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Abstract—
The test case generation is intrinsically a multi-objective problem, since the goal is covering multiple test targets (e.g., branches).
Existing search-based approaches either consider one target at a time or aggregate all targets into a single fitness function
(whole-suite approach). Multi and many-objective optimisation algorithms (MOAs) have never been applied to this problem, because
existing algorithms do not scale to the number of coverage objectives that are typically found in real-world software. In addition, the
final goal for MOAs is to find alternative trade-off solutions in the objective space, while in test generation the interesting solutions are
only those test cases covering one or more uncovered targets.
In this paper, we present DynaMOSA (Dynamic Many-Objective Sorting Algorithm), a novel many-objective solver specifically designed
to address the test case generation problem in the context of coverage testing. DynaMOSA extends our previous many-objective
technique MOSA (Many-Objective Sorting Algorithm) with dynamic selection of the coverage targets based on the control dependency
hierarchy. Such extension makes the approach more effective and efficient in case of limited search budget.
We carried out an empirical study on 346 Java classes using three coverage criteria (i.e., statement, branch, and strong mutation
coverage) to assess the performance of DynaMOSA with respect to the whole-suite approach (WS), its archive-based variant (WSA)
and MOSA. The results show that DynaMOSA outperforms WSA in 28% of the classes for branch coverage (+8% more coverage on
average) and in 27% of the classes for mutation coverage (+11% more killed mutants on average). It outperforms WS in 51% of the
classes for statement coverage, leading to +11% more coverage on average. Moreover, DynaMOSA outperforms its predecessor
MOSA for all the three coverage criteria in 19% of the classes with +8% more code coverage on average.

Index Terms—Evolutionary Testing; Many-Objective Optimisation; Automatic Test Case Generation
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1 INTRODUCTION

Automated structural test case generation aims at producing
a set of test cases that maximises coverage of the test goals in
the software under test according to the selected adequacy
testing criterion (e.g., branch coverage). Search-based test
case generators use meta-heuristic optimisation algorithms,
such as genetic algorithms (GA), to produce new test cases
from the previously generated (initially, random) ones, so
as to reduce and eventually nullify their distance from each
of the yet uncovered targets [52], [37]. The search for a
test sequence and for test input data that bring the test
execution closer to the current coverage target is guided
by a fitness function, which quantifies the distance between
the execution trace of a test case and the coverage target.
The actual computation of such a distance depends on the
type of coverage criterion under consideration. For instance,
for branch coverage, the distance is based on the number
of control dependencies that separate the execution trace
from the target (approach level) and on the variable values
evaluated at the conditional expression where the execution
diverges from the target (branch distance).

In traditional evolutionary testing, to cover all targets
a meta-heuristic algorithm is applied multiple times, each

time with a different target, until all targets are covered or
the total search budget is consumed. The final test suite is
thus composed of all the test cases that cover one or more
targets, including those that accidentally cover previously
uncovered targets (collateral coverage).

Searching for one target at a time is problematic in
several respects. First of all, targets may require higher
or lower search effort depending on how difficult it is
to produce test cases that cover them. Hence, uniformly
distributing the search budget across all targets might be
largely sub-optimal. Even worse, the presence of unfeasible
targets wastes entirely the search time devoted to their
coverage. The whole-suite (WS) approach [17], [3] to test case
generation is a recent attempt to address these issues. WS
optimises entire test suites, not just individual test cases,
and makes use of a single fitness value that aggregates
the fitness values measured for the test cases contained in
a test suite, so as to take into consideration all coverage
targets simultaneously. In fact, each test case in a test suite
is associated with the target closest to its execution trace.
The sum over all test cases of such minimum distances
from the targets provides the overall, test-suite-level fitness.
The additive combination of multiple targets into a single,
scalar objective function is known as sum scalarization in



the theory of optimisation [11]. The aim is to apply single-
objective algorithms, like GA, to an intrinsically multi-
objective problem.

While being more effective than targeting one target
at a time, the WS approach suffers all the well-known
problems of sum scalarization in many-objective optimi-
sation, among which the inefficient convergence occurring
in the non-convex regions of the search space [11]. On the
other hand, there are single-objective problem instances on
which many-objective algorithms have been shown to be
much more convenient than the single-objective approach.
In fact, reformulating a complex single-objective problem as
a many-objective problem defined on multiple but simpler
objectives can reduce the probability that the search remains
trapped in local optima, eventually leading to faster conver-
gence [30], [21]. However, there are two main challenges to
address when applying many-objective optimisation to test
case generation: (i) none of the available multi or many-
objective solvers can scale to the number of objectives
(targets) typically found in coverage testing [3]; and (ii)
multi and many-objective solvers are designed to increase
the diversity of the solutions, not just to fully achieve each
objective individually (reducing to zero its distance from the
target), as required in test case generation [33].

To overcome the aforementioned limitations, in our pre-
vious work [42] we introduced MOSA (Many-Objective
Sorting Algorithm), a many-objective GA tailored to the test
case generation problem. MOSA has three main features:
(i) it uses a novel preference criterion instead of ranking the
solutions based on their Pareto optimality; (ii) it focuses
the search only on the yet uncovered coverage targets; (iii)
it saves all test cases satisfying one or more previously
uncovered targets into an archive, which contains the final
test suite when the search ends.

Recently, Rojas et al. [48] developed the Whole Suite
with Archive approach (WSA), a hybrid strategy that in-
corporates some of MOSA’s routines inside the traditional
WS approach. While WSA still applies the sum scalarization
and works at the test suite level, it incorporates an archive
strategy which operates at the test case level. Moreover, it
also focuses the search only on the yet to cover targets.
From an empirical point of view, WSA has been proved
to be statistically superior to WS and to the one-target at
a time approaches. However, from a theoretical point of
view, it does not evolve test suites anymore since the final
test suite given to developers is artificially synthesised by
taking those test cases stored in the archive rather than
returning the best individual (i.e., test suite) from the last
generation of GAs [48]. Rojas et al. [48] arose the following
still unanswered questions: (1) To what extent do the benefits of
MOSA stem from the many-objective reformulation of the problem
or from the use of the archiving mechanism? (2) How does MOSA
performs compared to WSA since both of them implement an
archiving strategy?

In this paper, we provide an in-depth analysis of many-
objective approaches to test case generation, thus, answer-
ing the aforementioned open questions. First, we present
DynaMOSA (Many-Objective Sorting Algorithm with Dy-
namic target selection) which extends MOSA with the capa-
bility to dynamically focus the search on a subset of the
yet uncovered targets, based on the control dependency

hierarchy. Thus, uncovered targets that are reachable from
other uncovered targets positioned higher in the hierarchy
are removed from the current vector of objectives. They are
reinserted in the objective vector dynamically, when their
parents are covered. Since DynaMOSA optimises a subset of
the objectives considered by MOSA using the same many-
objective algorithm and preference criterion, DynaMOSA is
ensured to be equally or more efficient than MOSA.

Second, we conduct a large empirical study involving
346 Java classes sampled from four different datasets [18],
[53], [49], [42] and considering three well known test ad-
equacy criteria: statement coverage, branch coverage and
mutation coverage. We find that DynaMOSA achieves sig-
nificantly higher coverage than WSA in a large number of
classes (27% and 28% for branch and mutation coverage
respectively) with an average increment, for classes where
statistically significant differences were observed, of +8% for
branch coverage and +11% for mutation coverage. It also
produces higher statement coverage than WS1 in 51% of the
classes, for which we observe +11% of covered statements
on average. As predicted by the theory, DynaMOSA also
improves MOSA for all the three criteria. This happens in
19% of the classes with an average coverage improvement
of 8%.

This paper extends our previous work [42] with the
following novel contributions:

1) DynaMOSA: a novel algorithm for dynamic target
selection, which is theoretically proven as subsum-
ing MOSA.

2) Larger scale experiments: one order of magnitude
more classes are considered in the new experiments.

3) Empirical comparison of DynaMOSA with MOSA
and WSA to provide support to the usage of many-
objective solvers in addition to the archiving strat-
egy, which is implemented in all the three ap-
proaches.

4) Empirical assessment of the selected algorithms
with respect to different testing criteria, i.e., branch
coverage, statement coverage and strong mutation
coverage.

5) Direct comparison with Pareto dominance ranking
based algorithms, i.e., NSGA-II enriched with an
archiving strategy.

6) Empirical assessment of our novel preference cri-
terion, to understand if the higher effectiveness of
DynaMOSA is due to the preference criterion alone
or to its combination with dominance ranking.

The remainder of this paper is organised as follows.
Section 2 presents the reformulation of the test case gen-
eration problem as a many-objective problem. Section 3
presents the many-objective test generator MOSA, followed
by its extension, DynaMOSA, with dynamic selection of
the coverage targets. Section 4 presents the description of
the experiments we conducted for the evaluation of the
proposed algorithm. Section 5 reports the results obtained
from the experiments, while Sections 6 and 7 provide addi-
tional empirical analyses and discuss the threats to validity,

1. For statement coverage, we consider WS as baseline since no
implementation of WSA is available.



respectively. Section 8 summarises the research works most
closely related to ours. Section 9 draws conclusions and
identifies possible directions for future work.

2 PROBLEM FORMULATION

This section presents our many-objective reformulation of
the structural coverage problem. First the single-objective
formulation used in the whole-suite approach [17] is de-
scribed, followed by our many-objective reformulation,
highlighting its main differences and peculiarities.

2.1 Single Objective Formulation

In the whole-suite approach, a candidate solution is a test
suite consisting of a variable number of individual test
cases, where each test case is a sequence of method calls
of variable length. The fitness function measures how close
the candidate test suite is to satisfy all coverage targets (aka,
test goals). It is computed with respect to full coverage (e.g.,
full branch coverage), as the sum of the individual distances
to all coverage targets (e.g., branches) in the program under
test. More formally, the problem of finding a test suite that
satisfies all test targets has been defined as follows:

Problem 2.1: Let U = {u1, . . . , uk} be the set of structural
test targets of the program under test. Find a test suite T =
{t1, . . . , tn} that minimises the fitness function:

min fU (T ) =
∑
u∈U

d(u, T ) (1)

where d(u, T ) denotes the minimal distance for the target u
according to a specific distance function.

In general, the function to minimise d is such that
d(u, T ) = 0 if and only if the target goal is covered when a
test suite T is executed. The difference between the various
coverage criteria affects the specific distance function d
used to express how distant the execution traces are from
covering the test targets in U when all test cases in T are
executed.

In Branch Coverage, the test targets to cover are the
conditional statement branches in the class under test.
Therefore, Problem 2.1 can be instantiated as finding a
test suite that covers all branches, using as function d the
traditional branch distance [37] for each individual branch
to be covered. More formally [17]:

Problem 2.2: Let B = {b1, . . . , bk} be the set of branches in
a class. Find a test suite T = {t1, . . . , tn} that covers all the
feasible branches, i.e., one that minimises the following fitness
function:

min fB(T ) = |M | − |MT |+
∑
b∈B

d(b, T ) (2)

where |M | is the total number of methods, |MT | is the number of
executed methods by all test cases in T and d(b, T ) denotes the
minimal normalised branch distance for branch b ∈ B.

The term |M | − |MT | accounts for the entry edges of
the methods that are not executed by T . The minimal

normalised branch distance d(b, t) for each branch b ∈ B
is defined as [17]:

d(b, t) =


0 if b has been covered
Dmin(t ∈ T, b)

Dmin(t ∈ T, b) + 1
if the predicate has been
executed at least twice

1 otherwise
(3)

whereDmin(t ∈ T, b) is the minimal non-normalised branch
distance, computed according to any of the available branch
distance computation schemes [37]; minimality here refers
to the possibility that the predicate controlling a branch is
executed multiple times within a test case or by different
test cases. The minimum is taken across all such executions.

In Statement Coverage, the optimal test suite is the one
that executes all statements in the code. To reach a given
statement s, it is sufficient to execute a branch on which
such a statement is directly control dependent. Thus, the
distance function d for a statement s can be measured using
the branch distances for the branches to be executed in order
to reach s. More specifically, the problem is [17]:

Problem 2.3: Let S = {s1, . . . , sk} be the set of statements in
a class. Find a test suite T = {t1, . . . , tn} that covers all the
feasible statements, i.e., one that minimises the following fitness
function:

min fS(T ) = |M | − |MT |+
∑
b∈BS

d(b, T ) (4)

where |M | is the total number of methods, |MT | is the number of
executed methods by all test cases in T ; BS is the set of branches
that hold a direct control dependency on the statements in S;
and d(b, T ) denotes the minimal normalised branch distance for
branch b ∈ BS .

In Strong Mutation Coverage, the test targets to cover
are mutants, i.e., variants of the original class obtained by
injecting artificial modifications (mimicking real faults) into
them. Therefore, the optimal test suite is the one which
is able to cover (kill, in the mutation analysis jargon) all
mutants. A test case strongly kills a mutant if and only
if the observable object state or the method return values
differ between original and mutated class under test. Such
a condition is usually checked by means of automatically
generated assertions, which assert the equality of method
return values and object state with respect to those observed
when the original class is tested. Hence, such assertions fail
when evaluated on the mutant if a different return value
or object state is produced. An effective fitness function f
for strong mutation coverage can be defined based on the
notions of infection and propagation. The execution state of
a mutated class instance is regarded as infected if it differs
from the execution state of the original class when compared
immediately after the mutated statement. This ensures that
the mutant is producing some immediate effect on the class
attributes or method variables, but it does not ensure that
such an effect will propagate to an externally observable
difference. Infection propagation accounts for the possibility
of observing a different state between mutant and original
class in the statements that follow the mutated one along
the execution trace. The corresponding formal definition is
the following [19]:



Problem 2.4: Let M = {m1, . . . ,mk} be the set of mutants for
a class. Find a test suite T = {t1, . . . , tn} that kills all mutants,
i.e., one that minimises the following fitness function:

min fM (T ) = fBM
(T ) +

∑
m∈M

(di(m,T ) + dp(m,T )) (5)

where fBM
(T ) is the whole-suite fitness function for all branches

in T holding a direct control dependency on a mutant in M ; di
estimates the distance toward a state infection; and dp denotes the
propagation distance.

From an optimisation point of view, in the whole-suite
approach the fitness function f considers all the targets
at the same time and aggregates all corresponding dis-
tances into a unique fitness function by summing up the
contributions from the individual target distances, i.e., the
minimum distance from each individual target. In other
words, multiple search targets are conflated into a single
search target by means of an aggregated fitness function.
Using this kind of approach, often named scalarization [11],
a problem which involves multiple targets is transformed
into a traditional single-objective, scalar one, thus allowing
for the application of single-objective meta-heuristics such
as standard GA.

2.2 Many-Objective Formulation
In this paper, we reformulate the coverage criteria for test
case generation as many-objective optimisation problems,
where the objectives to be optimised are the individual
distances from all the test targets in the class under test.
More formally, in this paper we consider the following
reformulation:
Problem 2.5: Let U = {u1, . . . , uk} be the set of test targets to
cover. Find a set of non-dominated test cases T = {t1, . . . , tn}
that minimise the fitness functions for all test targets u1, . . . , uk,
i.e., minimising the following k objectives:

min f1(t) = d(u1, t)
...
min fk(t) = d(uk, t)

(6)

where each d(ui, t) denotes the distance of test case t from
covering the test target ui. Vector 〈f1, . . . , fk〉 is also named
a fitness vector.

According to this new generic reformulation, branch
coverage, statement coverage and strong mutation coverage
can be reformulated as follows:
Problem 2.6: Let B = {b1, . . . , bk} be the set of branches of a
class. Find a set of non-dominated test cases T = {t1, . . . , tn}
that minimises the fitness functions for all branches b1, . . . , bk,
i.e., minimising the following k objectives:

min f1(t) = al(b1, t) + d(b1, t)
...
min fk(t) = al(bk, t) + d(bk, t)

(7)

where each d(bj , t) denotes the normalised branch distance for
the branch, executed by t, which is closest to bj (i.e., which
is at minimum number of control dependencies from bj), while
al(bj , t) is the corresponding approach level (i.e., the number of
control dependencies between the closest executed branch and bj).

Problem 2.7: Let S = {s1, . . . , sk} be the set of statements in
a class. Find a set of non-dominated test cases T = {t1, . . . , tn}
that minimises the fitness functions for all statements s1, . . . , sk,
i.e., minimising the following k objectives:

min f1(t) = al(s1, t) + d(b(s1), t)
...
min fk(t) = al(sk, t) + d(b(sk), t)

(8)

where each d(b(sj), t) denotes the normalised branch distance
of test case t for the branch closest to b(sj), the branch that
directly controls the execution of statement sj , while al(sj , t)
is the corresponding approach level.
Problem 2.8: Let M = {m1, . . . ,mk} be the set of mutants for
a class. Find a set of non-dominated test cases T = {t1, . . . , tn}
that minimises the fitness functions for all mutants m1, . . . ,mk,
i.e., minimising the following k objectives:

min f1(t) = al(m1, t) + d(b(m1), t) + di(m1, t)+
+dp(m1, t)

...
min fk(t) = al(mk, t) + d(b(mk), t) + di(mk, t)+

+dp(mk, t)

(9)

where d(b(mj), t) and al(mj , t) denote the normalised branch
distance and the approach level of test case t for mutant mj

respectively; di(mj , t) is the distance from state infection, while
dp(mj , t) measures the propagation distance.

In this formulation, a candidate solution is a test case,
not a test suite, which is scored by a single objective vector
containing the distances from all yet uncovered test targets.
Hence, the fitness is a vector of k values, instead of a single
aggregate score. In many-objective optimisation, candidate
solutions are evaluated in terms of Pareto dominance and
Pareto optimality [11]:

Definition 1: A test case x dominates another test case y (also
written x ≺ y) if and only if the values of the objective function
vector satisfy the following conditions:

∀i ∈ {1, . . . , k} fi(x) ≤ fi(y)
and

∃j ∈ {1, . . . , k} such that fj(x) < fj(y)

Conceptually, the definition above indicates that x is
preferred to (dominates) y if and only if x is strictly better on
one or more objectives and it is not worse for the remaining
objectives. For example, in branch coverage x is preferred to
(dominates) y if and only if x has a lower branch distance +
approach level for one or more branches and it is not worse
for the remaining branches.

Figure 1 provides a graphical interpretation of Pareto
dominance for a simple case with two test targets to cover,
i.e., the problem is bi-objective. All test cases in the grey
rectangle (A andC) are dominated byD, becauseD is better
for both the two objectives f1 and f2. On the other hand,
the test case D does not dominate B because it is closer to
cover f1 than B, but it is worse than B on the other test
target, f2. Moreover, D does not dominate E because it is
worse for the test target f1. Similarly, the test case B does
not dominate D and E but it dominates A. Thus, B, D, and
E are non-dominated by any other test case, while A and
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Fig. 1. Graphical interpretation of Pareto dominance.

C are dominated by either D or B. The test case B satisfies
(covers) the target f2, thus, it is a candidate to be included
in the final test suite.

Among all possible test cases, the optimal test cases are
those non-dominated by any other possible test case:

Definition 2: A test case x∗ is Pareto optimal if and only if it is
not dominated by any other test case in the space of all possible
test cases (feasible region).

Single-objective optimisation problems have typically
one solution (or multiple solutions with the same optimal
fitness value). On the other hand, solving a multi-objective
problem may lead to a set of Pareto-optimal test cases
(with different fitness vectors), which, when evaluated, cor-
respond to trade-offs in the objective space. While in many-
objective optimisation it may be useful to consider all the
trade-offs in the objective space, especially if the number
of objectives is small, in the context of coverage testing we
are interested in finding only the test cases that contribute
to maximising the total coverage by covering previously
uncovered test targets, i.e., test cases having one or more
objective scores equal to zero: fi(t) = 0, as testB in Figure 1.
These are the test cases that intersect any of the m Cartesian
axes of the vector space where fitness vectors are defined.
Such test cases are candidates for inclusion in the final test
suite and represent a specific sub-set of the Pareto optimal
solutions.

3 ALGORITHM

Search algorithms aimed at optimising more than three
objectives have been widely investigated for classical nu-
merical optimisation problems. A comprehensive survey of
such algorithms can be found in a recent paper by Li et
al. [34]. The following subsections provide a discussion of
the most relevant related works on many-objective optimi-
sation and highlight how our novel many-objective algo-
rithm overcomes their limitations in the context of many-
objective structural coverage. In particular, Section 3.1 pro-
vides an overview on traditional many-objective algorithms,
while Section 3.2 presents the many-objective algorithms

that we have developed for solving the many-objective
reformulation of structural coverage criteria.

3.1 Existing Many-Objective Algorithms

Multi-objective algorithms, such as the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [13] and the
improved Strength Pareto Evolutionary Algorithm
(SPEA2) [63], have been successfully applied within
the software engineering community to solve problems
with two or three objectives, including software refactoring,
test case prioritisation, etc. However, such classical multi-
objective evolutionary algorithms present scalability issues
because they are not effective in solving optimisation
problems with more than three-objectives [34].

