the stabilization operation
is complete.

// StabilizeFromPredecessor step

// newSucc value came from previous step
newSucc: Identifier;

query newSucc for newSucc.succList;
if (query returns before timeout)

// new successor is live, adopt it
succList =

append(newSucc,butLast(newSucc.succList));
// else new successor is dead, no change

At the completion of each stabilization operation, regardless
of the result, the stabilizing node sends a message to its succes-
sor notifying the successor of its presence as a predecessor. On
receiving this notification, a node executes a single-step rectify
operation, which may allow it to improve its predecessor
pointer.

// Rectify step

// newPrdc value came from notification
newPrdc: Identifier;

if (between (prdc, newPrdc, myIdent))
// newPrdc presumed live
prdc = newPrdc;

else {
query prdc to see if live;
if (query returns before timeout)

no change;
// live newPrdc better than dead old one
else prdc = newPrdc;

};

IV. INITIALIZATION AND INVARIANT

An inductive invariant is an invariant with the property that
if the system satisfies the invariant before any event, then the
system can be proved to satisfy the invariant after the event.
By induction, if the system’s initial state satisfies the invariant,
then all system states satisfy the invariant.

Original Chord initializes a network with a single member
that is its own successor, i.e., the initial network is a ring of

1The empty place in the successor list is filled with an artificial entry at
the end, created by adding one to the last real entry. The reason for this entry
will be made clear by the proof.

48
stabilizes,

62
rectifies

48
fails

37

48

62 37

48

62

37

62

Fig. 3. Why the ring cannot be initialized at size 1. Dashed arrows are second-successor pointers. Predecessor pointers are not shown in the last two stages,
as they are irrelevant. This problem was not reported in [9].

3
fails

52
stabilizes

3

20

45

52

31

20

45

52

31

20

45

52

31

Fig. 4. A counterexample to a trial invariant. Only the relevant pointers are drawn.

size 1. This is not correct, as shown in Figure 3 with successor
lists of length 2. Appendage nodes 62 and 37 start with both
list entries equal to 48. Then 48 fails, leaving members 62 and
37 with insufficient information to find each other.

Clearly the spirit of the operating assumption in Section II is
that the chosen length of successor lists should provide enough
redundancy to ensure safe operation. But we can hardly expect
the successor lists to work if the redundancy is thrown away
by filling them with duplicate entries. This is the problem
with Figure 3—that 62 and 37 have no real redundancy in
their successor lists, so one failure disconnects them from the
network.

For a member n of a network with successor list length r to
enjoy full redundancy, n must have r entries in its successor
list that are distinct from each other and from n. For this to
be possible, the network must have at least r + 1 members,
and the inductive invariant must imply that this is so.

The inductive invariant for Chord is the result of a very long
and arduous search, some of which is described in [22]. As
an indication of the difficulty, consider Figure 4, which is a
counterexample to a trial invariant consisting of the conjunc-
tion of AtLeastOneRing, AtMostOneRing, OrderedRing, Con-
nectedAppendages, NoDuplicates, and OrderedSuccessorLists.
Again r = 2. Let an extended successor list be the concate-
nation of a node with its successor list. NoDuplicates has the
obvious meaning that the entries in any extended successor list
are distinct. OrderedSuccessorLists says that for any ordered
sublist [x, y, z] drawn from a node’s extended successor list,
whether the sublist is contiguous or not, between [x, y, z]
holds.

In Figure 4, the first stage satisfies the trial invariant, having
duplicate-free and ordered extended successor lists such as
[52, 3, 45] and [45, 20, 31]. The appendage node 45 does

not merge into the ring at the correct place, but that is part
of normal Chord operation (see [9]). The second successor of
ring node 52 points outside the ring, but that is also part of
normal Chord operation. In the case shown in the figure, after
two operations the ring has become disordered.

Note that the four important properties AtLeastOneRing,
AtMostOneRing, OrderedRing, and ConnectedAppendages are
all stated in terms of which nodes are ring members and
which are appendage members. Unfortunately, ring versus
appendage is not a stable characteristic of a member, but rather
a fluid, context-dependent property that changes easily. In the
figure, 45 changes from being an appendage member to a ring
member just because 3 fails. In other examples, a ring member
becomes an appendage member just because a node fails. So
much of the difficulty of reasoning about Chord comes from
the fact that the obvious properties have no intrinsic stability
or persistence.

The final inductive invariant is much simpler than the earlier
invariant used in [22]. It also has the major advantage of
not requiring an extra operating assumption that is difficult
to implement.

To explain the invariant, we must introduce the concept
of a principal node. A principal node is a member that is
not skipped by any member’s extended successor list. For
example, if 30 is a principal node, then [30, 34, 39] and [27,
30, 34] and [21, 27, 29] can all be extended successor lists,
but [27, 29, 34] cannot be, because 30 is between 29 and 34,
and would therefore be skipped.

The inductive invariant is the conjunction of only two
properties, OneLiveSuccessor and SufficientPrincipals. One-
LiveSuccessor simply says that every successor list has at least
one live entry. SufficientPrincipals says that the number of
principal members is greater than or equal to r + 1, where

r is the length of successor lists. A Chord network can be
initialized in any state that satisfies the invariant.

