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Abstract—The energy consumption of mobile apps is a trending topic and researchers are actively investigating the role of coding
practices on energy consumption. Recent studies suggest that design choices can conflict with energy consumption. Therefore, it is
important to take into account energy consumption when evolving the design of a mobile app. In this paper, we analyze the impact of
eight type of anti-patterns on a testbed of 20 android apps extracted from F-Droid. We propose EARMO, a novel anti-pattern correction
approach that accounts for energy consumption when refactoring mobile anti-patterns. We evaluate EARMO using three multiobjective
search-based algorithms. The obtained results show that EARMO can generate refactoring recommendations in less than a minute,
and remove a median of 84% of anti-patterns. Moreover, EARMO extended the battery life of a mobile phone by up to 29 minutes when
running in isolation a refactored multimedia app with default settings (no WiFi, no location services, and minimum screen brightness).
Finally, we conducted a qualitative study with developers of our studied apps, to assess the refactoring recommendations made by
EARMO. Developers found 68% of refactorings suggested by EARMO to be very relevant.
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1 INTRODUCTION

DURING the last five years, and with the exponential
growth of the market of mobile apps [1], software

engineers have witnessed a radical change in the landscape
of software development. From a design point of view,
new challenges have been introduced in the development
of mobile apps such as the constraints related to internal
resources, e.g., CPU, memory, and battery; as well as ex-
ternal resources, e.g., internet access. Moreover, traditional
desired quality attributes, such as functionality and reliabil-
ity, have been overshadowed by subjective visual attributes,
i.e., “flashiness” [2].

Mobile apps play a central role in our life today. We
use them almost anywhere, at any time and for everything;
e.g., to check our emails, to browse the Internet, and even
to access critical services such as banking and health moni-
toring. Hence, their reliability and quality is critical. Similar
to traditional desktop applications, mobile apps age as a
consequence of changes in their functionality, bug-fixing,
and introduction of new features, which sometimes lead to
the deterioration of the initial design [3]. This phenomenon
known as software decay [4] is manifested in the form of
design flaws or anti-patterns. An example of anti-pattern
is the Lazy class, which occurs when a class does too little,
i.e., has few responsibilities in an app. A Lazy class typically
is comprised of methods with low complexity and is the
result of speculation in the design and-or implementation
stage. Another common anti-pattern is the Blob, a.k.a., God
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class, which is a large and complex class that centralizes
most of the responsibilities of an app, while using the
rest of the classes merely as data holders. A Blob class has
low cohesion, and hinders software maintenance, making
code hard to reuse and understand. Resource management
is critical for mobile apps. Developers should avoid anti-
patterns that cause battery drain. An example of such anti-
pattern is Binding resources too early class [5]. This anti-
pattern occurs when a class switches on energy-intensive
components of a mobile device (e.g., Wi-Fi, GPS) when they
cannot interact with the user. Another example is the use of
private getters and setters to access class attributes in a class,
instead of accessing directly the attributes. The Android
documentation [6] strongly recommends to avoid this anti-
pattern as virtual method calls are up to seven times more
expensive than using direct field access [6].

Previous studies have pointed out the negative impact of
anti-patterns on change-proneness [7], fault-proneness [8],
and maintenance effort [9]. In the context of mobile apps,
Hecht et al. [10] found that anti-patterns are prevalent
along the evolution of mobile apps. They also confirmed
the observation made by Chatzigeorgiou and Manakos [11]
that anti-patterns tend to remain in systems through several
releases, unless a major change is performed on the system.

Recently, researchers and practitioners have proposed
approaches and tools to detect [12], [13] and correct [14] anti-
patterns. However, these approaches only focus on object-
oriented anti-patterns and do not consider mobile develop-
ment concerns. One critical concern of mobile apps devel-
opment is reducing energy consumption, due to the short
life-time of mobile device’s batteries. Some research studies
have shown that behavior-preserving code transformations
(i.e., refactorings) that are applied to remove anti-patterns
can impact the energy consumption of a program [15], [16],
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[17]. Hecht et al. [18] observed an improvement in the user
interface and memory performance of mobile apps when
correcting Android anti-patterns, like private getters and set-
ters, HashMap usage and member ignoring method, confirming
the need of refactoring approaches that support mobile app
developers.

One could argue that reducing energy consumption of
an app, and improving traditional quality attributes like
readability, flexibility, extendability, reusability do not arise
at the same time during the software development process,
and it is only in the compiled product that the software
engineer is concerned about energy efficiency. However, we
surmise automated refactoring as a way to support software
developers to write “good” code, so that other develop-
ers can understand and maintain easily. The definition of
“good” refers not only to traditional quality attributes, but
also energy efficiency. Hence, the refactoring operations pro-
posed by an automated approach will have design choices
that developers can learn to produce a more energy-efficient
code. Once these design choices have been adopted by
developers, they can be easily applied to different platforms.
If we use a second tool in a later phase (at binary code gen-
eration, for example), we run the risk of wrongly assuming
that (1) all energy improvements can be performed during
compilation phase, and that (2) developers are not respon-
sible of the energy efficiency of their apps, i.e., developers
will not consider energy efficiency of apps each time they
have to evolve the current design. Consequently, the cost
of maintaining two refactoring tools, instead of one that
considers energy and software quality in a single phase is
expected to be higher.

To address these limitations, we propose a multiobjec-
tive refactoring approach called EARMO (Energy-Aware
Refactoring approach for MObile apps) to detect and cor-
rect anti-patterns in mobile apps, while improving energy
consumption. We first study the impact of eight well-known
Object-oriented (OO) and Android specific (extracted from
Android Performance guidelines [6]) anti-patterns on en-
ergy consumption. Our approach leverages information
about the energy cost of anti-patterns to generate refactor-
ing sequences automatically. We experimentally evaluated
EARMO on a testbed of 20 open-source Android apps
extracted from the F-Droid marketplace, an Android app
repository.

The primary contributions of this work can be summa-
rized as follows:

1) We perform an empirical study of the impact of anti-
patterns on the energy consumption of mobile apps.
We also propose a methodology for a correct measure-
ment of the energy consumption of mobile apps. Our
obtained results provide evidence to support the claim
that developer’s design choices can improve/decrease
the energy consumption of mobile apps.

2) We present a novel automated refactoring approach to
improve the design quality of mobile apps, while con-
trolling energy consumption. The proposed approach
provides developers the best trade-off between two
conflicted objectives, design quality and energy.

3) We evaluate the effectiveness of EARMO using three
different multiobjective metaheuristics from which

EARMO is able to correct a median of 84% anti-
patterns.

4) We perform a manual evaluation of the refactoring
recommendations proposed by EARMO for 13 apps.
The manual evaluation is conducted in two steps. (1)
Each refactoring operation in a sequence is validated
and applied to the corresponding app. (2) The app
is executed in a typical user context and the energy
consumption gain is recorded. The sequences gener-
ated by EARMO achieve a median precision score of
68%. EARMO precision is close to previously published
refactoring approaches (e.g., Ouni et al. [19] reports that
Kessentini et al. [20] achieves a precision of 62-63% and
Harman et al. [21]. a precision of 63-66%). In addition,
EARMO extended the battery life by up to 29 minutes
when running in isolation a refactored multimedia app
with default settings (no Wi-Fi, no location services,
minimum screen brightness).

5) From the manual validation, we provide guidelines for
toolsmith interested in generating automated refactor-
ing tools.

6) We perform the evaluation of the design quality of
the refactored apps using a widely-used Quality Model
(QMOOD) [22] and report a median improvement of
41% in extendibility of app’s design.

7) We evaluate the usefulness of the solutions proposed
by EARMO from the perspective of mobile developers
through a qualitative study and achieve an acceptance
rate of 68%. These results complement the manual
verification in terms of precision and design quality
(e.g., extendability, reusability), and serve as external
evaluation.

The remainder of this paper is organized as follows:
Section 2 provides some background information on refac-
toring, energy measurement of mobile apps, and multiob-
jective optimization. Section 3 presents a preliminary study
regarding the impact of anti-patterns on energy consump-
tion. In Section 4, we present our automated approach
for refactoring mobile apps while Section 5 describes the
experimental setting for evaluating the proposed approach
and present and discuss the results obtained from our exper-
iments. In Section 6, we discuss the threats to the validity of
our study, while in Section 7 we relate our work to the state
of the art. Finally, we present our conclusions and highlight
directions for future work in Section 8.

2 BACKGROUND

This section presents an overview of the main concepts used
in this paper.

2.1 Refactoring

Refactoring, a software maintenance activity that transforms
the structure of a code without altering its behavior [23],
is widely used by software maintainers to counteract the
effects of design decay due to the continuous addition
of new functionalities or the introduction of poor design
choices, i.e., anti-patterns, in the past [3]. The process of
refactoring requires the identification of places where code
should be refactored (e.g., anti-patterns). Developers also
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have to determine which kind of refactoring operations can
be applied to the identified locations. This step is cumber-
some, as different anti-patterns can have different impact on
the software design. Moreover, some refactoring operations
can be conflicting, hence, finding the best combination of
refactorings is not a trivial task. More formally, the possible
number of sequences generated from a list of refactorings
is |S| = ⌊e · n!⌋ ∀n ≥ 1; |S| = 1, n = 0. Where |S| is
the possible number of refactoring sequences (size of the
search space), and n is the number of available refactor-
ing operations (the list of refactoring operations available
at the beginning of the search) [24], which results in a
large space of possible solutions to be explored exhaus-
tively. Therefore, researchers have reformulated the problem
of automated-refactoring as a combinatorial optimization
problem and proposed different techniques to solve it. The
techniques range from single-objective approaches using
local-search metaheuristics, e.g., hill climbing, and simulated
annealing [25], [26], to evolutionary techniques like genetic
algorithm, and multiobjective approaches: e.g., NSGA-II
and MOGA [27], [28], [29], [30]; MOCell, NSGA-II, and
SPEA2 [31].

Recent works [16], [32] have provided empirical evi-
dence that software design plays also an important role
in the energy consumption of mobile devices; i.e., high-
level design decisions during development and mainte-
nance tasks impact the energy consumption of mobile apps.
More specifically, these research works have studied the
effect of applying refactorings to a set of software systems;
comparing the energy difference between the original and
refactored code.

In this research, we propose an automated-refactoring
approach for refactoring mobile apps while controlling for
energy consumption. We target two categories of anti-
patterns: (i) anti-patterns that stem from common Object-
oriented design pitfalls [33], [34] (i.e., Blob, Lazy Class,
Long-parameter list, Refused Bequest, and Speculative Gen-
erality) and (ii) anti-patterns that affect resource usages as
discussed by Gottschalk [32] and in the Android documen-
tation [6], [32] (i.e., Binding Resources too early, HashMap
usage, and Private getters and setters). We believe that these
anti-patterns occur often and could impact the energy con-
sumption of mobile apps. In the following subsections, we
explain how we measure and include energy consumption
in our proposed approach.

2.2 Energy measurement of mobile apps

Energy consumption, a critical concern for mobile and em-
bedded devices, has been typically targeted from the point
of view of hardware and lower-architecture layers by the
research community. Energy is defined as the capacity of
doing work while power is the rate of doing work or the
rate of using energy. In our case, the amount of total energy
used by a device within a period of time is the energy
consumption. Energy (E) is measured in joules (J) while power
(P) is measured in watts (W). Energy is equal to power times
the time period T in seconds. Therefore, E = P · T . For
instance, if a task uses two watts of power for five seconds
it consumes 10 Joules of energy.

One of the most used energy hardware profilers is the
Monsoon Power Monitor1. It provides a power measurement
solution for any single lithium (Li) powered mobile device
rated at 4.5 volts (maximum three amps) or lower. It sam-
ples the energy consumption of the connected device at a
frequency of 5 kHz, therefore a measure is taken each 0.2
milliseconds. Other works use the LEAP power measure-
ment device [35]. LEAP contains an ATOM processor that
runs Android-x86 version 2.x. Its analog-to-digital converter
samples CPU energy consumption at a frequency of 10 kHz.

In this work energy consumption is measured using
a more precise environment. Specifically we use a digital
oscilloscope TiePie Handyscope HS5 which offers the LibTiePie
SDK, a cross platform library for using TiePie engineering
USB oscilloscopes through third party software. We use
this device because it allows to measure using higher fre-
quencies than the Monsoon and LEAP. The mobile phone
is powered by a power supply and, between both, we
connect, in series, a uCurrent2 device, which is a precision
current adapter for multimeters converting the input current
(I) in a proportional output voltage (Vout). Knowing I
and the voltage supplied by the power supply (Vsup), we
use the Ohm’s Law to calculate the power usage (P ) as
P = Vsup · I . The resolution is set up to 16 bits and the
frequency to 125 kHz, therefore a measure is taken each
eight microseconds. We calculate the energy associated to
each sample as E = P · T = P · (8 · 10−6)s. Where P is
the power of the smart-phone and T is the period sampling
in seconds. The total energy consumption is the sum of the
energy associated to each sample.

A low sampling frequency can make it very
hard to assess the energy consumption of any given
method. Consider, for example, the glTron3 applica-
tion. According to our measurements, the method
com.glTron.Video.HUD.draw has an execution time
(inclusive of called methods) of 91.96 milliseconds.
Thus, sampling at 125 kHz (one sample each eight
microseconds) or 10 kHz (one sample each 0.1 mil-
liseconds) does not make a big difference as enough
data points will be collected. However, if we con-
sider for the same package (com.glTron) the method
...Video.GraphicUtils.ConvToFloatBuffer, its ex-
ecution lasts only 732 microseconds. Measuring at 10 kHz,
limits the collection of data points about this method to
no more than 7 samples, while measuring at 125 kHz we
could collect data points up to 92 samples. In essence, if a
method execution last more than one millisecond, such as in
com.glTron.Video.HUD.draw, the errors will generally
averaged out, making the energy estimation error low or
even negligible. However, in methods of short duration (less
than one millisecond) the error may be higher. Li et al.
[36] studied what granularity of measurements is sufficient
for measuring energy consumption. They concluded that
nanosecond level measurement is sufficient to capture all
API calls and methods. This raises another problem, the bot-
tleneck in high-frequency power sampling due to the stor-
age system, which cannot save power samples at the same

1. https://www.msoon.com/LabEquipment/PowerMonitor/
2. http://www.eevblog.com/projects/ucurrent/
3. https://f-droid.org/wiki/page/com.glTron
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frequency as the power meter can generate them. However,
Saborido et al. [37] found that sampling at 125 kHz just
accounts for about 0.7% underestimation error. Therefore
we consider that 125 kHz is sufficient to measure the energy
consumption of mobile applications.

In our experiments, we used a LG Nexus 4 Android
phone equipped with a quad-core CPU, a 4.7-inch screen
and running the Android Lollipop operating system (ver-
sion 5.1.1, Build number LMY47V). We believe that this
phone is a good representative of the current generation
of Android mobile phones because more than three million
have been sold since its release in 20134, and the latest
version of Android Studio includes a virtual device image
of it for debugging.

We connect the phone to an external power supplier
which is connected to the phone’s motherboard, thus we
avoid any kind of interference with the phone battery in
our measurements. The diagram of the connection is shown
in Figure 1. Note that although we use an external power
supplier, the battery has to be connected to the phone to
work. Hence, we do not connect the positive pole of the
battery with the phone.

To transfer and receive data from the phone to the
computer, we use a USB cable, and to avoid interference in
our measurements as a result of the USB charging function,
we wrote an application to disable it5. This application is
free and it is available for download in the Play Store6.
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Figure 1: Connection between power supply and the
Nexus 4 phone.

2.3 Multiobjective optimization

Optimization problems with more than one objective do
not have single solutions because the objectives are usually
in conflict. Consequently, the goal is to find solutions that
represent a good compromise between all objectives without
degrading any of them. These solutions are called non-
dominated, in the sense that there are no solutions which are
better with respect to one of the objective functions without
achieving a worse value in at least another one.

More formally, let y1 and y2 be two solutions, for a
multiobjective maximization problem, and fi, i ∈ 1 . . . n
the set of objectives. The solution y1 dominates y2 if:
∀i, fi(y2) ≤ fi(y1), and ∃j|fj(y2) < fj(y1).

The use of multiobjective algorithms have shown to be
useful in finding good solutions in a search space. There is
even a procedure called “multi-objectivization” that trans-
forms a single-objective problem into a multiobjective one,
by adding some helper functions [38]. Hence, the use of a

4. https://goo.gl/6guUpf
5. The mobile phone has to be rooted first.
6. https://goo.gl/wyUcdD

multiobjective optimization techniques is suitable to solve
the refactoring scheduling problem as they lessen the need
for complex combination of different, potentially conflict-
ing, objectives and allows software maintainers to evaluate
different candidate solutions to find the best trade.