To overcome their limitations, a number of many-
objective algorithms have been recently proposed in the
evolutionary computation community, which modify multi-
objective solvers to increase the selection pressure. Ac-
cording to Li et al. [34], existing many-objective solvers
can be categorised into seven classes: relaxed dominance
based, diversity-based, aggregation-based, indicator-based, refer-
ence set based, preference-based, and dimensionality reduction
approaches. For example, Laumanns et al. [33] proposed
the usage of ε-dominance (ε-MOEA), which is a relaxed
version of the classical dominance relation that enlarges
the region of the search space dominated by each solution,
so as to increase the likelihood for some solutions to be
dominated by others [34]. Although this approach is helpful
in obtaining a good approximation of an exponentially large
Pareto front in polynomial time, it presents drawbacks and
in some cases it can slow down the optimisation process
significantly [27].

Yang et al. [58] introduced a Grid-based Evolutionary
Algorithm (GrEA) that divides the search space into hyper-
boxes of a given size and uses the concepts of grid domi-
nance and grid distance to improve diversity among indi-
viduals by determining their mutual relationship in a grid
environment. Zitzler and Künzli [62] proposed the usage
of the hypervolume indicator instead of Pareto dominance
when selecting the best solutions to form the next gener-
ation. Even if the new algorithm, named IBEA (Indicator
Based Evolutionary Algorithm), was able to outperform
NSGA-II and SPEA2, the computation cost associated with
the exact calculation of the hypervolume indicator in a high-
dimensional space (i.e., with more than five objectives) is too
expensive, making it unfeasible with hundreds of objectives
as in the case of structural test coverage (e.g., in mutation
coverage a class/program may have hundreds of mutants).

Zhang and Li [61] proposed a Decomposition based
Multi-objective Evolutionary Algorithm (MOEA/D), which
decomposes a single many-objective problem into many
single-objective sub-problems by employing a series of
weighting vectors. Specifically, each sub-problem is ob-
tained by using a specific weighting vector that aggregates
different objectives using a weighted-sum approach. Differ-
ent weighting vectors assign different importance (weights)
to objectives, thus, delimiting the searching direction of
these aggregation-based algorithms. However, the selection
of weighting vectors is still an open problem especially for
problems with a very large number of objectives [34].



Di Pierro et al. [14] used a preference order-approach
(POGA) as an optimality criterion in the ranking phase of
NSGA-II. This criterion considers the concept of efficiency of
order in subsets of objectives and provides a higher selection
pressure towards the Pareto front than Pareto dominance-
based algorithms.

Deb and Jain [12] proposed NSGA-III, an improved
version of the classical NSGA-II algorithm, where the
crowding distance is replaced with a reference-set based
niche-preservation strategy. It results in a new Pareto rank-
ing/sorting based algorithm that produces well-spread and
diversified solutions.

Yuan et al. [59] developed θ-NSGA-III, which enriches
the non-dominated sorting scheme with the concepts of θ-
dominance to rank solutions in the environmental selection
phase, so as to ensure both convergence and diversity.

All the many-objective algorithms mentioned above
have been investigated mostly for numerical optimisation
problems with less than 15 objectives. Moreover, they are
designed to produce a rich set of optimal trade-offs between
different optimisation goals, by considering both proximity
to the real Pareto optimal set and diversity between the
obtained trade-offs [33]. As explained in Section 2.2, this
is not the case of structural coverage for test case gener-
ation. The interesting solutions for this problem are test
cases having one or more objective scores equal to zero
(i.e., fi(t) = 0). Trade-offs between objectives scores are
useful just for maintaining diversity during the optimisa-
tion process. Hence, there are two main peculiarities that
have to be considered in many-objective structural coverage
as compared to more traditional many-objective problems.
First, not all non-dominated test cases have a practical utility
since they represent trade-offs between objectives. Instead,
in structural coverage the search has to focus on a specific
sub-set of the non-dominated solutions: those solutions (test
cases) that satisfy one or more coverage targets. Second, for
a given level of structural coverage, shorter test cases (i.e.,
test cases with a lower number of statements) are preferred
to reduce the oracle cost [6], [17] and to avoid the bloat
phenomenon [17].

3.2 The Proposed Many-Objective Algorithms

Previous research in many-objective optimisation [55], [34]
has shown that many-objective problems are particu-
larly challenging because of the dominance resistance phe-
nomenon, i.e., most of the solutions are incomparable since
the proportion of non-dominated solutions increases expo-
nentially with the number of objectives. As a consequence, it
is not possible to assign a preference among individuals for
selection purposes and the search process becomes equiva-
lent to a random one [55]. Thus, problem/domain specific
knowledge is needed to impose an order of preference
over test cases that are non-dominated according to the
traditional non-dominance relation. For test case generation,
this means focusing the search effort on those test cases that
are closer to one or more uncovered targets (e.g., branches)
of the program. To this aim, we propose the following
preference criterion in order to impose an order of preference
among non-dominated test cases:

Algorithm 1: NSGA-II
Input:
U = {u1, . . . , um} the set of coverage targets of a program.
Population size M
Result: A test suite T

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(M )
4 while not (search budget consumed) do
5 Qt ←− GENERATE-OFFSPRING(Pt)
6 Rt ←− Pt

⋃
Qt

7 F←− FAST-NONDOMINATED-SORT(Rt)
8 Pt+1 ←− ∅
9 d←− 1

10 while | Pt+1 | + | Fd |6 M do
11 CROWDING-DISTANCE-ASSIGNMENT(Fd)
12 Pt+1 ←− Pt+1

⋃
Fd

13 d←− d+ 1

14 Sort(Fd) //according to the crowding distance
15 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

16 t←− t+ 1

17 S ←− Pt

Definition 3: Given a coverage target ui, a test case x is preferred
over another test case y (also written x ≺ui

y) if and only if
the values of the objective function for ui satisfy the following
condition:

fi(x) < fi(y) OR fi(x) = fi(y) ∧ size(x) < size(y)

where fi(x) denotes the objective score of test case x for
coverage target ui (see Section 2), and sizemeasures the test
case length (number of statements). The best test case for a
given coverage target ui is the one preferred over all the oth-
ers for such target (xbest ≺ui

y, ∀y ∈ T ). The set of best test
cases across all uncovered targets ({x | ∃ i : x ≺ui

y, ∀y ∈
T}) defines a subset of the Pareto front that is given priority
over the other non-dominated test cases in our algorithms.
When there are multiple test cases with the same minimum
fitness value for a given coverage target ui, we use the test
case length (number of statements) as a secondary prefer-
ence criterion. We opted for this secondary criterion since
generated tests require human effort to check the candidate
assertions (oracle problems). Therefore, minimising the test
cases is a valuable (secondary) objective to achieve [6], [17]
since smaller tests involve a lower number of method calls
(and corresponding covered paths) to manually analyse.

Our preference criterion provides a way to distinguish
between test cases in a set of non-dominated ones, i.e., in a
set where test cases are incomparable according to the tradi-
tional non-dominance relation, and it increases the selection
pressure by giving higher priority to the best test cases with
respect to the currently uncovered targets. Since none of
the existing many-objective algorithms considers this prefer-
ence ordering, which is a peculiarity of test case generation,
in this paper we define our novel many-objective GA by
incorporating the proposed preference criterion in the main
loop of NSGA-II, a widely known Pareto efficient multi-
objective genetic algorithm designed by Deb et al. [13].

In a nutshell, NSGA-II starts with an initial set of random
solutions (random test cases), also called chromosomes, which
represents a random sample of the search space (line 3
of Algorithm 1). The population then evolves through a
series of generations to find better test cases. To produce
the next generation, NSGA-II first creates new test cases,



called offsprings, by combining parts from two selected test
cases (parents) in the current generation using the crossover
operator and randomly modifying test cases using the mu-
tation operator (function GENERATE-OFFSPRING, at line 5
of Algorithm 1). Parents are selected according to a selection
operator, which uses Pareto optimality to give higher chance
of reproduction to non-dominated (fittest) test cases in the
current population. The crowding distance is used in order
to make a decision about which test cases to select: non-
dominated test cases that are far away from the rest of
the population have higher probability of being selected
(lines 10-15 of Algorithm 1). Furthermore, NSGA-II uses
the FAST-NONDOMINATED-SORT algorithm to preserve
the test cases forming the current Pareto frontier in the
next generation (elitism). After some generations, NSGA-II
converges to “stable” test cases, which represent the Pareto-
optimal solutions to the problem.

The next sections describe in detail our proposed many-
objective algorithms starting from NSGA-II, first describing
the MOSA algorithm followed by its extension, DynaMOSA.

3.2.1 MOSA: a Many Objective Sorting Algorithm
MOSA (Many Objective Sorting Algorithm) replaces the tra-
ditional non-dominated sorting with a new ranking algorithm
based on our preference criterion. As shown in Algorithm 2,
MOSA shares the initial steps of NSGA-II: it starts with
an initial set of randomly generated test cases that forms
the initial population (line 3 of Algorithm 2); then, it cre-
ates new test cases using crossover and mutation (function
GENERATE-OFFSPRING, at line 6 of Algorithm 2).

Selection. Differently from NSGA-II, in MOSA the selec-
tion is performed by considering both the non-dominance
relation and the proposed preference criterion (function
PREFERENCE-SORTING, at line 9 of Algorithm 2). In
particular, the PREFERENCE-SORTING function, whose
pseudo-code is provided in Algorithm 3, determines the test
case with the lowest objective score (e.g., branch distance +
approach level for branch coverage) for each uncovered tar-
get ui ∈ U , i.e., the test case that is closest to cover ui (lines
2-6 of Algorithm 3). All these test cases are assigned rank
0 (i.e., they are inserted into the first non-dominated front
F0), so as to give them a higher chance of surviving in to
the next generation (elitism). The remaining test cases (those
not assigned to the first rank) are then ranked according
to the traditional non-dominated sorting algorithm used by
NSGA-II [13], starting with a rank equal to 1 and so on (line
11-15 of Algorithm 3). To speed-up the ranking procedure,
the traditional non-dominated sorting algorithm is applied
only when the number of test cases in F0 is smaller than
the population size M (condition in line 8). Instead, when
the condition |F0| > M is satisfied, the PREFERENCE-
SORTING function returns only two fronts: the first front
(rank 0) with all test cases selected by our preference criterion;
and the front with rank 1 that contains all remaining test
cases in T , i.e., F1 = T − F0.

Dominance. It is important to notice that the routine
FAST-NONDOMINATED-SORT assigns the ranks to the
remaining test cases by considering only the non-dominance
relation for the uncovered targets, i.e., by focusing the search
toward the interesting sub-region of the remaining search
space. Such non-dominance relation is computed by a

Algorithm 2: MOSA
Input:
U = {u1, . . . , um} the set of coverage targets of a program.
Population size M
Result: A test suite T

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(M )
4 archive←− UPDATE-ARCHIVE(Pt, ∅)
5 while not (search budget consumed) do
6 Qt ←− GENERATE-OFFSPRING(Pt)
7 archive←− UPDATE-ARCHIVE(Qt, archive)
8 Rt ←− Pt

⋃
Qt

9 F←− PREFERENCE-SORTING(Rt)
10 Pt+1 ←− ∅
11 d←− 0
12 while | Pt+1 | + | Fd |6 M do
13 CROWDING-DISTANCE-ASSIGNMENT(Fd)
14 Pt+1 ←− Pt+1

⋃
Fd

15 d←− d+ 1

16 Sort(Fd) //according to the crowding distance
17 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

18 t←− t+ 1

19 T ←− archive

Algorithm 3: PREFERENCE-SORTING
Input:
A set of candidate test cases T
Population size M
Result: Non-dominated ranking assignment F

1 begin
2 F0 // first non-dominated front
3 for ui ∈ U and ui is uncovered do
4 // for each uncovered target we select the best test case

according to the preference criterion
5 tbest ←− test case in T with minimum objective score for ui

6 F0 ←− F0

⋃
{tbest}

7 T ←− T − F0

8 if |F0| > M then
9 F1 ←− T

10 else
11 U∗ ←− {g ∈ U : u is uncovered}
12 E←− FAST-NONDOMINATED-SORT(T, {u ∈ U∗})
13 d←− 0 //first front in E
14 for All non-dominated fronts in E do
15 Fd+1 ←− Ed

specific dominance comparator which iterates over all the
uncovered targets when deciding whether two test cases
t1 and t2 do not dominate each other or whether one
(e.g., t1) dominates the other (e.g., t2). While the original
dominance comparator defined by Deb et al. [13] iterates all
over the objectives (targets), in MOSA we use the dominance
comparator depicted in Algorithm 4. Such a comparator
iterates only over the uncovered targets (loop condition in
line 4 of Algorithm 4). Moreover, as soon as it finds two
uncovered targets for which two test cases t1 and t2 do not
dominate each other (lines 11-12 Algorithm 4), the iteration
is terminated without analysing further uncovered targets.

Crowding distance. Once a rank is assigned to all can-
didate test cases, the crowding distance is used to give higher
probability of being selected to some test cases in the same
front. As measure for the crowding distance, we use the sub-
vector dominance assignment proposed by Köppen et al. [31]
for many-objective optimisation problems. Specifically, the
loop at line 12 in Algorithm 2 and the following lines 16
and 17 add as many test cases as possible to the next
generation, according to their assigned ranks, until reaching



Algorithm 4: DOMINANCE-COMPARATOR
Input:
Two test cases to compare t1 and t2
U = {u1, . . . , um} the set of coverage targets of a program.

1 begin
2 dominates1←− false
3 dominates2←− false
4 for ui ∈ U and ui is uncovered do
5 f1

i ←− values of ui for t1
6 f2

i ←− values of ui for t2
7 if f1

i < f2
i then

8 dominates1←− true

9 if f2
i < f1

i then
10 dominates2←− true

11 if dominates1 == true & dominates2 == true then
12 break

13 if dominates1 == dominates2 then
14 // t1 and t2 do not dominate each other

15 else
16 if dominates1 == true then
17 // t1 dominates t2

18 else
19 // t2 dominates t1

Algorithm 5: UPDATE-ARCHIVE
Input:
A set of candidate test cases T
An archive A
Result: An updated archive A

1 begin
2 for ui ∈ U do
3 tbest ←− ∅
4 best length←− ∞
5 if ui already covered then
6 tbest ←− test case in A covering ui

7 best length←− number of statements in tbest

8 for tj ∈ T do
9 score←− objective score of tj for target ui

10 length←− number of statements in tj
11 if score == 0 and length ≤ best length then
12 replace tbest with tj in A
13 tbest ←− tj
14 best length←− length

15 return A

the population size. The algorithm first selects the non-
dominated test cases from the first front (F0); if the number
of selected test cases is lower than the population size M ,
the loop selects more test cases from the second front (F1),
and so on. The loop stops when adding test cases from
current front Fd exceeds the population size M . At end of
the loop (lines 16-17), when the number of selected test cases
is lower than the population size M , the algorithm selects
the remaining test cases from the current front Fd according
to the descending order of crowding distance.

Archiving. As a further peculiarity with respect to other
many-objective algorithms, MOSA uses a second popula-
tion, called archive, to keep track of the best test cases that
cover targets of the program under test. Specifically, when-
ever new test cases are generated (either at the beginning
of search or when creating offsprings) MOSA stores those
tests that satisfy previously uncovered targets in the archive
as candidate test cases to form the final test suite (line 4 and
7 of Algorithm 2). To this aim, function UPDATE-ARCHIVE
(reported in Algorithm 5 for completeness) updates the set

of test cases stored in the archive with the new generated test
cases. This function considers both the covered targets and
the length of test cases when updating the archive: for each
covered target ui it stores the shortest test case covering ui
in the archive.

In summary, generation by generation MOSA focuses
the search towards the uncovered targets of the pro-
gram under test (both PREFERENCE-SORTING and FAST-
NONDOMINATED-SORT routines analyse the objective
scores of the candidate test cases considering the uncovered
targets only); it also stores the shortest covering test cases in
an external data structure (i.e., the archive) to form the final
test suite. Finally, since MOSA uses the crowding distance
when selecting the test cases, it promotes diversity, which
represents a key factor to avoid premature convergence
toward sub-optimal regions of the search space [28].

3.2.2 Graphical Interpretation
Let us consider the simple program shown in Figure 2-a.
Let us assume that the coverage criterion is branch coverage
and that the uncovered targets are the true branches of state-
ments 1 and 3, whose branch predicates are (a == b) and
(b == c) respectively. According to the proposed many-
objective formulation, the corresponding problem has two
residual optimisation objectives, which are f1 = al(b1) +
d(b1) = abs(a − b) and f2 = al(b2) + d(b2) = abs(b − c).
Hence, any test case produced at a given generation g
corresponds to some point in a two-dimensional objective
space as shown in Figure 2-b and 2-c. Unless both a and b are
equal, the objective function f1 computed using the combi-
nation of approach level and branch distance is greater than
zero. Similarly, function f2 is greater than zero unless b and
c are equal.

Let us consider the scenario reported in Figure 2-b where
no test case is able to cover the two uncovered branches
(i.e., in all cases f1 > 0 and f2 > 0). If we use the
traditional non-dominance relation between test cases, all
test cases corresponding to the black points in Figure 2-b
are non-dominated and form the first non-dominated front
F0. Therefore, all such test cases have the same probability
of being selected to form the next generation, even if test
case A is the closest to the Cartesian axis f2 (i.e., closest
to cover branch b2) and test case B is the closest to the
Cartesian axis f1 (branch b1). Since there is no preference
among test cases in F0, it might happen that A and/or
B are not kept for the next generation, while other, less
useful test cases in F0 are preserved. This scenario is quite
common in many-objective optimisation, where the number
of non-dominated solutions increases exponentially with
the number of objectives [55]. However, from the branch
coverage point of view the two test cases A and B are better
(fitter) than all other test cases, because they are the closest
to covering each of the two uncovered branches.

Our novel preference criterion gives a higher priority to
test cases A and B with respect to all other test cases, guar-
anteeing their survival in the next generation. In particular,
using the new ranking algorithm proposed in this paper (see
Algorithm 3), the first non-dominated front F0 will contain
only test cases A and B (see Figure 2-c), while all other
test cases will be assigned to other, successive fronts. When
there are multiple test cases that are closest to one axis,



Instructions
s int example(int a, int b, int c)

{
1 if (a == b)
2 return 1;
3 if (b == c)
4 return -1;
5 return 0;

}

(a) Example program
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(c) Ranking based on the proposed prefer-
ence criterion

Fig. 2. Graphical comparison between the non-dominated ranks assign-
ment obtained by the traditional non-dominated sorting algorithm and
the ranking algorithm based on the preference criterion proposed in this
paper.

associated with a given uncovered branch, the preference
criterion provides a further strategy to impose an order to the
non-dominated test cases by assigning rank 0 to the shortest
test case only.

3.2.3 DynaMOSA: Dynamic Selection of the Optimisation
Targets
One main limitation in MOSA is that it considers all cover-
age targets as independent objectives to optimise since the
first generation. However, there exist structural dependen-
cies among targets that should be considered when deciding
which targets/objectives to optimise. For example, some
targets can be satisfied if and only if other related targets
are already covered.

To better explain this concept, let us consider the exam-
ple in Figure 3. The four branches to be covered, b1, b2, b3, b4,
are not independent from each other. In fact, coverage of
b2, b3 can be achieved only after b1 has been covered, since

Instructions
s int example(int a, int b, int c)

{
int x = 0;

1 if (a == b) // b1
2 if (a > c) // b2
3 x = 1;
4 else // b3
5 x = 2;
6 if (b == c) // b4
7 x = -1;
8 return x;

}

(a) Example program
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(b) Control dependency graph

Fig. 3. Since b1 holds a control dependency on b2, b3, targets b2, b3 are
dynamically selected only once b1 is covered.

the former targets are under the control of the latter. In
other words, there is a control dependency between b1 and
b2, b3, which means that the execution of b2, b3 depends
on the outcome of the condition at node 2, which in turn
is evaluated only once target b1 is covered. If no test case
covers b1, the ranking in MOSA is determined by the fitness
function f1 = d(b1). When tests are evaluated for the
two dependent branches b2 and b3, the respective fitness
functions will be equal to f1 + 1, since the only difference
from coverage of b1 consists of a higher approach level (in
this case, +1), while the branch distance d is the same. Since
the values of f2 and f3 are just shifted by a constant amount
(the approach level) with respect to f1, the test case ranking
is the same as the one obtained when considering f1 alone.
This means that taking into account objectives f2, f3 during
preference sorting is useless, since they do not contribute to
the final ranking.

The example illustrated above shows that coverage tar-
gets can be organised into a priority hierarchy based on the
following concepts in standard flow analysis:

Definition 4 (Dominator): A statement s1 dominates another
statement s2 if every execution path to s2 passes through s1.

Definition 5 (Post-dominator): A statement s1 post-dominates
another statement s2 if every execution path from s2 to the exit
point (return statement) passes through s1.