The proofs in Section VI will show that this deceptively
simple invariant implies all of AtLeastOneRing, AtMostOne-
Ring, OrderedRing, ConnectedAppendages, NoDuplicates, and
OrderedSuccessorLists. Needless to say, it also implies that
the network has a minimum size. (Note that the first stage
of Figure 4 has no principal members, so the figure is not a
counterexample to the real invariant.)

A typical Chord network has r from 2 to 5, so the set
of principals need only have 3 to 6 nodes. Nevertheless, the
existence of these few nodes protects the correctness of a
network with millions of members. They wield great and
mysterious powers!

V. COMPARISON OF THE VERSIONS

In the original version of Chord, the join, stabilize, and
notified operations are defined as pseudocode in [1] and [3],
as is the initialization. These papers do not provide details
about failure recovery, so the definition of the original version
of Chord is completed by adding the pseudocode for reconcile,
update, and flush operations from [4]. The “new” version
of Chord is the one specified in this paper. The following
table shows how operations of the two versions correspond.
Although rectify in the new version is similar to notified in
the original version, it seems more consistent to use an active
verb form for its name.

original new
join + join

reconcile
stabilize + stabilize
reconcile +

update
notified + rectify

flush

In both original and new versions of Chord, members
schedule their own maintenance operations except for notified
and rectify, which occur when a member is notified by a
predecessor. Although the operations are loosely expected to
be periodic, scheduling is not formally constrained. As can be
seen from the table, multiple smaller operations from the old
version are assembled into larger new operations. This ensures
that the successor lists of members are always fully populated
with r entries, rather than having missing entries to be filled in
by later operations. An incompletely populated successor list
might lose (to failure) its last live successor. If the successor
list belongs to an appendage member, this would mean that the
appendage can no longer reach the ring, which is a violation
of ConnectedAppendages [9].

Another systematic change from the old version to the new
is that, before incorporating a pointer to a node into its state, a
member checks that the node pointed to is live. This prevents
cases where a member replaces a pointer to a live node with
a pointer to a dead one. A bad replacement can also cause
a successor list to have no live successor. If the successor
list belongs to a ring member, this will cause a break in the
ring, and a violation of AtLeastOneRing. Together these two

systematic changes also prevent scenarios in which the ring
becomes disordered or breaks into two rings of equal size
(violating OrderedRing or AtMostOneRing, respectively [9]).

A third systematic change was necessary because the origi-
nal version does not say anything precise about communication
between nodes, and does not say anything at all about atomic
steps and maintaining a shared-state abstraction. The new
operations are specified in terms of atomic steps, and the rules
for maintaining a shared-state abstraction are stated explicitly.

The other major difference is the initialization, as discussed
in Section IV.

In addition to these systematic changes, a number of small
changes were made. Some were due to problems detected by
Alloy modeling and analysis of the original version. Others
were required to ensure that, after each atomic step of a
stabilize operation, the global state satisfies the invariant.

These differences do not change the efficiency of Chord
operations in any significant way. Checking some pointers to
make sure they point to live nodes (new version) requires more
queries than in the original version. On the other hand, in
the original version stabilize, reconcile, and update operations
are all separate, and can all entail queries. In this respect the
original version requires more queries than the new version.

There is an additional bonus in the new version for im-
plementers. Consider what happens when a member node
fails, recovers, and wishes to rejoin, all of which could occur
within a short period of time. It was previously thought
necessary for the node to wait until all previous references
to its identifier had been cleared away (with high probability),
because obsolete pointers could make the state incorrect. This
wait was included in the first Chord implementation [26]. Yet
the wait is unnecessary, as Chord is provably correct even with
obsolete pointers.

In the spirit of [11], it is a good security practice to monitor
that invariants are satisfied. Both the conjuncts of the inductive
invariant are global, and thus unsuitable for local monitoring.
The right properties to monitor are NoDuplicates and Ordered-
SuccessorLists, which can be checked on individual successor
lists. These are properties that must be true for Chord networks
of any size.

Although the new initialization with r + 1 principal nodes
may not be inefficient, it is certainly more difficult to im-
plement than initialization of original Chord. An alternative
approach might be to start the network with a single node, and
monitor the network as a whole until it has r + 1 principal
nodes. For example, all nodes might send their successor lists
(whenever there is a change) around the ring, to be collected
and checked by the single initial node. Once the initial node
sees a sufficient set of principal nodes, it could send a signal
around the ring that monitoring is no longer necessary. This
scheme is discussed further in Section VII-B.

VI. REASONING ABOUT RING STRUCTURES IN IDENTIFIER
SPACES

A. Theorems about identifier spaces
An identifier space is built from a finite, totally-ordered (in

the usual binary sense) set. An identifier space also has a total
ternary order between, defined in Alloy as:

pred between[n1,nb,n2: Node] {
lt[n1,n2] => (lt[n1,nb] && lt[nb,n2])

else (lt[n1,nb] || lt[nb,n2]) }

where lt, &&, || are the notations for less than (in the
total binary order), logical and, and logical or, respectively.
The definition has the form of an if-then-else expression. This
definition has the same semantics as the pseudocode predicate
between in Section III-A.

