
0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 1

A Rigorous Framework for
Specification, Analysis and Enforcement

of Access Control Policies
Andrea Margheri, Massimiliano Masi, Rosario Pugliese and Francesco Tiezzi

Abstract—Access control systems are widely used means for the protection of computing systems. They are defined in terms of
access control policies regulating the access to system resources. In this paper, we introduce a formally-defined, fully-implemented
framework for specification, analysis and enforcement of attribute-based access control policies. The framework rests on FACPL, a
language with a compact, yet expressive, syntax for specification of real-world access control policies and with a rigorously defined
denotational semantics. The framework enables the automated verification of properties regarding both the authorisations enforced by
single policies and the relationships among multiple policies. Effectiveness and performance of the analysis rely on a
semantic-preserving representation of FACPL policies in terms of SMT formulae and on the use of efficient SMT solvers. Our analysis
approach explicitly addresses some crucial aspects of policy evaluation, such as missing attributes, erroneous values and obligations,
which are instead overlooked in other proposals. The framework is supported by Java-based tools, among which an Eclipse-based IDE
offering a tailored development and analysis environment for FACPL policies and a Java library for policy enforcement. We illustrate the
framework and its formal ingredients by means of an e-Health case study, while its effectiveness is assessed by means of performance
stress tests and experiments on a well-established benchmark.

Index Terms—Attribute-based Access Control, Policy Languages, Policy Analysis, SMT

F

1 INTRODUCTION

Nowadays computing systems have pervaded every daily
activity and prompted the proliferation of several innova-
tive services and applications. These modern distributed
systems manage a huge amount of data that, due to its
importance and societal impact, has brought out security
issues of paramount importance. Controlling the access to
system resources is thus crucial to prevent unauthorised
accesses that could jeopardise trustworthiness of data.

This has fostered an increasing research interest towards
access control systems, which are the first line of defence for
the protection of computing systems. They are defined by
rules that establish under which conditions a subject’s request
for accessing a resource has to be permitted or denied. In
practice, it amounts to restricting physical and logical access
rights of subjects to system resources.

Access control is a broad field, covering several differ-
ent approaches, using different technologies and involving
various degrees of complexity. From the first applications
in operating systems, to the more recent ones in distributed
systems, many access control approaches have been pro-
posed. Traditional approaches are based on the identity of
subjects, either directly – e.g., Access Control Matrix [1] –
or through predefined features, such as roles or groups

• A. Margheri is with University of Southampton, Electronics and Com-
puter Science, Southampton, United Kingdom

• M. Masi is with Tiani “Spirit” GmbH, Wien, Austria
• R. Pugliese is with Università degli Studi di Firenze, Dipartimento di

Statistica, Informatica, Applicazioni “G. Parenti”, Firenze, Italy
• F. Tiezzi is with Università di Camerino, Scuola di Scienze e Tecnologie,

Camerino, Italy

– e.g., Role-Based Access Control (RBAC [2]). These ap-
proaches are however inadequate for dealing with modern
distributed systems, as they suffer from scalability and inter-
operability issues, mainly due to the difficulty on defining
granular access controls for each individual [3]. Moreover,
they cannot easily encompass information representing the
evaluation context, such as system status or current time. An
alternative approach that permits to overcome these prob-
lems is Attribute-Based Access Control (ABAC) [4]. Here,
the rules are based on attributes, which represent arbitrary
security-relevant information exposed by the system, the
involved subjects, the action to be performed, or by any
other entity of the evaluation context relevant to the rules
at hand. Thus, ABAC permits defining fine-grained, flexible
and context-aware access control rules that are expressive
enough to uniformly represent all the other approaches [5].
Attribute-based rules are typically hierarchically structured
and paired with strategies for resolving possible conflict-
ing authorisation results. These structured specifications
are called policies; from this name derives the terminology
Policy-Based Access Control (PBAC) [3], sometimes used in
place of ABAC.

Many languages have been proposed for the specifi-
cation of access control policies (see, e.g., Han and Lei’s
survey [6]). Among the proposed languages, in the authors’
knowledge, the OASIS standard eXtensible Access Control
Markup Language (XACML) [7] is the best-known one. Due
to its XML-based syntax and the advanced access control
features it provides, XACML is commonly used in many
real-world systems, e.g., in service-oriented architectures.
However, the management of real access control policies
is in practice cumbersome and error-prone, and should be

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 2

supported by rigorous analysis techniques. Alas, the lack of
a formally defined semantics for XACML [8], [9], [10], [11]
hinders the specification and realisation of such techniques.

To tackle these difficulties, we introduce a formally-
defined, fully-implemented framework based on the Formal
Access Control Policy Language (FACPL), supporting de-
velopers in the specification, analysis and enforcement of
access control policies.

This paper is a revised and extended version of previous
works [12], [13]. Besides significant revisions and extensions
of syntax and semantics of FACPL (we refer to Section 9
for a detailed comparison), we propose here a complete
development methodology for access control policies. Most
of all, differently from previous works, we introduce a
constraint-based representation of FACPL policies enabling
the efficient verification of various properties.

The FACPL-based Access Control Framework

The FACPL language defines a core, yet expressive, syntax
for specification of high-level access control policies. It is in-
spired by XACML, with which it shares the main traits of the
policy structure and some terminology. However, it refines
some aspects of XACML and introduces novel features from
the access control literature. Evaluation of FACPL policies
is formalised by a denotational semantics, which clarifies
intricate aspects of access controls like, e.g., (i) management
of missing attributes, i.e., attributes controlled by a policy
but not provided by the request to authorise, and (ii) for-
malisation of combining algorithms, i.e., strategies to resolve
conflictual decisions that policy evaluation can generate.

The analysis functionalities provided by our framework
enable static verification of two main groups of properties of
FACPL policies. Authorisation properties permit reasoning on
the evaluation of a policy with respect to a specific request,
by also considering additional attributes that can be possibly
introduced in the request at run-time and that might lead
to unexpected authorisations. Structural properties, instead,
permit reasoning on the whole set of evaluations of policies
and can be exploited, e.g., to implement maintenance and
change-impact analysis [14] techniques.

The verification of these properties requires extensive
checks on infinite requests, hence support through software
tools is essential. As no off-the-shelf analysis tool directly
takes FACPL specifications in input, our framework exploits
a constraint formalism that permits uniformly represent-
ing policy elements and enabling automated analysis. The
constraint formalism we introduce is based on Satisfiability
Modulo Theories (SMT) formulae, that is formulae defining
satisfiability problems involving multiple theories, such as
boolean and linear arithmetic ones. The relevant progress
made in the development of automatic SMT solvers has
led SMT to be extensively employed in diverse analysis
applications [15], even for access control policies [11], [16].
In practice, SMT-based approaches are more effective than
many other ones, like decision diagrams [14] or description
logic [17]. The soundness of our analysis techniques is guar-
anteed by the correspondence, which we formally prove,
between the semantics of FACPL policies and that of their
constraint-based representations.

Our framework is supported by a Java-based software
toolchain. The key software tool is an Eclipse-based IDE that
offers a tailored development and analysis environment for
FACPL policies. Specifically, it helps access control policy
developers in the tasks of specification, analysis and en-
forcement of policies by providing, e.g., static checks on
the code and automatic generation of runnable SMT and
Java code. The evaluation of the SMT code relies on the Z3
solver [18], while the policy enforcement relies on a Java
library that we have specifically developed.

Contributions
The main contribution of this paper is the development
of a comprehensive methodology supporting the whole
life-cycle of access control policies, from their specifica-
tion and analysis to their enforcement. Each ingredient of
the methodology is formally presented in this paper, to-
gether with step-by-step examples and tool implementation.
The tools allow access control system developers to use
formally-defined functionalities without requiring them to
be familiar with formal methods.

Our methodology enhances the proposals from the liter-
ature to different extents, for providing a single framework
where all the relevant functionalities are expressed and
formalised in a uniform manner. Indeed, XACML does
not come with any formal specification and, hence, analy-
sis; the formally-grounded proposals by Jajodia et al. [19],
Crampton and Morisset [9], Ramli et al. [10], and Crampton
and Williams [20] do not offer supporting tools; instead,
the SMT-based analysis proposals by Arkoudas et al. [11]
and Turkmen et al. [16] do not support such crucial fea-
tures as, e.g., missing attributes and obligation instantiation.
Comparisons with the relevant literature are reported in
Section 9.