Definition 6 (Control dependency): There is a control depen-
dency between program statement s1 and program statement s2



iff: (1) s2 is not a postdominator of s1 and (2) there exists a path
in the control flow graph between s1 and s2 whose nodes are
postdominated by s2.

Condition (1) in the definition of control dependency en-
sures that s2 is not necessarily executed after s1. Condition
(2) ensures that once a specific path is taken between s1
and s2, the execution of s2 becomes inevitable. Hence, s1 is
a decision point whose outcome determines the inevitable
execution of s2.
Definition 7 (Control dependency graph): The graph G =
〈N,E, s〉, consisting of nodes n ∈ N that represent program
statements and edges e ∈ E ⊆ N × N that represent control
dependencies between program statements, is called control de-
pendency graph. Node s ∈ N represents the entry node, which is
connected to all nodes that are not under the control dependency
of another node.

The definition of control dependency given above can
be easily extended from program statements to arbitrary
coverage targets. For instance, given two branches to be
covered, b1, b2, we say b1 holds a control dependency on
b2 if b1 is postdominated by a statement s1 which holds a
control dependency on a node s2 that postdominates b2.

In DynaMOSA, the control dependency graph is used
to derive which targets are independent from any others
(targets that are free of control dependencies) and which
ones can be covered only after satisfying previous targets in
the graph. The difference between DynaMOSA and MOSA
are illustrated in Algorithms 6. At the beginning the search
process, DynaMOSA selects as initial set of objectives only
those targets that are free of control dependencies (line 2).
Once the initial population of random test cases is generated
(line 4), the current set of targets U∗ is update using the
routine UPDATE-TARGET highlighted in Algorithm 7. This
routine is also called at each iteration in order to update
the current set of targets U∗ to consider at each generation
depending on the results of the execution of the offspring
(line 10 in Algorithms 6). Therefore, fitness evaluation (line
8), preference sorting (line 12), and crowding distance (line
16) are computed only considering the targets in U∗ ⊆ U .

The routine UPDATE-TARGET is responsible for dy-
namically updating the set of selected targets U∗ so as to
include any uncovered targets that are control dependent
on the newly covered target. It iterates over all targets in
U∗ ⊆ U (loop in lines 2-6 of Algorithm 7) and in case of
newly covered targets (condition in line 3) it visits the con-
trol flow graph to find all control dependent targets. Indeed,
Algorithm 7 uses a standard graph visit algorithm, which
stops its visit whenever an uncovered target is encountered
(lines 7-13). In such a case, the encountered target is added
to the set of targets U∗, to be considered by DynaMOSA in
the next generation. If the encountered target is covered, the
visit continues recursively until the first uncovered target
is found or all targets have been already visited (lines 9-
11). This ensures that only the first uncovered target, en-
countered after visiting a covered target, is added to U∗.
All following uncovered targets are just ignored, since the
graph visit stops2.

2. For simplicity, we only consider the case of targets associated with
graph edges, but the same algorithm works if targets are associated
with nodes

Algorithm 6: DynaMOSA
Input:
U = {u1, . . . , um} the set of coverage targets of a program.
Population size M
G = 〈N,E, s〉: control dependency graph of the program
φ : E → U : partial map between edges and targets
Result: A test suite T

1 begin
2 U∗ ←− targets in U with not control dependencies
3 t←− 0 // current generation
4 Pt ←− RANDOM-POPULATION(M )
5 archive←− UPDATE-ARCHIVE(Pt, ∅)
6 U∗ ←−UPDATE-TARGETS(U∗, G, φ)
7 while not (search budget consumed) do
8 Qt ←− GENERATE-OFFSPRING(Pt)
9 archive←− UPDATE-ARCHIVE(Qt, archive)

10 U∗ ←−UPDATE-TARGETS(U∗, G, φ)
11 Rt ←− Pt

⋃
Qt

12 F←− PREFERENCE-SORTING(Rt, U
∗)

13 Pt+1 ←− ∅
14 d←− 0
15 while | Pt+1 | + | Fd |6 M do
16 CROWDING-DISTANCE-ASSIGNMENT(Fd, U

∗)
17 Pt+1 ←− Pt+1

⋃
Fd

18 d←− d+ 1

19 Sort(Fd) //according to the crowding distance
20 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

21 t←− t+ 1

22 T ←− archive

Algorithm 7: UPDATE-TARGETS
Input:
G = 〈N,E, s〉: control dependency graph of the program
U∗ ⊆ U : current set of targets
φ : E → U : partial map between edges and targets
Result:
U∗: updated set of targets to optimise

1 begin
2 for u ∈ U∗ do
3 if u is covered then
4 U∗ ←− U∗ − {u}
5 eu ←− edge in G for the target u
6 visit(eu)

7 Function visit(eu ∈ E)
8 for each unvisited en ∈ E control dependent on eu do
9 if φ(en) is not covered then

10 U∗ ←− U∗ ∪ {φ(en)}
11 set en as visited

12 else
13 visit(en)

In this way, the ranking performed by MOSA remains
unchanged (a formal proof of this is provided below), while
convergence to the final test suite is achieved faster, since
the number of objectives to be optimised concurrently is
kept smaller. Intuitively, the ranking of MOSA is unaffected
by the exclusion of targets that are controlled by uncovered
targets because such excluded targets induce a ranking of
the test cases which is identical to the one induced by the
controlling nodes.

There are two main conditions that must be satisfied to
justify the dynamic selection of the targets produced by the
execution of Algorithm 6:

1) Since at each generation, the set U∗ used by Dy-
naMOSA contains all targets with minimum ap-
proach level, for each remaining target ui in U −U∗
there should exist a target u∗ ∈ U∗ such that
f(ui) = f(u∗) +K .



2) The computation cost of the routine UPDATE-
TARGETS in Algorithm 7 should be negligible if
compared to cost of computing preference sorting
and crowding distance for the all uncovered targets.

The first condition is ensured by Theorem 1, presented in
the following. The second is not ensured theoretically, but it
was found empirically to hold in practice.

DynaMOSA generates test cases with minimum distance
from U∗, the set of uncovered targets directly reachable
through a control dependency edge of one or more test case
execution trace. On the other hand, MOSA generates test
cases with minimum distance from the full set of uncovered
targets, U . The two minimisation processes are equivalent
if and only if the test cases at minimum distance from the
elements of U∗ are also the test cases at minimum distance
from U . The following Theorem provides a theoretical justi-
fication for the dynamic selection of a subset of the targets
produced by the execution of Algorithm 7, by proving that
the two sets of test cases optimised respectively by MOSA
(Tmin) and DynaMOSA (T0) are the same.
Theorem 1: Let U be the set of all uncovered targets; Tmin the set
of test cases with minimum approach level from U and T0 the test
cases with approach level zero; U∗ be the set of uncovered targets
at approach level zero from one or more test cases t ∈ T0, then the
two sets of test cases Tmin and T0 are the same, i.e., Tmin = T0.
Proof: Since the approach level is always greater than or equal
to zero, the approach level of the elements of T0 is ensured to be
minimum. Hence, T0 ⊆ Tmin. Let us now prove by contradiction
that there cannot exist any uncovered target u associated with
a test case t whose approach level from u is strictly greater than
zero, such that t does not belong to T0. Let us consider the shortest
path from the execution trace of t to u in the control dependency
graph. The first node u′ in such path belongs to U∗, since it is an
uncovered target and it has approach level zero from the trace of
t. Indeed, it is an uncovered target because otherwise the test case
t′ that covers it would have an execution trace closer to u than t.
Since it satisfies the relation approach level(t, u′) = 0, test case t
must be an element of T0. Hence, Tmin cannot contain any test
case not in T0 and the equality Tmin = T0 must hold. �

Since the same set of test cases are at minimum distance
from either U or U∗, the test case selection performed by
MOSA, based on the distance of test cases from U , is algo-
rithmically equivalent to the test case selection performed
by DynaMOSA, based on the distance of test cases from U∗.

The fact that DynaMOSA iterates over a lower number
of targets (U∗ ⊆ U ) with respect to MOSA has direct
consequences on the computational cost of each single gen-
eration. In fact, in each generation the two many-objective
algorithms share two routines: the PREFERENCE-SORTING
and the CROWDING-DISTANCE-ASSIGNMENT routines,
as shown in Algorithms 2 and 6. For the fronts following
the first one, the routine PREFERENCE-SORTING relies on
the traditional FAST-NON-DOMINATED-SORT by Deb et
al. [13] , which has an overall computation complexity of
O(M2 × N) where M is the size of the population and
N is the number of objectives. Thus, for MOSA the cost
of such routine is O(M2 × |U |) where U is the set of
uncovered targets in a given generation. For DynaMOSA,
the computational cost is reduced to O(M2 × |U∗|) with
U∗ ⊆ U being the set of uncovered targets with minimum

approach level. For trivial classes where all targets have no
structural dependencies (i.e., classes with only branchless
methods), the cost of PREFERENCE-SORTING will be the
same since U∗ = U . However, for non-trivial classes we
would expect U∗ ⊂ U leading to a reduced computational
complexity.

A similar analysis can be performed for the other shared
routine, i.e., CROWDING-DISTANCE-ASSIGNMENT. Ac-
cording to Köppen et al. [31], the cost of such a routine when
using the sub-vector dominance assignment is O(M2 × N)
whereM is the size of the population whileN is the number
of objectives. Therefore, for MOSA the cost of such routine
is O(M2 × |U |) where U is the set of uncovered targets in a
given generation; while for DynaMOSA it is O(M2 × |U∗|).
For non-trivial classes, DynaMOSA will iterate over a lower
number of targets as long as the condition U∗ ⊂ U holds.

Moreover, MOSA requires to compute the fitness scores
(e.g., approach level and branch distances in branch cover-
age) for all uncovered targets U and for each newly gener-
ated test case. In particular, for each test case MOSA requires
to compute the distances between execution traces and all
targets in U . Instead, DynaMOSA focuses only on coverage
targets with minimum approach levels, thus, requiring to
compute the fitness scores for U∗ ⊆ U only.

The additional operations of DynaMOSA with respect to
MOSA are the construction of the intra-procedural control
dependency graph and its visit for target selection. The cost
for intra-procedural control dependency graph construction
is paid just once for all test case generation iterations and
the computation of the graph can be carried out offline,
before running the algorithm. The visit of the control de-
pendency graph for coverage target selection can be per-
formed very efficiently (for structured programs the graph
is a tree). As a consequence, the saving in the computa-
tion of PREFERENCE-SORTING, CROWDING-DISTANCE-
ASSIGNMENT and fitness scores performed by DynaMOSA
vs. MOSA is expected to dominate the overall execution
time of the two algorithms, while the visit of the control
dependency graph performed by DynaMOSA is expected to
introduce a negligible overhead. This was confirmed by our
experiments. In fact, in our experiments the intra-procedural
control dependency graphs of the methods under test and
their visit consumed a negligible amount of execution time
in comparison with the time taken by the extra computa-
tions performed by MOSA.

4 EMPIRICAL EVALUATION

This section details the empirical study we carried out to
evaluate the proposed many-objective test case generation
algorithms with respect to three testing criteria: (i) branch
coverage, (ii) statement coverage, and (iii) strong-mutation
coverage.

4.1 Subjects

The context of our study is a random selection of classes from
four test benchmarks: (i) the SF110 corpus [18]; (ii) the SBST
tool contest 2015 [53]; (iii) the SBST tool contest 2016 [49];
and (iv) the benchmark used in our previous conference
paper [42].



The SF110 benchmark3 is a corpus of Java classes com-
posed of a representative sample of 100 projects from the
SourceForge.net repository, augmented with 10 of the most
popular projects in the repository, for a total of 23,886
classes. We selected this benchmark since it has been widely
used in the literature to assess test case generation tools [18],
[51], [48]. However, Shamshiri et al. [51] showed that the
vast majority of classes in the FS110 corpus are trivial to
cover fully, even with random search algorithms. In fact,
they observed that most of the classes in this corpus do
not require the usage of evolutionary algorithms. Hence, for
our evaluation we selected only non-trivial classes from this
benchmark. To this aim, we first computed the McCabe’s
cyclomatic complexity [36] for each method in FS110 by
means of the extended CKJM library4. The McCabe’s cyclo-
matic complexity of a method is defined as the number of
independent paths in the control flow graph and can be
shown (for structured programs) to be equal to the number
of branches plus one. We found that 56% of the classes in
SF110 are trivial, containing only methods with cyclomatic
complexity equal to 1. These are branchless methods that
can be fully covered by a simple method call. Therefore,
we pruned this benchmark by removing all classes whose
methods have a cyclomatic complexity lower than five5.
This filtering resulted in a smaller benchmark composed
of 96 projects and 23% of classes from the original SF110
corpus. Among those 96 projects, 18 projects contain only a
single non-trivial class after our filter. For our experiment,
we randomly sampled 2 classes from each of the 78 projects
containing multiple non-trivial classes, and we selected the
available non-trivial classes from each of the remaining 18
projects. In addition, we randomly sampled two further
classes for each of the most popular projects (11 projects),
and one additional class for each of the eight larger projects
in the repository. This resulted in 204 non-trivial classes.

From the latest two editions of the SBST unit test tool
contests [53], [49] we selected 97 subjects: 46 classes from the
third edition [53] and 51 classes from the fourth edition [49]
of the contest. From the original set of classes in the two
competitions, we removed all duplicate classes belonging
to different versions of the same library since we would
not expect any relevant difference over different versions
in terms of branch, statement, or mutation coverage. We
selected these two benchmarks because they contain java
classes with different characteristics and belonging to dif-
ferent application domains. In addition, they have been
recently used to assess the performance of different test
generation techniques.

Our last benchmark is the one used in our previous
conference paper [42], from which we consider all classes
used in our previous empirical study. While the original
dataset includes 64 classes, in the present study we report
the results for 45 classes, since 19 classes are shared with
the SF110 corpus and with the latest SBST unit test tool
contest [49].

In total, the selected 346 Java classes have 360,941 state-
ments, 61,553 branches, and 117,816 mutants that are consid-

3. http://www.evosuite.org/experimental-data/sf110/
4. http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/
5. A method with cyclomatic complexity equal to five contains at

least two conditional statements.

TABLE 1
Java projects and classes in our study

Project Name Classes Branches Statements Mutants
Min Mean Max Min Mean Max Min Mean Max

a4j 2 31 78 125 231 1134 2038 15 477 940
apbsmem 2 41 215 390 283 2303 4323 315 371 427
asphodel 1 42 42 42 353 353 353 84 84 84
at-robots2-j 2 37 81 125 512 672 832 233 336 439
battlecry 2 78 179 281 1588 1947 2306 349 604 859
beanbin 2 41 44 47 242 298 355 114 128 142
biblestudy 2 33 35 37 280 381 483 151 193 236
biff 1 817 817 817 7012 7012 7012 488 488 488
bpmail 1 27 27 27 215 215 215 51 51 51
byuic 4 39 357 740 296 2038 4846 59 281 664
caloriecount 3 25 94 232 58 541.67 1425 5 311 909
celwars2009 2 11 185 360 135 1137 2139 39 448 857
checkstyle 6 9 41 111 92 294 412 16 214 517
classviewer 3 60 155 235 327 1219 2315 208 451 630
commons-cli 2 133 146 159 605 788 972 323 407 492
commons-codec 1 504 504 504 2385 2385 2385 725 725 725
commons-collections 3 28 113 221 276 389 576 289 671 904
commons-lang 14 40 309 1163 216 1543 5348 125 571 1086
commons-math 21 26 104 266 165 952 3184 57 467 979
compiler 9 73 293 758 121 1178 3734 151 448 787
corina 1 55 55 55 282 282 282 152 152 152
db-everywhere 2 13 83 153 97 900 1704 13 297 582
dcparseargs 1 80 80 80 571 571 571 220 220 220
diebierse 2 27 54 81 250 636 1022 39 213 388
diffi 2 20 27 35 152 248 344 214 241 268
dsachat 2 69 83 98 857 880 904 319 375 432
dvd-homevideo 3 29 55 84 947 1188 1386 52 82 98
ext4j 2 11 75 139 69 463 857 58 161 265
feudalismgame 3 11 285 788 104 1796 4873 99 159 226
fim1 2 25 49 73 170 655 1140 37 100 163
firebird 3 99 445 1040 581 2698 6591 0 245 387
fixsuite 2 35 54 74 335 483 631 108 204 301
follow 2 20 27 35 108 214 321 449 489 529
fps370 2 70 110 151 668 1320 1973 726 807 888
freemind 2 29 118 208 434 1027 1621 132 476 820
gangup 1 32 32 32 438 438 438 191 191 191
geo-google 2 24 27 30 44 95 147 20 59 99
gfarcegestionfa 2 76 99 123 503 826 1150 146 515 884
glengineer 2 23 69 115 325 491 658 154 267 380
gsftp 2 29 60 91 191 650 1110 104 471 839
guava 11 28 115 325 46 385 1114 53 390 886
heal 2 38 106 175 448 1155 1863 88 174 261
hft-bomberman 2 13 70 128 134 491 849 21 86 151
hibernate 1 4 4 4 62 62 62 6 6 6
httpanalyzer 2 56 128 200 656 2824 4992 407 537 667
ifx-framework 1 72 72 72 462 462 462 139 139 139
imsmart 1 15 15 15 69 69 69 29 29 29
inspirento 2 27 61 95 327 488 649 221 331 441
io-project 1 66 66 66 282 282 282 96 96 96
ipcalculator 2 55 79 103 1077 1252 1428 300 362 425
javabullboard 2 98 119 141 715 942 1170 432 445 458
javaml 7 12 39 56 120 303 448 58 194 273
javathena 4 49 206 330 197 1995 4279 65 372 784
javaviewcontrol 3 32 876 2373 179 2989 7027 91 446 712
javex 1 173 173 173 1023 1023 1023 208 208 208
jaw-br 2 28 38 48 196 232 269 61 78 95
jclo 1 133 133 133 987 987 987 383 383 383
jcvi-javacommon 2 29 45 61 232 236 240 169 251 334
jdbacl 2 188 193 198 1339 1475 1611 592 653 715
jdom 5 50 111 264 168 592 1116 18 298 895
jfree-chart 12 13 235 1005 74 1647 6610 18 488 907
jgaap 1 23 23 23 1245 1245 1245 59 59 59
jhandballmoves 2 26 29 32 234 307 380 23 41 60
jiggler 4 33 70 118 459 648 1205 211 555 985
jipa 2 24 79 134 124 453 783 87 241 395
jiprof 4 76 451 824 430 2612 5299 160 499 774
jmca 4 199 2515 7939 966 5887 16624 0 329 559
joda 13 53 214 697 366 1003 1892 152 469 866
jopenchart 2 20 56 92 241 690 1139 72 300 529
jsci 4 84 245 436 760 2331 3756 223 597 980
jsecurity 3 36 91 170 207 444 725 167 272 438
jtailgui 2 13 18 23 158 244 331 21 107 193
jwbf 2 45 48 52 225 312 399 101 109 117
lagoon 2 63 64 65 675 841 1007 80 97 115
lavalamp 1 18 18 18 122 122 122 61 61 61
lhamacaw 2 23 46 70 416 565 714 115 144 174
liferay 2 78 85 93 406 434 462 55 160 266
lilith 1 134 134 134 496 496 496 183 183 183
lotus 2 24 26 28 122 123 125 12 31 51
mygrid 2 28 28 28 113 113 113 35 35 35
netweaver 2 69 71 73 249 284 320 46 100 155
newzgrabber 3 32 126 268 404 973 1552 48 301 625
noen 2 67 69 71 316 456 597 145 200 256
nutzenportfolio 2 21 34 48 817 856 895 78 104 131
objectexplorer 2 17 96 175 47 517 987 48 147 246
omjstate 1 30 30 30 139 139 139 34 34 34
openhre 2 50 73 97 220 577 934 143 198 253
openjms 2 34 67 101 190 540 891 70 129 189
pdfsam 2 19 30 41 248 313 378 57 83 110
petsoar 2 16 31 47 61 182 303 56 79 102
quickserver 4 69 218 501 488 1669 3697 15 257 747
resources4j 1 176 176 176 1539 1539 1539 714 714 714
rif 1 21 21 21 94 94 94 56 56 56
saxpath 2 55 269 484 115 574 1034 128 393 659
schemaspy 2 17 198 380 140 1190 2241 21 311 602
scribe 6 2 13 37 14 113 355 1 24 47
sfmis 1 32 32 32 437 437 437 427 427 427
shop 4 41 108 192 316 828 1329 175 303 465
squirrel-sql 2 21 36 51 51 90 130 93 100 108
sugar 2 24 37 51 113 298 484 8 75 142
summa 4 30 197 372 185 1222 2114 95 357 680
sweethome3d 4 155 339 619 841 1913 3368 165 433 675
tartarus 3 228 344 514 1164 2094 3775 638 835 942
templateit 2 31 42 54 123 258 394 59 86 113
trans-locator 2 23 28 34 297 424 551 214 339 464
trove 10 0 124 281 232 683 1842 109 683 999
tullibee 2 20 20 21 97 101 106 175 186 198
twfbplayer 2 74 115 156 424 839 1255 383 402 422
twitter4j 7 25 104 319 227 1313 6320 107 257 401
vuze 2 119 126 134 657 666 675 292 387 482
water-simulator 2 59 98 137 888 1162 1436 274 606 939
weka 4 29 338 809 274 2773 7809 126 405 793
wheelwebtool 4 40 272 817 371 1598 3944 77 392 679
wikipedia 4 19 35 72 61 325 796 52 143 394
xbus 2 18 23 28 170 219 269 54 68 83
xisemele 1 27 27 27 152 152 152 70 70 70
xmlenc 2 182 698 1214 693 1439 2186 466 657 848

Total 346

ered as coverage targets in our experiment. Table 1 reports
the characteristics of the selected classes, grouped by project.
Specifically, it reports the number of classes selected for each
project as well as minimum, average (mean), and maximum
number of statements, branches and mutants contained in



those classes. The number of branches in each class ranges
between 2 (a class from the SBST contest) and 7,939, while
the number of statements ranges between 14 and 16,624; the
number of mutants ranges between 0 and 1,086 (EvoSuite
was unable to inject any mutant into two of the selected
classes; however, we kept them for the other two coverage
criteria). It is worth noticing that, according to the survey
by Li et al. [34], existing many-objective algorithms can deal
with up to 50 objectives, while in our study most of selected
classes contain hundreds and thousands of objectives (e.g.,
mutants to kill). This confirms the need for designing new
many-objective algorithms suitable for test case generation
given the very high number of coverage targets as compared
to the number of objectives (≤ 50) encountered in traditional
many- and multi-objective problems.