Informally, order in the identifier space “wraps around”
from the last element of the binary order to the first. Because
of this wraparound, two elements cannot be compared, which
is why order in an identifier space must be ternary.

In this section definitions and theorems about identifier
spaces are presented in the Alloy syntax. In the Alloy model
the concepts of identifier and node (potential network member)
are conflated, so that Node is declared as a totally ordered set
upon which an identifier space is built. Details about the Alloy
model and bounded verification can be found in Section VIII.
These theorems have been proven for unbounded identifier
spaces using merely substitution and simplification.

Here is a simple theorem in Alloy syntax:

assert AnyBetweenAny {
all disj n1,n2: Node | between[n1,n2,n1] }

AnyBetweenAny says that for any distinct (disjoint) n1 and n2,
n2 is between n1 and n1.

For proofs, we also need a different predicate includedIn,
which is like between except that the included identifier can
be equal to either of the boundary identifiers:

pred includedIn[n1,nb,n2: Node] {
lt[n1,n2] => (lte[n1,nb] && lte[nb,n2])

else (lte[n1,nb] || lte[nb,n2]) }

In the AnyIncludedInAny theorem, the two arguments need not
be disjoint:

assert AnyIncludedInAny {
all n1,n2: Node | includedIn[n1,n2,n1] }

A very useful theorem allows us to reason about the fact or
assumption that between does not hold.

assert IncludedReversesBetween {
all disj n1,n2: Node, nb: Node |

! between[n1,nb,n2]
<=> includedIn[n2,nb,n1] }

Provided that the boundaries of an interval are distinct, if an
identifier nb cannot be found in the portion of the identifier
space from n1 to n2 (exclusive), then it must be found in the
portion of the identifier space from n2 to n1 (inclusive).

The viewpoint of this paper is that identifier spaces have
less structure than algebraic rings. Algebraic rings are gen-
eralizations of integer arithmetic, with operators such as sum

and product that combine quantities. In Chord identifiers are
not quantities, and it makes no sense to add or multiply them.
This is in contrast to the formalization of Pastry [27], where
distance in the identifier space is assumed to be meaningful
and is used in the protocol.

B. Theorems about successor lists

This section introduces definitions and theorems about ring-
shaped networks whose structure is based on successor lists in
an identifier space. A number of terms concerning successor
lists in network states were introduced briefly in Section IV.
For clarity, they will be redefined here.

Definition: An extended successor list (ESL) is a successor
list with the node that owns it prepended to the list. The length
of an ESL is r + 1.

Definition: A principal node is a member that is not skipped
by any ESL. That is, for all principal nodes p, there is no
contiguous pair [x, y] in any ESL such that between [x, p, y].

Definition: The property OneLiveSuccessor holds in a state
if every member has at least one live entry in its successor
list.

Definition: The property SufficientPrincipals holds in a state
if the number of principal nodes is greater than or equal to
r + 1.

Definition: The property Invariant is the conjunction of
OneLiveSuccessor and SufficientPrincipals.

Definition: The property NoDuplicates holds in a state if
every ESL has r + 1 distinct entries.

Definition: The property OrderedSuccessorLists holds in a
state if for all sublists [x, y, z] of ESLs, whether contiguous
sublists or not, between [x, y, z].

The remainder of this section proves that Invariant implies
the successor-list properties NoDuplicates and OrderedSucces-
sorLists.

Theorem: In any ring structure whose state is maintained in
successor lists, Invariant implies NoDuplicates.

Proof:
Contrary to the theorem, assume that there is a network

state for which Invariant is true and NoDuplicates is false.
Then some node has an extended successor list with the form
[..., x, ..., x, ...] for some identifier x.

From AnyBetweenAny, for all principal nodes p distinct from
x, between [x, p, x]. Because of the definition of principal
nodes, all of the principal nodes distinct from x must be
listed in the ellipsis between the two occurrences of x in the
successor list.

From SufficientPrincipals, the portion of the extended suc-
cessor list [x, ..., x] must have length at least r + 2, because
there are at least r principal nodes distinct from x. But the
length of the entire extended successor list is r + 1, which
yields a contradiction. 2

z
y

x

Fig. 5. The dashed line depicts the identifier space. The solid arrows show
the path around the identifier space of a segment of an ESL [x, ..., y, ..., z].

Theorem: In any ring structure whose state is maintained in
successor lists, Invariant implies OrderedSuccessorLists.

Proof:
Contrary to the theorem, assume that there is a network

state for which Invariant is true and OrderedSuccessorLists is
false. Then some node has an ESL with the form [..., x, ...,
y, ..., z, ...] where not between [x, y, z]. From the previous
theorem, x, y, and z are all distinct.

From IncludedReversesBetween, includedIn [z, y, x]. If we
visualize an identifier space as a ring ordered clockwise (as in
Figure 5), the disordered ESL segment [x, ..., y, ..., z] wraps
around the identifier ring touching the identifier space first at
x, passing by z, touching at y, passing by x again, then finally
touching at z.