Our aim is to design an expressive language whose
formal foundations enable tool-supported analysis, rather
than to face XACML semantic issues or supersede it. Further
specific contributions of the work reported in this paper are
outlined below.
• The FACPL semantics manages missing attributes in a

way similar to Crampton and Morisset [9] and Cramp-
ton and Williams [20], and extends their approaches
with explicit error management.

• The formalisation of combining algorithms extends the
work by Li et al. [21] with explicit combination of
obligations and with different instantiation strategies.

• The authorisation properties are introduced to specifi-
cally take into account the ‘safety’ property of Tschantz
and Krishnamurthi [22] by appropriately employing
the request extensions set by Crampton et al. [23] for
property formalisation.

• The main structural properties introduced by Fisler et
al. [14], Kolovski et al. [17] and Arkoudas et al. [11] are
uniformly formalised in terms of policy semantics.

• A constraint formalism is defined to provide a low-
level, tool-independent representation of attribute-
based policies that is capable to deal with all issues
regarding policy evaluation.

• The validation of the proposal is carried out through
experiments on a standard benchmark in the field of ac-
cess control tools, i.e., the CONTINUE case study [24].

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 3

Context
Handler

Policy
Decision Point

(PDP)

Policy
Enforcement Point

(PEP)
Requester

3. FACPL request

5. attribute names
8. attribute values
9. PDP response

2. FACPL request

10. PDP response

11. obligations

Environment
7. attribute values
6. attribute names

Policy
Repository

(PR)

4. FACPL policies

12. obligation results

Obligation
services

13. enforced decision

1. request

Figure 1. The FACPL evaluation process

The FACPL framework impacts on different phases of
the software development process of policy-based systems:
Design: the framework supports the design of the access

control module of the system via an Eclipse-based
IDE, which permits to specify policies, automatically
generate constraints, and analyse them through an SMT
solver. Automatic translation of XACML policies into
FACPL ones is also supported.

Implementation: the framework supports, via the auto-
matic generation of runnable Java code from FACPL
policies, the actual installation of an access control mod-
ule. FACPL policies can also be installed as XACML
ones by using the corresponding translator.

Maintenance: the loose coupling of the access control mod-
ule with the rest of the system permits its dynamic
update and replacement.

Summary of the rest of the paper
In Section 2 we overview the FACPL evaluation process.
In Section 3 we introduce an e-Health case study we use
throughout the paper as a running example. In Section 4 we
present the syntax of FACPL and its informal semantics,
together with the FACPL-based specification of the case
study. In Section 5 we formally define the FACPL semantics.
In Section 6 we introduce the constraint formalism and the
representation it enables of FACPL policies. In Section 7 we
introduce various properties for access control policies and
their verification via SMT solvers. In Section 8 we outline
the Java-based software toolchain and present the validation
results. In Section 9 we discuss the closest related work and,
finally, in Section 10 we conclude and touch upon directions
for future work. Appendixes A and B report, respectively,
all the definitions for combining algorithms, and the proofs
of the formal results.

2 THE FACPL EVALUATION PROCESS

The FACPL evaluation process is shown in Figure 1. It
assumes that system resources are paired with one or more
FACPL policies, which define the credentials necessary to
gain access to such resources. The evaluation process defines
the interactions, leading to the final authorisation decision,

among three key components: the Policy Repository (PR),
the Policy Decision Point (PDP) and the Policy Enforcement
Point (PEP). These entities and their interactions were intro-
duced in the RFC 2753 [25] to define the evaluation process
of policy-based systems. Since then, many policy languages,
like XACML, have tailored them according to their specific
features.

When the PEP receives an access request (step 1), the
credentials contained in the request are encoded as a se-
quence of attribute elements forming a FACPL request and
sent to the context handler (step 2). An attribute element
is a name-value pair representing arbitrary information
relevant for evaluating the access request. This encoding
allows access requests, written in the format required by
the controlled system, to be transparently evaluated by the
FACPL process. Notably, PEP implementation depends on
the specific system and can have different forms, such as a
gateway or a Web server.

Then, the context handler sends the request to the PDP
(step 3), by possibly adding environmental attributes, e.g.
request receiving time, that may be used in the evaluation.

Upon request reception, the PDP retrieves (step 4) the
FACPL policies to be currently enforced. Such policies are
stored and supplied by the PR. The interaction between the
PDP and the PR is denoted by a dashed arrow in the figure,
as it is not further detailed here. In fact it can be realised
in many different ways depending on the application. For
example, the policies could be provided proactively, or upon
a request by the PDP; moreover, they could be provided
once and for all, or resent whenever dynamically updated.

The PDP authorisation process computes the PDP response
for the request by checking the attributes, that may belong
either to the request or to the environment (steps 5-8),
against the controls contained in the policies. The PDP
response (steps 9-10) contains an authorisation decision and
possibly some obligations. The decision is one among permit,
deny, not-app and indet1. The meaning of the first two ones

1. The FACPL supporting tools can handle the same extended in-
determinate values dealt with by XACML, as discussed in Section 8.
However, for the sake of presentation, in the formal specification of
FACPL we only consider a single indeterminate value, rather than the
whole set.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 4

Figure 2. e-Prescription service protocol

is obvious, the third one means that there is no policy that
applies to the request and the latter one means that an
error has occurred during the evaluation. Policies can use
operators that combine, according to different strategies,
not-app and indet decisions with the others. In this way,
combined policies can specify how the evaluation process
has to manage, in an automatic fashion, sub-policies that do
not apply to a request or whose evaluation raises errors.

Obligations are instead additional actions connected to
the access control system that must be discharged by the
PEP through appropriate obligation services (steps 11-12).
Obligations usually correspond to, e.g., updating a log file,
sending a message or executing a command. The enforcement
process performed by the PEP determines the enforced decision
(step 13) on the basis of the result of obligations discharge.
This decision could differ from that of the PDP and is the
overall outcome of the evaluation process.

A main benefit of following the approach of the RFC
2753 is the separation of concerns among policies, their
evaluation and the system itself. In particular, it means that:
(i) different types of requests can be handled, as the PEP can
appropriately encode them in the format required by the
PDP; (ii) the PDP can be placed in any point of the system
architecture, with the PEP acting as a gateway or a proxy;
and (iii) the PR can be also instantiated to support dynamic,
possibly regulated, modifications of policies.

3 AN E-HEALTH CASE STUDY

The case study we consider throughout this paper concerns
the provision of e-Health services for exchanging private
health data. In this context, we will show that access control
policies expressed in FACPL can control accesses to health
data in order to preserve data confidentiality and integrity.

The exchange of patients health data among European
points of care, such as clinics, hospitals and pharmacies, has
been pursued by the EU through the large scale pilot project
epSOS [26]. The goal is to establish a suite of standardised
data exchanging services for facilitating the cross-border
interoperability [27] of the EU country healthcare systems
and professionals, such as doctors, nurses and pharmacists,
thus ultimately improving the effectiveness of healthcare

treatments to EU citizens that are abroad. These services
must respect a set of requirements in order to comply with
country-specific legislations [28], [29] and to enforce the pa-
tient informed consent, i.e., the patients informed indications
pertaining to personal data processing.

In this paper we focus on the electronic prescription (e-
Prescription) service. This service allows EU patients, while
staying in a foreign country B, to have dispensed a medicine
prescribed by a doctor in the country A where the patient
is insured. The protocol implemented by this service is
illustrated in the message sequence diagram in Figure 2. The
e-Prescription service helps pharmacists in country B to re-
trieve and properly convert e-Prescriptions from country A;
this is performed by means of trusted actors named National
Contact Points (NCPs). Therefore, once a pharmacist has
identified the patient (Alice), the remote access is requested
to the local NCP (NCP-B), which in its own turn contacts
the remote NCP (NCP-A)2. The latter one retrieves the e-
Prescriptions of the patient from the national infrastructure
and, for each e-Prescription, performs through PEP-A an
authorisation check against the patient informed consent.
In details, PEP-A asks PDP-A to evaluate the pharmacist
request with respect to the e-Prescription and the policies ex-
pressing the patient consent. Once all decisions are enforced
by PEP-A, NCP-A creates the list of e-Prescriptions, by
transcoding and translating them into the code system and
language of the country B. Finally, the pharmacist dispenses
the medicine to the patient and updates the e-Prescription,
i.e., it returns e-Dispensation documents.