4.2 Research Questions

The empirical evaluation aims at answering the following
research questions:

• RQ1: How does DynaMOSA perform compared to alter-
native approaches on branch coverage?

• RQ2: How does DynaMOSA perform compared to alter-
native approaches on statement coverage?

• RQ3: How does DynaMOSA perform compared to alter-
native approaches on strong mutation coverage?

The three research questions above aim at evaluating the
benefits introduced by the many-objective reformulation of
testing criteria —branch, statement and mutation— and to
what extent the proposed DynaMOSA algorithm is able to
cover more test targets (effectiveness) when compared to
alternative approaches for test generation problems. When
no difference is detected in the number of covered test
targets, we analyse to what extent the proposed approach
is able to reach higher code coverage when considering
different search time intervals (efficiency).

To evaluate the internal functioning of our new sorting
algorithm (Algorithm 3), which combines both our preference
criterion and Pareto-based ranking, we formulate the following
additional research question:

• RQ4 (internal assessment): How do preference cri-
terion and Pareto dominance affect the effectiveness of
DynaMOSA?

In answering this research question, we consider the two
sub-questions below:

• RQ4.1: What is the effectiveness of DynaMOSA’s Pareto-
based ranking alone, when applied without the preference
criterion?

• RQ4.2: What is the effectiveness of DynaMOSA’s prefer-
ence criterion alone, when applied without Pareto-based
dominance ranking?

4.3 Baseline Selection

To answer our first three research questions, we selected the
following approaches for comparison with DynaMOSA:

• Many-objective sorting algorithm (MOSA). It is the
many-objective solver we developed in our previous

paper [42] for branch coverage. While in our previ-
ous paper we used MOSA only for branch coverage
criterion, in this paper (see section 3.2) we have
described how this algorithm can be also used for
other criteria. Therefore, we use MOSA as baseline
for the first three research questions.

• Whole Suite approach with Archive (WSA). It is an
extension of the more traditional whole suite ap-
proach recently proposed by Rojas et al. [48] and
implemented in EvoSuite. In particular, WSA is a
hybrid approach that implements some routines of
our MOSA algorithm along with the original whole
suite approach. First, WSA uses an archive to store
test cases that cover one or more coverage targets
(e.g., branches) [48]. Such an archive operator works
at test case level and not at test suite level, which
is the usual granularity of the whole suite approach.
Second, WSA focuses the search on uncovered coverage
targets only, which is also one of the core proper-
ties we developed in MOSA (and DynaMOSA too).
Finally, the final test suite is not represented by
the best individual (candidate suite) from the last
generation of GA, but it is artificially synthesised
by taking those test cases stored in the archive and
that come from different suites. While WSA has been
shown to outperform both standard WS and one-
target approaches, it departs from the original WS
principle of test suite evolution [48]. For our study, we
could use WSA as baseline only for RQ1 and RQ3

because no archive strategy has been implemented
in EvoSuite for statement coverage.

• Traditional Whole Suite approach (WS). This is the
traditional, pure whole suite approach without any
archive strategy [17]. Thus, the final test suite pro-
vided to developers is the best individual (candidate
suite) from the last generation of the genetic algo-
rithm. We used WS as baseline only for RQ2 since
for statement coverage no WSA variant is available
in EvoSuite. While WS could be used as additional
baseline also for RQ1 and RQ3, we discarded this
scenario since Rojas et al. [48] already showed the
superiority of WSA over WS for branch coverage.

MOSA is a natural baseline to compare with, in order
to investigate the benefits achieved when dynamically re-
ducing the number of objectives to be optimised at each
generation. This comparison allows us also to empirically
validate our discussion on the computational cost of Dy-
naMOSA vs. MOSA reported in Section 3. WSA is the main
baseline, because it has been shown to outperform standard
WS and the single-target approach. Since WSA is a hybrid
solution that incorporates the archiving core routines of
MOSA (and DynaMOSA), such comparison allows us to
understand to what extent benefits in effectiveness or efficiency
stem from our many-objective reformulation and not from our
archiving mechanism. It is also worth noticing that WSA
won the last SBST tool contest (edition 2016) against other
tools, such as JTexPert [50] (evolutionary), T3 [45] (random
testing). Finally, DynaMOSA, MOSA, WS and WSA are
implemented in the same tool (i.e., EvoSuite) avoiding pos-
sible confounding factors [48] due to the usage of different



tools with different implementation choices (e.g., different
libraries to build the control flow graph).

To address our last research question (RQ4), we selected
the following algorithms to compare against DynaMOSA:

• DynaMOSA with Pareto ranking alone (Dyna-
MOSARank). This variant of DynaMOSA uses only
the Pareto ranking to assign test cases to different
non-dominated fronts, without using our preference
criterion to further increase the selection pressure (see
Algorithm 3). Therefore, this variant corresponds to
the traditional NSGA-II algorithm, enriched with the
archive strategy and with a dynamic selection of
coverage targets. DynaMOSARank is used as baseline
to answer RQ4.1.

• DynaMOSA with preference criterion alone (Dyna-
MOSAPref). This variant of DynaMOSA uses our pref-
erence criterion without applying the Pareto ranking
algorithm to build the other non-dominated fronts.
Therefore, at each generation it creates only two
fronts: the first containing all best test cases se-
lected according to preference criterion, while all the
remaining tests are assigned to the second front (see
Algorithm 3). This variant also uses an archive to keep
track of test cases as soon as they reach uncovered
targets (see Algorithm 2). DynaMOSAPref is used as
baseline to answer RQ4.2.

4.4 Prototype Tool
We have implemented our many-objective algorithms
MOSA and DynaMOSA in a prototype tool that extends
the EvoSuite test data generation framework [17], [48]. In
particular, we implemented the two many-objective GAs
as described in Section 3 within EvoSuite version 1.0.3,
downloaded from GitHub6 on May 15th, 2016. All other
details (e.g., encoding schema, genetic operators, etc.) are
those implemented in EvoSuite [17], [48]. According to the
encoding schema available in EvoSuite for test cases, a test
case is a statement sequence t = 〈s1, s2, . . . , sn〉 of length n.
Each statement has a type belonging to one of five kinds of
statements: (i) primitive statement, (ii) constructor statement,
(iii) field statement, (iv) method statement and (v) assignment
statement. Note that the representation has variable size, i.e.,
the number of statements n in each test can vary during the
GA search. Test cases are evolved through the application of
selection, crossover and mutation operators. Pairs of test cases
(parents) are selected using tournament selection according
to their non-dominance ranks. Parents are recombined us-
ing the single-point crossover, which generates offsprings by
exchanging statements between the two parent test cases.
Finally, test cases are mutated using uniform mutation, which
randomly removes, changes or inserts statements in a given
test case. Since our many-objective algorithm uses Pareto-
based ranking, we implemented the tournament selection
operator based on dominance ranking and crowding distance
as defined in NSGA-II (see Algorithm 2).

The tool, along with a replication package, is avail-
able for download here: http://selab.fbk.eu/kifetew/mosa.
html.

6. https://github.com/EvoSuite/evosuite

4.5 Parameter setting
There are several parameters that control the performance
of the algorithms being evaluated. We adopted the default
parameter values used by EvoSuite [17], as it has been
empirically shown [2] that the default values, which are also
commonly used in the literature, give reasonably acceptable
results. Thus, here we only report a few of the important
search parameters and their values:

• Population size: we use the default population size
in EvoSuite, which is set to 50 individuals.

• Crossover: we use the default crossover operator
in EvoSuite, which is single-point crossover with
crossover probability set to 0.75 [17].

• Mutation: test cases are mutated by adding, delet-
ing, changing statements using uniform mutation with
mutation probability equal to 1/size, where size is the
number of statements contained in the test case to
mutate [17].

• Selection: we use the tournament selection available
in EvoSuite, with default tournament size equal to 10.

• Search Timeout: the search stops when the max-
imum search budget (max_time) is reached or if
100% coverage is achieved before consuming the
total allocated time. We set max_time to five min-
utes for branch and statement coverage, while we
increased the search timeout up to eight minutes
for strong mutation coverage. We used a larger
budget for strong mutation coverage because of the
additional overhead required by this criterion to re-
execute each test case against the target mutants.

It is important to notice that WSA, MOSA and DynaMOSA
work at two different granularity levels: WSA evolves test
suites while MOSA and DynaMOSA evolve test cases.
Therefore, in our many-objective algorithms the number of
individuals (i.e., test cases) is always the same (50 test cases).
Differently, in WSA each individual is a test suite which usu-
ally contains a variable number of test cases. The population
is composed of 50 test suites, where each suite can have a
variable number of test cases that can be added, deleted
or modified at each generation. The crossover operator also
works at two different levels of granularity: the single point
crossover in MOSA and DynaMOSA creates two offsprings
by recombining statements from the two parent test cases;
in WSA suite offsprings are generated by recombining test
cases composing the two parent suites. For WS and WSA the
winner of the tournament selection is the test suite with the
smaller (fitter) whole-suite fitness function, while in MOSA
and DynaMOSA the winner is the test case with the lowest
non-dominance rank or with the largest crowding distance for
test cases having the same non-dominance rank.

4.6 Experimental Protocol
For each class, and for each coverage criterion (statement,
branch, mutation), each search strategy (WSA, MOSA,
DynaMOSA) is executed and the resulting coverage is
recorded. The three coverage criteria are implemented as
fitness functions in EvoSuite and are used as guidance for
the search algorithms. For strong mutation, EvoSuite uses
its own mutation engine that generates mutated versions



of the code under test, which correspond to the adequacy
targets (mutants to kill). In each execution, an overall time
limit is imposed so that the run of an algorithm on a class is
bounded with respect to time. Hence, the search stops when
either full coverage is reached or the total allocated time is
elapsed. To allow reliable detection of statistical differences
between the strategies, each run is repeated 10 times. Con-
sequently, we performed a total of 3 (search strategies) × 3
(coverage criteria) × 346 (classes) × 10 (repetitions) = 31,140
test generator executions.

To answer RQ1, RQ2, and RQ3 in terms of effectiveness,
we measure the percentage of covered branches, statements,
and the percentage of killed mutants:

branch cov =
#covered branches

#total branches to be covered

statement cov =
#covered statements

#total statements to be covered

mutation cov =
#killed mutants

#total mutants to be killed

To measure the aforementioned metrics, we rely on the
internal engine of EvoSuite [48], which performs some post-
processing by re-executing the test suites obtained at the
end of the search process. During post-processing, EvoSuite
removes those statements that do not contribute to the final
coverage from each test case. It also removes redundant
test cases from the final test suite. After this minimisation
process, the final test suite is re-executed to collect its final
coverage metric. We execute the three selected algorithms
separately for each single coverage criterion, thus obtaining
the corresponding coverage score after the post-processing.

We also statistically analyse the results, to check whether
the differences between two different algorithms are sta-
tistically significant or not. To this aim we used the non-
parametric Wilcoxon test [8] with a p-value threshold of
0.05. Significant p-values indicate that the null hypothesis
can be rejected in favour of the alternative hypothesis, i.e.,
that one of the algorithms reaches a significantly higher
coverage. Besides testing the null hypothesis, we used the
Vargha-Delaney (Â12) statistic [54] to measure the effect size,
i.e., the magnitude of the difference between the coverage
scores achieved by two different algorithms. The Vargha-
Delaney (Â12) statistic is equal to 0.50 if the two compared
algorithms are equivalent, Â12 6= 0.50 otherwise. In our
case, an Â12 > 0.50 indicates that DynaMOSA reaches
a higher coverage than the alternative algorithm, while
Â12 < 0.50 indicates that the alternative algorithm is better
than DynaMOSA.

To quantify the efficiency of the compared algorithms, we
analyse their capability of reaching higher code coverage at
different points in time. While the effectiveness measures the
algorithm performance only at the end of the allocated time
(i.e., after five or eight minutes), we want also to analyse
how algorithms perform during the search. A simple way to
perform such a comparison consists of plotting the percent-
age of branches, statements or mutants killed by each algo-
rithm at predefined time intervals during the search process.
Such a convergence graph allows us to compare two or more
search algorithms, showing the percentage of covered test
goals at the same point in time. To this aim, we collected

the coverage achieved after intervals of 20 seconds for each
independent run, resulting in 16 coverage points for each
run (25 points for strong mutation coverage). To summarise
the efficiency of the experimented algorithms using a single
scalar value, we computed the overall convergence rate as
the area under the curve delimited by the convergence graph.
More formally, let PA = {p0, . . . , ph} be the set of points in
time considered for a given algorithm A. Let cov(pi) be the
percentage of targets covered by A at time pi. Let I be the
time elapsed between two consecutive points pi and pi+1.
The Area-Under-Curve (AUC) enclosed by these points is
computed using the trapezoidal rule:

AUC(PA) =

h−1∑
i=0

[cov(pi) + cov(pi+1)]× I

2× TotalRunningT ime
× 100 (10)

Such metric takes values in [0 : 100]. Higher AUC values are
preferable because they indicate that the algorithm is faster
in achieving higher levels of code coverage.

It is important to remark that we consider efficiency only
for classes where we do not observe a significant difference
in terms of effectiveness, i.e., branch coverage, statement
coverage or mutation coverage. In other words, the efficiency
performance metric is considered for comparison only in
cases where the algorithms under analysis achieve the same
coverage level. This is because focusing only on efficiency
without considering effectiveness is not meaningful (low cov-
erage can be easily achieved very efficiently). As done for
effectiveness, we measure the statistical significance of differ-
ences in efficiency using the non-parametric Wilcoxon test [8]
with a p-value threshold of 0.05, and the Vargha-Delaney
(Â12) statistic [54] to measure the effect size. In this case,
significant p-values indicate that one of the two algorithms
being compared converges quicker than the other to the final
coverage. Â12 > 0.50 indicates that DynaMOSA converged
to the final coverage more quickly than the alternative
algorithm, while Â12 < 0.50 indicates that DynaMOSA was
less efficient than the alternative algorithm, e.g., MOSA).

For the internal assessment (RQ4), we investigate the
effectiveness of DynaMOSA against two of its variants: (i)
a first variant, namely DynaMOSARank, which uses only the
Pareto-based dominance ranking; and (ii) a second variant,
namely DynaMOSAPref, which uses our preference criterion
alone. For DynaMOSA and for both DynaMOSA variants
we use an archive to store test cases as soon as they cover any
yet uncovered target. Therefore, any difference in efficiency
can be attributed only to the different ranking strategies
used by DynaMOSA or by its variants. To save space, the
comparison is reported only for branch coverage, since
consistent results are obtained for statement and strong
mutation coverage.

Given the large number of classes considered in the
experiments, we cannot report all p-values and Vargha-
Delaney Â12 scores measured for each class. Therefore, for
each project in our sample we report the number of times
(number of classes) the comparison is statistically significant
at level 0.05, as well as the corresponding number of times
(percentage) the Vargha-Delaney (Â12) statistic is greater or
lower than 0.50. Results at class level are available in our
replication package for the interested readers.



5 RESULTS

This section discusses the results of our study with the aim
of answering the research questions formulated in Section 4.
In the following, when comparing two different algorithms
we will refer to difference in code coverage as the arithmetic
difference between the two corresponding percentage cov-
erage scores.

5.1 RQ1: How does DynaMOSA perform compared to
alternative approaches on branch coverage?
Table 2 summarises the results achieved by WSA, MOSA,
and DynaMOSA for branch coverage. In particular, it re-
ports the percentage of classes in each project where the
effect size (Â12) is statistically greater/lower than 0.50. In
the following, we will refer to 335 classes only since in 11
classes in our sample EvoSuite crashed for some internal
errors.

From Table 2 we can observe that DynaMOSA is sig-
nificantly better than WSA in 93 classes out of 335, corre-
sponding to 28% of classes in our sample. The improvement
achieved in branch coverage using DynaMOSA, for classes
where statistically significant differences were observed,
ranges between 1% and 67%, with an average improve-
ment of 8%. On the other hand, we observe that WSA
is significantly better than DynaMOSA in 10 classes only,
while no statistically significant difference is observed in the
remaining 232 cases. Looking at the results at project level,
we find that in 43% of the projects DynaMOSA achieved
higher branch coverage than WSA on at least one class in
the project.

For example, if we consider class ControlFlow-
Analysis extracted from the compiler project, we can ob-
serve that WSA covers 184 branches (on average) while Dy-
naMOSA covers 287 (+25%) branches (on average) using the
same search budget. For larger classes, differences are even
larger. For example, for class JavaParserTokenManager
extracted from the project jmca, WSA covers 994 branches
(on average) against 1,157 (+10%) branches covered (on av-
erage) by DynaMOSA using the same search budget. Project
jmca is particularly interesting since it contains the largest
classes in our sample (two of the five selected classes have
more than 1,500 branches). On this project DynaMOSA is
significantly better than WSA in 75% of the selected classes
with Â12 = 1 in all cases.