It is easy to see that the only identifier in the entire identifier
space that is not skipped by this ESL is y. Yet there must be
more than one principal node, which is a contradiction. 2

C. Theorem about networks built on successor lists

This section is concerned with proving that Invariant im-
plies the four necessary properties introduced in Section II.

Definition: A network member’s best successor is the first
live node in its successor list.

Definition: A ring member is a network member that can be
reached by following the chain of best successors beginning
at itself.

Definition: An appendage member is a network member
that is not a ring member.

Definition: The property AtLeastOneRing holds in a state if
there is at least one ring member.

Definition: The property AtMostOneRing holds in a state if,
from every ring member, it is possible to reach every other ring
member by following the chain of best successors beginning
at itself.

Definition: The property OrderedRing holds in a state if on
the unique ring, the nodes are in identifier order. That is, if
nodes n1 and n2 are ring members, and n2 is the best successor

of n1, then there is no other ring member nb such that between
[n1, nb, n2].

Definition: The property ConnectedAppendages holds in a
state if, from every appendage member, a ring member can be
reached by following the chain of best successors beginning
at itself.

Theorem: In any ring structure whose state is maintained
in successor lists, Invariant implies AtLeastOneRing, AtMost-
OneRing, OrderedRing, and ConnectedAppendages.

Proof:
The best-successor relation bestSucc is a binary relation on

network members. We define from it a relation splitBestSucc
that is the same except that every principal node p is replaced
by two nodes ps and pd, where ps (s for source) is in the
domain of the relation but not the range, and pd (d for
destination) is in the range of the relation but not the domain.
Figure 6 displays as graphs the bestSucc and splitBestSucc
relations for the same network. It is possible to deduce many
properties of the splitBestSucc graph, as follows:

(1) From Invariant, every member has a best successor.
So the only nodes with no outgoing edges are pd nodes
representing principal members only as being best successors.

(2) ps nodes have no incoming edges, as they represent
principal nodes only as having best successors. There can be
other nodes with no incoming edges, because there can be
members that are no member’s successor.

Note: The next few points concern maximal paths in the
splitBestSucc graph. These are paths beginning at nodes with
no incoming edges. By definition, they can only end at pd
nodes, and can have no internal nodes representing principal
nodes.

(3) Just as a successor list does not skip principal nodes, a
maximal path of best successors does not skip principal nodes.
That is because an adjacent pair [x, y] in a chain of best
successors is taken from the successor list of x, and if there
are any entries in the successor list between x and y, they are
dead.

(4) A maximal path is acyclic. Contrary to this statement,
assume that the path contains a cycle x leads to x. By
definition, the path has no nodes representing principal nodes.
Yet the path traverses the entire identifier space, so it skips all
principal nodes, which contradicts (3).

From (1-4), we know that the graph of splitBestSucc is an
inverted forest (a “biological” forest, with roots on the bottom
and leaves on the top). Each tree is rooted at a pd node.

(5) A maximal path is ordered by identifiers. Contrary to
this statement, let the path contain [x, ..., y, ..., z] where not
between [x, y, z]. Because the path is acyclic, x, y, and z are all
distinct. From IncludedReversesBetween, includedIn [z, y, x].
So the disordered path segment [x, ..., y, ..., z] wraps around
the identifier ring exactly as the ESL does in Figure 5.

As in the proof of OrderedSuccessorLists, this segment
skips every identifier in the entire identifier space except y.
There must be more than one principal node, so this segment
skips a principal node, contradicting (3).

7

7

7

15

15

23

23

23

37

37
46

46

4651

51

0

0

0

9 9

12

12

35

35

33

33

24

24 ssss

dddd

Fig. 6. For a network, the bestSucc relation is pictured on the left, and the splitBestSucc relation is pictured on the right. Although it cannot be seen from
best successors only, the principal nodes are 0, 7, 23, and 46.

Note: The next two points concern the mapping from ps
nodes to pd nodes derived from maximal paths in splitBest-
Succ. They show that it is a bijection, i.e., one-to-one and
onto.

(6) Every ps node is a leaf of exactly one tree. It must be a
leaf of some tree, because it begins a path of best successors
that must end at a pd node. It cannot be a leaf of more than
one tree, because no node has more than one best successor.

(7) Every tree rooted at a pd node has at least one leaf ps,
which is the principal node closest to pd in reverse identifier
order. It cannot have two such leaves p1s and p2s, because
the source principal closer to the destination principal would
be skipped by the path of the farther source principal.

Summary:
In terms of splitBestSucc, a ring is formed by the concate-

nation of the unique maximal paths, one from each tree in
the forest, starting at ps nodes. This proves AtLeastOneRing.
The relation cannot separate into two rings, because each of
them would have a maximal path that skips a principal node in
the other; this proves AtMostOneRing. From (5) we know that
the ring is ordered by identifiers, so OrderedRing holds. All
the nodes not on these unique maximal paths are appendage
members, and each has a path to a principal node on the ring,
so ConnectedAppendages holds. 2

VII. PROOF OF CHORD CORRECTNESS

This section presents the proof of the theorem given in
Section II:

Theorem: In any execution state, if there are no subsequent
join or fail operations, then eventually the network will be-
come Ideal and remain Ideal.