Starting from the epSOS specifications, we deduced a
set of business requirements concerning the e-Prescription
service. To streamline the presentation, we explicitly report
in Table 2 all and only those requirements authorising some
actions. Hence, every action not explicitly authorised is
forbidden. For instance, it is not allowed to pharmacists to
write e-Prescriptions, which is instead allowed to doctors
exhibiting specific permissions. All the requirements are
self-explanatory. We just want to point out that the first three
requirements deal with access restrictions, while the other

2. For the sake of presentation, we abstract from the activity carried
out by the pharmacist to ascertain the patient identity.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 5

Table 1
Syntax of FACPL

Policy Auth. Systems PAS ::= { pep : EnfAlg pdp : PDP }

Enforcement algorithms EnfAlg ::= base | deny-biased | permit-biased

Policy Decision Points PDP ::= Policy | {Alg policies : Policy+}

Combining algorithms Alg ::= p-overδ | d-overδ | d-unless-pδ | p-unless-dδ | first-appδ | one-appδ | weak-conδ | strong-conδ

Instantiation strategies δ ::= greedy | all

Policies Policy ::= Rule | {Alg target :Expr policies : Policy+ obl-p : Obligation∗ obl-d : Obligation∗ }

Rules Rule ::= (Effect target :Expr obl : Obligation∗)

Effects Effect ::= permit | deny

Obligations Obligation ::= [ObType PepAction(Expr∗)]

Obligation types ObType ::= m | o

Expressions Expr ::= Name | Value | and(Expr ,Expr) | or(Expr ,Expr) | not(Expr) | equal(Expr ,Expr)
| in(Expr ,Expr) | greater-than(Expr ,Expr) | add(Expr ,Expr) | subtract(Expr ,Expr)
| divide(Expr ,Expr) | multiply(Expr ,Expr)

Attribute names Name ::= Identifier/Identifier

Literal values Value ::= true | false | Double | String | Date

Requests Request ::= (Name,Value)+

ones deal with additional functionalities that sophisticated
access control systems, like the one we present, can provide.

Table 2
Requirements for the e-Prescription service

Description
1 Doctors with e-Pre-Read and e-Pre-Write permissions can write

e-Prescriptions
2 Doctors with e-Pre-Read permission can read e-Prescriptions
3 Pharmacists with e-Pre-Read permission can read e-Prescriptions
4 Authorised user accesses must be recorded by the system
5 Patients must be informed of unauthorised access attempts
6 Exchanged data should be compressed

4 THE FACPL LANGUAGE

In this section we present FACPL, the language we propose
for defining high-level access control policies and requests.
First, we introduce its syntax in Section 4.1. Then, in Sec-
tion 4.2 we informally explain the semantics of its linguistic
constructs and in Section 4.3 employ them to implement the
access control system of the e-Health case study.

4.1 Syntax
Intuitively, FACPL policies are hierarchically structured lists
of elements containing controls on the value of attributes
that should be provided by FACPL access requests. Together
with permit or deny decisions, policies specify the combining
algorithms to be used in their evaluation and the obligations
for the enforcement process.

Formally, the syntax of FACPL is reported in Table 1. It
is given through an EBNF-like grammar, where as usual the
symbol ∗ stands for (possibly empty) sequences and + for
non-empty sequences.

A top-level term is a Policy Authorisation System (PAS)
encompassing the specifications of a PEP and a PDP. The
PEP is defined by the enforcement algorithm (EnfAlg) applied
for establishing how decisions have to be enforced, e.g.,

if only decisions permit and deny are admissible, or also
not-app and indet can be returned. The PDP (PDP) is
instead defined by a policy (Policy), or by a sequence of
policies (Policy+) and an algorithm (Alg) for combining the
results of the evaluation of these policies.

A policy is a sequence of labelled fields, as a sort of
record. It can be either a basic authorisation rule (Rule) or
a policy set collecting rules and other policy sets, so that
policies can be hierarchically structured. A rule specifies an
effect (Effect), which is the permit or deny decision returned
when the rule is successfully evaluated, a target, which is
an expression (Expr) indicating the set of access requests
to which the rule applies, and a sequence of obligations
(Obligation∗), that is actions to be discharged by the enforce-
ment process. A policy set specifies a target, a sequence of
enclosed policies along with an algorithm for combining the
results of their evaluation, and two sequences of obligations,
one to be discharged if the resulting effect is permit, the
other if it is deny. Obligation sequences may be empty, while
policy sequences cannot.

An attribute name (Name) refers to the literal value
associated with the attribute. The name is structured in the
form Identifier/Identifier , where the first identifier stands
for a category name and the second for an attribute name.
For example, the structured name subject/role represents
the value of the attribute role within the category subject.
Categories permit a fine-grained classification of attributes,
varying from the usual categories of access control, i.e., sub-
ject, resource and action, to possibly application-dependent
ones.

Expressions are built from attribute names and literals
(Value), i.e., booleans, doubles, strings, and dates, by using
standard operators. As usual, string values are written as
sequences of characters delimited by double quotes.

Combining algorithms offer different strategies to merge
the decisions resulting from the evaluation of various poli-
cies; e.g., the p-overδ algorithm states that decision permit

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 6

Table 3
Auxiliary syntax for FACPL responses

PDP responses PDPResponse ::= 〈Decision IObligation∗〉

Decisions Decision ::= permit | deny | not-app | indet

Instantiated oblig. IObligation ::= [ObType PepAction(Value∗)]

takes precedence over the others. They can be specialised
by choosing different strategies (δ) for the instantiation of
obligations; e.g., the greedy strategy states that only the
obligations resulting from the actually evaluated policies are
returned. In the algorithm names, p and d are shortcuts for
permit and deny, respectively.

An obligation specifies a type (ObType), i.e., mandatory
(m) or optional (o), and identifier and arguments of an action
to be performed by the PEP. The set of action identifiers
accepted by the PEP can be chosen, from time to time,
according to the specific application; therefore, PepAction
is intentionally left unspecified. Action arguments are ex-
pressions.

A request (Request) consists of a (non-empty) sequence of
attributes, i.e., name-value pairs, that enumerate request cre-
dentials in the form of literal values. Multivalued attributes,
i.e., names associated with a set of values, are rendered as
multiple attributes sharing the same name.

The responses resulting from the evaluation of FACPL
requests are written using the auxiliary syntax reported
in Table 3. The two-stage evaluation process described in
Section 2 produces two different kinds of responses: PDP
responses (PDPResponse) and decisions (Decision), i.e., re-
sponses by the PEP. The former ones, in case of decision
permit and deny, pair the decision with a (possibly empty)
sequence of instantiated obligations (IObligation∗). An in-
stantiated obligation is a pair made of a type (i.e., m or o) and
an action whose arguments are values.

To simplify notations, in the sequel we will omit the label
preceding a sub-term generated by the grammar in Table 1
whenever the sub-term is missing or is the expression true.
Thus, e.g., the rule (deny target : true obl :) will be simply
written as (deny). Moreover, when in the PDPResponse the
sequence of instantiated obligations is empty, we sometimes
write Decision instead of 〈Decision〉.

4.2 Informal Semantics
We now informally explain how the FACPL linguistic con-
structs are dealt with in the evaluation process of access
requests described in Section 2; we refer to Section 5 for the
formal characterisation. We first present the PDP authorisa-
tion process and then the PEP enforcement process.

When the PDP receives an access request, first it eval-
uates the request on the basis of the available policies.
Then, it determines the resulting decision by combining the
decisions returned by these policies through the top-level
combining algorithm.

The evaluation of a policy with respect to a request
starts by checking its applicability to the request, which is
done by evaluating the expression defining its target. Let
us suppose that the applicability holds, i.e., the expression
evaluates to true. In case of rules, the rule effect is returned.
In case of policy sets, the result is obtained by evaluating the

contained policies and combining their evaluation results
through the specified algorithm. In both cases, the evalua-
tion ends with the instantiation of the enclosed obligations.
Let us suppose now that the applicability does not hold.
If the expression evaluates to false, the policy evaluation
returns not-app, while if the expression returns an error or
a non-boolean value, the policy evaluation returns indet.
Clearly, the target of enclosed policies may refine that of the
enclosing ones, while a policy with target expression true
(resp., false) applies to all (resp., no) requests.

Evaluating expressions amounts to applying operators
and to resolve the attribute names occurring within, that is
to determine the value corresponding to each such name.
This value can either be directly contained in the request
or retrieved from the environment by the context handler
(steps 5-8 in Figure 1). If name resolution fails, the spe-
cial value ⊥ is returned. This enables precise management
of those requests containing less attributes than expected.
From the analysis point of view, this also enables reasoning
on the role of missing attributes in policy evaluation; further
details are given in Section 7.