Only in a few cases WSA is significantly better than
DynaMOSA (10 classes out of 335), with an average dif-
ference, over classes with significant differences, of 3%
in terms of branch coverage. The class with the highest
difference is JSJshop extracted from the project shop. For
this class, WSA is able to cover 93 branches (on average)
against 46 branches covered by DynaMOSA. After manual
investigation, we discovered that such a negative result is
due to test cases discarded because of the usage of test
case length (size) as secondary selection criterion in our
preference criterion. In order to verify this conjecture, we
ran DynaMOSA with the test size as secondary criterion
disabled. The obtained results show that DynaMOSA covers
on average 95 branches (+1.75%), with an effect size equal
to 0.83 and p-value = 0.01. Therefore, we conclude that
test case size as secondary preference criterion can have

TABLE 2
Mean branch coverage achieved for each project. We report the

percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name Classes
Branch Coverage Â12 Statistics

WSA MOSA Dyna- DynaMOSA vs WSA DynaMOSA vs MOSA
MOSA %> 0.50 %< 0.50 %> 0.50 %< 0.50

a4j 2 32.64 31.24 32.24 - 50.00 - -
apbsmem 2 50.13 50.13 50.13 - - - -
asphodel 1 2.38 2.38 2.38 - - - -
at-robots2-j 2 68.49 80.80 81.20 50.00 - - -
battlecry 2 36.07 16.85 39.81 - - - -
beanbin 2 79.14 77.92 77.92 - 50.00 - -
biblestudy 2 84.85 84.85 84.85 - - - -
biff 1 32.44 30.05 31.27 - - - -
byuic 3 51.01 52.76 54.56 33.33 - 66.67 -
caloriecount 3 97.28 98.99 98.99 66.67 - - -
celwars2009 2 9.37 9.37 9.37 - - - -
checkstyle 6 84.31 87.29 88.21 33.33 - - -
classviewer 3 61.19 61.29 61.49 - - - -
commons-cli 2 97.58 97.58 97.42 - - - -
commons-codec 1 91.37 90.97 92.46 100.00 - 100.00 -
commons-collections 2 97.29 96.78 97.74 50.00 - 50.00 -
commons-lang 14 94.89 94.41 95.40 28.57 - 28.57 -
commons-math 21 71.77 67.90 75.70 47.62 - 38.10 -
compiler 9 35.42 36.72 40.93 44.44 - 44.44 -
corina 1 43.64 43.64 43.64 - - - -
db-everywhere 2 40.87 47.08 47.57 50.00 - - -
dcparseargs 1 97.50 97.50 97.50 - - - -
diebierse 2 61.11 79.63 94.44 50.00 - 50.00 -
diffi 2 92.86 97.14 97.14 50.00 - - -
dsachat 2 38.14 37.12 38.91 - - 50.00 -
dvd-homevideo 3 13.03 13.03 13.03 - - - -
ext4j 2 97.66 96.94 97.12 - - - -
feudalismgame 3 4.39 4.39 4.39 - - - -
fim1 2 8.00 8.00 8.00 - - - -
firebird 3 74.02 75.24 75.62 33.33 - 33.33 -
fixsuite 2 61.78 61.74 61.80 50.00 - - -
follow 2 71.07 74.64 67.14 - - - -
fps370 2 1.05 1.05 1.05 - - - -
freemind 2 68.17 84.69 84.93 50.00 - - -
gangup 1 81.25 81.25 81.25 - - - -
geo-google 2 92.92 95.42 97.92 50.00 - - -
gfarcegestionfa 1 87.80 89.43 89.43 100.00 - - -
glengineer 2 93.48 95.65 95.87 50.00 - - -
gsftp 2 37.99 38.54 37.99 - - - -
guava 10 69.58 72.26 72.42 40.00 - 40.00 -
heal 2 91.86 93.43 93.71 - - - -
hft-bomberman 2 54.69 60.94 58.79 50.00 - - 50.00
hibernate 1 25.00 25.00 25.00 - - - -
httpanalyzer 2 40.93 40.93 40.93 - - - -
ifx-framework 1 69.44 69.44 69.44 - - - -
imsmart 1 100.00 100.00 100.00 - - - -
inspirento 2 87.04 86.77 87.04 - - - -
io-project 1 95.45 95.45 97.73 - - - -
ipcalculator 2 82.15 83.09 83.09 50.00 - - -
javabullboard 2 80.58 78.99 80.05 - - - -
javaml 7 83.92 82.90 82.90 - 14.29 - -
javathena 4 44.81 45.23 46.82 50.00 - - -
javaviewcontrol 3 68.98 61.05 71.91 66.67 - 100.00 -
javex 1 88.44 84.39 88.44 - - 100.00 -
jaw-br 2 8.93 8.93 8.93 - - - -
jclo 1 87.59 82.71 93.61 100.00 - 100.00 -
jcvi-javacommon 2 100.00 100.00 100.00 - - - -
jdbacl 2 84.32 85.20 85.45 50.00 - - -
jdom 5 83.44 83.62 84.16 20.00 - 80.00 -
jfree-chart 12 80.57 81.63 85.16 58.33 - 33.33 -
jgaap 1 82.61 91.30 95.65 100.00 - - -
jhandballmoves 2 22.60 22.60 22.60 - - - -
jiggler 4 88.02 88.06 87.96 - - - -
jipa 2 92.54 91.79 91.98 - 50.00 - -
jiprof 4 77.57 79.87 80.56 50.00 - - -
jmca 4 48.98 52.32 53.66 75.00 - 25.00 -
joda 13 82.40 82.99 84.89 38.46 - 30.77 -
jopenchart 2 95.65 99.18 98.37 50.00 - - -
jsci 4 88.62 92.14 92.87 75.00 - 25.00 -
jsecurity 3 74.49 75.04 75.13 33.33 - - -
jtailgui 2 61.04 21.91 41.47 - - - -
lagoon 2 23.20 23.20 23.20 - - - -
lavalamp 1 100.00 100.00 100.00 - - - -
lhamacaw 2 10.84 10.84 10.84 - - - -
liferay 2 98.12 97.85 97.58 - - - -
lilith 1 100.00 100.00 100.00 - - - -
lotus 2 70.83 70.83 70.83 - - - -
mygrid 2 96.43 96.43 96.43 - - - -
netweaver 2 98.59 98.23 98.59 - - - -
newzgrabber 3 27.32 19.30 20.97 - 33.33 33.33 -
noen 2 95.07 97.89 96.48 - - - -
nutzenportfolio 2 40.77 42.63 61.68 50.00 - 50.00 -
objectexplorer 2 50.86 50.86 50.86 - - - -
omjstate 1 100.00 100.00 100.00 - - - -
openhre 2 100.00 100.00 100.00 - - - -
openjms 2 83.21 86.63 84.19 - - - -
pdfsam 2 61.94 44.87 44.87 - 50.00 - -
petsoar 2 83.51 79.79 80.85 - 50.00 - -
quickserver 4 61.45 63.19 64.66 25.00 - 25.00 -
rif 1 100.00 100.00 100.00 - - - -
saxpath 2 94.58 94.47 95.04 50.00 - 50.00 -
schemaspy 2 45.21 56.84 67.63 100.00 - 50.00 -
scribe 6 100.00 100.00 100.00 - - - -
sfmis 1 100.00 100.00 100.00 - - - -
shop 4 67.79 56.82 56.82 25.00 25.00 - -
squirrel-sql 2 51.54 51.54 51.54 - - - -
sugar 2 84.80 90.20 90.20 - - - -
summa 4 35.58 38.10 37.37 25.00 - - -
sweethome3d 4 39.31 45.74 47.47 100.00 - 75.00 -
tartarus 3 75.42 74.69 76.60 66.67 - 100.00 -
templateit 2 62.96 62.96 62.96 - - - -
trans-locator 2 49.30 51.47 51.47 50.00 - - -
trove 7 81.77 82.68 83.70 28.57 - 28.57 -
tullibee 2 100.00 100.00 100.00 - - - -
twfbplayer 2 89.86 88.13 89.25 - - 50.00 -
twitter4j 7 91.20 94.35 94.59 14.29 14.29 14.29 -
vuze 2 5.88 9.42 9.98 50.00 - 50.00 -
water-simulator 2 14.60 14.96 14.78 - - - -
weka 4 68.20 67.65 69.59 25.00 - 25.00 -
wheelwebtool 4 88.34 90.50 90.97 50.00 - 25.00 -
wikipedia 4 67.88 65.92 66.86 - - - -
xbus 2 62.40 63.29 63.29 50.00 - - -
xisemele 1 77.78 81.48 77.78 - - - -
xmlenc 2 64.15 63.11 63.86 - 50.00 - -
Mean over all projects 84.61 85.45 87.42
No. cases DynaMOSA significantly better than WSA 93 (27.76%)
No. cases DynaMOSA significantly worse than WSA 10 (2.96%)
No. cases DynaMOSA significantly better than MOSA 64 (19.10%)
No. cases DynaMOSA significantly worse than MOSA 1 (0.30%)

sometimes negative effects on the final coverage. Thus,
an adaptive version of the secondary preference criterion
(e.g., disabling size when there is no improvement of branch



TABLE 3
Efficiency of DynaMOSA and WSA for branch coverage. We report the

percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name Classes Efficiency Â12 Statistics
DynaMOSA WSA %> 0.50 %< 0.50

checkstyle 4 82.55 82.39 - 25.00
classviewer 3 58.98 57.55 33.33 -
commons-lang 10 92.19 92.43 20.00 10.00
commons-math 11 76.69 76.53 9.09 9.09
dsachat 2 29.85 29.01 50.00 -
dvd-homevideo 3 11.13 11.15 - 33.33
firebird 2 93.49 93.52 - 50.00
gangup 1 55.42 55.10 100.00 -
guava 6 72.78 71.77 16.67 -
heal 2 92.13 89.16 50.00 -
hft-bomberman 1 96.03 85.34 100.00 -
javabullboard 2 72.81 69.78 100.00 -
javaml 6 81.24 81.24 16.67 16.67
jdbacl 1 97.72 95.70 100.00 -
jdom 4 82.37 82.29 25.00 25.00
jfree-chart 5 75.31 74.50 40.00 -
jhandballmoves 2 21.15 21.25 - 50.00
joda 8 80.11 79.50 37.50 -
jsecurity 2 69.31 66.80 50.00 -
lotus 2 69.19 70.83 - 50.00
newzgrabber 2 22.21 22.55 50.00 50.00
noen 2 88.81 87.47 50.00 -
objectexplorer 2 50.86 48.74 50.00 -
twfbplayer 2 78.00 85.59 - 50.00
twitter4j 5 98.21 98.36 - 20.00
weka 3 62.82 64.01 - 33.33
wheelwebtool 2 97.27 90.46 100.00 -
wikipedia 1 94.76 94.74 100.00 -
xisemele 1 68.15 67.46 100.00 -
Mean 71.43 70.52
No. cases DynaMOSA significantly better than WSA 27 (11.79%)
No. cases DynaMOSA significantly worse than WSA 13 (5.67%)

distance for some generations) might be beneficial.
For the 232 classes on which there is no statistically

significant difference in branch coverage between WSA
and DynaMOSA, we compare the two search strategies
along the efficiency metric. The results of this comparison
are summarised in Table 3. The table reports the median
AUC metric for WSA and DynaMOSA as well as the re-
sults of the effect size (Â12) aggregated by project. From
the comparison, we observe that in 27 classes out of 232,
DynaMOSA has a statistically significantly higher AUC
metric compared to WSA, which means that the former
would reach higher branch coverage if given a shorter
search time. The average improvement for the AUC metric
is 3%. The minimum improvement, 0.1%, occurs for class
Title (from project wikipedia), and the maximum, 17%,
for DynamicSelectModel (from project wheelwebtool). On
the other hand, WSA turned out to be more efficient than
DynaMOSA in 13 classes out of 232. However, for these
classes the differences in terms of AUC scores are very small,
being < 0.1% on average.

Let us now consider the comparison between Dy-
naMOSA and MOSA. Results for branch coverage are re-
ported in Table 2. We can observe that in the majority
of the cases there is no statistically significant difference
between the two many-objective algorithms according to
the Wilcoxon test. In total, in 64 classes out of 335 (19%)
DynaMOSA achieved significantly higher branch coverage,
while in only one class (< 1%) MOSA turned out to be
better than DynaMOSA. Looking at the magnitude of the
differences, we notice that in those cases where DynaMOSA
achieved higher branch coverage, the improvements range
between 1% and 71%, with an average increase of 7%. The
largest improvement is obtained for JTailPanel (jtailgui
project), for which DynaMOSA covers 21 branches (91%)
while MOSA covers only 3 branches (13%). For the sin-
gle class where MOSA outperformed DynaMOSA, namely

TABLE 4
Efficiency of DynaMOSA and MOSA for branch coverage. We report

the percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name N. Classes Efficiency Â12 Statistics
DynaMOSA MOSA %> 0.50 %< 0.50

biff 1 19.52 18.72 100.00 -
commons-lang 10 96.18 96.05 20.00 -
commons-math 13 66.51 65.77 7.69 -
compiler 5 32.24 28.62 20.00 -
diffi 2 93.54 92.52 50.00 -
gangup 1 55.42 55.10 100.00 -
geo-google 2 91.61 89.61 50.00 -
jfree-chart 8 87.78 87.20 - 12.50
jiprof 4 73.24 72.27 25.00 -
quickserver 3 67.82 67.06 33.33 -
twitter4j 6 91.25 91.22 16.67 -
wheelwebtool 3 82.88 79.23 33.33 -
Mean 71.50 70.28
No. cases DynaMOSA significantly better than MOSA 12 (4.51%)
No. cases DynaMOSA significantly worse than MOSA 1 (0.38%)

ServerGameModel from hft-bomberman, the difference in
terms of branch coverage is 4%. We observe that this class
is very peculiar: it contains 128 branches and it is very
expensive in execution time. Indeed, both DynaMOSA and
MOSA could only execute less than 5 generations of their
evolutionary algorithm (on average) within the five minutes
of search budget.

In terms of efficiency, DynaMOSA and MOSA are statisti-
cally equivalent in the majority of those classes where there
is no statistically significant difference on branch coverage.
Indeed, as reported in Table 4 in only 12 classes out of
273 DynaMOSA yielded a statistically significantly higher
AUC metric as compared to MOSA. More specifically, we
observe that on these classes DynaMOSA produces +5%
of branch coverage on average when considering a search
budget lower than five minutes, which is the total search
time set for branch coverage. The minimum improvement
of 0.2% is yielded for class Conversion (from the apache
commons library), and the maximum of 29% is achieved
for ExploitAssigns (from project compiler). On the other
hand, MOSA turned out to be more efficient than Dy-
naMOSA in only one class, namely TimePeriodValues
from jfree-chart, where the difference in terms of AUC is
equal to just 0.21%.

Figure 4 shows an example of (average) branch coverage
achieved over time by MOSA, DynaMOSA and WSA on
SortingTableModel, a class for which we did not find
any statistically significant difference in terms of efficiency
or effectiveness for the three experimented approaches.
From Figure 4, we can observe that in the first 20 seconds
DynaMOSA is particularly efficient compared to the other
alternatives. In less than 10 seconds, it reaches 96% of branch
coverage. MOSA required almost 30 seconds to reach the
same branch coverage, while WSA had the worst branch
coverage scores within this initial time window. This result
is very unexpected considering that WSA benefits from a
larger population size (50 test suites with more than one test
case each) with respect to DynaMOSA and MOSA (50 initial
test cases in total). After consuming 60 seconds, all the three
approaches reach the maximum branch coverage, which is
98% for this class. As a consequence, we did not detect
any statistically significant difference in the final efficiency
among DynaMOSA, MOSA and WS, but a substantial dif-
ference can be observed in the first 20 seconds (i.e., before
we collect the first coverage point when computing the AUC
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Fig. 4. Branch coverage over time for class SortingTableModel from
project caloriecount

metric). Hence, the results in Figure 4 show that when a very
limited search budget is given to the search (<20-30s), Dy-
naMOSA reaches higher coverage much more quickly than
the other two alternatives. We obtained consistent results for
the other classes in our study for which we did not find any
significant difference in the final effectiveness and efficiency:
DynaMOSA has always the steepest coverage increase in the
initial time window.

In summary, we can conclude that DynaMOSA
achieves higher or equal branch coverage as com-
pared to both WSA and MOSA. Moreover, Dy-
naMOSA converges to such coverage more quickly
especially when limited time is given to the search.
Finally, our many-objective reformulation provides
further benefits to branch coverage as compared to the
usage of the archive strategy, since it outperformed
WSA, which extends WS with the archive strategy.

5.2 RQ2: How does DynaMOSA perform compared to
alternative approaches on statement coverage?

Table 5 reports the statement coverage achieved by WS,
MOSA, and DynaMOSA for the classes in our experiment,
grouped by project. Table 5 also reports the percentage
of classes in each project where the effect size (Â12) is
statistically greater or lower than 0.50. Since in 7 classes
in our sample EvoSuite crashed for some internal errors, in
the following we will refer to 339 classes only for which
EvoSuite could generate tests.

For statement coverage, we can notice that DynaMOSA
is significantly better than WS on 173 classes out of 339
(51%), while WS is significantly better in only 5 cases
(< 2%). In the remaining 160 classes, no statistically sig-
nificant difference is observed according to the Wilcoxon
test. At project level, we find that in 65% of the projects
DynaMOSA achieves significantly higher coverage than WS
on at least one class in the project. Overall, the usage of Dy-
naMOSA leads to an increase in statement coverage equal to
11% on average, over classes where significant differences
were observed. The largest improvement is obtained for
class TwitterImpl selected from project twitter4j, where

TABLE 5
Mean statement coverage achieved for each project. We report the

percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name Classes
Statement Coverage Â12 Statistics

WS MOSA Dyna- DynaMOSA vs WS DynaMOSA vs MOSA
MOSA %> 0.50 %< 0.50 %> 0.50 %< 0.50

a4j 2 54.92 55.05 55.08 - - - -
apbsmem 2 71.41 71.41 71.41 - - - -
asphodel 1 6.80 6.80 6.80 - - - -
at-robots2-j 2 85.32 88.05 88.06 50.00 - - -
battlecry 2 25.56 29.70 37.43 - - - -
beanbin 2 86.05 86.05 86.05 - - - -
biblestudy 2 89.67 90.48 90.34 50.00 - - -
biff 1 16.53 26.65 28.52 100.00 - 100.00 -
byuic 3 40.15 53.24 54.82 66.67 - 33.33 -
caloriecount 3 87.49 98.58 99.71 66.67 - 33.33 -
celwars2009 2 30.72 30.72 30.72 - - - -
checkstyle 6 91.26 95.33 96.97 66.67 - 33.33 -
classviewer 3 67.92 74.86 74.76 100.00 - - -
commons-cli 2 93.26 99.07 99.39 100.00 - 50.00 -
commons-codec 1 64.98 93.27 96.55 100.00 - 100.00 -
commons-collections 2 100.00 100.00 100.00 - - - -
commons-lang 14 76.37 96.37 96.74 85.71 - 28.57 7.14
commons-math 21 70.02 72.46 77.72 42.86 - 14.29 -
commons-primitives 1 92.41 92.41 92.41 - - - -
compiler 9 41.53 48.22 51.96 66.67 - 22.22 -
corina 1 51.38 52.73 54.08 - - - -
db-everywhere 2 38.96 44.35 46.75 50.00 - 50.00 -
dcparseargs 1 98.90 100.00 100.00 100.00 - - -
diebierse 2 93.80 95.41 94.20 50.00 - - -
diffi 2 94.07 96.51 96.21 50.00 - - -
dsachat 2 57.13 68.11 70.74 100.00 - - -
dvd-homevideo 3 21.53 21.65 21.65 33.33 - - -
ext4j 2 96.27 96.32 96.41 - - - -
feudalismgame 3 26.74 26.74 26.74 - - - -
fim1 2 0.00 39.41 39.41 50.00 - - -
firebird 3 68.43 78.95 80.27 100.00 - 33.33 -
fixsuite 2 67.00 71.89 70.96 50.00 - - -
follow 2 78.68 79.34 77.13 - - - -
fps370 2 8.65 8.65 8.65 - - - -
freemind 2 69.23 76.77 80.93 100.00 - 50.00 -
gangup 1 61.80 62.90 62.21 - - - -
geo-google 2 72.37 84.14 83.15 50.00 - - -
gfarcegestionfa 1 93.59 95.97 95.34 100.00 - - -
glengineer 2 88.58 97.10 97.01 50.00 - - -
gsftp 2 46.87 50.49 51.05 50.00 - - -
guava 10 82.31 87.38 86.29 30.00 - - -
heal 2 83.94 87.36 87.75 50.00 - - -
hft-bomberman 2 52.94 57.46 58.50 50.00 - - -
hibernate 1 100.00 100.00 100.00 - - - -
httpanalyzer 2 88.76 88.76 88.76 - - - -
ifx-framework 1 83.42 83.03 82.55 - - - -
imsmart 1 100.00 100.00 100.00 - - - -
inspirento 2 94.68 97.95 98.01 50.00 - - -
io-project 1 98.40 99.86 99.93 100.00 - - -
ipcalculator 2 93.38 95.08 94.80 50.00 50.00 - -
javabullboard 2 74.99 79.19 79.25 100.00 - - -
javaml 7 88.36 88.35 88.34 - - - -
javathena 4 40.89 47.30 49.98 75.00 25.00 25.00 -
javaviewcontrol 3 55.58 61.27 66.82 100.00 - 33.33 -
javex 1 89.12 93.98 93.88 100.00 - - -
jaw-br 2 51.16 51.16 51.16 - - - -
jclo 1 79.83 83.67 80.19 100.00 - - -
jcvi-javacommon 2 99.44 99.96 100.00 50.00 - - -
jdbacl 2 78.80 87.68 88.06 100.00 - 50.00 -
jdom 5 94.40 96.11 96.30 40.00 - 20.00 -
jfree-chart 12 68.25 81.82 83.96 75.00 - - -
jgaap 1 94.64 97.39 97.46 100.00 - - -
jhandballmoves 2 27.61 27.61 27.61 - - - -
jiggler 4 78.85 90.08 91.42 50.00 - - -
jipa 2 70.55 94.76 94.36 50.00 - - -
jiprof 4 63.58 79.82 81.21 100.00 - - -
jmca 4 36.36 58.90 59.33 75.00 - - -
joda 13 80.75 89.95 90.49 92.31 7.69 7.69 15.38
jopenchart 2 93.65 98.53 99.50 50.00 - - -
jsci 4 82.67 94.15 94.51 100.00 - 25.00 25.00
jsecurity 3 79.15 85.89 86.71 66.67 - 33.33 -
jtailgui 2 76.22 56.25 67.90 - - - -
lagoon 2 41.97 43.59 43.70 50.00 - 50.00 50.00
lavalamp 1 100.00 100.00 100.00 - - - -
lhamacaw 2 42.14 35.45 35.33 - - - -
liferay 2 91.89 94.36 96.19 50.00 - - -
lilith 1 99.58 100.00 100.00 - - - -
lotus 2 88.11 88.11 88.11 - - - -
mygrid 2 97.48 98.23 98.23 50.00 - - -
netweaver 2 98.69 98.57 99.06 - - - -
newzgrabber 3 27.18 24.94 27.02 66.67 33.33 33.33 -
noen 2 91.38 96.05 95.28 100.00 - - -
nutzenportfolio 2 60.63 53.37 53.91 - - - -
objectexplorer 2 52.84 52.84 52.84 - - - -
omjstate 1 100.00 99.71 99.86 - - - -
openhre 2 99.93 100.00 100.00 50.00 - - -
openjms 2 91.60 92.95 93.27 50.00 - - -
pdfsam 2 70.61 73.31 73.31 50.00 - - -
petsoar 2 85.31 84.11 83.76 - 50.00 - -
quickserver 4 56.86 66.85 69.66 50.00 - 50.00 -
rif 1 100.00 100.00 100.00 - - - -
saxpath 2 88.12 93.22 94.17 50.00 - - -
schemaspy 2 48.00 57.43 57.03 50.00 - - -
scribe 6 100.00 100.00 99.71 - - - -
sfmis 1 100.00 100.00 100.00 - - - -
shop 4 56.08 65.87 66.09 50.00 - - -
squirrel-sql 2 174.73 180.40 173.13 - - - -
sugar 2 88.80 92.95 94.55 50.00 - - -
summa 4 39.71 43.48 45.15 25.00 - 25.00 25.00
sweethome3d 4 35.94 47.53 46.77 75.00 - - -
tartarus 3 65.03 77.99 79.03 100.00 - 66.67 -
templateit 2 65.29 64.14 65.65 - - - -
trans-locator 2 54.72 54.72 54.72 - - - -
trove 10 84.71 91.72 92.44 60.00 - 30.00 -
tullibee 2 100.00 100.00 100.00 - - - -
twfbplayer 2 91.94 94.08 94.96 50.00 - - -
twitter4j 7 77.87 95.73 96.79 71.43 - 14.29 -
vuze 2 8.98 20.80 20.97 100.00 - - -
water-simulator 2 31.01 45.35 45.09 100.00 - - 50.00
weka 4 61.63 75.72 77.99 75.00 - 50.00 -
wheelwebtool 4 79.39 88.81 89.61 75.00 - - -
wikipedia 4 71.74 75.63 74.92 25.00 25.00 - -
xbus 2 67.62 58.97 60.71 - - - -
xisemele 1 82.24 88.49 79.61 - - - 100.00
xmlenc 2 72.90 76.73 77.16 100.00 - 50.00 -
Mean over all projects 81.37 92.48 92.99
No. cases DynaMOSA significantly better than WS 173 (51.03%)
No. cases DynaMOSA significantly worse than WS 6 (1.77%)
No. cases DynaMOSA significantly better than MOSA 40 (11.80%)
No. cases DynaMOSA significantly worse than MOSA 8 (2.36%)