The set of all non-dominated solutions is called the
Pareto Optimal Set and its image in the objective space
is called Pareto Front. Very often, the search of the Pareto
Front is NP-hard [39], hence researchers focus on finding an
approximation set or reference front (RF) as close as possible
to the Pareto Front.

As our aim is to improve the design quality of mobile
apps, while controlling for energy consumption, we con-
sider each one of these criteria as a separate objective to
fulfill.

In this work we use Evolutionary Multiobjective Op-
timization (EMO) algorithms, a family of metaheuristics
techniques that are known to perform well handling mul-
tiobjective optimization problems [40]. To assess the effec-
tiveness of our proposed automated-refactoring approach,
we conduct a case study with three different EMO algo-
rithms and compare their results in terms of performance,
using two well-known performance indicators, to provide
developers with information about the benefits and limi-
tations of these different alternatives. In the following, we
describe the metaheuristics techniques used in this paper,
and in Section 4 we explain how we adapt them to find
the best compromise between design quality and energy
consumption dimensions.

The Non-dominated sorting genetic algorithm (NSGA-
II) [41] proceeds by evolving a new population from an ini-
tial population, applying variation operators like crossover
and mutation. Then, it merges the candidate solutions from
both populations and sort them according to their rank,
extracting the best candidates to create the next generation.
If there is a conflict when selecting individuals with the
same ranking, the conflict is solved using a measure of
density in the neighborhood, a.k.a., crowding distance.

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) [42]
uses variation operators to evolve a population, like NSGA-
II, but with the addition of an external archive. The archive is
a set of non-dominated solutions, and it is updated during
the iteration process to maintain the characteristics of the
non-dominated front. In SPEA2, each solution is assigned
a fitness value that is the sum of its strength fitness plus a
density estimation.

The Multiobjective Cellular Genetic Algorithm (MOCell) is a
cellular algorithm [43], that includes an external archive like
SPEA2 to store the non-dominated solutions found during
the search process. It uses the crowding distance of NSGA-
II to maintain the diversity in the Pareto front. Note that
the version used in this paper is an asynchronous version
of MOCell called aMOCell4 [44]. The selection consists in
taking individuals from the neighborhood of the current
solution (cells) and selecting another one randomly from
the archive. After applying the variation operators, the new
offspring is compared with the current solution and replaces
the current solution if both are non-dominated, otherwise
the worst individual in the neighborhood will be replaced
by the offspring.
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3 PRELIMINARY STUDY

The main goal of this paper is to propose a novel approach
to improve the design of mobile apps while controlling
for energy consumption. To achieve this goal, the first
step is to measure the impact of anti-patterns (i.e., poor
design choices) on energy consumption. Understanding if
anti-patterns affect the energy consumption of mobile apps
is important for researchers and practitioners interested
in improving the design of apps through refactoring.
Specifically, if anti-patterns do not significantly impact
energy consumption, then it is not necessary to control
for energy consumption during a refactoring process.
On the other hand, if anti-patterns significantly affect
energy consumption, developers and practitioners should
be equipped with refactoring approaches that control for
energy consumption during the refactoring process, in
order to prevent a deterioration of the energy efficiency of
apps.

We formulate the research questions of this preliminary
study as follows:
(PQ1) Do anti-patterns influence energy consumption?
The rationale behind this question is to determine if the
energy consumption of mobile apps with anti-patterns dif-
fers from the energy consumption of apps without anti-
patterns. We test the following null hypothesis: H01 : there is
no difference between the energy consumption of apps containing
anti-patterns and apps without anti-patterns.
(PQ2) Do anti-pattern’s types influence energy consump-
tion differently?
In this research question, we analyze whether certain types
of anti-patterns lead to more energy consumption than
others. We test the following null hypothesis: H02 : there is
no difference between the energy consumption of apps containing
different types of anti-patterns.

3.1 Design of the Preliminary Study
As mentioned earlier, we consider two categories of anti-
patterns: (i) Object-oriented (OO) anti-patterns [33], [34], and
(ii) Android anti-patterns (AA) defined by [6], [32]. Concern-
ing (AA), previous works have evaluated the impact on
energy consumption of private getter and setters [45], [46], [47]
and found an improvement in energy consumption after
refactoring. Table 1 presents the details of the considered
anti-patterns types an the refactoring strategies used to
remove them. We select these anti-patterns because they
have been found in mobile apps [10], [18], and they are well
defined in the literature with recommended steps to remove
them [6], [32], [33], [34].

To study the impact of the anti-patterns, we write a web
crawler to download apps from F-droid, an open-source An-
droid app repository8. The total number of apps retrieved by
the date of April 14th 2016 is 200. These apps come from five
different categories (Games, Science and Education, Sports
and health, Navigation, and Multimedia). We filtered out
47 apps which Android version is lower than 2.1 because
our transformation environment runs Windows 10 which
supports Android SDK 2.1 or higher.

7. https://source.android.com/devices/tech/
8. https://f-droid.org/

Table 1: List of studied Anti-patterns.

Type Description Refactoring(s) strategy
Object-oriented anti-patterns

Blob (BL) [33] A large class that absorbs most
of the functionality of the system
with very low cohesion between its
constituents.

Move method (MM). Move
the methods that does not
seem to fit in the Blob class
abstraction to more appro-
priate classes [26].

Lazy Class
(LC) [34]

Small classes with low complexity
that do not justify their existence in
the system.

Inline class (IC). Move the
attributes and methods of
the LC to another class in
the system.

Long-parameter
list (LP) [34]

A class with one or more methods
having a long list of parameters,
specially when two or more meth-
ods are sharing a long list of pa-
rameters that are semantically con-
nected.

Introduce parameter object
(IPO). Extract a new class
with the long list of pa-
rameters and replace the
method signature by a ref-
erence to the new object
created. Then access to this
parameters through the pa-
rameter object

Refused
Bequest
(RB) [34]

A subclass uses only a very limited
functionality of the parent class.

Replace inheritance with dele-
gation (RIWD). Remove the
inheritance from the RB
class and replace it with
delegation through using
an object instance of the
parent class.

Speculative
Generality
(SG) [34]

There is an abstract class created to
anticipate further features, but it is
only extended by one class adding
extra complexity to the design.

Collapse hierarchy (CH).
Move the attributes and
methods of the child class
to the parent and remove
the abstract modifier.

Android anti-patterns
Binding
Resources too
early (BE) [32]

Refers to the initialization of high-
energy-consumption components
of the device, e.g., GPS, Wi-Fi be-
fore they can be used.

Move resource request to
visible method (MRM).
Move the method calls
that initialize the devices
to a suitable Android
event. For example,
move method call for
requestlocationUpda-
tes, which starts GPS
device, after the device
is visible to the app/user
(OnResume method).

HashMap usage
(HMU) [18]

From API 19, Android platform
provides ArrayMap [48] which is
an enhanced version of the stan-
dard Java HashMap data structure
in terms of memory usage. Accord-
ing to Android documentation, it
can effectively reduce the growth
of the size of these arrays when
used in maps holding up to hun-
dreds of items.

Replace HashMap with
ArrayMap (RHA). Import
ArrayMap and replace
HashMap declarations
with ArrayMap data
structure.

Private getters
and setters
(PGS) [6], [18]

Refers to the use of private getters
and setters to access a field inside
a class decreasing the performance
of the app because of simple in-
lining of Android virtual machine7

that translates this call to a vir-
tual method called, which is up to
seven times slower than direct field
access.

Inline private getters and set-
ters (IGS). Inline the pri-
vate methods and replace
the method calls with direct
field access.

From the remaining 153 apps, we take a random sample
that was determined using common procedures in survey
design, with a confidence interval of 10% and a confidence
level of 95%. Using these values, we obtained that the
required sample size is 59 apps. This means that the results
we get from our empirical study have an error at most of
10% with probability 0.95.

Next, we filtered apps where libraries referenced are
missing or incomplete; apps that required to have username
and password for specific websites; apps written in foreign
languages and that we could not fully understand their
functionality; apps that does not compile; apps that crashed
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in the middle of execution, or simply would not run in our
phone device. The last filter is that the selected apps should
contain at least one instance of any of the anti-patterns
studied.

After discarding the apps that do not respect the se-
lection criteria, we end-up with a dataset of 20 apps.
Table 2 shows the selected apps.

3.2 Data Extraction

The data extraction process is comprised of the following
steps, which are summarized in Figure 2.

1) Extraction of android apps. We wrote a script to
download the apps from F-droid repository. This script
provides us with the name of the app, the link to the
source code, Android API version, and the number
of Java files. We use the API version to discriminate
apps that are not compatible with our phone, and the
number of Java files to filter apps with only one class.
After filtering the apps, we import the source code in
Eclipse (for the older versions) or Android Studio and
ensure that they can be compiled and executed.

2) Detection of anti-patterns and refactoring candidates.
The detection and generation of refactoring candidates
is performed using our previous automated approach
ReCon [49]. We use ReCon’s current implementation
for correcting object-oriented anti-patterns, and add
two new OO anti-patterns (Blob and Refused bequest);
we also add three Android anti-patterns based on the
guidelines defined by Gottschalk [32], and the Android
documentation [6]. ReCon supports two modes, root-
canal (i.e., to analyze all the classes in the system) and
floss-refactoring (i.e., to analyze only the classes related
to an active task in current developer’s workspace
provided by a task management integration plug-in).
We use the root-canal mode as we are interested in
improving the complete design of the studied apps.

3) Generation of scenarios. For each app we define a
scenario that exercises the code containing anti-patterns
using the Android application HiroMacro9. This soft-
ware allows us to generate scripts containing touch and
move events, imitating a user interacting with the app
on the phone, to be executed several times without
introducing variations in execution time due to user
fatigue, or skillfulness. To automatize the measurement
of the studied apps we convert the defined scenarios
(HiroMacro scripts) to Monkeyrunner format. Thus, the
collected actions can be played automatically from a
script using the Monkeyrunner [50] Android tool. In
Table 3 we provide a brief description of each sce-
nario. Note that the scenarios are generated with the
main objective of executing the code segment(s) related
to the anti-patterns in the original version, and the
refactorings applied in the refactored version, and as
a disclaimer, many of them may seem trivial, but fit for
the purpose of this preliminary study.

4) Refactoring of mobile apps. We use Android Studio
and Eclipse refactoring-tool-support for applying the
refactorings suggested by ReCon. For the cases where

9. https://play.google.com/store/apps/details?id=com.prohiro.macro

there is no tool support, we applied the refactorings
manually into the source code. Currently, there is no
tool support for refactoring Binding resources too early
and Hashmap usage. To ensure that a refactored code
fragment is executed in the scenario, we first set break-
points to validate that the debugger stops on it. If this
occurs, we build the corresponding apk and check that
method invocations to the refactored code appeared
in the execution trace. To activate the generation of
execution trace file, we use the methods provided in
Android Debug Class [51], for both original and refac-
tored versions. The trace file contains information about
all the methods executed with respect to time, that we
use in the next step.

5) Measurement of energy consumption. As we men-
tion in Section 2, we measure energy consumption of
mobile apps using a precise digital oscilloscope TiePie
Handyscope HS5 which allows us to measure using high
frequencies and directly storing the collected results to
the personal computer at runtime.
In our experiments each app is run 30 times to get
median results and, for each run, the app is uninstalled
after its usage and the cache is cleaned. A description
of the followed steps is given in Algorithm 1, which has
been implemented as a Python script. As it is described,
all apps are executed before a new run is started. Thus,
we aim to avoid that cache memory on the phone stores
information related to the app run that can cause to
run faster after some executions. In addition, before
the experiments, the screen brightness is set to the
minimum value and the phone is set to keep the screen
on. In order to avoid any kind of interferences during
the measurements, only the essential Android services
are run on the phone (for example, we deactivate Wi-Fi
if the app does not require it to be correctly executed,
etc.).
Our script starts the oscilloscope and the app, which
we modify to generate the execution trace. Both are
different files where the first time-stamp is zero.
When users launch an app, the app goes through an
initialization process running the methods onCreate,
onStart, and onResume. In Figure 3 we present a
simplified flow-chart of the state paths of a single-
activity Android app. The app is visible after the
onStart method is executed and the user can interact
with the app after the onResume method is executed.
We consider that an Android app is completely loaded
after method onResume ends. The times reported in
Table 3 are the times required to completely load each
app and run the corresponding scenario. For all scenar-
ios, the last action of the scenario is to manually close
the app, which takes between three and five seconds.
Additionally, the generated execution traces contain,
for each method call, global execution times relative
to the complete load of apps (whose global time is
zero). Based on that we consider the global start time
of the method onCreate as the instant of time when
the execution trace is created once the app is launched.
In order to estimate the existing gap between energy
and execution traces we do the following. Once we start
the oscilloscope we introduce a timer to measure the
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Table 2: Apps used to conduct the preliminary study.

App Version LOC Category Description
blackjacktrainer 0.1 3783 Games Learning BlackJack
calculator 5.1.1 13985 Science & Education Make calculations
gltron 1.1.2 12074 Games 3D lightbike racing game
kindmind 1.0.0 6555 Sports & Health Be aware of sad feelings and unmet needs
matrixcalc 1.5 2416 Science & Education Matrix calculator
monsterhunter 1.0.4 27368 Games Reference for Monster Hunter 3 game
mylocation 1.2.1 1146 Navigation Share your location
oddscalculator 1.2 2226 Games Bulgarian card game odds calculator
prism 1.2 4277 Science & Education Demonstrates the basics of ray diagrams
quicksnap 1.0.1 18487 Multimedia Basic camera app
SASAbus 0.2.3 9349 Navigation Bus schedule for South Tyrol
scrabble 1.2 3165 Games Scrabble in french
soundmanager 2.1.0 5307 Multimedia Volume level scheduler
speedometer 1 139 Navigation Simple Speedometer
stk 0.3 4493 Games A 3D open-source arcade racer
sudowars 1.1 22837 Games Multiplayer sudoku
swjournal 1.5 5955 Sports & Health Track your workouts
tapsoffire 1.0.5 19920 Games Guitar game
vitoshadm 1.1 567 Games Helps you to make decisions
words 1.6 7125 Science & Education Helps to study vocabulary for IELTS exam

EXTRACTION OF
ANDROID APPS

1

DETECTION OF
ANTI-PATTERNS 

AND REFACTORING
CANDIDATES

2

GENERATION OF
SCENARIOS

3

REFACTORING OF
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4
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OF ENERGY
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5

20 APPS
6012 FILES

864 GB

Figure 2: Data extraction process.
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Figure 3: Android App flow-chart

time needed to launch an Android app. We consider
the difference between this time and the time when
the method onCreate is executed as the gap between
energy and execution traces. For instance, if we con-
sider that an Android app is launched in T seconds
and the execution trace is created in instant of time N ,
the existing gap between the energy and execution trace
is calculated as T − N . Because for each app’s run we
know the time required to launch the app and when the
method onCreate is executed, the gap between traces
for each app’s run is known.
According to our experiments Android apps are
launched in the range of [0.76, 0.92] seconds (average
0.83 seconds = 830000 microseconds) and the method

onCreate is executed, on average, 0.00009 seconds (90
microseconds) after the app is launched. It means that,
in average, the existing gap is (830000-90) = 829010
microseconds. For each app’s independent run, energy
and execution traces are aligned considering the esti-
mated gap shift.
When the oscilloscope is started it begins to store in
memory energy measurements which are written to a
Comma Separated Values (CSV) file when the scenario as-
sociated to the app finishes. Once Algorithm 1 finishes,
we have two files for each app and run: the energy trace
and the execution trace. Using the existing timestamp in
energy traces and the starting and ending time of meth-
ods calls in execution traces, energy consumption is
calculated for each method called and this information
is saved in a new CSV file for each app and run. From
these files, we filtered out method names that does
not belong to the namespace of the app. For example,
for Calculator app, the main activity is located in the
package com.android2.calculator3, and we only
consider the methods included in this package as they
correspond to the source code that we analyze to gener-
ate refactoring opportunities.The rationale of removing
energy consumption of code that is not inside the pack-
age of the app is that we did not detect anti-patterns,
neither propose refactoring for those classes. Hence,
with the aim of removing noise in our measurements (in
case that most of an app’s energy consumption is on the
library or native functions) we focus on the code that
contains anti-patterns, to isolate the effect of applying
refactoring on energy consumption. Finally, the median
and average energy consumption of each app over the
30 runs is calculated.
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Table 3: Description and duration (in seconds) of scenarios
generated for the studied apps in our preliminary study.

App Scenario Duration
blackjacktrainer Press in {...}, then {settings}, and

close app.
14.87

Calculator Make the operation six times five
and close app.