The most important part of this theorem is knowing that
Invariant holds in all states, because this property and the
properties it implies are the ones that all Chord users can
count on at all times. We do not expect churn (joins and
failures) to ever stop long enough for a network to become
Ideal. Rather, this part of the theorem simply tells us that the
repair algorithm always makes progress, and cannot get into
unproductive loops.

A. Establishing the invariant

First it is necessary to prove that Invariant, which is true of
any initial state (as specified in Section IV), is preserved by
every atomic step of the protocol.

We begin with a failure step, because it requires a constraint
based on the operating assumption in Section II: a member
cannot fail if it would leave another member with no live
successor. In other words, failure steps preserve the property
of OneLiveSuccessor by operating assumption. No other kind
of step can violate OneLiveSuccessor.

The other conjunct of Invariant is SufficientPrincipals,
which says that the number of principal nodes must be at
least r + 1. Rectify operations cannot violate this property,
as they do not affect successor lists. In this section we will
show that failure steps of non-principal nodes, join steps,
StabilizeFromSuccessor steps, and StabilizeFromPredecessor
steps do not cause principal nodes to become skipped in
successor lists. This is the only way that they could violate
SufficientPrincipals. The remaining case, that of failures of
principal nodes, will be discussed in the next section.

Failure of a non-principal member n causes the disappear-
ance of n’s successor list. But only being skipped in a succes-
sor list can make a node non-principal, so the disappearance
of n’s successor list cannot make another node non-principal.

In a successful join, the new ESL created is [myIdent,
newPrdc.succList]. We know that there is no principal node
between myIdent and head (newPrdc.succList), because at
the time of the query there is no principal node between
newPrdc and head (newPrdc.succList), and myIdent is between
those two. We also know that newPrdc.succList cannot skip a
principal node, by definition.

There are two cases in a StabilizeFromSuccessor step where
a successor list is altered. In the first case the new ESL
is a concatenation of pieces of the ESLs of the stabilizing
node and its first successor, joined where they overlap at the
first successor. Since neither of the original ESLs can skip a
principal node, their overlap cannot, either.

In the second case a dead entry is removed from the
stabilizing node’s list, which cannot cause it to skip a principal.
This leaves an empty space at the end which is temporarily
padded with the last real entry plus one. This is the only

value choice that preserves the invariant by guaranteeing that
no principal node is skipped by accident. It does not matter
whether the artificial entry points to a real node or not, as
it will be gone by the time that the stabilization operation is
complete.

There is only one case in a StabilizeFromPredecessor step
where a successor list is altered. The new ESL created is
[myIdent, newSucc, butLast (newSucc.succList)]. In the previ-
ous StabilizeFromSuccessor step, this node tested that between
[myIdent, newSucc, head (succList)]. This node cannot make
any other changes to its successor list between that step and
this StabilizeFromPredecessor step, so it is still true. Therefore
we know that there is no principal node between myIdent and
newSucc, because there is no principal node between myIdent
and head (succList), and newSucc is between those two. We
also know that [newSucc, butLast (newSucc.succList)] cannot
skip a principal node, because it is part of the ESL of newSucc.

B. Failure of principal nodes

The fundamental reason why a Chord network must have
r + 1 principal nodes is the need to prove NoDuplicates.
Without NoDuplicates we cannot justify the operating assump-
tion that a member always has a live successor, because the
assumption is based on the full redundancy provided by ESLs
with r + 1 distinct entries.

Apart from initialization, a member of a Chord network
becomes a principal node when it has been a member long
enough so that every node that should know about it does know
about it. More specifically, it should appear in the successor
lists of its r predecessors, which will happen after a sequence
of r stabilizations in which each predecessor learns about the
node from its successor.

It is extremely important that Section VII-A showed that
none of the operations or steps of operations discussed there
can demote a node from principal to non-principal. In other
words, the only action that can reduce the size of the set of
principal nodes is failure of a principal node itself.

As a Chord network grows and matures, a significant
fraction of its nodes will be members long enough to become
principals. This means that the number of principal nodes is
proportional to the size of the network; once the network is
large enough there is no possibility that SufficientPrincipals
will be violated. Section V presented the idea of global
monitoring of small Chord networks as a way to implement
initialization with r+1 principal nodes. It is a simple change
to continue monitoring until the number of principal nodes has
reached some multiple of r, after which the network is safe.

C. Queries have no circular waits

Section III-B explained how inter-node queries must be
organized to maintain a shared-state abstraction. Sometimes
a node must delay answering a query because it is waiting
for the answer to its own query, which raises the specter of
deadlock due to circular waiting.

Note that a rectify step only queries to see if a node is still
alive, and does not read any of the node’s state. Queries like

these can always be answered immediately, so cannot cause
waiting.

Note also that a join step requires a query, but no other node
can be querying a node that has not joined yet. So the joining
node, also, cannot be part of a circular wait.

This leaves queries due to the two stabilization steps,
which are always directed to first successors or potential first
successors. This means that, if there is a circular wait due to
queries, it must encompass the entire ring. This possibility is
sufficiently remote to ignore.2

D. Proving progress

This section shows that in a network satisfying Invariant, if
there are no join or fail operations, then eventually the network
will become Ideal and remain Ideal (as defined in Section II).