The syntax of policies, and in particular that of attribute
names and expressions, does not consider types. Indeed, we
want a policy to provide a response to any request, not only
to those complying with the expected type of the values
referred by the attribute names controlled by the policy.
Since we do not filter requests on the base of the type of their
attributes, we cannot in general statically ensure that expres-
sions within policies are well-typed. Consequently, errors
will be generated, and possibly managed, at evaluation-
time when expression operators are applied to arguments
of unexpected type.

Indeed, the evaluation of expressions takes into account
the types of the operators’ arguments, and possibly returns
the special values ⊥ and error. In details, if the arguments
are of the expected type, the operator is applied; otherwise,
if at least one argument is error, error is returned, else (that is
at least one argument is ⊥ and none is error) ⊥ is returned.
The operators and and or implement a different treatment of
these special values. Specifically, the operator and returns:
(i) true if both operands are true; (ii) false if at least one
operand is false; (iii) ⊥ if at least one operand is ⊥ and none
is false or error; (iv) error otherwise, e.g., when an operand
is not a boolean value. The operator or is the dual of and.
Hence, the operators and and or may mask ⊥ and error.
Instead, the unary operator not only swaps values true and
false and leaves⊥ and error unchanged. In the following, we
use operators and and or in infix notation, and assume that
they are commutative and associative, and that operator and
takes precedence over or.

The evaluation of a rule ends with the instantiation of
all the enclosed obligations, while that of a policy set ends
with the instantiation of all the obligations in the sequence
corresponding to the decision calculated for the policy. The
instantiation of an obligation consists in evaluating every
expression argument of the enclosed action. If an error oc-
curs, the policy decision is changed to indet. Otherwise, the
instantiated obligations are paired with the policy decision
to form the PDP response.

Evaluating a policy set requires the application of the
specified algorithm for combining the decisions resulting

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 7

from the evaluation of various policies and, thus, resolving
possible conflicts, e.g., whenever both decisions permit and
deny occur. Given a sequence of policies in input, the com-
bining algorithms prescribe the sequential evaluation of the
given policies and behave as follows:

• p-overδ (d-overδ is specular): if the evaluation of a policy
returns permit, then the result is permit. In other words,
permit takes precedence, regardless of the result of any
other policy. Instead, if at least one policy returns deny
and all others return not-app or deny, then the result
is deny. If all policies return not-app, then the result is
not-app. In the remaining cases, the result is indet.

• d-unless-pδ (p-unless-dδ is specular): similarly to p-overδ ,
this algorithm gives precedence to permit over deny, but
it always returns deny in all the other cases.

• first-appδ : the algorithm returns the evaluation result
of the first policy in the sequence that does not return
not-app, otherwise the result is not-app.

• one-appδ : when exactly one policy is applicable, the
result of the algorithm is that of the applicable policy. If
no policy applies, the algorithm returns not-app, while
if more than one policy is applicable, it returns indet.

• weak-conδ : the algorithm returns permit (resp., deny) if
some policies return permit (resp., deny) and no other
policy returns deny (resp., permit); if both decisions are
returned, the algorithm returns indet. If policies only
return not-app or indet, then indet, if present, prevails.

• strong-conδ : this algorithm is the stronger version of the
previous one, in the sense that to obtain permit (resp.,
deny) all policies have to return permit (resp., deny),
otherwise indet is returned. If all policies return not-app
then the result is not-app.

The algorithms described in the first four items above are
those popularised by XACML. They combine decisions ei-
ther according to a given precedence criterium or to policy
applicability. The last two algorithms, instead, are borrowed
from the work by Li et al. [21] and compute the combined
decision by achieving different forms of consensus.

If the resulting decision is permit or deny, each algorithm
also returns the sequence of instantiated obligations accord-
ing to the chosen instantiation strategy δ. There are two
possible strategies. The all strategy requires evaluation of all
policies in the input sequence and returns the instantiated
obligations pertaining to all decisions. Instead, the greedy
strategy prescribes that, as soon as a decision is obtained
that cannot change due to evaluation of subsequent policies
in the input sequence, the execution halts. Hence, the result
will not consider the possibly remaining policies and only
contains the obligations already instantiated. Therefore, the
instantiation strategies only affect the amount of instanti-
ated obligations possibly returned. The greedy strategy, that
reflects the management of obligations in XACML, may
significantly improve the policy evaluation performance.
Instead, the all strategy may require additional workload
but, on the other hand, ensures that all the policies and their
obligations are always taken into account.

As last step, the calculated PDP response is sent to
the PEP for the enforcement. To this aim, the PEP must
discharge all obligations and decide, by means of the chosen
enforcement algorithm, how to enforce decisions not-app

and indet. The algorithms are those popularised by XACML
and, in particular, the deny-biased (resp., permit-biased) one
enforces permit (resp., deny) only when all the correspond-
ing obligations are correctly discharged, while enforces deny
(resp., permit) in all other cases. Instead, the base algorithm
leaves all decisions unchanged but, in case of decisions
permit and deny, enforces indet if an error occurs while dis-
charging obligations. This means that obligations not only
affect the authorisation process due to their instantiation,
but also the enforcement one. However, errors caused by
optional obligations, that is with type o, are safely ignored.

4.3 Policies for the e-Health case study

We now use the FACPL linguistic abstractions to formalise
the requirements for the e-Health case study reported in Ta-
ble 2. These rules are meant to prevent unauthorised access
to patient data and hence to ensure their confidentiality and
integrity. The specification of this access control system is
introduced bottom-up, from single rules to whole policies,
thus illustrating in a step-by-step fashion the combination
strategies that could be pursued and their effects.

The system resources to protect via the access control
system are e-Prescriptions. The access control rules need to
deal with requester credentials, i.e. doctor and pharmacist
roles, along with their assigned permissions, and with read
or write actions.

Requirement (1), allowing doctors to write e-
Prescriptions, can be formalised as a positive FACPL
rule (i.e., a rule with effect permit) as follows

(permit target : equal(subject/role, “doctor”)
and equal(action/id, “write”)
and in(“e-Pre-Write”, subject/permission)
and in(“e-Pre-Read”, subject/permission))

The rule target3 checks if the requester role is doctor, if
the action is write, and if the subject’s permissions include
those for writing and reading an e-Prescription. The control
that the resource type is equal to e-Prescription will be per-
formed by the target of the policy enclosing the rule. This,
because of the hierarchical processing of FACPL elements,
is enough to ensure that the rule will only be applied to
e-Prescriptions.

Requirement (2) is similarly expressed: the correspond-
ing rule differs from the previous one for the action and
the permissions. Instead, the rule corresponding to Require-
ment (3) only differs from the second one for the role.

These three rules, modelling Requirements (1), (2) and
(3), can be combined together in a policy set whose target
specifies the check on the resource type e-Prescription; again,
to improve code readability, we use textual encoding for
resources. Since all granted requests are explicitly autho-
rised, choosing the p-overall algorithm as combining strategy

3. To improve code readability, we use the infix notation for opera-
tors, a textual notation for permissions and an additional check on the
subject role. Of course, in a setting with semantically different roles,
a standardised permission-based coding, such as HL7 [30], should be
used for defining role checks.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 8

seems a natural choice. Let thus Policy (P1) be defined as
follows
{ p-overall

target : equal(resource/type, “e-Prescription”)
policies :

(permit target : equal(subject/role, “doctor”)
and equal(action/id, “write”)
and in(“e-Pre-Write”, subject/permission)
and in(“e-Pre-Read”, subject/permission))

(permit target : equal(subject/role, “doctor”)
and equal(action/id, “read”)
and in(“e-Pre-Read”, subject/permission))

(permit target : equal(subject/role, “pharmacist”)
and equal(action/id, “read”)
and in(“e-Pre-Read”, subject/permission))

obl-p : [m log(system/time, resource/type,
subject/id, action/id)] }

(P1)

Policy (P1) reports not only access controls but also an
obligation formalising Requirement (4) about the logging
of each authorised access. The arguments of the obligation
action are separated by commas to increase their readability.