17.94

GLTron Wait until app is loaded and close
app.

33.94

kindmind Press in first category and close
app.

21.37

matrixcalc Fill matrix with number five, press
{Calculate}, and close app.

52.47

monsterhunter Press in {Weapons}, press in first
category, select first weapon, press
the {+} button, select the {My
Wishlist}, press {Ok}, and close the
app.

16.39

mylocation Press the square button, go back,
and close app.

15.59

oddscalculator Wait until app is loaded and close
app.

15.72

prism Wait until app is loaded and close
app.

10.84

quicksnap Wait until app is loaded and close
app.

13.8

SASAbus Wait until DB is downloaded, press
{OK} button, wait until maps are
downloaded, and close app.

71.72

scrabble Wait to load board and close app. 35.83
soundmanager Go to menu, mute/unmute, and

close app.
18.74

speedometer Wait until app is loaded and close
app.

13.99

stk Wait until app is loaded and con-
tent downloaded and close app.

35.1

sudoWars Wait until app is loaded and close
app.

10.76

swjournal Start a workout, filling the two
fields, and close app.

28.87

tapsoffire Press in {Play}, slide down, press
over the green color, press {Play},
{API}, {Medium}, and {Play};
close app.

25.96

vitoshadm Wait until app is loaded and close
app.

14.78

words Wait until app is loaded and close
app.

10.75

Algorithm 1: Steps to collect energy consumption.

1 forall runs do
2 forall apps do
3 Install app in the phone (using adb).
4 Start oscilloscope using a script from our test PC.
5 Run app (using adb).
6 Play scenario (using Monkeyrunner).
7 Stop oscilloscope.
8 Download execution trace from the phone (using

adb).
9 Stop app (using adb).

10 Clean app files in the phone (using adb).
11 Uninstall app (using adb).
12 end
13 end

3.3 Data Analysis

In the following we describe the dependent and indepen-
dent variables of this preliminary study, and the statistical
procedures used to address each research question. For all
statistical tests, we assume a significance level of 5%. In total

we collected 864 GB of data from which 391 GB correspond
to energy traces, 329 GB to execution traces. The amount of
data generated from computing the energy consumption of
methods calls using these traces is 144 GB.

(PQ1): Do anti-patterns influence energy consumption?
For PQ1, the dependent variable is the energy consumption
for each app version (original, refactored). The independent
variable is the existence of any of the anti-patterns studied,
and it is true for the original design of the apps we studied,
and false otherwise. We statistically compare the energy
consumption between the original and refactored design
using a non-parametric test, Mann-Whitney U test. Because
we do not know beforehand if the energy consumption will
be higher in one direction or in the other, we perform a two-
tailed test. For estimating the magnitude of the differences
of means between original and refactored designs, we use
the non-parametric effect size measure Cliff’s δ (ES), which
indicates the magnitude of the effect size [52] of the treat-
ment on the dependent variable. The effect size is small for
0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large
for d ≥ 0.474 [53].

(PQ2): Do anti-pattern’s types influence energy con-
sumption differently?
For PQ2, we follow the same methodology as PQ1. For each
type of anti-pattern, we have three different apps containing
an instance of the anti-pattern. We refactor these apps to
obtain versions without the anti-pattern. We measure the
energy consumption of the original and refactored versions
of the apps 30 times to obtain the values of the dependent
variable. The independent variable is the existence of the type
of anti-pattern.

3.4 Results and Discussion of the Preliminary Study

In Table 4 we present the percentage change in median
energy consumption after removing one instance of anti-
pattern at time, γ(E′, E0). This value is calculated using the
following expression.

γ(E′, E0) =
med(E′)−med(E0)

med(E0)
× 100 (1)

Where the energy consumption of the app after removing
an anti-pattern is represented by E′, while the energy
consumption of the original app is E0. med(E) is the
median of the energy consumption values of the 30
independent runs. Negative values indicate a reduction
of energy consumption after refactoring, positive values
indicate an increase of energy consumption. In total, we
manually correct 24 anti-patterns inside the set of apps
that make up our testbed. In seven instances (i.e., 30%) the
differences are statistically significant, with Cliff’s δ effect
sizes ranging from small to large. Specifically, we obtained
three apps with large effect size: speedometer, gltron, and
soundmanager (two types of anti-patterns); two cases with
medium effect size: oddscalculator, words; and one with small
effect size, vitoshadm. Therefore we reject H01 for these
seven apps.
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Table 4: Percentage change in median energy consumption
of apps after removing one instance of anti-pattern at time,
Mann—Whitney U Test and Cliff′s δ Effect Size (ES).

App γ(E′, E0) p− value ES Magnitude
blackjacktrainer -0.63 0.2560 -0.15 small
calculator -1.17 0.1191 -0.25 small
calculator -0.90 0.4280 -0.10 negligible
gltron -1.60 2.08E-05 -0.70 large
kindmind 0.68 0.2988 0.16 small
matrixcalc 0.56 0.4898 0.09 negligible
monsterhunter 0.50 0.5602 -0.07 negligible
mylocation -1.56 0.5699 -0.03 negligible
oddscalculator -6.01 0.0221 -0.34 medium
prism 1.50 0.0919 0.17 small
prism -0.03 0.7151 0.03 negligible
quicksnap -0.07 0.9515 -0.03 negligible
quicksnap 0.89 0.4898 0.04 negligible
SASAbus -4.12 0.2286 -0.13 negligible
scrabble -0.67 0.9838 -0.04 negligible
soundmanager -8.38 0.0001 -0.63 large
soundmanager -5.96 0.0005 -0.53 large
speedometer -62.96 3.73E-09 -0.97 large
stk 0.38 0.5028 0.02 negligible
sudowars -0.82 0.6408 0.04 negligible
swjournal -2.21 0.2286 -0.23 small
tapsoffire -3.52 0.3599 -0.22 small
vitoshadm -2.80 0.0345 -0.29 small
words -2.29 0.0005 -0.44 medium

�




�

	
Overall, our results suggest that different types of anti-
patterns may impact the energy consumption of apps dif-
ferently. Our next research question (i.e., PQ2) investigates
this hypothesis in more details.

To answer PQ2, on the impact of different types of anti-
patterns on energy consumption, we present in Figure 4
the percentage change of the energy consumption after re-
moving each type of anti-pattern studied. For the instances
where the results are statistically significant (p − value <
0.05) we add an “∗” symbol, the exact value and ES is
shown in Table 4.

Regarding object-oriented (OO) anti-patterns, on top
of Figure 4, we observe that removing lazy class reduces
energy consumption in blackJacktrainer. This trend holds
for tapsoffire and soundmanager respectively, with the latter
one having statistically significance and magnitude of the
difference (i.e., ES) is large. In the case of Refused Bequest,
two out of three apps show that removing the anti-pattern
saves energy, and the difference is statistically significant
for vitoshadm. For the Blob anti-pattern, all refactored ver-
sions report a decrease in energy consumption, though the
differences are not statistically significant.

Concerning Long Parameter list (LP), and Speculative
Generality (SG), both report a negative impact on energy
consumption after refactoring. While for LP, all the apps
point toward more energy consumption, in the case of SG,
the energy consumption is increased in two out of three
apps after refactoring. We explain the result obtained for
LP by the fact that the creation of a new object (i.e., the
parameter object that contains the long list of parameters)
adds to some extent more memory usage. For SG we do not
have a plausible explanation for this trend. For both anti-
patterns, the obtained differences in energy consumption is
not statistically significant, hence we cannot conclude that

these two anti-patterns always increase or decrease energy
consumption.

Regarding Android anti-patterns. For HashMap usage
(HMU) and Private getters and setters (PGS), we obtained
statistically significant results for two apps. For Binding
Resources too early (BE), the result is statistically significant
for one app. In all cases, apps that contained these anti-
patterns consumed more energy than their refactored ver-
sions that did not contained the anti-patterns. This finding
is consistent with the recommendation of previous works
(i.e., [5], [6]) that advise to remove HMU, PGS, and BE from
Android apps, because of their negative effects on energy
consumption. Note that the amount of energy saved is
influenced by the context in which the application runs. For
example, SASAbus, which is a bus schedule app, downloads
the latest bus schedule at start, consuming a considerable
amount of data and energy. As a result, the gain in energy
for relocating the call method that starts the GPS device is
negligible in comparison to the overall scenario. Mylocation
is a simpler app, that only provides the coordinated position
of mobile user. This app optimizes the use of the GPS
device by disabling several parameters, like altitude and
speed. It also sets the precision to coarse (approximate lo-
cation [54], and the power requirements to low. For this app,
we observe a consistent improvement when the anti-pattern
is removed, but in a small amount. On the other hand,
we have speedometer, which is a simple app as well, that
measures user’s speed, but using high precision mode. High
precision mode uses GPS and internet data at the same time
to estimate location with high accuracy. In speedometer, we
observe a high reduction in energy consumption when the
anti-pattern is corrected, in comparison with the previous
two apps.�

�

�

�

In summary, there is evidence to show that removing
Binding resources too early, Private getters and set-
ters, Refused Bequest, and Lazy class anti-patterns can
improve energy efficiency in some cases. We do not find
any statistically significant cases were removing an anti-
pattern increases energy consumption. Removing Blob,
Long Parameter List, and Speculative Generality anti-
patterns does not produce a statistically significant increase
or decrease.

The impact of different types of anti-patterns on the energy
consumption of mobile apps is not the same. Hence, we
reject H02.

4 ENERGY-AWARE AUTOMATED REFACTORING
OF MOBILE APPS

After determining in Section 3 that the occurrence of anti-
patterns impacts the energy consumption of mobile apps,
we leverage this knowledge to propose an approach to
improve the design quality of mobile apps, while control-
ling energy consumption. Our proposed approach is based
on a search-based process where we generate refactoring
sequences to improve the design of an app. This process
involves evaluating several sequences of refactoring itera-
tively and the resultant design in terms of design quality
and energy consumption. Measuring in real-time the energy
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Figure 4: Percentage change in median energy consumption when removing different types of anti-patterns

consumption of a refactoring sequence can be prohibitive,
because it requires to apply each refactoring element of the
sequence in the code, compile it, generate the binary code
(APK) and download it into the phone; all of these steps
for each time the search-based process requires to evaluate
a solution. That is why we define a strategy to estimate
the impact of each refactoring operation on energy con-
sumption, based on the results obtained in our preliminary
study (Section 3) and without measuring during the search
process. The strategy consists of the following steps:

1) We compute the energy consumption of an app using
the following formulation:

EC(a) =
∑

m∈M

EC(am) (2)

Where M is the set of methods in a.
2) We prepare two versions of the same app with and

without one instance of an anti-pattern type, and we
call them aORI , and ak. To isolate possible aggregation
effects, we remove only one instance of anti-pattern
using the same refactoring operations. For example, if
we want to remove a Lazy class, we apply inline class
to the class that contained that anti-pattern.

3) The energy consumption coefficient of a refactoring
applied to remove an anti-pattern of type k, in app a
is calculated using the following expression.

δEC(ak) =
med(EC(ak))−med(EC(aORI))

med(EC(aORI))
(3)

Where med(.) is the median value of the 30 indepen-
dent runs for EC(ak) and EC(aORI). If the value
of δEC(ak) is negative, it means that the refactored
version consumes less energy. On the contrary, if this
value is positive, it means that the refactored version
consumes more energy than the original version.

4) To determine a global refactoring energy coefficient
δEC(k), we take three apps from our testbed for each
type of anti-pattern k. δEC(k) is calculated using the
following expression.

δEC(k) = med(δEC(ak));∀ak ∈ Ak (4)

Where Ak is the set of apps that were refactored to
remove a single instance of anti-pattern type k.

In the following, we describe the key components of
our proposed approach EARMO, for the correction of anti-
patterns while controlling for energy consumption.

EARMO overview
EARMO is comprised of four steps, depicted in Algorithm 2.
The first step consists in estimating the energy consumption
of an app, running a defined scenario. In the second step, we
build an abstract representation of the mobile app’s design,
i.e., code meta-model. In the third step, the code meta-model
is visited to search for anti-pattern occurrences. Once the
list of anti-patterns is generated, the proposed approach
determines a set of refactoring opportunities based on a
series of pre- and post-conditions extracted from the anti-
patterns literature [5], [6], [33], [34]. In the final step, a
multiobjective search-based approach is run to find the best
sequence of refactorings that can be legally applied to the
code, from the refactoring opportunities list generated in
the previous step. The solutions produced by the proposed
approach meet two conflicting objectives: 1) remove a maxi-
mum number of anti-patterns in the system, and 2) improve
the energy consumption of the code design. In the following,
we describe in detail each of these steps.

Step 1: Energy consumption estimation
This step requires to provide (1) the energy consumption
of the app (E0). Developers can measure E0 by setting
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Algorithm 2: EARMO Approach
Input : App to refactor (App), scenario (scen)
Output: Non-dominated refactoring sequences

1 Pseudocode EARMO(Mobile app)
2 E0 = Energy consumption measurement (App, scen)

/* We estimate the energy consumption of an app to
estimate the energy improvement during our
search-based approach */

3 AM=Code meta-model generation (App)
/* From the source code generate a light-weight

representation of the code */
4 RA=Code meta-model assessment (AM)

/* 1. Detect anti-patterns in the system and generate
a map of classes that contain anti-patterns */

/* 2. Generate a list of refactoring operations to
correct anti-patterns */

5 Generation of optimal set of refactoring sequences (AM, RA, E0)
/* This is a generic template of the EARMO algorithm

that finds the optimal set of refactoring
sequences */

6 Procedure Generation of an optimal set of refactoring
sequences(AM, RA, E0)

7 P0 = GenerateInitialPopulation(RA)
8 X0 = ∅

/* X is the set of non-dominated solutions */
/* Evaluation of P0 */

9 for all Si ∈ P0 do
/* Si is a refactoring sequence */

10 AM ′ = clone(AM)
11 apply refactorings(AM ′, Si)
12 compute Design Quality(AM ′, Si)
13 compute Energy Consumption(AM ′, Si, E0)
14 end for

/* Update the set of non-dominated solutions found in
this first sampling */

15 X0 = Update(X0, P0)
16 t = 0
17 while not StoppingCriterion do
18 t = t + 1
19 Pt = V ariation Operators(Pt−1)
20 for all Si ∈ Pt do
21 AM ′ = clone(AM)
22 apply refactorings(AM ′, Si)
23 compute Design Quality(AM ′, Si)
24 estimate Energy Consumption(AM ′, Si, E0)
25 end for
26 Xt = Update(Xt, Pt)
27 end while
28 best solution = Xt

29 return best solutions

an energy estimation environment similar to the one pre-
sented in Section 3, or using a dedicated hardware-based
energy measurement tool like GreenMiner [55]. (2) The
coefficient δEC(k) of each refactoring type analyzed. We
derive δEC(k) values for each refactoring type based on
the results of the preliminary study. EARMO uses this infor-
mation in the last step to evaluate the energy consumption
of a candidate refactoring solution during the search-based
process.

Step 2: Code meta-model generation

In this step we generate a light-weight representation (a
meta-model) of a mobile app, using static code analysis
techniques, with the aim of evolving the current design into
an improved version in terms of design quality and energy
consumption. A code meta-model describes programs at
different levels of abstractions. We consider three levels of
abstractions to model programs. A code-level model (in-
spired by UML) which includes all of the constituents found
in any object-oriented system: classes, interfaces, methods,
and fields. An idiom-level model of a program that is a
code-level model extended with binary-class relationships,

detected using static analysis. A design-level model that
contains information about occurrences of design motifs
or of code smells and anti-patterns. A code-meta model
must differentiate among use, association, aggregation, and
composition relationships. It should also provide methods
to manipulate the design model and generate other models.
The objective of this step is to manipulate the design model
of a system programmatically. Hence, the code meta-model
is used to detect anti-patterns, apply refactoring sequences
and evaluate their impact in the design quality of a sys-
tem. More information related to code meta-models, design
motifs and micro-architecture identification can be found
in [56], [57].

Step 3: Code meta-model assessment

In this step we assess the quality of the code-meta model
by (1) identifying anti-patterns in its entities, and (2) de-
termining refactoring operations to correct them. For exam-
ple, the correction of Binding resources too early anti-pattern
can be divided in the following steps: detect classes with
code statements that initialize energy-intensive components,
e.g., GPS or Wi-Fi, before the user or the app can interact
with them; move the conflicting statements from its current
position to a more appropriate method, e.g., when the app
interacts with the user, preventing an unnecessary waste of
energy.