Progress proceeds in a sequence of phases. In the first phase,
all leading dead entries are removed from successor lists, so
that every member’s successor is its best successor. Every
time a member with a leading dead entry begins stabilization,
it first executes a StabilizeFromSuccessor step, which will
remove the leading dead entry. It will continue executing
StabilizeFromSuccessor steps until all the leading dead entries
are removed. Eventually all members will stabilize (this is an
operating assumption), after which all leading dead entries will
be removed from all successor lists.

Needless to say, these effective StabilizeFromSuccessor
steps can be interleaved with other stabilize and rectify op-
erations. However, rectify operations do not change successor
lists. Even if a stabilization operation causes a node to change
its successor, the steps are carefully designed so that the node
will not change its successor to a dead entry. So, in the absence
of failures, eventually all successors will be best successors,
and will remain so.

In the second phase, which can proceed concurrently with or
subsequent to the first phase, all successors and predecessors
become correct. Let s be the current size of the network
(number of members). This number is only changed by join
and fail operations, and not by repair operations, so it remains
the same throughout a repair-only phase as hypothesized by
the theorem. The error of a successor or predecessor is defined
as 0 if it points to the first successor (respectively, predecessor)
in identifier order, 1 if it points to the second successor
(predecessor) in identifier order, . . . s − 1 if it points to the
least correct member, and s if it points to a dead node.

Whenever there is a merge in the bestSucc or splitBestSucc
graph (see Figure 6), there are two nodes n1 and n2 with
successors merging at n3, and for some choice of symbolic
names, between [n1, n2, n3]. There are three cases: (1) n3.prdc
(the current predecessor of n3) is better (has a smaller error)
than n2, meaning that between [n2, n3.prdc, n3]; (2) n3.prdc is
n2; (3) n3.prdc is worse (has a larger error) than n2, meaning
that between [n3.prdc, n2, n3]. In each of these three cases

2The formal model uses shared-memory communication as an abstraction
of queries. Waiting is not modeled, so this case is not a problem for formal
analysis.

there is a sequence of enabled operations that will reduce the
cumulative error in the network, as follows:

Case 1: Either n1 or n2 stabilizes, adopting n3.prdc as its
successor and reducing the error of its successor. When the
stabilizing node notifies n3.prdc and n3.prdc rectifies, it will
change its predecessor pointer if and only if the change reduces
error.

Case 2: n1 stabilizes, adopting n2 as its successor and
reducing the error of its successor. When n1 notifies n2 and
n2 rectifies, it will change its predecessor pointer if and only
if the change reduces error.

Case 3: n2 stabilizes, which will not change its successor,
but will have the effect of notifying n3. When n3 rectifies, it
will reduce the error of its predecessor by changing it to n2.

These cases show that, as long as there is a merge in the
bestSucc graph, some operation or operations are enabled that
will reduce the cumulative error of successor and predeces-
sor pointers. Equally important, all operations are carefully
designed so that a change never increases the error. At the
same time, some of these operations will reduce the number
of merges. For example, in Figure 6, let the merge of 24 and 33
at 35 be an example of Case 2. When 24 changes its successor
to 33, which is not currently the successor of any node, the
total number of merges is reduced.

As the network is finite, eventually there will be no merges
in the bestSucc graph, which means that every node is a ring
member. Because the ring is always ordered, the errors of all
successors will be 0. The errors of all predecessors will also
be 0, because whenever a successor pointer reaches its final
value by stabilization, it notifies its successor. That node will
update its predecessor pointer, and will never again change it,
because no other candidate value can be superior. This is the
completion of the second phase.

In the third and final phase, after all successors are correct,
the tails of all successor lists become correct (if they are not
already). Let the error of a successor list tail of length r − 1
be defined as the length of its suffix that does not match its
member’s successor’s successor list.

Let n2 be the successor of n1, and let the error of n2’s
successor list be e. When n1 stabilizes, the error of its
successor list becomes max(e − 1, 0), as it is adopting n2’s
successor list, after first prepending a correct entry (n2) and
dropping an entry at the end. Thus improvements to successor
lists propagate backward in identifier order. In the worst case,
after a backward chain of r − 1 stabilizations, the successor
list of the last node of the chain will be globally correct.
The correct list will continue propagating backward, leaving
correctness in its wake. 2

VIII. THE ALLOY MODEL AND BOUNDED VERIFICATION

As introduced in Section I, there is an Alloy model includ-
ing specification of the operations, correctness properties, and

assertions of the proof.3 The reasons for using Alloy for this
purpose can be found in [28].

The Alloy proof is direct rather than insightful. For example,
there are assertions of all the theorems in Section VI. The
Alloy Analyzer uses exhaustive enumeration to verify auto-
matically that the theorems are true for all model instances up
to some size bounds (see below). But unlike Section VI, this
verification gives no insight into why the theorems are true.

The Alloy proof treats progress somewhat differently from
Section VII-D. The model defines enabling predicates for all
operation cases, where an enabling predicate is true if and
only if a step or sequence of steps is enabled and will change
the state of the network if it occurs. An assertion states that
if a network is not Ideal, some operation is enabled that will
change the state. Another assertion states that if a network is
Ideal, no operation will change the state.