Let us now consider a FACPL request and evaluate it
with respect to Policy (P1). For the sake of presentation,
hereafter we write n , t to assign the symbolic name n
to the term t. Let us suppose that doctor Dr. House wants to
write an e-Prescription; the corresponding request is defined
as follows

req1, (subject/id, “Dr. House”) (subject/role, “doctor”)
(action/id, “write”) (resource/type, “e-Prescription”)
(subject/permission, “e-Pre-Read”)
(subject/permission, “e-Pre-Write”) . . .

where attributes are organised into the categories subject, re-
source and action. Additional attributes possibly included in
the request are omitted because they are not relevant for this
evaluation. Notice that subject/permission is a multivalued
attribute and it is properly handled in the previous rules by
using the in operator, which verifies the membership of its
first argument to the set that forms its second argument.

The authorisation process of req1 returns a permit deci-
sion. In fact, the request matches the policy target, as the
resource type is e-Prescription, and exposes all the permis-
sions required in the first rule for the write action and the
doctor role. The response, which is a permit including a log
obligation, is defined, e.g., as follows

〈 permit [m log(2016-10-22 10:15:12,
“e-Prescription”, “Dr. House”, “write”)]〉

The instantiated obligation indicates that the PDP succeeded
in retrieving and evaluating all the attributes occurring
within the arguments of the action; run-time information,
such as the current time, is retrieved through the context
handler.

The evaluation of req1 returns the expected result. We
might be led to believe that due to the simplicity of Pol-
icy (P1), this is true for all requests. However, this correct-
ness property cannot be taken for granted as, in general,
even though the meaning of a rule is straightforward, this
may not be the case for a combination of rules. Depending
on the chosen combination strategy, some unexpected re-
sults can arise. For example, a request by a pharmacist for a

write action on an e-Prescription is not explicitly allowed by
the requirements in Table 2; hence, it should be forbidden.
However, the corresponding request

req2, (subject/id, “Dr. Wilson”) (subject/role, “pharmacist”)
(action/id, “write”) (resource/type, “e-Prescription”)
(subject/permission, “e-Pre-Read”) . . .

would evaluate to not-app. In fact, all enclosed rules do not
apply, because their targets do not match, and the resulting
not-app decisions are combined by the p-overall algorithm
to not-app as well. Therefore, the enforcement algorithm
of the PEP is entrusted with the task of taking the final
decision for request req2. Even though this is correct in a
setting where the PEP is well-defined, like in the epSOS
system, it is not recommended when design assumptions
on the PEP implementation are missing. In fact, a biased
algorithm might transform not-app into permit, possibly
causing unauthorised accesses.

To prevent not-app decisions to be returned by the policy,
we can replace the combining algorithm of Policy (P1) with
the d-unless-pall one. This implies that deny is taken as the
default decision and is returned whenever no rule returns
permit. Alternatively, we can achieve the same by using a
policy set defined as the combination, through the p-overall

algorithm, of Policy (P1) and a rule forbidding all accesses.
This rule is simply defined as (deny): the absence of the
target and the negative effect means that it always returns
deny. Now, let Policy (P2) be defined as

{ p-overall

policies : { . . .Policy (P1) . . . } (deny)
obl-p : [o compress()]
obl-d : [m mailTo(resource/patient-mail,

“Data request by unauthorised subject”)] }

(P2)

Policy (P2) reports two obligations formalising, respectively,
the last two requirements of Table 2: (i) if possible, data are
exchanged in compressed form by means of an obligation
for the effect permit and (ii) a patient is informed about
unauthorised attempts to access her data by means of an
obligation for the effect deny. The type ‘optional’ is exploited
so that compressed exchanges are not strictly required but,
e.g., only whenever the corresponding service is available.

Policy (P2) can be used as a basis for the definition of
the patient informed consent (see Section 3). For instance,
Alice’s policy for the management of her health data could
be simply obtained by adding to Policy (P2) a check on
the patient identifier to which the policy applies, such as
target : equal(“Alice”, resource/patient-id). In this way, Alice
grants access to her e-Prescription data to the healthcare
professionals that satisfy the requirements expressed in her
consent policy. Another patient expressing a more restrictive
consent, in which for example writing of e-Prescriptions is
disabled, will have a similar policy set where the rule mod-
elling Requirement (1) is not included. In a more general
perspective, the PDP could have a policy set for each patient,
that encloses the policies expressing the consent explicitly
signed by the patient. This is the approach followed, e.g., in
the Austrian e-Health platform [31].

As shown before, it could be challenging to identify
unexpected authorisations and to determine whether pol-
icy fixes affect decisions that should not be altered. The

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 9

combination of a large number of complex policies is in-
deed an error-prone task that has to be supported with
effective analysis techniques. Therefore we equip FACPL
with a formal semantics and then define a constraint-based
analysis providing effective supporting techniques for the
verification of properties on policies.

5 FACPL FORMAL SEMANTICS

In this section, we present the formal semantics of FACPL by
formalising the evaluation process introduced in Section 2
and detailed in Section 4.2. The semantics is defined by
following a denotational approach which means that

• we introduce some semantic functions mapping each
FACPL syntactic construct to an appropriate denotation,
which is an element of a semantic domain representing
the meaning of the construct;

• the semantic functions are defined in a compositional
way, so that the semantics of each construct is formu-
lated in terms of the semantics of its sub-constructs.

To this purpose, we specify a family of semantic functions
mapping each syntactic domain to a specific semantic do-
main. These functions are inductively defined on the FACPL
syntax through appropriate semantic clauses following a
‘point-wise’ style. For instance, on the syntactic domain
Policy representing all FACPL policies, we formalise the
function P that defines a semantic domain mapping FACPL
requests to PDP responses.

In the sequel, we convene that the application of the se-
mantic functions is left-associative, omit parenthesis when-
ever possible, and surround syntactic objects with the brack-
ets [[and]] to increase readability. For instance, E [[n]]r stands
for (E(n))(r) and indicates the application of the semantic
function E to the syntactic object n and the semantic object
r . We also assume that each nonterminal symbol in Tables 1
and 3 defining the FACPL syntax denominates the set of
constructs of the syntactic category defined by the corre-
sponding EBNF rule. For example, the nonterminal Policy
identifies the set of all FACPL policies. The used notations
are summarised in Table 4; the missing semantic domains
coincide with the corresponding syntactic ones.

In the rest of this section, we detail the semantics of
requests in Section 5.1, PDP in Sections 5.2 and 5.3, PEP
in Section 5.4, and PAS in Section 5.5. Moreover, we present
some key properties of the semantics in Section 5.6 and an
application of the semantics to the e-Health case study in
Section 5.7.

5.1 Semantics of Requests

The meaning of a request4 is an element of the set R ,
Name → (Value ∪ 2Value ∪ {⊥}), i.e., a total function that
maps attribute names to either a literal value, or a set of
values (in case of multivalued attributes), or the special
value ⊥ (if the value for an attribute name is missing).

4. For simplicity sake, here we assume that, when the evaluation of
a request takes place, the original request has been already enriched
with the information that would be retrieved at run-time from the
environment by the context handler (steps 5-8 in Figure 1).

The mapping from a request to its meaning is given by the
semantic function R : Request → R, defined as follows:

R[[(n ′, v ′)]]n =

{
v ′ if n = n ′

⊥ otherwise

R[[(ni, vi)
+

(n ′, v ′)]]n =

{
R[[(ni, vi)

+
]]n d v ′ if n = n ′

R[[(ni, vi)
+

]]n otherwise

(S-1)

The semantics of a request, which is a function r ∈ R, is
thus inductively defined on the length of the request. To
deal with multivalued attributes we introduce the operator
d, which is straightforwardly defined by case analysis on
the first argument as follows

v d v′ = {v, v′} V d v′ = V ∪ {v′} ⊥ d v′ = v′

where we let V ∈ 2Value .

5.2 Semantics of the Policy Decision Process
We start defining the semantics of expressions and obliga-
tions that will be then exploited for defining the semantics
of policies.

In Table 5 we report an excerpt of the clauses defining
the function E : Expr → (R→ Value ∪ 2Value ∪{error,⊥})
modelling the semantics of expressions. This means that
the semantics of an expression is a function of the form
R→ Value∪2Value∪{error,⊥} that, given a request, returns
a literal value, or a set of values, or the special value ⊥,
or an error (e.g., when an argument of an operator has
unexpected type). The evaluation order of sub-expressions
is not relevant, as they do not generate side-effects.