The correction of certain anti-patterns requires not only
the analysis of a class as a single entity, but also their
relationship with other classes (inter-class anti-patterns). For
example, to correct instances of Blob in an app, we need to
determine information related to the number of methods
and attributes implemented by a given class, and compare
it with the rest of the classes in the system. Then, we need to
estimate the cohesion between its methods and attributes,
and determine the existence of “controlling” relationships
with other classes. After performing these inter-class analy-
sis, we can propose refactorings to redistribute the excess of
functionality from Blob classes to related classes, i.e., move
method refactoring.

Before adding a refactoring operation to the list of candi-
dates, we validate that it meets all pre- and post-conditions
for its refactoring type, to preserve the semantic of the code
cf., Opdkye [58]. For example, a pre-condition is that we
cannot move a method to a class where there is a method
with the same signature. An example of post-condition is
that once we move a method from one class to another, there
is no method in the source class that has the same signature
as the method that was moved.

Step 4: Generation of optimal set of refactoring se-
quences

In this final step, we aim to find different refactoring se-
quences that remove a maximum number of anti-patterns,
while improving the energy consumption of mobile apps.
Hence, we use EMO algorithms to obtain from all the set
of possible refactoring combinations, the optimal solutions,
i.e., the ones that are not dominated. In the following, we
describe the key elements of our multiobjective optimization
process.
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Solution representation
We represent a refactoring solution as a vector, where each
element represents a refactoring operation (RO) to be ap-
plied, e.g., a subset of refactoring candidates obtained by
EARMO. Each refactoring operation is composed of several
fields like an identification number (ID), type of refactoring,
the qualified name of the class that contains the anti-pattern,
and any other field required to apply the refactoring in the
model. For example, in a move method operation we also
need to store the name of the method to be moved, and
the name of the target class, while in the correction of long
parameter list we store the names of the long-parameter-
list methods to be refactored. In Table 5 we present an
example of a refactoring sequence. The ID is used to identify
whether a RO already exists in a sequence when adding new
refactoring candidates. The order is the position of the RO in
the vector. We use the source class, and any other additional
fields, to detect possible conflicts between existent ROs in a
sequence. For example, it is not valid to have a move method
RO after inline class if the name of the source class for both
ROs is the same, as the class is removed after applying inline
class.

Selection operator
The selection operator controls the number of copies of
an individual (solution) in the next generations, according
to its quality (fitness). Examples of selection operators are
tournament selection or fitness proportionate selection [59].

Variation Operators
The variation operators allow metaheuristics to transform a
candidate solution so that it can be moved through the deci-
sion space in the search of the most attractive solutions, and
to escape from local optima. In EMO algorithms, we often
find two main variation operators: crossover and mutation.
Crossover consists of combining two or more solutions
(known as parents) to obtain one or more new solutions
(offspring). We implement the Cut and splice technique as
crossover operator, which consists in randomly setting a cut
point for two parents, and recombining with the elements
of the second parent’s cut point and vice-versa, resulting
in two individuals with different lengths. We provide an
example in Figure 5.

For mutation, we consider the same operator used in our
previous work [31] that consists of choosing a random point
in the sequence and removing the refactoring operations
from that point to the end. Then, we complete the sequence
by adding new random refactorings until there are no more
valid refactoring operations to add (i.e., that do not cause
conflict with the existent ones in the sequence). We provide
an example in Figure 6.

Fitness functions
We define two fitness functions to evaluate the quality
and the energy consumption of the refactoring solutions.
The function to evaluate the quality of the design is
DQ = 1− NDC

NC×NAT , where NDC is the number of classes
that contain anti-patterns, NC is the number of classes,
and NAT is the number of different types of anti-patterns.
The value of DQ, which is normalized between 0 and
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Figure 6: Example of the mutation operator used.

1, rises when the number of anti-patterns in the app is
reduced. A value of 1 represents the complete removal of
anti-patterns, hence we aim to maximize the value of DQ.
This objective function was introduced by Ouni et al. [28].
We follow this formulation because it is easy to implement
and computationally inexpensive.

To evaluate the energy consumption of an app
(expressed in Joules) after refactoring, we define the
following formulation: let E0 be the estimated energy
consumption of an app a, ri a refactoring operation
type in a sequence S = (r1, . . . , rn). We estimate the
energy consumption EC(a) of the app resulting from the
application of the refactoring sequence S to the app a as

follows: EC(a) = E0 +
n∑

i=1
E0 × δEC(ri), where δEC(ri)

is the energy coefficient value of the refactoring operation
ri. We aim to minimize the value of EC during the search
process.

In Algorithm 2, we present a generic pseudocode for
the EMO algorithms used by our approach (lines 6-29).
The process starts by generating an initial population of
refactoring sequences from the code meta-model assessment
step. Next, it applies each refactoring sequence in the code
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Table 5: Representation of a refactoring sequence. “pkg” is the package name of an app.

ID Type Source class Additional fields
4 Inline private getters and setters [pkg].CalculatorWidget private getters and setters: getDecimal()
52 Move method [pkg].BasicCalculator target class: [pkg].CalculatorExpressionEvaluator

method name: cleanExpression(String)
2 Move resource request to visible method [pkg].SelectLocationActivity NONE
187 Collapse Hierarchy [pkg].BasicCalculator target class: [pkg].PanelSwitchingCalculator
189 Replace Inheritance with delegation [pkg].Calculator target class: [pkg].MatrixCalculator
8 Inline class [pkg].CalculatorPadViewPager target class: [pkg].ResizingButton
145 Replace Hashmap with Arraymap [pkg].LruCache HashMaps to Replace: mLruMap, mWeakMap
847 Introduce parameter object [pkg].ImageManager long-parameter-list methods: addIm-

age(ContentResolver, String, long, Location,
String, String, Bitmap, byte[], int[])

meta-model and measures the design quality (number of
anti-patterns) and the energy saved by applying the refac-
torings included in the sequence (lines 11-13). The next step
is to extract the non-dominated solutions (line 15). From
line 20 to 25, the main loop of the metaheuristic process
is executed. The goal is to evolve the initial population,
using the variation operators described before, to converge
to the Pareto optimal front. The stopping criterion, which
is defined by the software maintainer, is a fixed number of
evaluations. Finally, in lines 28-29, the optimal refactoring
sequences are retrieved.

5 EVALUATION OF EARMO
In this section, we evaluate the effectiveness of EARMO at
improving the design quality of mobile apps while optimiz-
ing energy consumption. The quality focus is the improve-
ment of the design quality and energy consumption of mo-
bile apps, through search-based refactoring. The perspective
is that of researchers interested in developing automated
refactoring tools for mobile apps, and practitioners inter-
ested in improving the design quality of their apps while
controlling for energy consumption. The context consists of
the 20 Android apps studied in Section 3, and three multiob-
jective metaheuristics (MOCell, NSGA-II, and SPEA2). We
instantiate our generic EARMO approach using the three
multiobjective metaheuristics, described in Section 2.3.

The code meta-model is generated using Ptidej Tool
Suite [60]. We select this tool suite because it has more
than ten years of active development and it is maintained
in-house. Additionally, since October 10th, 2014, its source
code have become open-source and released under the GNU
Public License v2, easing replication.

The anti-patterns considered in the evaluation of
EARMO are the ones described in Section 3.1. In the fol-
lowing, we describe the strategies implemented in EARMO
to correct Android and object-oriented (OO) anti-patterns.

Move resource request to visible method (MRM). To deter-
mine the appropriate method to initialize a high-power-
consumption component, it is necessary to understand the
vendor platform. In our case, we illustrate the refactoring
based on Android, but the approach can be extended to
other operating systems. As previously discussed in Sec-
tion 3.2, when users launch an app, the app goes through an
initialization process that ends after the onStart method is
executed (the app is visible). After the onResume method
is executed, the user can interact with the app, but not
before that. Hence, switching on a high-power-consumption

1
2 p r i v a t e SplashView splashView ;
3
4 p r i v a t e SplashView getSplashView ( ) {
5 return splashView ;
6 }
7 //This s e t t e r i s not even used !
8 p r i v a t e void setSplashView ( SplashView splashView ) {
9 t h i s . splashView = splashView ;

10 }
11
12 publ ic void i n i t i a l i z e ( ) {
13 f i n a l boolean f i r s t L au n c h = i s F i r s t L a u n c h ( ) ;
14
15 i f ( f i r s t L au n c h ) {
16 getSplashView ( ) . showLoading ( ) ;
17 }
18 . . .
19 getSplashView ( ) . renderImportError ( ) ;
20 . . .
21 getSplashView ( ) . renderSplashScreenEnded ( ) ;
22 }
23 . . .
24
25 getSplashView ( ) . renderFancyAnimation ( ) ;
26 }

1 p r i v a t e SplashView splashView ;
2
3 // We i n l i n e p r i v a t e g e t t e r s and s e t t e r s
4 publ ic void i n i t i a l i z e ( ) {
5 f i n a l boolean f i r s t L au n c h = i s F i r s t L a u n c h ( ) ;
6
7 i f ( f i r s t L au n c h ) {
8 splashView . showLoading ( ) ;
9 }

10 . . .
11 splashView . renderImportError ( ) ;
12 . . .
13 splashView . renderSplashScreenEnded ( ) ;
14 }
15 . . .
16
17 splashView . renderFancyAnimation ( ) ;
18 }

Figure 7: Example of inline private getters and setters refactor-
ing. Original code on the top, and refactored code on the
bottom.

component in the body of OnCreate is a terrible idea, in
terms of energy consumption. Consequently, the refactoring
consists in moving any hardware resource request from
onCreate to OnResume.

Inline private getters and setters (IGS). The use of private
getters and setters is expensive in Android mobile devices
in comparison to direct field access. Hence, we inline the
getters and setters, and access the private field directly. An
illustrative example is provided in Figure 7.

Replace HashMap with array map (RHA). ArrayMap
is a light-weight-memory mapping data structure in-
cluded since Android API 19. The refactoring consists
in replacing the import of java.util.HashMap with
android.Util.Arraymap, and any HashMap reference
with ArrayMap. ArrayMap is compatible with the standard
Java container APIs (e.g., iterators, etc), and not further
changes are required for this refactoring, as depicted in Fig-
ure 8.

Collapse hierarchy (CH). With this refactoring, we aim to
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1 package com . glTron . Sound ;
2
3 import java . u t i l . HashMap ;
4 . . .
5 publ ic c l a s s SoundManager {
6
7 p r i v a t e s t a t i c HashMap<Integer , Integer> mSoundPoolMap ;
8 . . .
9 publ ic s t a t i c void ini tSounds ( Context theContext )

10 {
11 . . .
12 mSoundPoolMap = new HashMap<Integer , Integer >() ;
13 . . .
14 }
15 }

1 package com . glTron . Sound ;
2
3 import android . u t i l . ArrayMap ;
4 . . .
5 publ ic c l a s s SoundManager {
6
7 p r i v a t e s t a t i c ArrayMap<Integer , Integer> mSoundPoolMap ;
8 . . .
9 publ ic s t a t i c void ini tSounds ( Context theContext )

10 {
11 . . .
12 mSoundPoolMap = new ArrayMap<Integer , Integer >() ;
13 . . .
14 }
15 }

Figure 8: Example of replacing HashMap with ArrayMap
refactoring. Original code on the top, and refactored code
on the bottom.
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Figure 9: An example of SG in Calculator. Original class
diagram on the left, and refactored class diagram on the
right.

collapse the features of a unique child class to the parent class,
to reduce the complexity of the design. This is useful when
both classes are very similar, or the child class does not
add extra functionality, but was introduced presumably for
handling future enhancements that never occurred. In Fig-
ure 9 we provide an example of SG anti-pattern found in
Calculator app. We can observe that the class Calculator
does not implement any method, so there is no need to keep
it in the design as it is, so the refactoring consists in remov-
ing the abstract modifier of the MatrixCalculator class,
and replace all Calculator class references in the app
to MatrixCalculator, including the AndroidManifest.xml
file, as this class is declared as an Android activity.

Inline Class (IC). This refactoring consists in removing a
lazy class in the system and transfering all its functionalities
(if any) to any other class that is related to the LC (we as-
sume that there is no hierarchy relationship, if so we would
apply collapse hierarchy instead). To select such a class,
we iterate over all the classes in the systems, searching for
methods and attributes that access the LC features directly,
or by public accessors (getters or setters). From those classes
we choose the one with the larger number of access to the
LC.

Introduce parameter object (IPO). In this refactoring, we
extract a long list of parameters into a new object to improve
the readability of the code. First, we create a new class that

1 publ ic s t a t i c Uri addImage ( ContentResolver cr , S t r i n g t i t l e , long
dateTaken ,

2 Locat ion l o c a t i o n , S t r i n g directory , S t r i n g filename ,
3 Bitmap source , byte [ ] jpegData , i n t [ ] degree ) {
4 OutputStream outputStream = n u l l ;
5 S t r i n g f i l e P a t h = d i r e c t o r y + ”/” + filename ;
6 i f ( source != n u l l ) {
7 source . compress ( CompressFormat . JPEG ,
8 CameraApplication . JPEG HIGH QUALITY , outputStream ) ;
9 degree [ 0 ] = 0 ;

10 }
11 e l s e {
12 outputStream . wri te ( jpegData ) ;
13 degree [ 0 ] = g e t E x i f O r i e n t a t i o n ( f i l e P a t h ) ;
14 }
15 . . .
16 long s i z e = new F i l e ( directory , filename ) . length ( ) ;
17 ContentValues values = new ContentValues ( 9 ) ;
18 values . put ( Images . Media . TITLE , t i t l e ) ;
19 . . .
20 values . put ( Images . Media .DATE TAKEN, dateTaken ) ;
21 . . .
22 }
23

1 publ ic s t a t i c Uri addImage ( AddImageParameter parObj ) {
2 OutputStream outputStream = n u l l ;
3 S t r i n g f i l e P a t h = parObj . d i r e c t o r y + ”/” + parObj . filename ;
4 . . .
5 i f ( parObj . source != n u l l ) {
6 parObj . source . compress ( CompressFormat . JPEG ,
7 CameraApplication . JPEG HIGH QUALITY , outputStream ) ;
8 parObj . degree [ 0 ] = 0 ;
9 } e l s e {

10 outputStream . wri te ( parObj . jpegDatas ) ;
11 parObj . degree [ 0 ] = g e t E x i f O r i e n t a t i o n ( f i l e P a t h ) ;
12 }
13 . . .
14 long s i z e = new F i l e ( parObj . directory , parObj . filename ) . length ( )

;
15 ContentValues values = new ContentValues ( 9 ) ;
16 values . put ( Images . Media . TITLE , parObj . t i t l e ) ;
17 . . .
18 values . put ( Images . Media .DATE TAKEN, parObj . dateTaken ) ;
19 . . .
20 }

Figure 10: Example of introduce parameter object refactor-
ing. Original code on the top, and refactored code on the
bottom.

Parent

-getName()

Child Child

-Parent

-getName()

Parent

-getName()

1

this.Parent.getName()

Figure 11: An example of applying RIWD in a class. Original
class diagram on the left, and refactored class diagram on
the right.

will contain the extracted parameters. Then, we create a new
instance of the parameter object with the values that we
used to send to the LPL method. Next, in the LPL method,
we remove the old parameters and add the new parameter
object that we created. Finally, we replace each parameter
from the method body with fields of the new parameter
object. We show in Figure 10, an example of IPO in a method
extracted from Quicksnap, which contains nine parameters.

Replace inheritance with delegation (RIWD). This refactor-
ing is applied when we find a class that inherits a few
methods from its parent class. To apply this refactoring, we
create a field of the parent class, and for each method that
the child use, we delegate to the field (parent class type),
replacing the inheritance by an association. We present an
example of this refactoring in Figure 11.

Move method (MM). This refactoring is applied to decom-
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Table 6: Descriptive statistics showing anti-pattern occur-
rences in the studied apps.

O.O. AP Android AP

App NOC BL LC LP RB SG BE HMU PGS

Calculator 43 2 3 0 8 5 0 14 0
BlackJackTrainer 13 1 3 0 0 0 0 0 0
GlTron 26 1 3 5 0 0 0 6 1
Kindmind 36 4 0 2 4 0 0 5 0
MatrixCalculator 16 1 0 2 1 2 0 0 0
MonsterHunter 194 11 1 2 32 0 0 3 0
mylocation 9 0 1 0 0 0 1 0 0
OddsCalculator 10 0 6 0 0 0 0 1 0
Prism 17 0 3 0 1 2 0 1 0
Quicksnap 76 3 6 1 1 1 0 10 4
SASAbus 49 0 1 0 0 1 2 7 0
Scrabble 9 0 4 0 0 1 0 2 0
SoundManager 23 0 9 1 0 0 0 6 2
SpeedoMeter 3 0 1 0 0 0 1 0 0
STK 25 0 1 1 0 0 0 4 0
Sudowars 110 26 2 3 21 6 0 9 1
Swjournal 19 0 1 1 0 0 0 0 0
TapsofFire 90 4 5 7 4 1 0 19 1
Vitoshadm 9 0 0 0 1 1 0 0 0
Words 136 10 4 12 6 1 0 15 0
Median 24 1 3 1 1 1 0 4 0
Total 913 63 54 37 79 21 4 102 9

pose a Blob class using move method and it is originally pro-
posed by Seng et al. [26]. For each method in the Blob class,
we search candidate classes from the list of parameter types
in the method only if the target class is not a primitive type
and the source code is reachable inside the app. Otherwise
we select from the field types of the source class following
the same rules.