What is missing from the formal treatment of progress is the
argument that every change makes progress. This is provided
by the error metrics in the informal proof. In principle the error
metrics could be defined and checked in Alloy, but experience
suggests that this would be awkward and computationally
complex.

The model is and has been an indispensable part of this
research, for two reasons: First, it protects against human
error in the long informal proof. Second, it was a necessary
tool for getting to the proof. Without long periods of model
exploration, it would not have been possible to discover that
the obvious invariants are not sufficient, nor to discover an
invariant that is. Without the formal model and automated ver-
ification, one wastes too much time trying to prove assertions
that are not true.

The model is analyzed for all instances with r ≤ 3 and
n ≤ 9, where n is the size of the identifier/node space. For
the largest instances, the possible number of nodes is more
than twice the sufficient number of principal nodes.

It is worth noting what experimenting with models and
bounds is like. With r = 2, many new counterexamples (to
the current draft model) were found by increasing the number
of nodes from 5 to 6, and no new counterexamples were ever
found by increasing the number of nodes from 6 to 7 or more.
No new counterexamples were ever found by increasing r from
2 to 3. This makes r = 3 and n = 9 seem more than adequate.

IX. RELATED AND FUTURE WORK

Other researchers have found problems with Chord im-
plementations. Freedman et al. found that the assumption
of bidirectional network communication can be violated in
practice [29]. Model-checking of code has been used to find
bugs in implementations of Chord [30], [31]. No previous
work except [9], however, has discovered any problems with
the specification of Chord.

Although other researchers have verified properties of DHTs
[32], [27], they have not considered failures, which are by
far the most difficult part of the problem. Other work on

3http://www.research.att.com/∼pamela > How to Make Chord Correct.

http://www.research.att.com/~pamela

verifiable ring maintenance operations [33] uses multi-node
atomic operations, which are avoided by Chord. These studies
use a variety of techniques. Adhering to the terminology used
so far, in which “informal” means rigorous but not machine-
checked, and “formal” means machine-checked: [33] employs
informal specification and proof, while [32] has formalizations
of a specification and an implementation in π-calculus, plus
an informal proof of bisimulation. Only [27] is completely
formal, with specification and proof in TLA.

The Alloy-only proof in an earlier version of this work [22]
has been used as a test case for the Ivy proof system [23]. The
Ivy version of Chord is a significant simplification, as it has
larger atomic operations, and limits the length of successor
lists to 2. Most importantly, it assumes the property One-
LiveSuccessor without maintaining the NoDuplicates property
that justifies the assumption (see Section VII-B). Nevertheless,
the study yielded promising results with respect to its goal of
automatically generating invariants.

Now that our understanding of the protocol has a firm
foundation, it should be possible to exploit this knowledge
to improve peer-to-peer networks further. If these efficient
networks become more robust, they may find a whole new
generation of applications.

For example, the assumptions of reliable network commu-
nication, bidirectional network communication, and perfect
detection of failures through timeouts are all related and
all suspect. With a bit more overhead, it might be possible
to weaken these assumptions without compromising Chord’s
modest invariant.

It is certainly possible to enhance security just by checking
local invariants, and it may be possible to improve enhance-
ments such as protection against malicious peers [13], [14],
[15], key consistency and data consistency [16], range queries
[17], and atomic access to replicated data [18], [19]. The first
step is to update this work with the new correct specification,
then revisit the possible improvements in light of the new
invariant.

X. CONCLUSION

The Chord ring-maintenance protocol is interesting in sev-
eral ways. The design is extraordinary in its achievement of
consistency and fault-tolerance with such simplicity, so little
synchronization overhead, and such a weak assumption about
the occurrence of failures. Unlike most protocols, which work
according to self-evident principles, it is quite difficult to
understand how and why Chord works.

As a case study in practical verification, the Chord project
illustrates the value of a variety of techniques. Simple analy-
sis for bug-finding [9], fully automated verification through
bounded model-checking [22], and informal mathematical
proof, all had important roles to play.

ACKNOWLEDGMENTS

Helpful discussions with Bharath Balasubramanian, Ernie
Cohen, Patrick Cousot, Gerard Holzmann, Daniel Jackson,
Arvind Krishnamurthy, Leslie Lamport, Gary Leavens, Pete

Manolios, Annabelle McIver, Ken McMillan, Jay Misra, An-
dreas Podelski, Emina Torlak, Natarajan Shankar, and Jim
Woodcock have contributed greatly to this work. The anony-
mous reviewers significantly improved its presentation.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” in Proceedings of ACM SIGCOMM. ACM, August 2001.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of the ACM
SIGOPS Symposium on Operating Systems Principles. ACM, 2007.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for Internet applications,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17–32, February 2003.

[4] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
evolution of peer-to-peer systems,” in Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing. ACM, 2002, pp.
233–242.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation and routing for large-scale peer-to-peer systems,” in Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001.

[6] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, January 2004.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content-addressable network,” in Proceedings of ACM SIGCOMM.
ACM, August 2001.

[8] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in Proceedings of the 1st
International Workshop on Peer-to-Peer Systems, 2002.