The first row of the table contains the clauses for basic
expressions, which are attribute names and literal values.
The semantics of the expression formed by a name n is a
function that, given a semantic request r in input, returns
the value that r associates to n . Similarly, the semantics of a
value is a function that always returns the value itself.

The remaining clauses, one for each operator, present the
semantics of expression operators. In particular, each clause
uses straightforward semantic operators for composing de-
notations (e.g., = corresponds to equal), and implements the
management strategy for the special values ⊥ and error.
The clauses establish that error takes precedence over ⊥
and is returned every time the operator arguments have
unexpected types; whereas ⊥ is returned when at least one
argument is⊥ and there is no error. The clauses of operators
and and or possibly mask these special values by imple-
menting the behaviour informally described in Section 4.2.
It is worth noting that the explicit management of missing
attributes and evaluation errors ensures a full account of
crucial aspects of access control policy evaluation, usually
neglected by other proposals from the literature [10], [11],
[19]. The only proposals considering the role of missing
attributes are those by Crampton and Morisset [9] and
Crampton and Williams [20], but they only consider a sim-
plified policy language and assume that expressions cannot
generate errors.

Function E is straightforwardly extended to sequences
of expressions by the following clauses

E [[ε]]r = ε

E [[expr ′ expr∗]]r = E [[expr ′]]r • E [[expr∗]]r
(S-2)

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 10

Table 4
Correspondence between syntactic and semantic domains

Syntactic Generic Semantic Syntactic Semantic
category synt. elem. function domain domain

Attribute names n Name
Literal values v Value

Requests req R Request R , Name → (Value ∪ 2Value ∪ {⊥})
Expressions expr E Expr R→ Value ∪ 2Value ∪ {error,⊥}

Effects e Effect
Obligation Types t ObType

Pep Actions pepAct PepAction
Instantiated obligations io IObligation

Obligations o O Obligation R→ IObligation ∪ {error}
PDP Responses res PDPReponse

Policies p P Policy R→ PDPReponse
Policy Decision Points pdp PDP PDP R→ PDPReponse

Combining algorithms a A Alg × Policy+ R→ PDPReponse
Decisions dec Decision

Enforcement algorithms ea EA EnfAlg PDPReponse → Decision
Policy Auth. System pas PAS PAS Request → Decision

Table 5
Semantics of an excerpt of FACPL expressions; T stands for one of the sets of literal values or for the powerset of the set of all literal values, and

i, j ∈ {1, 2} with i 6= j

E[[n]]r = r(n) E[[v]]r = v

E[[or(expr1, expr2)]]r =
true if E[[expr1]]r = true ∨ E[[expr2]]r = true
false if E[[expr1]]r = E[[expr2]]r = false
⊥ if E[[expr i]]r =⊥ ∧ E[[exprj]]r ∈ {false,⊥}
error otherwise

E[[and(expr1, expr2)]]r =
true if E[[expr1]]r = E[[expr2]]r = true
false if E[[expr1]]r = false ∨ E[[expr2]]r = false
⊥ if E[[expr i]]r =⊥ ∧ E[[exprj]]r ∈ {true,⊥}
error otherwise

E[[not(expr)]]r =
true if E[[expr]]r = false
false if E[[expr]]r = true
⊥ if E[[expr]]r =⊥
error otherwise

E[[add(expr1, expr2)]]r = (E[[expr1]]r + E[[expr2]]r) if E[[expr1]]r , E[[expr2]]r ∈ Double
⊥ if E[[expr i]]r =⊥ ∧ E[[exprj]]r 6= error
error otherwise

E[[in(expr1, expr2)]]r = (E[[expr1]]r ∈ E[[expr2]]r) if E[[expr1]]r ∈ T ∧ E[[expr2]]r ∈ 2T

⊥ if E[[expr i]]r = ⊥ ∧ E[[exprj]]r 6= error
error otherwise

E[[equal(expr1, expr2)]]r =
(E[[expr1]]r = E[[expr2]]r) if E[[expr1]]r , E[[expr2]]r ∈ T
⊥ if E[[expr i]]r = ⊥

∧ E[[exprj]]r 6= error
error otherwise

The operator • denotes concatenation of sequences of se-
mantic elements and ε denotes the empty sequence. We
assume that • is strict on error and ⊥, i.e., error is returned
whenever the sequence contains error or ⊥. Therefore, the
evaluation of E [[expr∗]]r fails if any of the expressions form-
ing expr∗ evaluates to error or ⊥.

The semantics of obligations corresponds to their in-
stantiation. Formally, it is given by the function O :
Obligation → (R → IObligation ∪ {error}), whose defi-
nition clause is

O[[[t pepAct(expr∗)]]]r ={
[t pepAct(w∗)] if E [[expr∗]]r = w∗

error otherwise

(S-3a)

where w stands for a literal value or a set of literal values.
Thus, given a request, the instantiation of an obligation
succeeds if the evaluation of every expression argument of
the action returns a value. Otherwise, it returns an error.

Function O is straightforwardly extended to sequences
of obligations as follows

O[[ε]]r = ε O[[o′o∗]]r = O[[o′]]r • O[[o∗]]r (S-3b)

Notably, a sequence of instantiated obligations is returned
only if every obligation in the sequence is successfully
instantiated; otherwise, error is returned (indeed, • is strict
on error).

We can now define the semantics of a policy as a
function that, given a request, returns an authorisation
decision paired with a (possibly empty) sequence of in-
stantiated obligations. Formally, it is given by the function
P : Policy → (R → PDPReponse) that has two defining
clauses: one for rules and one for policy sets. The clause for
rules is

P[[(e target : expr obl : o∗)]]r =
〈e io∗〉 if E [[expr]]r = true ∧ O[[o∗]]r = io∗

not-app if E [[expr]]r = false ∨ E [[expr]]r = ⊥
indet otherwise

(S-4a)

Thus, the rule effect is returned as a decision when the
target evaluates to true, which means that the rule applies to
the request, and all obligations are successfully instantiated.
In this case, the instantiated obligations are also part of
the response. Otherwise, it could be the case that (i) the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 11

rule does not apply to the request, i.e., the target evaluates
to false or to ⊥, or that (ii) an error has occurred while
evaluating the target or instantiating the obligations.

The semantics of policy sets relies on the semantics of
combining algorithms. Indeed, as detailed in Section 5.3, we
use a semantic functionA to map each combining algorithm
and sequence of policies to a function from requests to PDP
responses. The clause for policy sets is then

P[[{a target : expr policies : p+ obl-p : o∗p obl-d : o∗d }]]r =

〈permit io∗1 • io∗2〉 if E [[expr]]r = true
∧A[[a, p+]]r = 〈permit io∗1〉
∧ O[[o∗p]]r = io∗2

〈deny io∗1 • io∗2〉 if E [[expr]]r = true
∧A[[a, p+]]r = 〈deny io∗1〉
∧O[[o∗d]]r = io∗2

not-app if E [[expr]]r = false
∨ E [[expr]]r = ⊥
∨ (E [[expr]]r = true

∧ A[[a, p+]]r = not-app)

indet otherwise

(S-4b)

Thus, the policy set applies to a request when the target
evaluates to true, the semantics of the combining algorithm
a returns an effect e and a sequence of instantiated obliga-
tions io∗1, and all the enclosed obligations for the effect e are
successfully instantiated and return a sequence io∗2. In this
case, the PDP response contains e and the concatenation of
the sequences io∗1 and io∗2. Instead, if the target evaluates to
false or to ⊥, or the combining algorithm returns not-app,
the policy set does not apply to the request. The response
is indet in the remaining cases, i.e., when an error occurred
in the evaluation of the target or of the obligations, or when
the evaluation of the combining algorithm returned indet.

Finally, the semantics of a PDP is a function from re-
quests to PDP responses defined by the following clauses:

PDP[[p]]r = P[[p]]r

PDP[[{a policies : p+}]]r = A[[a, p+]]r
(S-5)

When the PDP is a single policy, its semantics is given in
terms of the function P , otherwise it is given in terms of the
function A.

5.3 Semantics of Combining Algorithms
The semantics of combining algorithms is defined in terms
of a family of binary operators. Let alg denote the name
of a combining algorithm, such as p-over or d-over; the
corresponding semantic operator is identified as ⊗alg and
is defined by means of a two-dimensional matrix that,
given two PDP responses, calculates the resulting combined
response. For instance, Table 6(a) reports the combination
matrix for the ⊗p-over operator. Basically, the matrix spec-
ifies the precedences among the permit, deny, not-app and
indet decisions, and shows how the resulting sequence of
instantiated obligations is obtained, that is by concatenating
the instantiated obligations of the responses whose decision
matches the combined one. The binary operators shown in
Appendix A define all the other combining algorithms in
the same manner. We convene that, when applied to single
policies, operators ⊗p-unless-d and ⊗d-unless-p turn the

not-app and indet responses into, respectively, 〈permit ε〉
and 〈deny ε〉, while the remaining operators leave them
unchanged.