5.1 Descriptive statistics of the studied Apps

Table 6 presents relevant information about anti-patterns
contained in the studied apps. The second column contains
the number of classes (NOC), and the following columns
contain the occurrences of OO anti-patterns (3-7) and an-
droid anti-patterns (8-10). The last two rows summarize the
median and total values for each column.

5.2 Research Questions

To evaluate the effectiveness of EARMO at improving the
design quality of mobile apps while optimizing energy
consumption and its usability by software developers, we
formulate the following three research questions:
(RQ1) To what extent EARMO can remove anti-patterns
while controlling for energy consumption?
This research question aims to assess the effectiveness of
EARMO at improving design quality, while reducing energy
consumption.
(RQ2) What is the precision of the energy improvement
reported by EARMO?
This research question aims to examine if the estimated
energy improvements reported by EARMO reflect real mea-
surements.
(RQ3) To what extent is design quality improved by
EARMO according to an external quality model?
While the number of anti-patterns in a system serves as a
good estimation of design quality, there are other quality

attributes such as those defined by the QMOOD quality
model [22] that are also relevant for software maintainers,
e.g., reusability, understandability and extendibility. This re-
search question aims to assess the impact of the application
of EARMO on these high-level design quality attributes.
(RQ4) Can EARMO generate useful refactoring solutions
for mobile developers?
This research question aims to assess the quality of the refac-
toring recommendations made by EARMO from the point of
view of developers. We aim to determine the kind of recom-
mendation that developers find useful and understand why
they may chose to discard certain recommendations.

5.3 Evaluation Method
In the following, we describe the approach followed to
answer RQ1, RQ2, RQ3 and RQ4.

For RQ1, we measure two dependent variables to evaluate
the effectiveness of EARMO at removing anti-patterns in
mobile apps while controlling their energy consumption:

• Design Improvement (DI). DI represents the delta of
anti-patterns occurrences between the refactored (a′)
and the original app (a) and it is computed using the
following formulation.

DI(a) =
AC(a′)−AC(a)

AC(a)
× 100. (5)

Where AC(a) is the number of anti-patterns in an
app a and AC(a) ≥ 0. The sign of DI expresses an
increment (+)/decrement (-) and the value represents
the improvement amount in percentage. High negative
values are desired.

• Estimated energy consumption improvement (EI). EI is
computed using the following formulation.

EI(a) =
EC(a′)− EC(a)

EC(a)
× 100. (6)

Where EC(a) is the energy consumption of an app
a and EC(a) ≥ 0. EI captures the improvement in
the energy consumption of an app a after refactor-
ing operation(s). The sign of EI expresses an incre-
ment (+)/decrement (-) and the value represents the
amount in percentage. High negative values are de-
sired.

The independent variables are the three selected EMO
metaheuristics, i.e., MOCell, NSGA-II, and SPEA2. We
choose them because they are well-known evolutionary
techniques that have been successfully applied to solve
optimization problems, including refactoring [28], [61]. We
implement all the metaheuristics used in this study using
the jMetal Framework [62], which is a popular framework
for solving optimization problems.

The performance of a metaheuristic can be affected by
the correct selection of its parameters. The configurable
settings of the search-based techniques used in this paper
correspond to stopping criterion, population size, and the
probability of the variation operators. We use number of
evaluations as the stopping criteria. As the maximum num-
ber of evaluations increase, the algorithm obtains better
quality results on average. The increase in quality is usually
very fast when the maximum number of evaluation is low.
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Table 7: Deltas of energy consumption by refactoring type.

Refactoring Type δEC (ratio)
Collapse hierarchy 0.0056
Inline class -0.0315
Inline private getters and setters -0.0237
Introduce parameter object 0.0047
Move method -0.0020
Move resource request to visible method -0.0412
Replace HashMap with ArrayMap -0.0160
Replace Inheritance with delegation -0.0067

That is, the slope of the curve quality versus maximum
number of evaluations is high at the very beginning of
the search. But this slope tends to decrease as the search
progresses. Our criterion to decide the maximum number
of evaluations is to select a value for which this slope is
low enough. In our case low enough is when we observe
that no more anti-patterns are removed after that number
of evaluations. We empirically tried different number of
evaluations in the range of 1000 to 5000 and found 2500
to be the best value.

For selection operator we use the same operator defined
by Deb et al. [41] for NSGA-II, and binary tournament for the
other EAs, which are the default operators used in JMetal
for these algorithms.

For population size, we use a default value of 100 in-
dividuals; and for the probability of applying a variation
operator we selected the parameters using a factorial design
in the following way: we tested 16 combinations of mutation
probability pm = (0.2, 0.5, 0.8, 1), and crossover probability
pc = (0.2, 0.5, 0.8, 1), and obtained the best results with the
pair (0.8, 0.8).

Concerning the particular problem of automated-
refactoring, the initial size of the refactoring sequence is
crucial to find the best sequence in a timely manner. If the
sequence is too long, the probability of conflicts between
refactorings rises, affecting the search process. On the other
hand, small sequences produce refactoring solutions of poor
quality. To obtain a trade-off between this two scenarios, we
experimented running the metaheuristics with four relative
thresholds: 25, 50, 75 and 100 percent of the total number of
refactoring opportunities, and found that 50 percent is the
most suitable value for our search-based approach.

With respect to energy estimation, we show in Table 7 the
energy consumption coefficient δEC(k) for each refactoring
type, that we use in our experiment. These coefficients were
obtained from the formulation described in Section 4.

Note that for the move method refactoring, we did not
use the energy consumption measured for the correction
of Blob, as correcting a Blob requires many move methods
to be applied. Hence, we measured the same apps used
for Blob (i.e., Swjournal, Quicksnap and Calculator) with and
without moving exactly one method to estimate the effect
of this refactoring. The results, which are not statistically
significant, show a decrement in energy consumption.

In order to determine which one of our three EMO
algorithms (i.e., MOCell, NSGA-II, and SPEA2) achieves the
best performance, we compute two different performance
indicators: Hypervolume (HV) [63] and SPREAD [41].

We also perform Whitney U Test test pair-wise compar-
isons between the three algorithms to validate the results

Table 8: QMOOD Evaluation Functions.

Quality Attribute Quality Attribute Calculation
Reusability -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC
Flexibility 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP
Understandability -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * CAM

-0.33 * NOP - 0.33 * NOM - 0.33 * DSC
Effectiveness 0.2 * ANA + 0.2 * DAM + 0.2 * MOA + 0.2 * MFA +

0.2 * NOP
Extendibility 0.5 * ANA -0.5 * DCC + 0.5 * MFA + 0.5 * NOP
where DSC is design size, NOM is number of methods, DCC is
coupling, NOP is polymorphism, NOH is number of hierarchies, CAM
is cohesion among methods, ANA is avg. num. of ancestors, DAM is
data access metric, MOA is measure of aggregation, MFA is measure of
functional abstraction, and CIS is class interface size.

obtained for these two performance indicators.
For RQ2, we perform an energy consumption validation

experiment to evaluate the accuracy of EARMO using our
measurement setup described in Section 2.2. This is im-
portant to observe how close is the estimated energy im-
provement (i.e., EI) compared to the real measurements. For
each selected app we compute refactoring recommendations
using EARMO and implement the refactorings in the source
code of the app. Then, we measure the energy consumption
of the original and refactored versions of the apps using a
typical usage scenario, and compute the difference between
the obtained values. We compare the obtained result with
EI.

For RQ3, we use the Quality Model for Object-Oriented
Design (QMOOD) [22] to measure the impact of the refactor-
ing sequences proposed by EARMO, on the design quality
of the apps. QMOOD defines six design quality attributes
in the form of metric-quotient weighted formulas that can
be easily computed on the design model of an app, which
makes it suitable for automated-refactoring experimenta-
tions. Another reason for choosing the QMOOD quality
model is the fact that it has been used in many previous
works on refactoring [25], [64], which allows for a replica-
tion and comparison of the obtained results.

In the following, we present a brief description of the
quality attributes used in this study. Formulas for comput-
ing these quality attributes are described in Table 8. More
details about the metrics and quality attributes can be found
in the original source [22]. In this work we do not consider
the functionality quality attribute because refactoring being
a behavior-preserving maintenance activity, should not im-
pact apps’ functionalities.

• Reusability: the degree to which a software module
or other work product can be used in more than one
software program or software system.

• Flexibility: the ease with which a system or component
can be modified for use in apps or environments other
than those for which it was specifically designed.

• Understandability: the properties of a design that en-
ables it to be easily learned and comprehended. This
directly relates to the complexity of the design struc-
ture.

• Effectiveness: the design’s ability to achieve desired
functionality and behavior using OO concepts.

• Extendibility: The degree to which an app can be mod-
ified to increase its storage or functional capacity.

We compute the quality gain (QG) for each quality
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attribute using the following formulation.

QG(Ay) =
Ay(a

′)−Ay(a)

|Ay(a)|
× 100 (7)

Where Ay(a) is the quality attribute y measurement for
an app a, and a′ is the refactored version of the app a.
The sign expresses an increment (+)/decrement (-) and the
value represents the improvement amount in percentage.
Note that since the calculation of QMOOD attributes can
lead to negative values in the original design, it is necessary
to compute the absolute value of the divisor.

For RQ4, we conducted a qualitative study with the
developers of our studied apps. For each app, we randomly
selected some refactoring operations from the refactoring
sequence recommended by EARMO, and submitted them
to the developers of the app for approval or rejection. We
choose three examples for each type of refactoring and for
each app.

To measure developers’ taking of the refactorings pro-
posed, we compute for each app the acceptance ratio, which
is the number of refactorings accepted by developers di-
vided by the total number of refactorings submitted to the
developers of the app. We also compute the overall acceptance
ratio for each type of anti-pattern, considering all the apps
together.

5.4 Results of the Evaluation

In this section we present the answers to our four research
questions that aim to evaluate EARMO.
RQ1: To what extent EARMO can remove anti-patterns
while controlling for energy consumption?
Because the metaheuristic techniques employed in this work
are non-deterministic, the results might vary between differ-
ent executions. Hence, we run each metaheuristic 30 times,
for each studied app, to provide statistical significance. As
a result, we obtain three reference Pareto front approxima-
tions (one per algorithm) for each app. From these fronts,
we extract a global reference front that combines the best
results of each metaheuristic for each app and, after that,
dominated solutions are removed.

In Figure 12, we present the distribution of DI and
EI metric values, for each solution in the Pareto refer-
ence front. Figure 12 highlights a median correction of
84% of anti-patterns and estimated energy consumption
improvement of 48%. To provide insights on the perfor-
mance of EARMO, we present, in Table 9, the number of
non-dominated solutions found for each app (column 2),
the minimum and maximum values with respect to DI
(columns 3-4), and EI metrics (columns 5-6). The number
of non-dominated solutions are the number of refactor-
ings sequences that achieved a compromise in terms of
design quality and energy consumption. Table 9 reports 2.5
solutions on average with a maximum of eight solutions
(words). Thus, for the studied apps, a software maintainer
has approximately three different solutions to choose to
improve the design of an app.

In general, we observe that the results for DI and EI met-
rics are satisfactory, and we find that in nine apps EARMO
reach 100% of anti-patterns correction with a maximum
EI of 89%. With respect to the variability between apps
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Figure 12: Distribution of anti-patterns and energy con-
sumption reduction in the studied apps.

Table 9: Minimum and maximum values (%) of DI and EI
obtained for each app after applying EARMO.

Solutions DI EI
App Min. Max. Min. Max.
blackJacktrainer 1 -75 -75 -6.14 -6.14
calculator 5 -75 -93.75 -48.07 -53.55
gltron 2 -93.75 -100 -25.85 -26.32
kindmind 3 -80 -93.33 -18.42 -18.76
matrixcalculator 3 -33.33 -66.67 0.28 -0.67
monsterhunter 2 -81.63 -83.67 -43.95 -44.42
mylocation 1 -100 -100 -2.05 -2.05
oddscalculator 1 -100 -100 -14.64 -14.64
prism 2 -85.71 -100 -7.94 -9.18
quicksnap 2 -92.31 -96.15 -83.65 -84.88
SASAbus 1 -81.82 -81.82 -27.09 -27.09
scrabble 2 -85.71 -100 -12.36 -12.92
soundmanager 2 -94.44 -100 -35.36 -35.83
speedometer 1 -100 -100 -6.17 -6.17
stk 2 -83.33 -100 -11.05 -11.53
sudowars 8 -60.29 -76.47 -48.77 -63.93
swjournal 1 -100 -100 -5.67 -5.67
tapsoffire 3 -82.93 -87.8 -88.26 -89.21
vitoshadm 1 -100 -100 -3.57 -3.57
words 8 -75 -91.67 -56.83 -63.37

with more than one solution, for EI metrics the difference
between the maximum and minimum value is small, and
for DI too, except for the apps with more than two solutions
(i.e., Calculator and Words). We observe that more than 65%
of the apps contain more than one solution. To have an
insight on those apps, we present in Figure 13 the Pareto
Front (PF) for each app, where each point represents a
solution with their corresponding values, DQ (x-axis) and
EC (y-axis). The most attractive solutions are located in the
bottom right of the plot.

According to the concept of dominance, every Pareto
point is an equally acceptable solution of the multiobjective
optimization problem [65], but developers might show pref-
erence over the ones that favors the metric they want to pri-
oritize. They could select the refactorings that improve more
the energy consumption (e.g., they can chose to correct more
Android anti-patterns), or apply more OO refactorings to
improve the maintainability of their code. Other developers
might be more conservative and select solutions located in
the middle of these two objectives. Developers have the last
word, and EARMO supports them by providing different
alternatives.
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Figure 13: Pareto front of apps with more than one non-dominated solution.

Impact of refactoring sequences with respect to the
type of anti-patterns. The anti-patterns analyzed in this
study affect different quality metrics, and their definitions
can be opposed, e.g., Blob and Lazy class. In Table 10, we
present the median values of the DI metric for the non-
dominated solutions of each type of anti-pattern. The results
fall into two different categories.

• Medium. Speculative generality and Blob anti-patterns
have median correction rates of 50% and 67%, respec-
tively, while Long parameter list reached 75%.

• High. For the rest of the studied anti-patterns, the
median correction rate is 100%, including the three An-
droid anti-patterns studied and two OO anti-patterns
(i.e., Refused bequest, Lazy class)�




�

	
We conclude that including energy-consumption as a sep-
arate objective when applying automatic refactoring can
reduce the energy consumption of a mobile app, without
impacting the anti-patterns correction performance.

Performance of the metaheuristics employed. As men-
tioned before, EARMO makes use of EMO techniques to
find optimal refactoring sequences. Therefore, the results
can vary from one technique to another. A software main-
tainer might be interested in a technique that provides
the best results in terms of diversity of the solutions, and
convergence of the algorithm employed. In the MO research
community, the Hypervolume (HV) [63] is a quality indica-
tor often used for this purpose, and higher values of this
metric are desirable.

Table 10: Median values of anti-patterns corrected by type
(%).

O.O. anti-patterns Android anti-patterns

App BL LC LP RB SG BE HMU PGS

blackjacktrainer 0 -100 NA NA NA NA NA NA
calculator -100 -100 NA -75 -60 NA NA -100
gltron -100 -100 -90 NA NA NA -100 -100
kindmind -100 NA -50 -100 NA NA NA -100
matrixcalculator 0 NA -50 -100 -50 NA NA NA
monsterhunter -27.27 -100 -75 -100 NA NA NA -100
mylocation NA -100 NA NA NA -100 NA NA
oddscalculator NA -100 NA NA NA NA NA -100
prism NA -100 NA -100 -75 NA NA -100
quicksnap -66.67 -100 -100 -100 -50 NA -100 -100
SASAbus NA -100 NA NA 0 -100 NA -100
scrabble NA -100 NA NA -50 NA NA -100
soundmanager NA -100 -50 NA NA NA -100 -100
speedometer NA -100 NA NA NA -100 NA NA
stk NA -100 -50 NA NA NA NA -100
sudowars -59.62 -100 -66.67 -80.95 -66.67 NA -100 -94.44
swjournal NA -100 -100 NA NA NA NA NA
tapsoffire -75 -40 -85.71 -100 0 NA -100 -100
vitoshadm NA NA NA -100 -100 NA NA NA
words -85 -100 -91.67 -33.33 50 NA NA -100

In Table 11 we present the median and interquartile
range (IQR) of the HV indicator for each metaheuristic and
for each app with more than one solution. A special notation
has been used in this table: a dark gray colored background
denotes the best technique while lighter gray represents the
second-best performing technique. For the apps with more
than two solutions we observe a draw in Matrixcalculator,
while MOCell outperforms the other algorithms in two
apps. SPEA2 outperforms the rest in Sudowars, and gets
second best in two more apps. NSGA-II obtains second-best
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Table 11: Hypervolume. Median and IQR.