[9] P. Zave, “Using lightweight modeling to understand Chord,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 2, pp. 50–57,
April 2012.

[10] D. Jackson, Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006, 2012.

[11] E. Sit and R. Morris, “Security considerations for peer-to-peer dis-
tributed hash tables,” in Proceedings of IPTPS. Springer LNCS 2429,
2002.

[12] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing declarative overlays,” in Proceedings of the
20th ACM Symposium on Operating System Principles. ACM, 2005,
pp. 75–90.

[13] B. Awerbuch and C. Scheideler, “Towards a scalable and robust DHT,”
in Proceedings of the 18th Annual ACM Symposium on Parallelism in
Algorithms and Architectures. ACM, 2006, pp. 318–327.

[14] A. Fiat, J. Sala, and M. Young, “Making Chord robust to Byzantine
attacks,” in Proceedings of the European Symposium on Algorithms.
Springer LNCS 3669, 2005, pp. 803–814.

[15] K. Needels and M. Kwon, “Secure routing in peer-to-peer distributed
hash tables,” in Proceedings of the ACM Symposium on Applied Com-
puting. ACM, 2009, pp. 54–58.

[16] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson,
“Scalable consistency in Scatter,” in Proceedings of the 23rd ACM
Symposium on Operating Systems Principles. ACM, October 2011.

[17] A. Gupta, D. Agrawal, and A. E. Abbadi, “Approximate range selection
queries in peer-to-peer systems,” in Proceedings of the 1st Biennial
Conference on Innovative Data Systems Research (CIDR 2003), 2003.

[18] N. Lynch, D. Malkhi, and D. Ratajczak, “Atomic data access in
distributed hash tables,” in Proceedings of IPTPS. Springer LNCS
2429, 2002, pp. 295–305.

[19] A. Muthitacharoen, S. Gilbert, and R. Morris, “Etna: A fault-tolerant
algorithm for atomic mutable DHT data,” MIT CSAIL Technical Report
2005-044, http://hdl.handle.net/1721.1/30555, 2005.

[20] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi, “A statistical
theory of Chord under churn,” in Peer-to-Peer Systems IV. Springer
LNCS 3640, 2005.

http://hdl.handle.net/1721.1/30555

[21] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon Web Services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66–73, April 2015.

[22] P. Zave, “How to make Chord correct,” arXiv:1502.06461v2 [cs:DC],
2015.

[23] O. Padon, K. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
Interactive safety verification via counterexample generalization,” in
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2016.

[24] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D.
Ernst, and T. Anderson, “Verdi: A framework for implementing and
formally verifying distributed systems,” in Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2015.

[25] B. Awerbuch and C. Scheideler, “The hyperring: A low-congestion
deterministic data structure for distributed environments,” in Proceedings
of SODA. ACM, 2004.

[26] H. Balakrishnan and I. Stoica, 2013, personal communication.
[27] N. Azmy, S. Merz, and C. Weidenbach, “A rigorous correctness proof

for Pastry,” in Abstract State Machines, Alloy, B, TLA, VDM, and Z.
Springer LNCS 9675, 2016, pp. 86–101.

[28] P. Zave, “A practical comparison of Alloy and Spin,” Formal Aspects
of Computing, 2014, the final publication is available at Springer via
http://dx.doi.org/10.1007/s00165-014-0302-2.

[29] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica, “Non-
transitive connectivity and DHTs,” in Proceedings of the 2nd Conference
on Real, Large, Distributed Systems. USENIX, 2005, pp. 55–60.

[30] C. Killian, J. A. Anderson, R. Jhala, and A. Vahdat, “Life, death,
and the critical transition: Finding liveness bugs in systems code,”
in Proceedings of the 4th USENIX Symposium on Networked System
Design and Implementation, 2007, pp. 243–256.

[31] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak, “CrystalBall: Pre-
dicting and preventing inconsistencies in deployed distributed systems,”
in Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation. USENIX, April 2009.

[32] R. Bakhshi and D. Gurov, “Verification of peer-to-peer algorithms: A
case study,” Electronic Notes in Theoretical Computer Science, vol. 181,
pp. 35–47, 2007.

[33] X. Li, J. Misra, and C. G. Plaxton, “Active and concurrent topology
maintenance,” in Distributed Computing. Springer LNCS 3274, 2004,
pp. 320–334.

http://dx.doi.org/10.1007/s00165-014-0302-2

	I Introduction
	II Overview of correct Chord
	III Specification of ring-maintenance operations
	III-A Identifiers and node state
	III-B Maintaining a shared-state abstraction
	III-C Join and fail operations
	III-D Stabilize and rectify operations

	IV Initialization and invariant
	V Comparison of the versions
	VI Reasoning about ring structures in identifier spaces
	VI-A Theorems about identifier spaces
	VI-B Theorems about successor lists
	VI-C Theorem about networks built on successor lists

	VII Proof of Chord correctness
	VII-A Establishing the invariant
	VII-B Failure of principal nodes
	VII-C Queries have no circular waits
	VII-D Proving progress

	VIII The Alloy model and bounded verification
	IX Related and future work
	X Conclusion
	References