WS covers 883 statements (14%) on average against 6,042
statements (96%) covered by DynaMOSA on average us-
ing the same search budget. Once again, particularly high



TABLE 6
Efficiency of DynaMOSA and WS for statement coverage. We report

the percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name N. Classes Efficiency Â12 Statistics
DynaMOSA WS %> 0.50 %< 0.50

a4j 2 54.92 54.34 50.00 -
apbsmem 2 71.41 71.40 50.00 -
at-robots2-j 1 74.89 73.38 100.00 -
beanbin 2 84.54 83.85 100.00 -
caloriecount 1 100.00 98.95 100.00 -
checkstyle 2 94.57 94.57 - 50.00
commons-lang 2 96.24 96.22 100.00 -
commons-math 12 76.93 75.37 58.33 -
compiler 3 34.15 29.40 33.33 -
dvd-homevideo 2 19.19 19.20 - 50.00
ext4j 2 96.32 95.99 50.00 -
fixsuite 1 50.04 49.75 100.00 -
gangup 1 38.80 36.51 100.00 -
guava 7 87.89 88.54 14.29 14.29
hft-bomberman 1 91.77 74.36 100.00 -
ifx-framework 1 69.17 67.55 100.00 -
javaml 7 88.33 88.24 71.43 -
jdom 3 98.97 98.41 66.67 -
jhandballmoves 2 23.92 23.74 50.00 -
jiggler 2 91.24 81.31 50.00 -
jmca 1 13.16 11.97 100.00 -
jsecurity 1 67.15 67.12 100.00 -
lagoon 1 23.83 23.54 100.00 -
liferay 1 100.00 99.88 100.00 -
lilith 1 100.00 95.79 100.00 -
lotus 2 86.83 88.11 - 50.00
netweaver 2 96.43 95.74 100.00 -
nutzenportfolio 2 50.16 51.73 - 50.00
objectexplorer 2 52.84 49.25 50.00 -
quickserver 2 97.49 96.92 50.00 -
scribe 6 99.64 99.18 16.67 -
shop 2 54.74 54.27 50.00 -
squirrel-sql 2 67.04 63.11 100.00 -
summa 3 33.87 32.08 33.33 -
trove 4 84.75 83.80 75.00 -
wikipedia 2 89.16 88.67 50.00 -
Mean 71.09 69.53
No. cases DynaMOSA significantly better than WS 49 (30.63%)
No. cases DynaMOSA significantly worse than WS 6 (3.75%)

differences are detected for larger classes. Indeed, for the
largest class in our sample, which is JavaParser from
project jmca, WS covers (on average) 2,415 statements while
DynaMOSA covers 8,472 statements (+6,057 statements)
using the same search budget.

Only in five classes WS is significantly better than Dy-
naMOSA, e.g., for CycleHandler from project wikipedia
and WhoIS from project ipcalculator. For these classes, the
average difference (decrement) in statement coverage is of
2%. As in the case of branch coverage, we notice that by
disabling the test case size as secondary preference criterion,
DynaMOSA achieves equal or higher statement coverage for
these two classes as well.

For the 160 classes with no statistically significant dif-
ferences in terms of effectiveness (statement coverage) be-
tween WS and DynaMOSA, we compare the efficiency mea-
sured using our AUC metrics. The results of this com-
parison are summarised in Table 6. We observe that in
49 classes out of 160 (31%), DynaMOSA yielded statis-
tically significant higher AUC scores, meaning that it is
significantly able to reach higher statement coverage than
WS for search time lower than 5 minutes. The average
improvement for the AUC metric is 3%. The minimum im-
provement, 0.1%, occurs for class FastDateFormat (from
project apache commons lang), and the maximum, 21%, for
ForwardingObserver (from project hft-bomberman). Vice
versa, WS turned out to be more efficient than DynaMOSA
in 6 classes out of 160 with an average difference (decre-
ment) in terms of AUC scores are very small, being < 2%
on average.

TABLE 7
Efficiency of DynaMOSA and MOSA for statement coverage. We report

the percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name N. Classes Efficiency Â12 Statistics
DynaMOSA MOSA %> 0.50 %< 0.50

at-robots2-j 2 72.45 72.14 50.00 -
checkstyle 4 93.82 91.90 - 25.00
commons-cli 1 100.00 99.99 100.00 -
commons-collections 3 95.34 95.27 66.67 -
commons-lang 9 93.34 88.70 55.56 -
commons-math 17 68.69 65.05 47.06 -
compiler 7 34.39 32.10 42.86 -
dvd-homevideo 3 21.44 21.43 33.33 -
firebird 2 97.26 96.88 50.00 -
guava 8 85.80 85.69 12.50 -
ifx-framework 1 69.17 68.26 100.00 -
javaml 7 88.33 88.33 28.57 -
javathena 3 45.19 46.02 33.33 -
jdom 4 98.64 98.61 50.00 -
jfree-chart 12 75.19 72.00 25.00 16.67
joda 10 81.29 78.54 60.00 -
jopenchart 2 83.09 81.85 - 50.00
saxpath 2 93.04 92.38 50.00 -
shop 4 62.17 61.09 25.00 -
squirrel-sql 2 67.04 66.25 50.00 -
tartarus 1 73.89 72.48 100.00 -
twitter4j 6 94.07 93.35 16.67 -
weka 2 67.34 64.54 50.00 -
wheelwebtool 4 87.70 86.32 25.00 -
wikipedia 4 62.00 61.94 25.00 -
xmlenc 1 88.05 91.16 - 100.00
Mean 76.87 75.86
No. cases DynaMOSA significantly better than MOSA 46 (15.97%)
No. cases DynaMOSA significantly worse than MOSA 5 (1.73%)

Regarding the comparison between DynaMOSA and
MOSA, results are reported in Table 5. From the results,
we observe that in 40 classes (12%) DynaMOSA leads to
statistically significantly higher statement coverage with
effect size Â12 � 0.5. In these cases, improvements range
between 0.10% and 88% with an average increment of
5%. The class with the largest improvement with respect
to MOSA is SchurTransformer selected from the apache
commons math, for which DynaMOSA covers (on average)
1,250 statements (92%) while MOSA covers 45 statements
(3%). On the other hand, MOSA is significantly better in
8 classes (2%) in our study. In such cases, the average
difference in statement coverage is 2%, with a minimum
of 0.07% for class SpecialMath from jsci and a maximum
difference of 8% for class OperationsHelperImpl from
xisemele.

The results of the comparison between DynaMOSA
and MOSA in terms of efficiency are reported in Table 7.
Among 291 classes with no statistically significant difference
in statement coverage, DynaMOSA has statistically higher
AUC scores in 46 classes (16%). On the other hand, in 5
classes (2%) MOSA required significantly less search time
than DynaMOSA to reach the same final coverage. On the
remaining 240 classes, no statistically significant difference
is observed, meaning that MOSA and DynaMOSA reached
the maximum statement coverage consuming similar search
times.

To provide a deeper view on efficiency, Figure 5 plots
the average statement coverage achieved by DynaMOSA,
MOSA and WS over time for class SmallCharMatcher, a
class for which we did not find any statistically significant
difference in neither effectiveness nor efficiency for the three
approaches. From Figure 5, we can notice that at the be-
ginning of the search (first 15 seconds) DynaMOSA quickly
reaches 98% of statement coverage against 79% reached by
WS and 71% by MOSA. Between 16 and 21 seconds the
three approaches have the same statement coverage (notice
that we pick the first coverage point for the AUC metric
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Fig. 5. Statement coverage over time for class SmallCharMatcher
from project guava

at 20s); while between 22 and 58 seconds both DynaMOSA
and MOSA outperform WS. Furthermore, on this class WS
outperforms MOSA for a while within the first 15 seconds
of search. Then, after 56 seconds (on average) all the three
approaches reach 99% of statement coverage. However, if a
shorter time were allocated for the search (< 20s), we notice
that DynaMOSA would reach higher coverage more quickly
than the other two alternative approaches. We obtained
consistent results on the other classes in our study for which
we did not observe significant difference in terms of final
statement coverage.

In summary, we can conclude that DynaMOSA
achieves higher or equal statement coverage as com-
pared to both WS and MOSA. On classes with no
improvement in statement coverage, DynaMOSA con-
verges more quickly to the final coverage, especially
when limited time is given to the search.

5.3 RQ3: How does DynaMOSA perform compared to
alternative approaches on strong mutation coverage?

Results on the strong mutation coverage are reported in
Table 8, grouped by software projects. For 34 classes, we
could not obtain the mutation coverage score because of
internal EvoSuite crashes. Therefore, in the following we
refer to 312 classes only.

Results show that DynaMOSA statistically significantly
outperforms WSA in 85 out of 312 classes (27%), which
corresponds to 41% of the projects in our study. The aver-
age improvement, over classes where significant differences
were observed, in mutation score achieved by DynaMOSA
is 11%, with minimum and maximum improvement of
0.30% and 69% respectively. The class with largest improve-
ment is TableMeta, from project schemaspy, for which the
total number strong mutants to kill is equal to 21. On this
class, DynaMOSA kills on average 15 mutants (71%) while
WSA kills only one mutant on average. This result shows
that DynaMOSA can achieve high mutation scores even on
small classes (i.e., classes with a small number of mutants).
WSA turned out to be statistically significantly better on 22
classes (7%), corresponding to the 16% of the projects in

TABLE 8
Mean strong mutation coverage achieved for each project. We report

the percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name Classes
Statement Coverage Â12 Statistics

WSA MOSA Dyna- DynaMOSA vs WSA DynaMOSA vs MOSA
MOSA %> 0.50 %< 0.50 %> 0.50 %< 0.50

a4j 2 28.85 30.44 30.34 50.00 - - -
apbsmem 1 0.00 0.00 0.00 - - - -
asphodel 1 0.00 0.00 0.00 - - - -
at-robots2-j 2 5.79 7.09 15.24 100.00 - 50.00 -
battlecry 2 3.38 0.93 0.64 - 50.00 - -
beanbin 2 35.95 33.67 33.85 - 50.00 - -
biblestudy 2 68.07 78.40 70.58 50.00 - 50.00 50.00
biff 1 3.38 0.00 0.00 - 100.00 - -
byuic 3 14.51 17.02 21.86 66.67 - - -
caloriecount 3 69.96 64.44 55.59 - - - -
celwars2009 2 1.28 1.28 1.28 - - - -
checkstyle 5 16.51 18.98 17.78 40.00 - 20.00 20.00
classviewer 3 11.17 16.92 18.44 33.33 - - -
commons-cli 2 50.50 37.32 50.77 - - 50.00 -
commons-collections 2 13.49 14.62 17.54 50.00 - - -
commons-lang 14 34.66 30.97 41.92 57.14 - 64.29 -
commons-math 21 22.02 22.50 25.50 42.86 4.76 52.38 4.76
commons-primitives 1 28.03 28.03 30.80 - - - -
compiler 9 9.58 9.25 10.32 22.22 11.11 33.33 -
corina 1 21.05 21.38 21.71 - - - -
db-everywhere 2 8.93 10.27 11.17 - - - -
dcparseargs 1 25.23 26.82 32.95 - - - -
diebierse 1 7.69 5.13 5.13 - - - -
diffi 2 14.90 15.81 16.51 - - - -
dsachat 2 1.96 2.98 2.66 - - - -
dvd-homevideo 3 39.96 34.04 39.45 - - 100.00 -
ext4j 2 32.53 30.47 30.85 - 50.00 - -
feudalismgame 3 4.06 3.61 3.98 - - 33.33 -
fim1 2 0.61 0.61 0.61 - - - -
firebird 2 54.97 49.72 57.42 - - 100.00 -
fixsuite 2 0.46 0.80 0.46 - - - -
follow 2 16.17 14.28 15.19 - - - -
fps370 2 0.00 0.00 0.00 - - - -
freemind 2 4.17 7.74 4.82 50.00 - - -
geo-google 2 59.73 70.98 72.23 - - - -
gfarcegestionfa 1 7.81 6.05 6.73 - - - -
glengineer 2 25.51 41.33 42.46 50.00 - - -
gsftp 2 3.01 4.50 4.23 50.00 - - -
guava 10 25.91 27.23 28.30 20.00 - 20.00 -
heal 2 60.72 56.26 59.41 - - 50.00 -
hft-bomberman 2 29.76 38.50 33.33 - - - 50.00
hibernate 1 0.00 0.00 0.00 - - - -
httpanalyzer 1 0.00 0.00 0.00 - - - -
ifx-framework 1 58.63 56.12 56.83 - - - -
imsmart 1 37.93 37.93 37.93 - - - -
inspirento 2 18.81 16.77 14.06 - - - -
io-project 1 53.12 54.17 55.21 - - - -
ipcalculator 2 24.61 20.36 16.99 - 100.00 - -
javabullboard 2 24.15 24.07 24.26 - - - -
javaml 7 49.74 50.51 50.83 - - - -
javathena 4 17.54 20.68 19.64 50.00 - - -
javaviewcontrol 3 30.35 29.76 31.21 33.33 66.67 - -
javex 1 92.79 62.74 91.35 - - 100.00 -
jaw-br 2 0.00 0.00 0.00 - - - -
jclo 1 16.45 22.19 26.63 100.00 - - -
jcvi-javacommon 2 76.78 49.05 82.86 50.00 - 100.00 -
jdbacl 2 35.55 39.68 38.94 50.00 - - 50.00
jdom 5 45.64 42.50 46.63 40.00 - 40.00 -
jfree-chart 12 35.02 29.62 37.62 33.33 - 66.67 -
jgaap 1 17.80 13.56 22.03 - - - -
jhandballmoves 2 6.01 7.36 7.36 50.00 - - -
jiggler 4 8.54 8.58 11.01 25.00 - 25.00 -
jipa 2 58.40 58.85 59.54 50.00 - - -
jiprof 4 22.98 25.75 34.68 75.00 - 25.00 -
jmca 2 7.09 5.88 4.80 - 50.00 - -
joda 13 34.54 29.03 38.54 46.15 - 84.62 -
jopenchart 2 23.10 26.52 27.72 50.00 - - -
jsci 4 24.39 20.12 25.87 50.00 25.00 25.00 -
jsecurity 3 42.20 39.70 42.05 - - - -
jtailgui 2 28.34 23.81 25.00 - - - -
lagoon 2 10.73 8.75 9.06 50.00 50.00 - -
lavalamp 1 88.52 85.25 88.52 - - 100.00 -
lhamacaw 2 0.14 0.29 0.29 - - - -
liferay 2 44.76 46.44 75.22 50.00 - 50.00 -
lilith 1 93.72 85.79 88.52 - - - -
lotus 2 67.65 68.14 69.61 - - - -
mygrid 2 94.29 75.00 83.57 - 100.00 50.00 -
newzgrabber 3 5.57 14.17 16.79 66.67 - 33.33 -
noen 2 24.44 27.87 28.75 50.00 - - -
nutzenportfolio 2 43.16 2.56 43.80 - - 100.00 -
objectexplorer 2 43.75 43.75 43.75 - - - -
omjstate 1 76.47 79.41 79.41 - - - -
openhre 2 62.07 60.70 63.70 - - 50.00 -
openjms 2 45.08 40.08 45.63 50.00 - 50.00 -
pdfsam 2 35.54 27.65 27.21 - 50.00 - -
petsoar 2 41.09 41.58 41.58 - - - -
quickserver 4 59.52 63.62 64.57 50.00 - - -
rif 1 46.43 46.43 46.43 - - - -
saxpath 2 65.72 67.77 72.13 50.00 - 50.00 -
schemaspy 2 5.09 37.24 39.62 50.00 - 50.00 -
scribe 6 42.06 42.53 59.64 50.00 - 33.33 -
sfmis 1 49.30 48.13 48.59 - - - -
shop 3 17.17 19.95 19.69 - - - -
sugar 2 45.86 45.86 46.04 - - 50.00 -
summa 4 10.33 12.07 10.51 - 25.00 - -
sweethome3d 4 1.05 1.38 1.08 25.00 - - -
tartarus 3 10.74 8.74 7.10 - 33.33 - 33.33
templateit 2 50.00 53.54 53.54 50.00 - - -
trans-locator 2 7.48 6.31 6.31 - - - -
trove 7 33.65 34.18 38.50 14.29 14.29 14.29 -
tullibee 2 97.14 93.60 97.57 - - 50.00 -
twfbplayer 2 22.36 21.68 21.68 - 100.00 - -
twitter4j 4 59.61 56.23 66.31 50.00 25.00 50.00 -
water-simulator 1 2.98 4.37 5.91 100.00 - - -
weka 3 10.79 10.56 9.28 - - - -
wheelwebtool 4 18.55 21.58 24.98 50.00 - - -
wikipedia 1 78.85 76.92 76.92 - - 100.00 -
xbus 2 8.48 7.88 5.47 - - - -
xisemele 1 21.43 22.86 22.86 100.00 - - -
xmlenc 2 17.79 20.61 27.39 100.00 - 50.00 -
Mean over all projects 20.51 19.20 22.74
No. cases DynaMOSA significantly better than WSA 85 (27.24%)
No. cases DynaMOSA significantly worse than WSA 22 (7.05%)
No. cases DynaMOSA significantly better than MOSA 82 (26.28%)
No. cases DynaMOSA significantly worse than MOSA 6 (1.92%)

our sample. However, in this case the average difference in
strong mutation coverage is just 5%.