MOCell NSGAII SPEA2
calculator 1.32e− 18.3e−2 8.92e− 021.3e−1 9.47e− 21.8e−1

gltron 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

kindmind 0.00e+ 01.0e−1 0.00e+ 00.0e+0 0.00e+ 00.0e+0

matrixcalculator 2.50e− 10.0e+0 2.50e− 10.0e+0 2.50e− 10.0e+0

monsterhunter 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

prism 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

quicksnap 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

scrabble 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

soundmanager 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

stk 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0

sudowars 4.25e− 11.3e−1 4.95e− 11.2e−1 5.45e− 11.2e−1

tapsoffire 0.00e+ 00.0e+0 0.00e+ 03.7e−2 0.00e+ 03.7e−2

words 3.00e− 15.3e−2 2.69e− 17.3e−2 2.73e− 17.0e−2

Table 12: Spread. Median and IQR.

MOCell NSGAII SPEA2
calculator 6.89e− 13.0e−1 1.12e+ 04.7e−1 8.73e− 15.6e−1

gltron 6.78e− 11.8e−1 1.07e+ 01.8e−1 1.08e+ 02.7e−1

kindmind 6.93e− 11.0e−1 9.71e− 12.2e−1 7.66e− 13.0e−1

matrixcalculator 5.00e− 10.0e+0 1.39e+ 00.0e+0 1.49e+ 03.5e−3

monsterhunter 8.97e− 14.3e−1 9.70e− 12.1e−1 9.27e− 11.1e−1

prism 0.00e+ 00.0e+0 1.94e+ 03.8e−2 1.92e+ 04.6e−2

quickSnap 1.95e− 14.1e−1 1.29e+ 06.0e−1 1.00e+ 01.4e+0

scrabble 5.00e− 11.0e+0 1.50e+ 03.8e−1 1.62e+ 07.8e−1

soundmanager 1.00e+ 01.7e−1 1.00e+ 00.0e+0 1.00e+ 00.0e+0

stk 0.00e+ 00.0e+0 1.95e+ 02.9e−02 1.91e+ 01.5e−1

sudowars 7.96e− 11.3e−1 8.53e− 11.4e−1 8.41e− 11.3e−1

tapsoffire 7.53e− 15.4e−1 1.00e+ 01.7e−1 1.00e+ 08.6e−2

words 6.84e− 12.5e−1 9.42e− 12.2e−1 7.07e− 11.6e−1

in Sudowars. In the cases where the metaheuristics cannot
find more than one optimal solution, the value of HV is
zero. Hence, the outperforming technique according to this
quality indicator remains unknown.

Another quality indicator often used is the Spread [41]. It
measures the distribution of solutions into a given front.
Low values close to zero are desirable as they indicate
that the solutions are uniformly distributed. In Table 12 we
present the median and IQR results of the Spread indicator.
We observe that MOCell outperforms the other techniques
in 92% (12 apps) of cases, while soundmanager reports the
same value for the three EMOs. SPEA2 gets the second best
in 69% (nine apps), and NSGAII only in 8% (three apps).

To validate the results obtained by the HV and the Spread
indicators, we perform pair-wise comparisons between the
three metaheuristics studied, using Whitney U Test, with
a confidence level of 95%. The results of these tests are
summarized in Table 13. We introduce a special notation to
facilitate the comprehension of the results. The ▲ symbol
in a column indicates that the metaheuristic in the left
side achieved a better performance than the one positioned
after a comma. The ▽ indicates the opposite, and the −
symbol in a column indicates that there is no statistically
significant difference to reject the null hypothesis (i.e., the
two distribution have the same median). In each cell, the
integer value represents the number of apps that fall in each
of the aforementioned categories.

Concerning HV indicator, only one app (sudowars) was
statistically significant in the pair MOCell-NSGAII favoring
the former one. So we can conclude that in general the
performance of the three algorithms is similar. With respect
to the Spread indicator, MOCell outperforms SPEA2 in seven
apps, and NSGA-II in 10. In the pair NSGA-II-SPEA2, there

Table 13: Pair-wise Whitney U Test test for HV and Spread
indicators.

EMO Pair Quality Indicator ▲ ▽ –

MOCell, SPEA2 HV 0 0 13
Spread 7 0 6

MOCell, NSGA-II HV 0 1 12
Spread 10 0 3

NSGA-II, SPEA2 HV 0 0 13
Spread 1 0 12

is one app (Matrixcalculator) where NSGA-II outperforms
SPEA2. Hence, the solutions obtained by MOCell are bet-
ter spread through the entire Pareto front than the other
algorithms. Regarding execution time, we did not observed
a significant difference between the execution time of the
studied metaheuristics.

According to the Whitney U Test test, MOCell is the
best performing technique with respect to solution diversity,
while regarding HV the performance of the three EMO
algorithms is similar. Developers and software maintainers
should consider using MOCell when applying EARMO.

RQ2: What is the precision of the energy improvement
reported by EARMO?
The output of EARMO is a sequence of refactorings that
balances anti-pattern correction and energy consumption.
Developers select from the Pareto front, the solutions that
best fits their needs. To validate the estimations of EARMO,
we play the role of a software maintainer who wants to pri-
oritize the energy consumption of his/her app over design
quality.

The process of validation consists in manually applying
the sequence of refactorings to their corresponding source
code, for each of the studied apps. We ran the scenario
after applying each sequence to ensure that we are not
introducing code regression. Finally, we compile and gen-
erate the APK file to deploy it in the mobile device and
measure their energy consumption using our experimental
setting described in Section 3. With this EC validation, we
want to estimate EARMO’s median error with respect to real
measurements.

Concerning the scenarios used for EC validation, we
defined new ones for the apps where we consider that
the scenario used in the preliminary study do not reflect a
typical usage. The reason is that in the preliminary study
we were only interested in executing the code segment
related to an anti-pattern instance in the original version and
its corresponding refactored code segment. The scenarios
of Table 3 were just designed to check if a correlation exists
between energy consumption and anti-pattern occurrences.
Some scenarios designed for the preliminary study just
required to start the app, wait certain seconds, and close it to
execute the refactored code segment. For the EC validation
we want to reflect the actions that a user typically will per-
form with an app, according the purpose of their creators,
instead of scenarios designed to maximize other metrics like
coverage which do not reflect the daily use of normal users.
To validate EARMO (and perform optimization) we replace
the scenarios in Table 3, i.e., the ones that only load and
close an app, by the ones presented in Table 14. Note that
in some cases we have to modify the code to remove any
sources of randomness that may alter the execution path
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Table 14: Description of scenarios generated for the EC
validation and duration (in seconds).

App Scenario Duration
Calculator Same scenario as preliminary study. 17.94
GLTron Tap screen to start the game and

wait until the moto crashes.
40.08

kindmind Select each category, wait for the
relaxation message, and close app.

80.06

monsterhunter Same scenario as preliminary study. 16.39
oddscalculator Select two players, {7 heart}, {8

heart}, {9 heart}, tap {calculate},
wait five seconds, and close app.

45.83

quicksnap Take a picture and close app. 16.30
SASAbus Same scenario as preliminary study. 71.72
scrabble Assign the first four letters to the

first cells, tap {confirm}, and close
app.

65.11

soundmanager Same scenario as preliminary study. 18.74
stk Wait until content is downloaded,

tap {karts}, tap first row, back,
back, tap {tracks}, tap first row, and
close app.

86.55

sudowars Wait until app is loaded, tap
{manual}, tap {single player}, tap
{tick} button, select first square and
write values 1, 2, 3, 4, 5, and 6, tap
{...}, tap {assistant}, give up, tap
yes, tap back, close app.

53.13

tapsoffire Same scenario as preliminary study. 25.96
words Select a category, tap {play}, tap

{flash card}, tap {green hand}, tap
{flash card}, tap {red hand}, tap
{back}, and close app.

57.34

between different runs. For example, Sudowars is a sudoku
game where the board is randomly generated. Because in
the scenario we introduce fixed numbers in fixed positions
of the board, we need to ensure that the same board is
always displayed to produce the same execution path over
the 30 independent runs. Hence, we fixed the random seed
used in the app to force to display always the same board.
A similar case happens to another board game (scrabble).

For the manual application of the sequence of refac-
torings, two of the authors of this work (PhD. candidates
with more than 5 years of experience in Java), and an
intern (MsC. Student with two years of programming expe-
rience) worked together. After each team member finished
to apply a refactoring sequence to an app, we shared the
control version repository with the other team members
for approval. In case of disagreement, we vote for either
apply or exclude a refactoring operation(s) from a sequence.
Additionally, whenever we observed an abnormal behavior
in the app after applying a refactoring, we rolled back
to the previous code version and discarded the conflict-
ing refactoring. We provide a link to the git reposito-
ries containing the refactored versions available online at
http://swat.polymtl.ca/rmorales/EARMO/.

It is important to mention that we applied the refactor-
ings using the Android Studio tool support, and we do not
find cases where refactorings violate any semantic pre- and
post-condition. However, there are many cases, specially in
move method refactoring, and in replace inheritance with dele-
gation, where it is possible to introduce regression despite
the fact that the refactoring is semantically correct. Due to

Table 15: Summary of manual refactoring application for the
EC validation.

App DI% EI% Discarded ref. Applied ref. Total Precision (%)
Calculator 75 54 19 45 64 70
BlackJackTrainer 75 6 3 1 4 25
GlTron 94 26 19 13 32 41
Kindmind 80 19 7 23 30 77
MatrixCalculator 33 1 0 1 1 100
MonsterHunter 82 44 29 83 112 74
mylocation 100 2 1 1 2 50
OddsCalculator 100 15 0 6 6 100
Prism 86 9 4 1 5 20
Quicksnap 92 85 69 119 188 63
SASAbus 82 27 3 8 11 73
Scrabble 86 13 0 6 6 100
SoundManager 94 36 3 5 8 63
SpeedoMeter 100 6 1 1 2 50
STK 83 12 2 3 5 60
Sudowars 71 64 38 75 113 66
Swjournal 100 6 13 6 19 32
TapsofFire 83 89 21 139 160 89
Vitoshadm 100 4 0 2 2 100
Words 75 63 23 76 99 77

Total 614 Median 68

the absence of a test suite, we execute the defined scenario
on the phone after applying each refactoring, to validate
the correct execution of it. This is crucial, because an app
could be executed even if the refactoring applied introduces
regression until we exercise the functionality related to the
code fragment touched by the refactoring. When we notice
that the refactoring is not exercised in the defined scenario,
we separately test that functionality.

In Table 15 we present the results of the manual refac-
toring application. The column Discarded ref. is the number
of refactorings discarded from the sequence; Applied ref. the
refactorings applied, and Total is the sum of both columns.
Precision is the ratio of refactorings generated over the valid
refactorings. Overall, EARMO shows a good precision score
(68%) for all apps. In fact, only in 20% of the apps, the
precision is less than 50%. From these apps, we discuss
Prism, which is the app with lowest precision score. We
found one out of five refactorings to be valid, and that
one is the IGS type; three refactorings attempt to inline
autogenerated classes from Android build system (e.g., R,
BuildConfig); one attempts to inline a class that extends
from android.app.Activity class which is not invalid.
From the four refactorings discarded of Prism, three can
be consider valid but useless, and only one will introduce
regression. Later, we provide guidelines for toolsmiths in-
terested in developing refactoring tools for Android. With
respect to the total number of refactorings applied, we ob-
serve that in seven cases we apply more than 20 refactorings,
and from this subset two of them require more than 100.
This validate our idea, that an automated approach can be
useful for developers and software maintainers interested
in improving the design of their apps, but with limited
budget time to perform a dedicated refactoring session for
all classes existing in their app.

In Table 16 we present EARMO median execution time
Exec.T ime, estimation values of energy consumption EC,
median energy consumption of an app before (E0) and
after (E′) refactoring. The difference between EC and E′,
γ(EC,E′) is calculated by subtracting EC−E′ and dividing
the result by E′ and the result is multiplied by 100. Similarly,
we calculate the difference between E′ and E0, γ(E′, E0).
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From the statistical tests between E0, E′, the p−value, and
effect size (ES). The last column is the median difference of
battery life duration, in minutes, between the original and
the refactored version (Diff.Batterylife). This is of special
interest for software maintainers to assess if the impact of
applying a refactoring sequence would be noticeable to end
users. We provide details of how to compute the last column
below. This procedure has been used in previous works [66].

For each app we calculate its battery usage (in %) using
Equation 8 to estimate the percentage of battery charge that
is consumed by an app when running the defined scenario.
E is the energy consumption in Joules of an app (derived
from the median of the 30 independent runs), and V and C
are the voltage and electric charge (in mAh), respectively, of
the phone battery. For Nexus 4, V = 3.8 and C = 2100mAh.

Batteryusage =
E

V
× 1000

C × 3600
× 100 (8)

After obtaining the battery usage for both versions (orig-
inal, and refactored) of each app, we use it to compute the
battery life (in hours) using Equation 9 where ET is the
execution time of the app (in seconds). We consider the
battery life of an app to be the time that it takes to drain the
battery if the scenario associated to the app is continuously
run.

Batterylife =
(ET × 100)/Batteryusage

3600
(9)

Finally, we calculate the average battery life for each
app (original and refactored) and subtracted these values
to obtain the difference of battery life (Diff.Batterylife).
Positive values are desired, as they mean that the battery
life is longer using the refactored version, while negatives
values mean the opposite effect.

Note that we did not consider apps in the validation
where the number of refactorings applied is one, that ac-
counts for six apps. The reason is that for these apps the
energy improvement estimation EI is inferior to 10% before
the manual application of refactorings, so we do not expect
a measurable energy consumption change. In addition, we
also omit Swjournal, in which we applied six refactorings
out of 13, but given its low EI of 6% it is unlikely to report a
noticeable change either.

For the remaining 13 apps, we observe that the median
execution time for generating the refactoring sequences is
less than a minute (56 seconds). Concerning energy esti-
mation (EC), the direction of the trend holds for all the
apps in the testbed according to the results measured E′.
Concerning the accuracy of the estimation, EARMO values
are more optimistic than the actual measurements but in an
acceptable level. There are some remarkable exceptions, like
Tapsoffire where the difference is 50%. In this app, most of the
refactorings are move method type (120). If we multiply 120
by E0, and the result by δEC(movemethod) we have an
energy consumption decrease of -1.64 J ; 12 refactorings of
inline private getter and setters type that account for -1.92 J .
These two refactorings consume in total 3.56 J . The rest
of the energy is divided between six IPO and one replace
HashMap with ArrayMap. However, the impact on energy
for this app is far from this value, probably because the
scenario does not exercise (enough) the code that is modified

by the refactorings to report a considerable gain. On the
other side, STK reports the most close prediction with a
difference of 3%. The refactorings applied are three inline
getter and setters. If we compare the results obtained by
EARMO compared with the preliminary study, the energy
consumption trend holds for all the apps. However it is hard
to make a fair comparison because in the Preliminary study
we measure the effect of one instance of each anti-pattern
type at a time, but in the energy consumption validation
of EARMO we apply few to several refactorings. Although
we assume that the effect of refactoring is aggregated, it is
difficult to prove it with high precision, since we could not
exercise all possible paths related to the refactored code in
the proposed scenarios. Yet, the median error of γ(EC,E′)
is in acceptable level of 12%, like the one reported by Wan et
al. [67], when estimating the energy consumption of graphic
user interfaces in a testbed of 10 apps.