The semantics of the combining algorithms can be now
formalised by the function A : Alg × Policy+ → (R →
PDPReponse). This function is defined inductively on the
structure of the input policy sequence by means of two
pairs of clauses, one for each instantiation strategy. If the
all strategy is adopted, the definition clauses are then

A[[algall, p]]r = ⊗alg(P[[p]]r)

A[[algall, p
+p′]]r = ⊗alg(A[[algall, p

+]]r ,P[[p′]]r)
(S-6a)

Notably, the all strategy always requires evaluation of all
input policies. Instead, the definition clauses for the greedy
strategy are
A[[alggreedy, p]]r = ⊗alg(P[[p]]r)

(S-6b)
A[[alggreedy, p

+p′]]r ={
A[[alggreedy,p

+]]r if isFinalalg(A[[alggreedy,p
+]]r)

⊗alg(A[[alggreedy,p
+]]r ,P[[p′]]r) otherwise

Differently from the all strategy, the greedy one halts the
evaluation of the input policy sequence as soon as a final
decision is determined, without necessarily evaluating all
the policies in the sequence. Indeed, given a response in
input, the auxiliary predicates isFinalalg, one for for each
combining algorithm alg, check if the response decision is
final according to the algorithm alg, that is if such deci-
sion cannot change due to further combinations. Predicates
isFinalalg are defined in Table 6(b); as a matter of notation,
we use res.dec to indicate the decision of response res .
These predicates are straightforwardly derived from the
combination matrices of the binary operators, thus we only
comment on salient points. In case of the p-over algorithm,
and similarly for the others in the first two rows of the
table, the permit decision is the only decision that can never
be overwritten, hence it is final. In case of the first-app
algorithm, instead, all decisions except not-app are final,
since they represent the fact that the first applicable policy
has been already found. Both consensus algorithms have
indet as final decision, because no form of consensus can
be reached once an indet is obtained. Similarly, the one-app
algorithm has indet as final decision.

We conclude with an example illustrating the differences
between the two instantiation strategies. Let us consider the
sequence of policies p1 p2 p3. If it is given in input to a com-
bining algorithm using the all instantiation strategy, then we
get the following unfolding of the inductive clauses (S-6a):

A[[algall, p1 p2 p3]]r

= ⊗alg(A[[algall, p1 p2]]r ,P[[p3]]r)

= ⊗alg(⊗alg(A[[algall, p1]]r ,P[[p2]]r),P[[p3]]r)

= ⊗alg(⊗alg(⊗alg(P[[p1]]r),P[[p2]]r),P[[p3]]r)

which means that all the three input policies are evaluated.
Instead, if the algorithm uses the greedy strategy, then

the unfolding of the inductive clauses (S-6b) for the ex-
ample sequence of policies is shown in Table 7. Now, if
the evaluation of policy p1 returns a final decision, that is
isFinalalg(A[[alggreedy, p1]]r) holds, then we have

A[[alggreedy, p1 p2]]r = A[[alggreedy, p1]]r = ⊗alg(P[[p1]]r) .

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 12

Table 6
Auxiliary definitions for the semantics of combining algorithms: (a) combination matrix for the ⊗p-over operator, where res1 and res2 indicate the

first and the second argument, respectively; (b) definition of the isFinalalg(res) predicates

(a)

res1\res2 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1 • io∗2〉 〈permit io∗1〉 〈permit io∗1〉 〈permit io∗1〉
〈deny io∗1〉 〈permit io∗2〉 〈deny io∗1 • io∗2〉 〈deny io∗1〉 indet
not-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet
indet 〈permit io∗2〉 indet indet indet

(b)

isFinalp-over (res) ={
true if res.dec = permit
false otherwise

isFinald-over (res) ={
true if res.dec = deny
false otherwise

isFinald-unless-p (res) ={
true if res.dec = permit
false otherwise

isFinalp-unless-d (res) ={
true if res.dec = deny
false otherwise

isFinalfirst-app (res) ={
false if res.dec = not-app
true otherwsise

isFinalone-app (res) ={
true if res.dec = indet
false otherwsise

isFinalweak-con (res) ={
true if res.dec = indet
false otherwsise

isFinal strong-con (res) ={
true if res.dec = indet
false otherwsise

Table 7
Unfolding of clause (S-6b) for the example sequence of policies p1 p2 p3

A[[alggreedy, p1 p2 p3]]r =
A[[alggreedy, p1 p2]]r = if isFinalalg(A[[alggreedy, p1 p2]]r){

A[[alggreedy, p1]]r = ⊗alg(P[[p1]]r) if isFinalalg(A[[alggreedy, p1]]r)
⊗alg(A[[alggreedy, p1]]r ,P[[p2]]r) otherwise

⊗alg(A[[alggreedy, p1 p2]]r ,P[[p3]]r) otherwise

Hence, isFinalalg(A[[alggreedy, p1 p2]]r) holds too, thus we get

A[[alggreedy, p1 p2 p3]]r = A[[alggreedy, p1 p2]]r = ⊗alg(P[[p1]]r)

which means that only the first policy is evaluated. Other-
wise, if the evaluation of policy p1 does not return a final
decision, then we have

A[[alggreedy, p1 p2]]r = ⊗alg(⊗alg(P[[p1]]r),P[[p2]]r) .

Now, if this evaluation returns a final decision, then we get

A[[alggreedy, p1 p2 p3]]r = A[[alggreedy, p1 p2]]r

= ⊗alg(⊗alg(P[[p1]]r),P[[p2]]r)

which means that only the first two policies are evaluated.
Instead, if A[[alggreedy, p1 p2]]r does not return a final deci-
sion, then all the three policies are evaluated and we get

A[[alggreedy, p1 p2 p3]]r

= ⊗alg(⊗alg(⊗alg(P[[p1]]r),P[[p2]]r),P[[p3]]r)

as if the all strategy is used.

5.4 Semantics of the Policy Enforcement Process

The semantics of the enforcement process defines how the
PEP discharges obligations and enforces authorisation deci-
sions. To define this process, we use the auxiliary function
(()) : IObligation∗ → {true, false} that, given a sequence
of instantiated obligations, executes such obligations and
returns a boolean value that indicates whether the evalu-
ation has successfully completed. Since failures caused by
optional obligations can be safely ignored by the PEP, only

failures of mandatory obligations have to be taken into
account. The function is thus defined as follows

((ε)) = true

(([o pepAct(w∗)] • io∗)) = ((io∗))

(([m pepAct(w∗)] • io∗)) =

{
((io∗)) if pepAct(w∗) ⇓ok

false otherwise

where ⇓ok denotes if the discharge of the action pepAct(w∗)
succeeded. Since the set of action identifiers is intentionally
left unspecified (see Section 4.1), the definition of the pred-
icate ⇓ok is hence unspecified too; we just assume that it is
total and deterministic. In other words, the syntactic domain
PepAction is a parameter of the syntax, while the predicate
⇓ok is a parameter of the semantics. The latter parameter
could be refined to deal with, e.g., obligations to be enforced
after the decision releasing (see Section 10). For example,
discharging obligations could simply refer to the fact that
the system has taken charge of their execution, rather than
to the fact that they have been completely executed.