For the remaining 205 classes in our study, no statistically
significant difference was found for mutation coverage.
For these classes, we compared DynaMOSA and WSA in



TABLE 9
Efficiency of DynaMOSA and WSA for strong mutation. We report the

percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name N. Classes Efficiency Â12 Statistics
DynaMOSA WSA %> 0.50 %< 0.50

a4j 1 53.33 32.23 100.00 -
byuic 1 37.29 33.90 100.00 -
caloriecount 3 58.87 32.67 33.33 33.33
checkstyle 3 5.01 4.28 33.33 -
classviewer 2 1.62 2.22 - 50.00
commons-cli 2 46.03 41.18 100.00 -
commons-lang 6 27.33 22.36 33.33 16.67
commons-math 11 13.93 12.38 27.27 -
compiler 6 3.44 2.95 16.67 -
diffi 2 18.89 10.98 50.00 -
dsachat 2 3.01 0.20 50.00 -
dvd-homevideo 3 36.47 21.75 100.00 -
feudalismgame 3 3.91 2.03 33.33 -
fim1 2 0.33 0.61 - 50.00
firebird 2 53.35 49.17 100.00 -
fixsuite 2 0.43 1.11 - 50.00
follow 2 15.66 12.79 50.00 -
geo-google 2 60.61 55.54 50.00 -
gfarcegestionfa 1 5.15 3.67 100.00 -
guava 8 27.32 22.38 37.50 12.50
heal 2 56.47 54.63 50.00 -
ifx-framework 1 58.71 52.29 100.00 -
io-project 1 51.29 42.18 100.00 -
javabullboard 2 22.70 19.47 50.00 -
javaml 7 46.87 46.47 14.29 -
jdom 3 36.65 40.00 - 33.33
jfree-chart 8 35.62 35.42 25.00 -
jhandballmoves 1 1.87 2.58 - 100.00
jiggler 3 9.95 5.25 66.67 -
jmca 1 3.32 0.53 100.00 -
jopenchart 1 24.55 8.92 100.00 -
jsecurity 3 38.86 34.96 66.67 -
jtailgui 2 24.00 9.38 50.00 -
lavalamp 1 87.75 86.07 100.00 -
lhamacaw 2 0.79 0.28 50.00 -
lotus 2 65.48 60.60 50.00 -
newzgrabber 1 13.64 3.73 100.00 -
nutzenportfolio 2 42.17 28.03 50.00 -
omjstate 1 76.85 51.18 100.00 -
openhre 2 55.78 57.34 - 50.00
pdfsam 1 0.90 0.00 100.00 -
petsoar 2 40.74 29.08 100.00 -
quickserver 2 60.62 53.34 100.00 -
rif 1 45.51 45.89 - 100.00
saxpath 1 90.62 90.37 100.00 -
schemaspy 1 7.78 6.72 100.00 -
scribe 3 54.17 48.96 33.33 -
sfmis 1 47.50 45.95 100.00 -
shop 3 15.36 12.50 33.33 -
sugar 2 46.33 43.75 50.00 -
sweethome3d 3 0.80 0.77 33.33 -
templateit 1 99.99 99.00 100.00 -
tullibee 2 91.88 81.77 100.00 -
weka 3 7.66 9.29 33.33 33.33
wheelwebtool 2 11.79 7.57 50.00 -
xbus 2 4.65 0.00 50.00 -
Mean 31.48 22.37
No. cases DynaMOSA significantly better than WSA 64 (31.22%)
No. cases DynaMOSA significantly worse than WSA 11 (5.36%)

terms of efficiency, using the AUC metric. The results of
this comparison are summarised in Table 9, grouped by
project. We observe that in 64 classes (31%) DynaMOSA
reaches a statistically significant higher AUC score than
WSA, with an average improvement of 8%, and minimum
improvement of 1% for Region (templateit project) and
maximum of 78% for SimpleKeyListenerHelper (calo-
riecount project). Vice versa, WSA is better than DynaMOSA
on 11 classes (5%), with an average AUC difference of 6%. It
is important to notice that on these 11 cases, the difference in
efficiency is mainly due to the test prioritisation performed
by WSA: WSA prioritises the test cases in a test suite
according to their execution time before re-running them
on each infected mutant. Hence, mutants that are killed by
quicker tests in a test suite do not need to be evaluated again
on the other more expensive tests in the same test suite.
This strategy can be particularly relevant in the case of the
strong mutation coverage, as every mutant requires the re-
execution of the test suite. Differently, in DynaMOSA (and

TABLE 10
Efficiency of DynaMOSA and MOSA for strong mutation. We report the

percentage of classes with Â12 6= 0.50 where p-value ≤ 0.05

Project Name N. Classes Efficiency Â12 Statistics
DynaMOSA MOSA %> 0.50 %< 0.50

classviewer 3 14.18 11.45 33.33 -
commons-collections 2 15.60 14.11 50.00 50.00
commons-lang 5 27.13 26.40 40.00 -
commons-math 9 22.01 21.76 - 11.11
compiler 6 11.27 10.06 16.67 -
fixsuite 2 0.43 0.82 - 50.00
geo-google 2 60.61 65.18 - 50.00
glengineer 2 27.63 33.59 - 50.00
guava 8 29.34 28.40 - 12.50
ipcalculator 2 14.97 18.73 - 50.00
jfree-chart 4 45.04 42.90 25.00 -
jipa 2 58.25 57.44 50.00 -
jmca 2 2.93 2.41 50.00 -
joda 2 27.09 23.82 50.00 -
liferay 1 45.52 40.75 100.00 -
lilith 1 69.67 61.94 100.00 -
lotus 2 65.48 60.18 50.00 -
omjstate 1 76.85 74.51 100.00 -
quickserver 4 62.51 61.36 50.00 -
rif 1 45.51 44.35 100.00 -
saxpath 1 90.62 90.55 100.00 -
tullibee 1 84.65 71.80 100.00 -
twfbplayer 2 20.31 21.01 - 50.00
Mean 39.99 38.53
No. cases DynaMOSA significantly better than MOSA 18 (8.04%)
No. cases DynaMOSA significantly worse than MOSA 8 (3.57%)

MOSA) all test cases (offsprings) are evaluated, without
applying any prioritisation strategy. Hence, there is room
for improvement of DynaMOSA when using it with the
strong mutation coverage. In fact, we could also prioritise
the offspring test cases by execution time.

Let us now consider the comparison between Dy-
naMOSA and MOSA. Results are similar to those obtained
for branch and statement coverage. As reported in Ta-
ble 8, DynaMOSA achieved significantly higher mutation
score in 82 classes (26%) against 6 classes (2%) on which
MOSA yields statistically significantly higher scores. In
those classes where DynaMOSA turned out to be better,
the improvements in terms of mutation score range be-
tween 0.51% and 79%, being 12% on average. In those
few cases (2%) where MOSA yields higher mutation score,
the average increase is 7%, with minimum of 1% for class
BrentOptimizer (from apache commons math) and maxi-
mum of 23% for class Verse (from project biblestudy).

The largest improvement achieved by DynaMOSA is
79%, and it is obtained for class AuswertungGrafik from
project nutzenportfolio, whose total number of mutants is
131. On this class, DynaMOSA is able to kill 103 mutants
compared to zero mutants killed by MOSA on average.
The explanation for such large difference is due to (i) the
number of objectives evaluated at each generation, and (ii)
the heavy evaluation cost of each mutant for such a class.
Indeed, with MOSA all 131 mutants are evaluated since the
first generation, even if not all mutants are within control
of covered branches. Differently, DynaMOSA exploits the
control dependencies between test targets and selects less
than 100 mutants in the first generation, i.e., only mutants
under root branches (and their dependencies, if covered) in
the code. The remaining mutants are dynamically added as
further search objectives during later generations according
to the control dependencies of newly covered branches.

In terms of efficiency, DynaMOSA and MOSA are statisti-
cally equivalent in the majority of the classes where there is
no statistically significant difference in the number of killed
mutants. Indeed, as reported in Table 10, in only 18 classes
out of 224 DynaMOSA yielded a significantly higher AUC



scores (average coverage over search time) as compared
to MOSA; vice versa in only 8 classes MOSA produced
significantly higher AUC scores than DynaMOSA.

In summary, DynaMOSA kills more or the same
number of mutants as compared to both WSA and
MOSA. Moreover, for classes with no improvement in
mutation score DynaMOSA converges more quickly.

5.4 RQ4: How do preference criterion and Pareto dom-
inance affect the effectiveness of DynaMOSA?
Our approach is designed to improve the selection pressure
by giving higher priority to the test cases that are close to
reach uncovered targets. Specifically, selection is based on
a new sorting algorithm (Algorithm 3), which combines
two key ingredients: (i) traditional Pareto-based ranking
and (ii) our novel preference criterion. Table 11 reports the
results achieved on branch coverage by three variants of
DynaMOSA: (i) a first variant, namely DynaMOSARank,
which uses only Pareto-based ranking; (ii) a second variant,
namely DynaMOSAPref, which uses only our preference crite-
rion; and (iii) full DynaMOSA, which combines both Pareto-
based ranking and preference criterion (DynaMOSAFull). In all
three variants, we use an archive to keep track of test cases
as soon as they reach uncovered targets (see Algorithm 5).
Therefore, any difference in the final branch coverage can be
interpreted as the effect of the different selection strategies
used by the DynaMOSA variants.

From the comparison, we observe that DynaMOSAFull
outperforms DynaMOSARank in 172 classes out of 335 (51%)
with an average difference in branch coverage of 14%
and maximum difference of 91% (for class TableMeta
from the project schemaspy). In 46% of the projects there
is at least one class for which DynaMOSAFull outperforms
DynaMOSARank. Since DynaMOSARank uses only Pareto-
based ranking, the achieved results show that the usage of
the preference criterion has a strong impact on the effective-
ness of our many-objective algorithm.

There are only four classes in which DynaMOSARank has
significantly higher branch coverage scores, namely
ScopeUtils from checkstyle, CacheBuilderSpec
from guava, InternalChatFrame from dsachat, and
ReflectionSearch from beanbin. However, for these
classes we note that the difference is small (<5% on average)
especially if compared to the average improvement that can
be obtained by using our preference criterion, i.e., by using
DynaMOSAFull. The explanation for these few exceptional
classes is that the statistically significant differences are
due to the usage of test case length (size) as secondary
selection criterion in our preference criterion. Indeed, re-
running DynaMOSAFull by disabling the test size criterion,
the average branch coverage (over 10 independent runs)
for ReflectionSearch is 73.20%, becoming statistically
indistinguishable from DynaMOSARank (p-value= 0.92 and
Â12 = 0.52).

The results of the comparison between Dyna-MOSAFull
and DynaMOSAPref are mixed: in the majority of classes
(302 out of 335 classes) there is no statistically significant
difference between these two variants of DynaMOSA. This
means that the preference criterion is the most critical in-
gredient in our many-objective algorithm, since it achieves

TABLE 11
Projects with statistically significant difference in branch coverage for

three variants of DynaMOSA. We report the percentage of classes with
Â12 6= 0.50 where p-value ≤ 0.05

Project Name Classes
DynaMOSA Variants Â12 Statistics

Simple Rank Full Full vs Simple Full vs Rank
%> 0.50 %< 0.50 %> 0.50 %< 0.50

at-robots2-j 2 79.16 61.03 82.16 50.00 - 100.00 -
battlecry 2 41.15 20.82 30.30 - - 50.00 -
beanbin 2 77.92 78.40 77.92 - - - 50.00
biff 1 30.47 20.24 31.69 - - 100.00 -
byuic 3 54.54 47.80 54.81 - - 66.67 -
caloriecount 3 97.22 89.21 98.98 - - 66.67 -
checkstyle 6 82.07 78.19 86.15 16.67 16.67 66.67 16.67
classviewer 3 61.68 55.84 61.33 - - 66.67 -
commons-cli 2 96.10 95.93 119.28 100.00 - 100.00 -
commons-collections 3 93.33 92.52 93.53 - - 33.33 -
commons-lang 11 94.13 85.80 95.34 9.09 - 72.73 -
commons-math 21 70.90 68.57 75.57 19.05 - 71.43 -
compiler 9 37.61 29.31 41.14 11.11 11.11 88.89 -
db-everywhere 2 44.31 38.99 47.21 - - 50.00 -
dcparseargs 1 97.50 95.23 97.50 - - 100.00 -
diebierse 2 78.26 76.85 94.44 50.00 - 50.00 -
diffi 2 94.49 92.18 96.29 50.00 - 50.00 -
dsachat 2 38.64 40.29 38.91 - - 50.00 50.00
dvd-homevideo 3 13.03 12.23 13.03 - - 66.67 -
ext4j 2 97.20 95.76 97.16 - - 50.00 -
firebird 3 76.04 68.34 75.65 - 33.33 100.00 -
fixsuite 2 59.43 55.69 61.80 50.00 - 100.00 -
follow 2 69.31 52.69 69.82 - - 100.00 -
freemind 2 74.55 60.48 84.61 50.00 - 100.00 -
geo-google 2 85.54 90.19 96.58 50.00 - 50.00 -
glengineer 2 95.53 88.81 96.07 50.00 - 50.00 -
gsftp 2 38.50 34.14 37.71 - - 50.00 -
guava 10 74.68 72.32 72.90 10.00 20.00 50.00 10.00
heal 2 93.78 90.14 93.40 - - 50.00 -
ifx-framework 1 69.25 46.21 69.86 - - 100.00 -
inspirento 2 86.36 85.28 86.67 - - 50.00 -
ipcalculator 2 81.06 78.06 83.02 50.00 - 50.00 -
javabullboard 2 80.18 72.30 81.33 - - 100.00 -
javathena 4 49.15 42.31 49.18 - - 25.00 -
javaviewcontrol 3 70.98 63.31 71.83 33.33 - 66.67 -
javex 1 88.01 85.65 88.15 - - 100.00 -
jclo 1 82.30 76.56 83.98 - - 100.00 -
jcvi-javacommon 2 99.77 98.05 99.84 - - 50.00 -
jdbacl 2 86.03 82.44 86.04 - - 100.00 -
jdom 5 84.05 82.63 84.35 - - 40.00 -
jfree-chart 11 82.33 71.35 84.98 27.27 - 63.64 -
jgaap 1 89.13 83.64 94.35 100.00 - 100.00 -
jiggler 4 86.43 80.22 86.68 - - 25.00 -
jiprof 4 79.08 70.75 80.21 - - 100.00 -
jmca 4 52.55 41.12 53.69 25.00 - 100.00 -
joda 13 85.49 76.02 84.81 7.69 15.38 53.85 -
jopenchart 2 97.40 62.87 97.28 - - 100.00 -
jsci 4 93.08 86.58 92.71 - 25.00 100.00 -
jsecurity 3 72.20 67.77 75.11 33.33 - 66.67 -
jtailgui 2 46.13 31.99 59.95 50.00 - 50.00 -
lagoon 2 22.98 18.07 23.20 - - 100.00 -
lhamacaw 2 10.37 9.46 10.84 - - 50.00 -
liferay 1 93.33 82.90 94.95 - - 100.00 -
lilith 1 100.00 99.05 100.00 - - 100.00 -
lotus 2 68.66 59.79 70.83 50.00 - 50.00 -
netweaver 2 97.88 94.87 97.62 - - 100.00 -
newzgrabber 3 21.11 17.69 20.60 - - 33.33 -
noen 2 96.13 75.71 96.13 - - 100.00 -
nutzenportfolio 2 43.62 41.08 54.32 50.00 - 50.00 -
openhre 2 100.00 98.83 100.00 - - 50.00 -
openjms 2 83.65 74.44 84.28 - - 100.00 -
petsoar 2 79.26 76.98 80.85 - - 50.00 -
quickserver 4 63.56 57.40 64.19 - - 50.00 -
saxpath 2 95.06 93.35 95.04 - - 50.00 -
schemaspy 2 52.51 23.36 67.75 50.00 - 50.00 -
shop 4 58.39 56.27 59.09 25.00 25.00 - -
sugar 2 87.89 84.40 89.12 - - 50.00 -
summa 4 37.89 35.53 37.62 - - 25.00 -
sweethome3d 4 25.01 19.37 50.46 75.00 - 100.00 -
tartarus 3 75.34 68.11 76.51 33.33 - 100.00 -
trans-locator 2 51.16 50.09 51.47 - - 50.00 -
trove 8 82.11 80.43 82.06 12.50 - - -
twfbplayer 2 89.07 82.23 89.26 - - 100.00 -
twitter4j 7 94.76 88.59 86.59 - 57.14 57.14 42.86
vuze 2 8.17 5.94 9.68 50.00 - 50.00 -
water-simulator 2 15.43 9.57 14.71 - - 50.00 -
weka 4 69.50 57.70 69.62 - - 100.00 -
wheelwebtool 4 88.88 80.98 90.30 25.00 - 75.00 -
xbus 2 67.96 47.98 64.40 - 50.00 100.00 -
xisemele 1 55.82 67.00 80.00 100.00 - 100.00 -
xmlenc 2 63.39 62.30 63.50 - - 100.00 -
Mean over all projects 78.26 70.75 80.85
No. cases DynaMOSAFull significantly better than DynaMOSAPref 39 (11.64%)
No. cases DynaMOSAFull significantly worse than DynaMOSAPref 14 (4.17%)
No. cases DynaMOSAFull significantly better than DynaMOSARank 172 (51.34%)
No. cases DynaMOSAFull significantly worse than DynaMOSARank 4 (2.08%)

the same branch coverage (and sometimes higher coverage)
even if it is not combined with Pareto-based ranking. In 39
classes (12%) DynaMOSAFull outperforms DynaMOSAPref,
with an average difference in branch coverage of 14% and
maximum difference of 85% for class SchurTransformer
from the apache commons math. In the remaining 14 classes
(4%), the usage of preference criterion alone (DynaMOSAPref)
leads to statistically higher branch coverage if compared to
its combination with the traditional non-dominance ranking
(DynaMOSAFull).

We notice that DynaMOSAPref is significantly better
for extremely large classes, i.e., classes with hundreds or
thousands of branches. Vice versa, DynaMOSAFull achieves
better coverage for relatively small/medium size classes.
In fact, the mean size of classes for which DynaMOSAPref



turned out to be significantly better than DynaMOSAFull is
247 branches. On the other hand, the mean size of classes for
which DynaMOSAFull outperforms DynaMOSAPref is 177.

The explanation for such findings could be that Pareto-
based ranking computes the non-dominance ranks using the
Fast-Non-Dominated-Sort algorithm, whose computational
complexity is O(M2 × N), where M is the population size
and N is the number of uncovered test targets. When the
number of targets becomes too large (the order of thou-
sands), DynaMOSAFull spends too much time in computing
the non-dominance ranks rather than in evolving the test
cases. Hence, potentially better coverage scores may be
achieved by developing an adaptive strategy which enables
or disables Pareto-based ranking based on the number of
uncovered branches considered as objectives.

In summary, our preference criterion is a critical
component of DynaMOSA, necessary to improve the
selective pressure when dealing with many objectives
(RQ4). Indeed, Pareto-based ranking (even with the
archive) is not sufficient to deal with hundreds of
objectives, as is the case of test case generation.

6 ADDITIONAL ANALYSES

In this section, we analyse qualitatively some examples and
discuss co-factors that could have played an important role
in the performance of the experimented algorithms. Even
though these analyses are not directly related to the research
questions of the study described in Sections 4-5, they helped
us understand the conditions in which DynaMOSA outper-
forms the alternative algorithms.

6.1 Qualitative analysis
Figure 6 shows an example of a branch covered by Dy-
naMOSA but not by WSA for the class MatrixUtils
extracted from the Apache commons math library, i.e., the
false branch of line 137 of method createRealMatrix.
The related branch condition checks the size of the
input matrix data and returns an object of class
Array2DRowRealMatrix or of class BlockRealMatrix
depending on the outcome of the branch condition. In par-
ticular, below 212 elements (i.e., 4096 elements or 64×64 for
a square matrix) an Array2DRowRealMatrix instance is
built since it can store up to 32kB array. Above this threshold
a BlockRealMatrix instance is built. At the end of the
search process, the final test suite obtained by WSA has a
whole suite fitness f = 21.50. Within the final test suite, the
test case closest to cover the considered target is shown in
Figure 6-b. It is a test case with branch distance d = 0.9998,
for the branch under analysis.

This test case executes method createRealMatrix
giving it as input an array with 1 × 6 = 6 elements
(<< 4096). However, by analysing all the test cases gen-
erated by WSA during the search process we found that
TC1 is not the closest test case to the false branch of line
137 across all generations. For example, at some genera-
tion WSA generated a test case TC2 with a lower branch
distance d = 0.9997 that is reported in Figure 6-c. As we
can see, TC2 also executes the lines 131-136, hence being
equivalent to TC1 in terms of coverage. However, in TC1

public static RealMatrix createRealMatrix(double[][] data)
throws NullArgumentException,
DimensionMismatchException, NoDataException {

131 if (data == null ||
132 data[0] == null) {
133 throw new NullArgumentException();
134 }
135 return (data.length * data[0].length <= 4096) ?
136 new Array2DRowRealMatrix(data) :
137 new BlockRealMatrix(data);
138 }

(a) Target branch

double[][] doubleArray0 = new double[1][6];
double[] doubleArray1 = new double[6];
...
doubleArray0[0] = doubleArray1;
...
MatrixUtils.createRealMatrix(doubleArray0);

(b) TC1 with branch distance d = 0.9998

ouble[][] doubleArray0 = new double[50][50];
double[] doubleArray1 = new double[50];
...
doubleArray0[0] = doubleArray1;
...
MatrixUtils.createRealMatrix(doubleArray0);

(c) TC2 with branch distance d = 0.9997

Fig. 6. Example of uncovered branch for MatrixUtils

the method createRealMatrix is called by using as input
an array with 50 × 50 = 2500 elements, thus, such a test
case is much closer to satisfy the condition data.length

* data[0].length > 4096 that lead to cover the false
branch of line 137. However, TC2 was generated within
a candidate test suite with a poor whole suite fitness
f = 98.37, which happened to be the worst candidate test
suite in its generation. Thus, in the next generation this test
suite is not selected to form the next generation and the
promising test case TC2 is lost. By manual investigation we
verified that this scenario is quite common, especially for
classes with a large number of targets to cover. As we can
see from this example, the whole suite fitness is really useful
in increasing the global number of covered goals, but when
aggregating the branch distances of uncovered branches, the
individual contribution of single promising test cases may
remain unexploited.