Concerning the difference in energy consumption af-
ter refactoring, we observe that for three apps we obtain
statistical significant results, with large effect size (results
are in bold). This corroborates the findings in the prelim-
inary study, for these apps. Although, for the rest of the
apps the results are not statistically significant, we still
we believe that the results are sound with respect to the
energy consumption improvements reported. A recent work
by Banerjee reported an energy consumption improvement
from 3% to 29% in a testbed of 10 F-Droid apps with an
automated refactoring approach for correcting violations of
the use of energy-intensive hardware components [68]. With
respect to battery life, EARMO could extend the duration
(for the apps where the difference is statistically significant)
of the battery from a few minutes up to 29 minutes (see the
remarkable increment reported for Words). Note that to ob-
tain a similar outcome in battery life, the proposed scenarios
should be executed continuously, draining the battery from
full to empty, which is not impossible, but rather unlikely.
Yet, the benefits of improving design quality of the code,
and potentially reducing the energy consumption of an app
should not be underestimated. Not only because battery life
is one of the main concerns of Android users and every
small action performed to keep a moderate energy usage in
apps is well appreciated. But, even if there is not a noticeable
gain in energy reduction, software maintainers are safe to
apply refactoring recommendations proposed by EARMO
without fearing to introduce energy leaks.

Guidelines for toolsmiths designing refactoring recom-
mendation tools.

We discuss some issues that should be considered for
toolsmiths interested in designing refactoring recommenda-
tion tools for Android based on our experience applying
the suggestions generated by EARMO. We should note that
the tool that we use for detecting anti-patterns, which is
DECOR, is not developed for Android platform. Hence, it
does not consider the control flow depicted in Figure 3
and the OS mechanisms of communication between apps.
This could generate false positives and consequently impact
the generation of refactoring opportunities. Toolsmiths in-
terested to develop refactoring tools for mobile platforms,
based on anti-pattern detection tools aimed to target OO,
should adapt the detection heuristics to avoid generating
invalid refactoring operations. We discuss some strategies
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Table 16: EARMO execution time (seconds), EC estimation (J), median energy consumption E0 and E′ (J), γ values,
statistical tests, and difference in battery life (minutes).

App Exec.T ime EC E0 E′ γ(EC,E′) γ(E′, E0) p− value ES Diff.Batterylife
calculator 154.90 17.40 21.28 19.49 -11% -8% 1.86E-09 -0.94 2.55
gltron 55.98 242.27 256.44 252.15 -4% -2% 8.01E-08 -0.77 0.42
kindmind 34.59 17.10 18.72 18.9 -10% 1% 0.1294 0.21 -4.61
monsterhunter 237.10 13.63 16.07 16.05 -15% 0% 0.6263 -0.03 -0.82
oddscalculator 8.98 29.25 30.61 30.94 -5% 1% 0.1094 0.22 -2.06
quicksnap 418.82 11.52 15.33 15.29 -25% 0% 0.9193 -0.04 3.33
SASAbus 32.39 3.79 4.61 5.49 -31% 19% 0.7922 0.09 -2.03
scrabble 18.55 88.68 94.56 94.14 -6% 0% 0.9193 -0.03 2.45
soundmanager 25.70 1.75 1.96 2.00 -13% 2% 0.3492 0.16 1.88
stk 24.58 240.82 252.81 249.29 -3% -1% 0.1403 -0.16 0.99
sudowars 203.60 46.21 54.27 53.99 -14% -1% 0.0879 -0.20 1.07
tapsoffire 281.00 3.30 6.80 6.59 -50% -3% 0.9354 -0.02 1.97
words 119.65 25.16 27.01 25.13 0% -7% 0.0384 -0.27 29.71

to consider below.
Excluding classes autogenerated by android build

system. The classes <app package>.R, and <app
package>.BuildConfig should not be considered
for analysis of anti-patterns as they are automatically
generated when (re)building an app .
Classes extending classes from android.content package
and its corresponding subpackages. This package provides
classes for accessing and publishing data on a mobile device
and messaging between apps. As an example, consider
android.content.BroadcastReceiver, which allows
an app to receive notifications from relevant events beyond
the app’s flow, e.g., a user activating the airplane mode.
An app can receive broadcasts in two different ways.
(1) declaring a broadcast receiver in the app’s manifest;
(2) creating an instance of class BroadcastReceiver,
and register within a context [69]. We focus in the first
method, as is the one that could lead developers to
introduce regression (even using IDE’s refactoring tool
support). In manifest-declared receivers, the receiver element
is registered in the app’s manifest, and a new class is
extended from BroadcastReceiver which requires to
implement onReceive(context, Intent) method, to
receive the contents of the broadcast. Let us briefly discuss
the main issue when generating refactoring opportunities
for classes extending from android.content packages (in this
example we focus in BroadcastReceiver) depending
on the type of refactoring to be applied. Collapse hierarchy
refactoring is not considered as BroadcastReceiver does
not belong to the app’s package. Replace inheritance with
delegation will introduce regression when removing the
hierarchy relationship with BroadcastReceiver. We
observe the same issue with inline class when trying to
move the methods and attributes to other potential class.
Move method will introduce regression too, when trying to
move inherited methods like onReceive to another class.

Collapsing hierarchy of classes registered as Android activity.
When a refactoring operation consists of applying Collapse
hierarchy refactoring to a class that extends from Activity,
it is also necessary to update the app’s manifest with the
name of the parent class.

Replacing Hashmap with ArrayMap. It is necessary to re-
place the imports for android.support.v4.util when
Android API is less than 19, or android.util otherwise.
It is important to mention that ArrayMap is defined as final,

so it limits the possibility to derive a new implementation
from this class, contrary to HashMap and its derived classes
(e.g., LinkedHashMap).
RQ3: To what extent is design quality improved by
EARMO according to an external quality model?
In RQ1, we have shown that EARMO is able to find op-
timal refactoring sequences to correct anti-patterns while
controlling for energy consumption. Although anti-patterns
occurrences are good indicators of design quality, a software
maintainer might be interested in knowing whether the ap-
plied refactorings produce code that is for example readable,
easy to modify and–or extend. To verify such high-level
design quality attributes, we rely on the QMOOD quality
model. Table 17 presents the maximum and minimum qual-
ity gain achieved after applying the refactorings suggested
by EARMO, for each app studied and for each QMOOD
quality attribute.

• Reusability, understandability and flexibility. In general,
the refactored apps report a slight decrease that ranges
from 0.9% to 4% for these attributes. In the case of
reusability, the prism app is an outlier, with a medium
deterioration of reusability between 31% and 44%.
EARMO finds two refactoring sequences (or two non-
dominated solutions in the Pareto front) that are com-
prised of five refactoring operations. These refactorings
are three inline operations, which have negatively im-
pacted the reusability value because of the weight (i.e.,
0.5) that reusability assigns to the number of entities in
the system (DSC metric). The fourth refactoring is Inline
private getters and setters, which negatively affects the
cohesion among methods (CAM) because one getter is
inlined in the system. The last refactoring of the first
refactoring sequence is replace inheritance with delegation
which negatively impacts the coupling between classes
(DCC), leading to a drop of 44.36% (minimum value) of
reusability. In the second refactoring sequence, the last
refactoring is collapse hierarchy which negatively impact
DSC metric as well. Concerning understandability, we
observe little variation through all the apps, making it
the least impacted attribute among the five attributes
studied. Finally, for flexibility we report a median of -
4.07%. One remarkable case is Mylocation, with 100%
gain for this attribute. It has one solution comprised of
two refactorings, inline class and move resource request
to visible method. While the former one does not have
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Table 17: Quality gain (min. and max.) values derived from QMOOD design quality attributes for each app.

Reusability Understandability Flexibility Effectiveness Extendibility
App Name Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
blackjacktrainer -3.96 -3.96 -4.05 -4.05 -11.13 -11.13 9.29 9.29 94.86 94.86
calculator -1.06 -0.58 -1.00 0.11 -14.52 6.73 1.85 3.18 13.51 21.07
gltron -8.19 -2.83 -4.25 -2.39 -10.54 -4.93 3.79 6.12 38.01 40.79
kindmind -1.10 -0.67 0.87 0.93 -0.12 1.78 -0.25 0.36 58.08 58.62
matrixcalculator 0.00 2.16 0.05 0.33 0.34 35.64 -0.51 -0.25 89.87 100.36
monsterhunter 0.08 0.10 0.00 0.10 0.43 0.73 0.42 0.48 57.22 57.69
mylocation -1.56 -1.56 1.49 1.49 100.00 100.00 7.39 7.39 1.25 1.25
oddscalculator -5.31 -5.31 -5.28 -5.28 70.86 70.86 28.93 28.93 42.15 42.15
prism -44.36 -31.27 -8.14 -6.10 -14.46 -10.60 7.53 10.22 65.17 78.30
quicksnap -2.74 -2.72 -3.77 -3.51 -39.15 -37.23 1.89 2.25 4.15 4.91
sasabus -0.24 -0.24 -0.07 -0.07 -0.41 -0.41 1.11 1.11 64.57 64.57
scrabble -8.41 -7.30 -0.80 -0.05 -13.41 -10.20 9.79 12.77 -1.67 1.60
soundmanager -7.39 -5.67 -5.02 -3.40 -14.65 -5.92 24.11 26.17 32.32 44.32
speedometer -0.93 -0.93 -1.22 -1.22 55.56 55.56 9.72 9.72 -124.16 -124.16
stk -0.01 0.53 0.18 0.34 1.21 3.74 1.35 1.35 55.05 55.96
sudowars -2.71 -0.76 -2.10 -1.12 -12.42 -5.43 -0.94 0.24 25.16 30.52
swjournal -4.14 -4.14 -2.45 -2.45 -45.33 -45.33 0.87 0.87 6.88 6.88
tapsoffire -0.39 -0.07 -2.97 -2.90 -13.36 -12.24 4.87 4.98 18.38 19.13
vitoshadm -0.21 -0.21 0.10 0.10 8.71 8.71 3.79 3.79 153.06 153.06
words 2.11 3.92 0.44 0.81 4.19 8.11 -6.27 -3.70 72.88 74.27
Median values for all PF so-
lutions

-1.24 -0.94 -4.07 3.14 40.78

a direct impact on the design, the inline of a class
positively impacted this attribute because the number
of classes is small (only nine classes). Similarly, Odd-
scalculator contains one solution with seven inline class
refactorings, and one inline private getter. On the other
hand, Swjournal has one solution composed mainly by
move method refactorings (19), and one inline class. The
inline class operation is likely responsible for the drop
of the value of the attribute to 45%.

• Effectiveness. We report a small gain of 3.14%, with two
outliers (Oddscalculator and Soundmanager). As we dis-
cussed before, Oddscalculator is mainly composed of in-
line class refactorings. Soundmanager has two solutions,
both contain nine inline classes, six inline getters/setters,
and two replace HashMap usage. In addition, the second
solution includes introduce parameter-object refactoring,
which adds a new class to the design, has the highest
effectiveness value for this app.

• Extendibility. For this attribute we report a considerable
improvement of 41%. We attribute this increment to
the removal of unnecessary inheritance (through inline
class, collapse hierarchy and refused bequest refactorings).
In fact, the extendibility function assigns a high weight to
metrics related to hierarchy (i.e., MFA, ANA). These are
good news for developers interested in improving the
design of their apps through refactoring, as the highly-
competitive market of Android apps requires adding
new features often and in short periods of time. Hence,
if they interleave refactoring before the release of a new
version, it will be easier to extend the functionality of
their apps.�




�

	
We conclude that our proposed approach EARMO can
improve the design quality of an app, not only in terms
of anti-patterns correction, but also their extendibility, and
effectiveness.

RQ4: Can EARMO generate useful refactoring solutions

for mobile developers?
We conducted a qualitative study with the developers of
the 20 apps studied in this paper to gather their opinion
about the refactoring recommendations of EARMO. The
study took place between August 17th and September 17th
2016. 23 developers, identified as authors in the repository
of the apps, were contacted but only 8 responded providing
feedback for a total of 8 apps. Table 18 provides some
background information on the developers that took part
in our qualitative study. Each developer has more than 3
years of experience and their primary programming lan-
guage is Java. Half of the developers use Android Studio to
program. 100% of them considered refactorings to be useful
but only 12% said that they perform refactoring frequently.
We asked each developer to name the three refactorings
that they perform the most. As we can see in Table 18, the
most frequent refactorings performed by the developers are:
to remove dead code, move method, inline class, extract
class/superclass, collapse hierarchy, and extract interface.
They also mentioned to extract repetitive code into new
functions (extract method), and adjusting data structures.

For each app, we randomly selected three refactorings
for each refactoring type, from the refactoring sequence in
the Pareto front with the highest energy gain. We submitted
the proposed refactorings to the developers of the app. We
asked the developers if they accept the solution proposed by
EARMO, and if not, to explain why. We also asked if there
were any modification(s) that they would like to suggest to
improve the proposed refactoring recommendations. In Fig-
ure 14, we present the acceptance ratio of the refactoring
solutions proposed by EARMO, by app (left), and by anti-
pattern (right).

We can observe that for four apps (prism, scrabble, stk,
matrixcalculator), 100% of the refactorings suggested by
EARMO were accepted. For three other apps (calculator,
kindmind, oddscalculator) the acceptance ratio range from 40%
to 57%. The developer of the GLTron app rejected all the
refactorings recommended for the app. However, some of
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Table 18: Background information on the surveyed developers.

App Name Interval Age Experience Prog.
Language

IDE Top refactorings

Calculator 18 to 24 5-9 years Java Android Studio Extract method, remove dead code, extract or remove new class/interface
OddsCalculator 35 to 44 3-4 years Java Eclipse Move type to new file, move method/field.
Kindmind 25 to 34 <1 year Java Android Studio Renaming variables and classes, extract method/class
GLTron 35 to 44 3-4 years Swift XCode Adjusting data structures, move method, extract class/superclass, Inline

class, Collapse hierarchy and extract interface
Scrabble 35 to 44 3-4 years python vim Extract method, remove dead code, add encapsulation
Prism 45 to 54 10 years or more Java Eclipse Extract variable, extract method, rename
Matrixcalc 18 to 24 3-4 years Java Android Studio Refactoring duplicate code, renaming classes/methods and variables,

remove dead code
STK 18 to 24 1-2 years Java Android Studio Extract method, extract class
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Figure 14: Acceptance ratio of the refactorings proposed by EARMO.

the reasons behind her/his rejections are not convincing as
we will discuss in the following paragraph. Overall, 68% of
recommendations suggested by EARMO were accepted by
developers.

The refactoring with the highest acceptance ratio is inline
private getters and setters, while the one with the lowest
acceptance ratio is replace hashmap with arraymap. The only
app for which replace hashmap with arraymap was recom-
mended is GLTron. The argument provided by the developer
of GLTron to justify his disapproval of the refactoring is
that because “GLtron runs on many platforms, introducing
too many Android specific APIs would be a bad idea
from a portability point of view”. He also mentioned that
because the hashmap contains few objects, the impact on
performance is minimal. However, the Android documen-
tation [48] emphasizes the advantages of using ArrayMap
when the number of elements is small, in the order of three
digits or less. In addition to this, the performance in energy
consumption should not be ignored.

Move method refactoring has an acceptance rate of
25%. The following reasons were provided by developers to
justify their decision to reject some move method refactorings
suggested by EARMO. For the calculator app, the developer
rejected two suggested move method refactorings, arguing
that the candidate methods’ concerns do not belong to
the suggested target classes. However, s/he agrees that the
source classes are Blobs classes that should be refactored. We
obtained a similar answer from the developer of Kindmind,
who also agrees that the classes identified by EARMO are
instances of Blob, but proposes other target classes as well.
To justify her/his rejection of all the three move method refac-

torings that were suggested for her/his app, the developer
of GLTron argued that there are more important issues than
moving a single method. However, she/he didn’t indicate
what were those issues.

Introduce parameter object. We found long-parameter list
instances in matrixcalculator, STK and GLTron, and its only
in GLTron that the developer rejected the two refactorings
proposed, claiming that the new object will bloat the calling
code of the method; and for the second one, that the method
has been already refactored in a different way.

Collapse hierarchy. We found two instances of specu-
lative generality, one in Prism (which was accepted) and
another in Calculator; the latter one was rejected because the
collapsed class (which is empty) implements a functionality
in the paid version. The developer wanted to keep the
empty class to maintain compatibility between the two
versions of the app (i.e., free and paid versions). However,
the developer agrees that the solution proposed by EARMO
is correct, and will consider to remove the empty class in the
future.

Inline class. Two inline class refactorings were proposed
by EARMO, one in Scrabble and another in Oddscalculator.
The former one was rejected by the developer because
she/he considers that inlining the lazy class will change the
idea of the design.

Inline private getters and setters. EARMO recom-
mended Inline private getters and setters refactorings in 7 out
of the 8 apps for which we received developers’ feedback.
From a total of 11 Inline private getters and setters operations
that were suggested by EARMO, only one was rejected, and
this was in GLTron. The developer of GLTron argued that
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a method that is called only once require no performance
optimizations.