Unlike WSA, DynaMOSA selects the best test case (in-
stead of the best test suite) within the current population
for each uncovered branch. Therefore, in a similar scenario
it would place TC2 in the first non-dominated front F0 ac-
cording to the proposed preference criterion. Thus, generation
by generation test case TC2 will remain in front F0 until it
is replaced by a new test case that is closer to covering the
target branch. Over few generations, DynaMOSA covers the
false branch of line 137, while WSA does not, even after 10
minutes of search budget.

6.2 Co-factors analysis for DynaMOSA vs. WSA

Figure 7 plots the relation among McCabe’s cyclomatic com-
plexity, number of coverage targets, and Vargha-Delaney
Â12 scores achieved for those classes with statistically signif-
icant differences between DynaMOSA and WSA. Basically,



the figure reports three x-y scatter plots with circles to ex-
press a third dimension: each circle represents a class in our
study, whose x coordinate is the Â12 score achieved when
comparing DynaMOSA against WSA, the y coordinate is
its McCabe’s cyclomatic complexity score, while the radius
of the circle is proportional to the number of coverage
targets. We compute the McCabe’s cyclomatic complexity
score of each class as the sum of the complexity scores of its
methods. Each coverage criterion —i.e., branch, statement
and strong mutation — is reported in a different graph.

For branch coverage (Figure 7-a), classes with Â12<0.50
(i.e., with WSA outperforming DynaMOSA) have low cy-
clomatic complexity (average <51) and contain only few
branches to cover (average <85). Vice versa, classes with
Â12>0.50 (i.e., with DynaMOSA outperforming WSA) have
a more variable complexity, ranging between 4 and 1, 244,
and number of branches varying between 17 and 7, 938.
Therefore, on this coverage criterion we observe a general
trend for DynaMOSA to reach higher branch coverage
(Â12>0.50) regardless of class size and complexity.

For statement coverage (Figure 7-b), Â12>0.50 scores are
achieved mainly for classes with more than 500 statements,
which represent 75% of the classes for which DynaMOSA
achieves significantly higher statement coverage. For cyclo-
matic complexity, there is more variability since it ranges
between 5 and 1, 244. Only few circles (classes) fall on the
left of the Â12 = 0.50 point. For those few cases, the average
complexity is 20 while the total number of statements to
cover is 404 on average.

Finally, for strong mutation coverage, the results are
mixed: classes with both Â12<0.50 and Â12>0.50 show
variable complexity (y coordinate) as well as a variable
number of mutants to kill (circle’s radius). Indeed, Figure 7-c
reports large circles on the left of point Â12=0.50 indicating
that there are classes with a large number of mutants for
which WSA achieves better strong mutation scores. It is
important to notice that for this criterion WSA prioritises the
test cases to be run according to their execution time, while
DynaMOSA does not do that. For classes with an extremely
high number of mutants, this strategy helps in reducing
the time consumed in each generation, thus, allowing the
algorithm to spend more effort evolving the test suites.
However, there are many more circles on the right of point
Â12=0.50, indicating that DynaMOSA outperforms WSA
in many more cases even without using any prioritising
strategy based on test case execution time.

To provide statistical support to the observations made
above, we used a two-way permutation test [4] to verify
whether any interaction between the Â12 statistics, cy-
clomatic complexity and number of targets is statistically
significant or not. The two-way permutation test is a non-
parametric test equivalent to the two-way Analysis of Vari-
ance (ANOVA), thus, it does not make any assumption on
data distributions. For this test, we use the implementation
available in the lmPerm package for R. It uses an iterative
procedure to compute the p-values, thus, it can produce
different results over multiple runs when few iterations are
used. For this reason, we set the number of iterations to 108.

The two-way permutation test shows that the Â12

scores are significantly influenced by cyclomatic com-
plexity and number of targets for branch coverage (p-
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Fig. 7. DynaMOSA vs WSA: Interaction between Â12 statistic, McCabe’s
cyclomatic complexity, and number of targets (branches, statements,
mutants).

values ∈ {0.04, 0.02}), as well as by their combination (p-
value=0.02). Therefore, on this criterion DynaMOSA im-
proves branch coverage over WSA especially for classes
with high number of branches and/or high computational
complexity. For statement coverage, the permutation test
reveals a significant interaction between Â12 scores and
cyclomatic complexity combined with number of targets
(p-value=0.02). However, the two factors taken alone do
not significantly interact with the Â12 scores (p-values
∈ {0.24, 1.00}). Therefore, DynaMOSA provides better cov-
erage scores (with Â12 > 0.50) especially for classes with
high cyclomatic complexity and with large number of mu-
tants/statements to be covered. For strong mutation cov-
erage, the two-way permutation test shows that the Â12

scores are not significantly influenced by cyclomatic com-



plexity and number of targets for branch coverage (p-values
∈ {0.98, 0.35}), neither by their combination (p-value=0.75).

6.3 Co-factors analysis for DynaMOSA vs. MOSA

Figure 8 reports the results of the interaction between Mc-
Cabe’s cyclomatic complexity (y axis), number of coverage
targets (circle’s radius), and Vargha-Delaney Â12 scores (x
axis) for those classes with statistically significant differ-
ences between DynaMOSA and MOSA. For branch cov-
erage (Figure 8-a), classes with Â12>0.50 show a variable
number of branches that ranges between 21 and 2, 373,
and a variable cyclomatic complexity ranging between 4
and 679. Vice versa, for the single class with Â12<0.50
the corresponding circle has a small size (low number of
branches) and low complexity scores. Therefore, for branch
coverage DynaMOSA reaches higher coverage, with respect
to MOSA, independently of the considered factors.

For statement coverage (Figure 8-b), Â12<0.5 scores are
achieved for classes with complexity ranging between 16
and 63, while the corresponding number of statements
ranges between 152 and 1, 436. However, these two factors
have higher values for classes with Â12>0.50. Indeed, for
such classes the complexity values range between 10 and
775, while the number of statements to cover ranges be-
tween 179 and 7, 809. Hence, for this criterion DynaMOSA
tends to outperform MOSA for classes with both high
complexity and large size.

For strong mutation, most of the classes in Figure 8-c
have low complexity when Â12<0.50 while for Â12>0.50
we observe a larger variability in terms of complexity. There
is an extreme class on the right of the line Â12 = 0.50 with
a very large complexity (755) for which DynaMOSA is more
effective than MOSA. For what concerns the number of
mutants (radius of circles), we do not observe any relevant
differences between the data points on the left and on the
right sides of line Â12 = 0.50. Thus, we do not observe
any influence of the number of mutants to kill on the Â12

statistics.
To test the statistical significance of the interactions re-

ported above, we used a two-way permutation test [4]. Ac-
cording to this test, for branch coverage, Â12 scores obtained
from the comparison between DynaMOSA and MOSA are
not significantly influenced by cyclomatic complexity and
by number of branches to cover (p-values ∈ {0.73, 0.16}),
and neither from their combination (p-value=0.13). Simi-
larly, for statement coverage the permutation test reveals
no interaction between Â12 statistics and both cyclomatic
complexity (p-value=0.14) and number of statements (p-
value=1.00). Moreover, there is no significant interaction
between their combination and Â12 scores (p-value=0.29).
For strong mutation, only cyclomatic complexity has a
marginal interaction with Â12 statistics (p-value=0.07) while
there is no significant influence for the number of mutants
(p-value=1.00) as well as for its combination with cyclo-
matic complexity (p-value=0.92). Hence, DynaMOSA out-
performs MOSA independently of size and complexity of
the class under test for all three coverage criteria considered
in this study.
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(c) Strong Mutation Coverage

Fig. 8. DynaMOSA vs MOSA: Interaction between Â12 statistics, Mc-
Cabe’s cyclomatic complexity, and number of targets (branches, state-
ments, mutants).

7 THREATS TO VALIDITY

Threats to construct validity regard the relation between the-
ory and experimentation. The comparison among different
search algorithms is based on performance metrics that are
widely adopted in the literature: structural coverage, strong
mutation scores, and running time. In the context of test
case generation, these metrics give reasonable estimation of
the effectiveness (coverage metrics) and efficiency (running
time) of the test case generation techniques.

Threats to internal validity regard factors that could in-
fluence our results. To deal with the inherent randomness
of GA, we repeated each execution 10 times and reported
average performance together with rigorous statistical anal-
ysis to support our findings. Another potential threat arises
from GA parameters. We used default parameter values



suggested in related literature since they have been shown
to give reasonably acceptable results as compared to fine-
tuned settings [2]. All experimented algorithms are imple-
mented in the same tool, thus, they share the same imple-
mentation for the genetic operators. This avoids potential
confounding effects due to usage of different tools with
different operator implementations.

Threats to conclusion validity stem from the relationship
between the treatment and the outcome. In analysing the re-
sults of our experiments, we have used appropriate statisti-
cal tests coupled with enough repetitions of the experiments
to enable the statistical tests. In particular, we have used the
two-tailed Wilcoxon test and the two-way permutation test,
two non-parametric tests that do not make any assumption
on the data distributions being compared. We also use
the Vargha-Delaney effect size statistics for estimating the
magnitude of the observed difference. We drew conclusions
only when results were statistically significant according to
these tests.

Threats to external validity affect the generalisation of
our results. We carried out experiments on 346 Java classes
randomly taken from 116 open-source projects belonging to
four different datasets [18], [53], [49], [42]. These software
projects have been used in many previous works on test
case generation (e.g., [2], [19]). Moreover, in order to increase
the generalisability of our findings, we evaluated all the
algorithms with respect to three different, widely used,
coverage criteria, i.e., branch coverage, statement coverage
and strong mutation coverage.

8 RELATED WORK

The application of search algorithms for test data and test
case generation has been the subject of increasing research
efforts. As a result, several techniques [5], [26], [24], [46], [56]
and tools [6], [9], [40], [35], [7], [29], [57], [60], [43] have been
proposed in the literature.

Search-based approaches. Existing works on search-
based test generation rely on the single objective formu-
lation of the problem, as discussed in Section 2. In the
literature, two variants of the single objective formulation
can be found: (i) targeting one branch at a time [1], [20],
[26], [37], and (ii) targeting all branches at once (whole-suite
approach) [3], [17], [19]. The first variant (i.e., targeting one
branch at a time) has been shown to be inferior to the whole-
suite approach [3], [17], mainly because it is significantly af-
fected by the inevitable presence of unreachable or difficult
targets. Recently, Rojas et al. [48] further improved the whole-
suite approach by incorporating some basic routines shared
with our MOSA algorithm. The corresponding approach, is
a hybrid strategy which combines the traditional evolution
of test suites with test case level operators: (1) the usage of
an archive to keep track of test cases (and not test suites)
covering some targets; and (2) synthesising the final suite by
taking test cases stored in the archive rather than picking up
the best individual (candidate suite) from the last generation
of GA. Since the archive based whole-suite approach (WSA)
has been proved to outperform both the pure whole-suite
and targeting one branch at a time approaches, we focused
on WSA as a state-of-the-art representative of the single
objective approach.

Multi-objective approaches. Although in the related
literature there are previous works applying multi-objective
approaches in evolutionary test data generation, they all
considered structural coverage as a single objective, while
other, domain-specific objectives have been added as fur-
ther objectives the tester would like to achieve [1], [22],
such as memory consumption [32], execution time [44],
test suite size [39], etc. For example, Harman et al. [23]
proposed a search-based multi-objective approach in which
the first objective is branch coverage (each coverage target
is still targeted individually) and the second objective is the
number of collateral targets that are accidentally covered.
Ferrer et al. [16] proposed a multi-objective approach that
considers two conflicting objectives: coverage (to be max-
imised) and oracle cost (to be minimised). They also used
the targeting one branch at a time approach for the branch
coverage criterion, i.e., their approach selects one branch at
time and then runs GA to find the test case with minimum
oracle cost that covers such a branch. Pinto and Vergilio [44]
considered three different objectives when generating test
cases: structural coverage criteria (targeting one branch at
a time approach), ability to reveal faults, and execution
time. Oster and Saglietti [39] considered two objectives to
optimise: branch coverage (to be maximised) and number
of test cases required to reach the maximum coverage (to be
minimised). Lakhotia et al. [32] experimented bi-objective
approaches, considering as objectives branch coverage and
dynamic memory consumption for both real and synthetic
programs. Even if they called this bi-objective formulation
as multi-objective branch coverage, they still represent branch
coverage as a single objective function, by considering one
branch at a time. According to McMinn [38], there are
several other potential non-coverage objectives that could
be added to test case generation tools, such as minimising
the oracle cost, maximising the test case diversity to increase
the likelihood to expose more faults, etc.

It is important to notice that all previous multi-objective
approaches for evolutionary test data generation used the
targeting one branch at a time strategy [37]. The branch
distance of a single targeted branch is one objective, con-
sidered with additional non-coverage objectives. From all
these studies, there is no evidence that the usage of addi-
tional (non-coverage) objectives provides benefits in terms
of coverage with respect to the traditional single-objective
approach based on branch coverage alone. As reported by
Ferrer et al. [16] the usage of such additional objectives
can be even harmful for the final structural coverage. It is
also important to highlight that the number of objectives
considered in these studies remains limited to a relatively
small number, being always ≤ 3.

Non-evolutionary approaches. Other than evolutionary
approaches, other techniques have been proposed in the
literature for test case and test data generation, such as
dynamic symbolic execution [7], [29], [57], [60] and random
testing [10], [35], [40], [41]. Dynamic symbolic execution
techniques encode all constraints that should be satisfied
to execute a particular path in a specific formula to be
solved using constraint solvers. A solution to such a formula
consists of method sequences and test data allowing to
cover the corresponding path in the program [29]. Although
symbolic execution has been widely applied in the liter-



ature [7], [57], there are several challenges to address for
real-world programs [15], such as: path explosion, complexity
constraints, dependencies to external libraries, and paths related
to exceptions. Eler et al. [15] performed a large-scale study on
the SF110 corpus to identify factors that negatively impact
symbolic execution techniques for object-oriented software.
They observed that less than 10% of java methods in SF110
have only integer or floating-point data types. Therefore,
most of constraints to solve are related to complex data
types (e.g., objects) posing several challenges to constraint
solvers [15]. Moreover, handling calls to external libraries
limits the applicability of symbolic execution for real-world
software projects [15].

Direct comparison between evolutionary testing and
random testing has been the subject of investigation of
several researchers (e.g., [56], [25], [53], [49]) in the last
decade. Most of these studies have shown that evolutionary
testing outperforms random testing [56], [25], [49], which
usually fails to cover hard-to-reach branches that require
a quite sophisticated search [25]. For example, Fraser and
Arcuri [18] conducted a large empirical study on open
source projects (the SF110 corpus) and industrial projects
and compared EvoSuite with Randoop [41], a popular ran-
dom testing tool for Java. Their results showed that GAs
(whole suite approach) lead to a large improvement over
random testing [18], despite the presence of a large number
of classes in SF110 that are trivial to cover. Similar results
have been obtained by Shamshiri et al. [51]. On the SF110
corpus they compared the whole suite approach with a
random search algorithm implemented in the same tool,
i.e., EvoSuite. However, they observed that most of classes
in SF110 are so trivial to cover that random search could
generate test cases without much relative disadvantage for
such a dataset.

Recently, Ma et al. [35] introduced an improved version
of random testing, namely guided random testing (GRT). GRT
extracts constants from the software under test via light-
weight static analysis and reuses such knowledge to seed
the generation process. Empirical results [35], [53] have
shown GRT is able to reach competitive (and sometimes
higher) coverage than the pure whole-suite approach in
implemented EvoSuite. However, no empirical comparison
has been performed between GRT and a more recent version
of EvoSuite implementing WSA (archive-based whole suite
approach), which won the latest SBST tool contest [49].

Whereas a systematic comparison of evolutionary test-
ing (e.g., WSA, DynaMOSA) with other techniques (e.g.,
GRT, Randoop, etc.) would be an interesting analysis to
perform, it escapes the scope of this paper. In fact, the
main goal of this paper is to determine a proper formulation
of the test case generation problem in the context of evolutionary
testing. As a consequence, we have presented a new many-
objective solver for evolutionary-based techniques. Further
investigations and comparisons with different categories of
techniques are part of our future work agenda.

Our paper. Although other existing techniques already
target all branches/statements at the same time (e.g.,
WSA [48], GRT [35], etc.), none of them consider such
coverage targets as explicit objectives to optimise. In this
paper, we regard coverage itself as a many-objective problem,
since the goal is to minimise simultaneously the distances

between the test cases and the uncovered structural targets
in the class under test. In our previous ICST 2015 paper [42]
we provided a first reformulation of branch coverage as a
many-objective problem. In this paper, we refine the target
selection mechanism and we dynamically add yet uncov-
ered targets that are under direct control dependency of a
covered condition. This allows us to reduce the number of
objectives simultaneously active during test case evolution,
which further increases the effectiveness and efficiency of
the proposed approach. Such extension is especially useful
when the number of targets is very high, as in mutation test-
ing or when dealing with classes that have high cyclomatic
complexity/size.

Our empirical results provide also evidence that attempt-
ing all coverage targets at the same time is not equivalent
to applying a many-objective solver. In fact, all algorithms
investigated in our paper already attempt all coverage tar-
gets at the same time: WSA and WS consider such targets as
components of a test-suite level single function to optimise;
MOSA and DynaMOSA (and its variants) use such targets
as independent objectives. Our results show that there exists
a statistically significant difference in code coverage among
the aforementioned algorithms. In particular, we found that
the usage a many-objective strategy to select the candidate
tests during the search process plays a paramount role on
both effectiveness and efficiency in test case generation (see
RQ4 on the role of the preference criterion).

9 CONCLUSIONS AND FUTURE WORK

We have reformulated the test case generation problem
as a many-objective optimisation problem, where different
coverage targets are considered as different objectives to be
optimised. Our novel many-objective genetic algorithm, Dy-
naMOSA, exploits the peculiarities of coverage testing with
respect to traditional many-objective problems to overcome
scalability issues when dealing with hundreds of objectives
(coverage targets). In particular, (i) it includes a new prefer-
ence criterion that gives higher priority to a subset of Pareto
optimal solutions (test cases), hence increasing the selective
pressure; (ii) it dynamically focuses the search on a subset of
the yet uncovered targets, based on the control dependency
hierarchy.

Our empirical study, conducted on 346 Java classes ex-
tracted from 117 java projects belonging to four different
datasets, shows that the proposed algorithm, DynaMOSA,
yields strong, statistically significant improvements for cov-
erage with respect to its predecessor, MOSA, and the
whole-suite approach. Specifically, the improvements can
be summarised as follows: coverage is significantly higher
with respect to WSA in 28% of the classes for branch
and 27% strong mutation; for these classes, DynaMOSA
leads to +8% and +11% more coverage respectively. The
comparison with WS shows a significant improvement for
statement coverage in 51% of classes, for which the average
improvement is 11%. Finally, DynaMOSA outperforms its
predecessor MOSA in 12% of the classes with an average
coverage improvement of 8%. Consistent results have been
obtained across all three coverage criteria —i.e., branch cov-
erage, statement coverage and strong mutation coverage.
On classes with no improvement in coverage, DynaMOSA



converges more quickly, especially when limited time is
given to the search. Therefore, we conclude that many-
objective algorithms can be applied to test case generation,
but they need to be suitably customised to deal with the
hundreds and thousands of targets/objectives that are typi-
cal of test case generation.

Given the results reported in this paper, there are a
few potential directions for future works. First of all, we
intend to incorporate also non-coverage criteria within our
many-objective algorithm, such as execution time [44] and
memory consumption [32]. We also plan to further improve
our preference criterion by developing adaptive strategies
to enable/disable the test size (secondary non-coverage cri-
terion) to avoid genetic drift, to enable/disable Pareto-based
ranking and to activate the upper bound strategy when the
number of uncovered targets/objectives is extremely high.

Recent research endeavours have resulted in improved
variants of random testing techniques (e.g., [35]) which
have been shown to be effective alternatives for test data
generation, as opposed to being mere baselines for compar-
ing other techniques. However, such effectiveness needs to
be investigated with respect to the nature of the program
under test, in particular, when the program under test ex-
hibits complex structures. In future work, we plan to design
a comprehensive experimental evaluation for investigating
the comparative pros and cons of random testing techniques
with respect to our DynaMOSA.

Finally, we plan to investigate the performance of our
many-objective algorithm when combining multiple cov-
erage criteria at the same time compared to the sum-
scalarization strategy used by Rojas et al [47] for WS and
WSA.
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