The majority of recommendations made by EARMO
were received favorably. For those that were rejected, it was
not because they were incorrect or invalid, but because they
affected certain aspects of the design of the apps that de-
velopers did not wanted to change. The recommendations
made by EARMO raised the awareness of developers about
flaws in the design of their apps. This was true even when
the suggested fixes (i.e., the refactorings) for these design
flaws were rejected by the developers.�

�

�



Hence, we conclude that EARMO recommendations are
useful for developers. We recommend that developers use
EARMO during the development of their apps, since it can
help them uncover design flaws in their apps, and improve
the design quality and energy consumption of their apps.

6 THREATS TO VALIDITY

This section discusses the threats to validity of our study
following common guidelines for empirical studies [70].

Construct validity threats concern the relation between
theory and observation. This is mainly due to possible mis-
takes in the detection of anti-patterns, when applying refac-
torings. We detected anti-patterns using the widely-adopted
technique DECOR [12] and the guidelines proposed by
Gottschalk and Android guidelines for developers [6], [32].
However, we cannot guarantee that we detected all possible
anti-patterns, or that all those detected are indeed true anti-
patterns. Concerning the application of refactorings for the
preliminary study, we use the refactoring tool support of
Android Studio and Eclipse, to minimize human mistakes.
In addition, we verify the correct execution of the proposed
scenarios and inspect the ADB Monitor to avoid introducing
regression after a refactoring was applied. Concerning the
correction improvement reported by EARMO, we manually
validated the outcome of refactorings performed in the
source code and the ones applied to the abstract model,
to ensure that the output values of the objective functions
correspond to the changes performed. However, we rely on
the correct representation of the code generated by Ptidej
Tool Suite [60]. We chose Ptidej Tool Suite because it is a ma-
ture project with more than ten years of active development,
and it has been applied in several studies on anti-patterns,
design patterns, and software evolution.

Considering energy measurements we used the same
phone model used in other papers. Plus our measurement
apparatus has a higher or the same number of sampling bits
as previous studies and our sampling frequency is one order
of magnitude higher than past studies. Overall, we believe
our measurements are more precise or at least as precise as
similar previous studies. As in most previous studies we
cannot exclude the impact of the operating system. What is
measured is a mix of Android and application actions. We
mitigate this by running the application multiple times and
we process energy and execution traces to take into account
only the energy consumption of method calls belonging to
the app. Because interpreted code runs slowly when profil-
ing is enabled, it is probable that the energy consumption

associated with each method call is higher. However, given
that the profiling was enabled in all the experiments, we
can assume that the instrumentation overhead introduced
by the production of execution traces is constant between
different runs of the same scenario.

Threats to internal validity concern our selection of anti-
patterns, tools, and analysis method. In this study we used
a particular yet representative subset of anti-patterns as a
proxy for design quality. Regarding energy measurements,
we computed the energy using well know theory and
scenarios were replicated several times to ensure statistical
validity. From the set of anti-patterns studied, we target one
that is related to the use of device sensors, that is Binding
Resources too early. Because our setup is measured inside
a building, device location might be computed using Wi-
Fi instead of GPS if the reception is not good enough. In
that case, it is likely to be less than the cost of using GPS
sensor outdoors. This also applies to network connections,
where the cost incurred for connecting through Wi-Fi is
likely to be less than the one incurred for using a cel-
lular network. Additionally, in the evaluation of EARMO
we use MonkeyRunner to communicate with apps though
simulated signals rather than signals triggered through real
sensors (for example, touchscreens or gravity sensors) on
mobile devices, that could be regarded as not realistic.
In case that a more realistic measurement is required, we
can substitute intrusive methods, like using Monkeyrunner,
with a robot arm that uses the same cyber-physical interface
as the human user [71].

As explained in the construct validity our measurement
apparatus is at least as precise as previous measurement
setups.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the constructed statistical models. In
particular, we used a non-parametric test, Mann-Whitney U
Test, Cliff’s δ ES, that does not make assumptions on the
underlying data distribution.

Reliability validity threats concern the possibility of repli-
cating this study. The apps and tools used in this study are
open-source.

It is important to notice that the same model of phone
and version of Android operating system should be used to
replicate the study. In addition, considering the scenarios
defined for each application, they are only valid for the
apps versions used in this study, which are also available
in our replication package. The reason is that the scenarios
were collected considering approaches based on absolute
coordinates and not on the identifier of components in the
graphical user interface (GUI). Therefore, if another model
of phone is used or the app was updated and the GUI
changed, the scenarios will not be valid.

Threats to external validity concern the possibility to gen-
eralize our results. These results have to be interpreted care-
fully as they may depend on the specific device where we
ran the experiments, the operating system and the virtual
machine (VM) used by the operating system. For the former
one, it is well known that in ART (Android Run Time used
in this work) the apps are compiled to native code once,
improving the memory and CPU performance, while previ-
ous VM for Android (Dalvik) runs along with the execution
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of an app, and may perform profile-directed optimizations
on the fly. To validate this threat, we execute the energy
consumption validation using Dalvik and ART VMs and
found ±1% of difference in the median of γ(E′, E0) values
for the apps used in the energy consumption validation.
Hence, we suggest that our results area valid for both VMs,
for the set of anti-patterns, apps, and scenarios used in this
work.

Our study focuses on 20 android apps with different
sizes and belonging to different domains from F-Droid,
which is one of the largest repositories of open-source
Android apps. Still, it is unclear if our findings would
generalize to all Android applications. Yet, more studies
and possibly a larger dataset is desirable. Future replica-
tions of this study are necessary to confirm our findings.
External validity threats do not only apply to the limited
number of apps, but also to the way they have been selected
(randomly), their types (only free apps), and provenance
(one app store). For this reason this work is susceptible to
the App Sampling Problem [72], which exists when only a
subset of apps are studied, resulting in potential sampling
bias. Nevertheless, we considered apps from different size
and domains, and the anti-patterns studied are the most
critical according to developers perception [10], [73].

7 RELATED WORK

In this section, we discuss related works about automated-
refactoring, Android anti-patterns, and the energy con-
sumption of mobile apps.

7.1 Automated-Refactoring
Harman and Tratt [21] were the first to formulate the prob-
lem of refactoring as a multiobjective optimization (MO)
problem. They defined two conflicting metrics as objectives
to satisfy, and demonstrated the benefits of the Pareto op-
timality for the Move method refactoring. Ouni et al. [64]
proposed a MO approach based on NSGA-II, with three
conflicting objectives: removing anti-patterns, preserving
semantic coherence, and history of changes. For the first
objective, they generated a set of rules to characterize anti-
patterns from a set of bad design examples. The second
objective measure the semantic similarity among classes.
Finally, history of changes refers to the similarity of the
refactoring proposed with previous refactorings applied in
the past. Mkaouer et al. [74] proposed an extension of this
work, by allowing user’s interaction with the refactoring so-
lutions. Their approach consists of the following steps: (1) a
NSGA-II algorithm proposes a set of refactoring sequences;
(2) an algorithm ranks the solutions and presents them to
the user who will judge the solutions; (3) a local-search
algorithm updates the set of solutions after n number of
interactions with the user or when m number of refactorings
have been applied.

Our proposed approach differs from the above-
mentioned works in the following points: i) the context of
our approach is mobile apps, with an emphasis on energy
consumption; ii) the level of automation in our approach is
higher, as it does not depend on additional input from the
user with respect to anti-patterns detection (e.g., bad design
examples).

Using four single-objective metaheuristics and a dataset
of 1705 Mylyn interaction histories, Morales et al. [49] pro-
posed an approach to guide the refactoring search using task
context information. The difference with this work is that we
focus on mobile apps using a multiobjective formulation,
while the previous work targets only OO anti-patterns. In
EARMO we do not leverage task context information to
guide the search for refactoring solutions.

In a previous work [31], we proposed a multiobjective
approach to remove anti-patterns while controlling for test-
ing effort, and show that it is possible to improve unit test-
ing effort by 21%. This previous work differs from EARMO
in the targeted systems (desktop vs mobile), and the fact
that energy consumption was not considered, but the testing
effort of classes.

Recently, Banerjee et al. [68] proposed an approach to
refactor mobile apps by relying on energy-consumption
guidelines to control for energy-intensive device compo-
nents. They report a reduction in energy consumption from
3% to 29% of in their testbed which was comprised of 10
F-Droid apps. While this work focuses only on improving
the energy consumption, our work aims to improve design
quality by correcting OO and android anti-patterns. In ad-
dition, we examined the impact of different anti-patterns
on the energy consumption of apps and we evaluated the
usefulness of our proposed refactoring approach using three
different multiobjective metaheuristics.

7.2 Mobile anti-patterns
Linares-Vásquez et al. [75] leveraged DECOR to detect
18 OO anti-patterns in mobile apps. Through a study of
1343 apps, they have shown that anti-patterns negatively
impact the fault-proneness of mobile apps. In addition, they
found that some anti-patterns are more related to specific
categories of apps.

Verloop [76] leveraged refactoring tools, such as PMD 10

or JDeodorant [77] to detect code smells in mobile apps,
in order to determine if certain code smells have a higher
likelihood to appear in the source code of mobile apps. In
both works, the authors did not considered Android-specific
anti-patterns.

Reimann et al. [78] proposed a catalog of 30 quality
smells specific to the Android platform. These smells were
reported to have a negative impact on quality attributes like
consumption, user experience, and security. Reimann et al.
also performed detections and corrections of certain code
smells using the REFACTORY tool [79]. However, this tool
has not been validated on Android apps [10].

Li et al. [46] investigate the impact of android developing
practices and found that accessing class fields, extracting array
length into a local variable in a for-loop and inline getter and
setters can reduce the energy consumption of an app in test
harness developed specifically for this purpose.

Hecht et al. [10] analyzed the evolution of the quality of
mobile apps through the analysis of 3,568 versions of 106
popular Android apps from the Google Play Store. They
used an approach, called Paprika, to identify three object-
oriented and four Android-specific anti-patterns from the
binaries of mobile apps. Recently, they also evaluated the

10. https://pmd.github.io/
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impact of removing three types of Android anti-patterns
(two of them also studied in this work, e.g., HashMap usage,
and private getters and setters) using a physical measurement
setup [80].

Our proposed approach differs from these previous
works in the sense that beside detecting anti-patterns in
mobile apps, we propose a multiobjective approach to
generate optimal sequences of refactorings that achieve a
maximum removal of anti-patterns from the mobile apps,
while controlling for energy consumption. In this way we
avoid a direct aggregation of different, potentially con-
flicting objectives, allowing software maintainers to select
among different trades or achieve a compromise between
the two of them.

We validate our results by measuring the energy con-
sumption of apps on a real mobile phone.

7.3 Energy Consumption

There are several works on the energy consumption of
mobile apps [55], [81], [82], [83], [84], [85].

Some studies proposed software energy consumption
frameworks [55] and tools [81] to analyze the impact of
software evolution on energy consumption.

Green Miner [55] is a dedicated hardware mining soft-
ware repositories testbed. The Green Miner physically mea-
sures the energy consumption of Android mobile devices
and automates the reporting of measurements back to devel-
opers and researchers. A Green Miner web service11 enables
the distribution and collection of green mining tests and
their results. The hardware client unit consists of an Arduino,
a breadboard with an INA219 chip, a Raspberry Pi running
the Green Miner client, a USB hub, and a Galaxy Nexus
phone (running Android OS 4.2.2) which is connected to a
high-current 4.1V DC power supply. Voltage and amperage
measurement is the task of the INA219 integrated circuit
which samples data at a frequency of 50Hz. Using this web
service, users can define tests for Android apps and run
these tests to obtain and visualize information related to
energy consumption.

Energy models can be provided by a Software Environ-
ment Energy Profile (SEEP) whose design and development
enables the per instruction energy modeling. Unfortunately,
it is not common practice for manufacturers to provide
SEEPs. Because of that, different approaches have been
proposed to measure the energy consumption of mobile
apps. Pathak et al. [86] proposed eprof, a fine-grained en-
ergy profiler for Android apps, that can help developers
understand and optimize their apps energy consumption.
In [87], authors proposed the software tool eLens to estimate
the power consumption of Android applications. This tool is
able to estimate the power consumption of real applications
to within 10% of ground-truth measurements. One of the
most used energy hardware profilers is the Monsoon Power
Monitor which has been used in several works. By using this
energy hardware profiler a qualitative exploration into how
different Android API usage patterns can influence energy
consumption in mobile applications has been studied by
Linares-Vasquez et al. [88].

11. https://pizza.cs.ualberta.ca/gm/index.py

Other works aimed to understand software energy con-
sumption [83], its usage [15], or the impact of users’ choices
on it [84], [89].

Da Silva et al. [17] analyzed how the inline method refac-
toring impacts the performance and energy consumption
of three embedded software written in Java. The results of
their study show that inline methods can increase energy
consumption in some instances while decreasing it in others.

Sahin et al. [90] investigated how high-level design
decisions affect an application’s energy consumption. They
discuss how mappings between software design and power
consumption profiles can provide software designers and
developers with insightful information about their software
power consumption behavior. In another work, Sahin et
al. [15] investigated the impact of six commonly-used refac-
torings on 197 apps. The results of their study have shown
that refactorings impact energy consumption and that they
can either increase or decrease the amount of energy used
by an app. The findings of also highlighted the need for
energy-aware refactoring approaches that can be integrated
in IDEs.

Banerjee et al. [91] proposed a technique to identify
energy hotspots in Android apps by the generation of
test cases containing a sequence of user-interactions. They
evaluate their technique using a testbed of 30 apps from
F-Droid.

Pinto [92] suggested a refactoring approach to improve
the energy consumption of parallel software systems. The
approach was manually applied to 15 open source projects
and reported an energy saving of 12%.

Li et al. [93] proposed an approach to transform web
apps to improve energy consumption of mobile apps and
achieved an improvement of 40%, with an acceptance rate
of 60% among the users in a testbed of seven web apps.
To address the same problem, but using multiobjective
technique, Linares-Vásquez et al. [94] proposed an approach
to generate energy-friendly color palettes that are consistent
with respect to the original design in a testbed of 25 apps.

Wan et al. [67] propose a technique for detecting graphic
user interfaces that consumes more energy than desirable.
Their energy prediction estimation reached 12% compared
to the real measurements on a testbed of 10 apps

Bruce et al. [95] leverage Genetic Improvement to improve
the energy consumption of three MiniSAT downstream apps
achieving 25% of improvement.

Manotas et al. [96] proposed a framework (SEEDS) to
automatically select the most energy efficient Java’s Collec-
tions API and achieve 17% of energy usage improvement in
a testbed of seven Java apps.

Hecht et al. [18] conducted an empirical study focus-
ing on the individual and combined performance impacts
of three Android performance anti-patterns on two open-
source Android apps. These authors evaluated the perfor-
mance of the original and corrected apps on a common user
scenario test. They reported that correcting these Android
code smells effectively improves the user interface and
memory performance.

Our work differs from the ones presented in this cate-
gory since we aim to improve the design quality of the apps,
using anti-patterns as proxy for design quality, while maxi-
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mizing energy efficiency. Therefore, our work contributes to
fill a gap in the literature.

8 CONCLUSION AND FUTURE WORK

In this paper we introduce EARMO, a novel approach for
refactoring mobile apps while controlling for energy con-
sumption. This approach aims to support the improvement
of the design quality of mobile apps through the detection
and correction of Object oriented and Android anti-patterns.
To assess the performance of EARMO, we implemented
our approach using three evolutionary multiobjective tech-
niques and we evaluated it on a benchmark of 20 free
and open-source Android apps, having different sizes and
belonging to various categories. The results of our empirical
evaluation show that EARMO can propose solutions to
remove a median of 84% of anti-patterns, with a median
execution time of less than a minute. We also quantify
the battery energy gain of EARMO and found that in a
multimedia app, when the proposed scenario is executed
continuously until the battery drained out, it could extend
battery life by up to 29 minutes.

We also demonstrated that in the instance of search
space explored by the metaheuristics implemented, different
compromise solutions are found, justifying the need for a
multiobjective formulation.

Concerning the quality of the solutions proposed, we
manually evaluated the precision of the sequences gener-
ated by EARMO and obtained of median 68% precision
score. We study the cases where some of the refactorings
in a sequence are not valid and provide guidelines for tool-
smiths to improve the precision of automated refactoring
approaches.

We also evaluated the overall design quality of the
refactored apps in terms of five high-level quality attributes
assessed by an external model, and reported gains in terms
of understandability, flexibility, and extendibility of the re-
sulting designs.

We conducted a qualitative study to assess the quality
of the refactoring recommendations made by EARMO from
the point of view of developers. Developers found 68% of
refactorings suggested by EARMO to be very relevant.

As future work, we intend to extend our approach to
detect and correct more mobile anti-patterns. We also plan
to apply EARMO on larger datasets, and further evaluate it
through user studies with mobile apps developers.
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