The semantics of PEP is thus defined with respect to
the enforcement algorithms. Formally, given an enforcement
algorithm and a PDP response, the function EA : EnfAlg →
(PDPReponse → Decision) returns the enforced decision.
It is defined by three clauses, one for each algorithm. The
clause for the deny-biased algorithm is

EA[[deny-biased]]res ={
permit if res.dec = permit ∧ ((res.io))
deny otherwise

(S-7a)

where res.dec and res.io indicate the decision and the
sequence of instantiated obligations of the response res ,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 13

Table 8
Definition of the toAll() function

toAll((e target : expr obl : o∗)) = (e target : expr obl : o∗)

toAll({algδ target : expr policies : p+ obl-p : o∗p obl-d : o∗d }) = {algall target : expr policies : toAll(p+) obl-p : o∗p obl-d : o∗d }

toAll(p′ p+) = toAll(p′) toAll(p+)

respectively. The permit decision is enforced only if this
is the decision returned by the PDP and all accompanying
obligations are successfully discharged. If an error occurs, as
well as if the PDP decision is not permit, a deny is enforced.
The clause for the permit-biased algorithm is the dual of the
previous one, whereas the clause for the base algorithm is

EA[[base]]res =
permit if res.dec = permit ∧ ((res.io))

deny if res.dec = deny ∧ ((res.io))

not-app if res.dec = not-app

indet otherwise

(S-7b)

Both decisions permit and deny are enforced only if all
obligations in the PDP response are successfully discharged,
otherwise indet is enforced. Instead not-app and indet deci-
sions are enforced without modifications. Therefore, a PEP
using the base algorithm never changes PDP decisions,
unless unsuccessful discharge of obligations. The rationale
behind this behaviour is twofolds: it permits, on the one
hand, debugging the obligation discharging process of PEP,
on the other hand, returning the decisions as-is to the
controlled system, which can then manage the two forms
of error in different ways.

5.5 Semantics of the Policy Authorisation System
The semantics of a Policy Authorisation System is defined
in terms of the composition of the semantics of PEP and
PDP. It is given by the function PAS : PAS → (Request →
Decision) defined by

PAS[[{ pep : ea pdp : pdp }, req]] =

EA[[ea]](PDP[[pdp]](R[[req]]))
(S-8)

Basically, given a request req in the FACPL syntax, this is
converted into its functional representation by the function
R (see Section 5.1). This result is then passed to the seman-
tics of the PDP, that is PDP[[pdp]], which returns a response
that is passed to the semantics of the PEP, that is EA[[ea]].
The latter function returns the final decision of the Policy
Authorisation System when given the request req in input.

5.6 Properties of the Semantics
We present in this section some key properties and results
regarding the FACPL semantics.

The main result is that the semantics is total and deter-
ministic. This means that it is defined for all possible input
pairs consisting of a FACPL specification, that is a Policy
Authorisation System, and a request, and that it always
returns the same decision when applied to a specific pair.

Theorem 5.1 (Total and Deterministic Semantics).
1) For all pas ∈ PAS and req ∈ Request , there exists a dec ∈

Decision , such that PAS[[pas, req]] = dec.

2) For all pas ∈ PAS , req ∈ Request and dec, dec′ ∈
Decision , it holds that
PAS[[pas, req]] = dec ∧ PAS[[pas, req]] = dec′

⇒ dec = dec′ .

Proof (sketch). It boils down to showing that PAS is a total
and deterministic function (see Appendix B.1).

The following result states that the semantics of a policy
does agree, for what concerns the resulting decision, with
that of the policy obtained by replacing everywhere the
greedy instantiation strategy with the all one. Of course, the
semantics of the two policies may differ for what concerns
the returned instantiated obligations. To formally express
such result, we introduce the auxiliary function toAll()
taking care of replacing the instantiation strategy used by
the algorithms enclosed within a policy. Its straightforward
inductive definition is given in Table 8.

Theorem 5.2 (Instantiation Strategy Correspondence). For
all p ∈ Policy and r ∈ R, it holds that

P[[p]]r = 〈dec io∗1〉 ⇔ P[[toAll(p)]]r = 〈dec io∗2〉 .

Proof (sketch). The proof (see Appendix B.1) is by induction
on the depth, which is the nesting level, of p.

This theorem ensures that the analysis for policies en-
closing algorithms using the greedy instantiation strategy
can be soundly carried out by verifying the corresponding
policies only using the all strategy, as stated by Theorem 6.2.

Another consequence of the previous theorem regards
the application of a combining algorithm to a policy se-
quence. In this case, while evaluating the input policies,
once the decision calculated by the algorithm with the
greedy strategy on the whole input sequence has been
determined, then it cannot change due to evaluation of the
remaining policies. This means that obligations considered
by the all strategy but not by the greedy one, and in par-
ticular the instantiation errors they may raise, do not affect
the calculated decision. This property is formalised by the
following corollary.

Corollary 5.3. If (A[[alggreedy, p
+
1 p∗2]]r).dec =

(A[[alggreedy, p
+
1]]r).dec then (A[[algall, p

+
1 p∗2]]r).dec =

(A[[alggreedy, p
+
1]]r).dec.

Proof. From Theorem 5.2 we have (A[[algall, p
+
1 p∗2]]r).dec =

(A[[alggreedy, p
+
1 p∗2]]r).dec. Then the thesis directly follows

from the hypothesis.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 14

We now consider the so-called reasonability properties of
Tschantz and Krishnamurthi [22] that precisely characterise
the expressiveness of a policy language. FACPL enjoys the
property called independent composition of policies, which
means that the results of the combining algorithms depend
only on the decisions of the policies given in input. This
clearly follows from the use of combination matrices. On
the other hand, FACPL in general ensures neither safety,
that is a granted request may not be granted anymore if
it is extended with new attributes, nor monotonicity, that
is the introduction of a new policy in a combination of
policies may change a permit decision to a different one. This
should be somehow expected as these latter two properties
are enjoyed neither by XACML nor by any other policy
language featuring deny rules and combining algorithms
similar to those we have presented.

We conclude by highlighting the relationship between
attribute names occurring in a policy and names defined by
requests. By letting Names(p) indicate the set of attribute
names occurring in the expressions within p, we can state
the following result which has important practical implica-
tions on the feasibility of the automated analysis.

Lemma 5.4 (Policy relevant attributes). For all p ∈ Policy
and r , r ′ ∈ R such that r(n) = r ′(n) for all n ∈ Names(p), it
holds that P[[p]]r = P[[p]]r ′.

Proof (sketch). The property straightforwardly derives from
the semantics of FACPL expressions and from Theorem 5.1
(see Appendix B.1).

5.7 Semantics of a policy for the e-Health case study

In this section, we illustrate how to apply the clauses defin-
ing the semantics of the FACPL constructs for deriving the
semantics of the policy (P1) of the e-Health case study. For
the sake of presentation, we directly consider the application
of the resulting semantic function to the request req1 (at
page 8). Formally, this amounts to evaluating P[[(P1)]]req1.

According to clause (S-4b), we have first to evaluate the
target. By applying the clauses in Table 5, we get

E [[equal(resource/type, “e-Prescription”))]]req1
= (E [[resource/type]]req1 = E [[“e-Prescription”]]req1)
= (req1(resource/type) = “e-Prescription”)
= (“e-Prescription” = “e-Prescription”)
= true

Due to the result of the target evaluation, we are falling
within one of the first two cases of clause (S-4b). Hence
we proceed by evaluating A[[p-overall, (R1) (R2) (R3)]]req1,
where (Ri) stands for the i-th rule enclosed within (P1).
According to clauses (S-6a), we have to evaluate all rules
(Ri). Since the target of rule (R1) evaluates to true, while the
targets of the other rules evaluate to false, from clause (S-4a),
we have

P[[(R1)]]req1 = permit

P[[(R2)]]req1 = not-app

P[[(R3)]]req1 = not-app

Therefore, by applying clauses (S-6a), we get:

A[[p-overall, (R1) (R2) (R3)]]req1
= ⊗p-over(A[[p-overall, (R1) (R2)]]req1,P[[(R3)]]req1)
= ⊗p-over(⊗p-over(A[[p-overall,(R1)]]req1,P[[(R2)]]req1),

P[[(R3)]]req1)
= ⊗p-over(⊗p-over(⊗p-over(P[[(R1)]]req1),P[[(R2)]]req1),

P[[(R3)]]req1)
= ⊗p-over(⊗p-over(⊗p-over(permit), not-app), not-app)
= ⊗p-over(⊗p-over(permit, not-app), not-app)
= ⊗p-over(permit, not-app)
= permit

This means that we are falling within the first case
of clause (S-4b). Therefore, we need now to evaluate the
obligations to be discharged if the resulting effect is permit.
According to clause (S-3a), we have

O[[[m log(system/time, resource/type,
subject/id, action/id)]]]req1

= [m log(2016-10-22 10:15:12,
“e-Prescription”, “Dr. House”, “write”)]

where basically the evaluation is obtained by replacing
each attribute name by the corresponding value in req1.
All values, but that relative to system/time, were explicitly
present in the original request; the current time is a run-
time information retrieved from the environment through
the context handler.

By concluding, we put together, according to clause (S-
4b), the results of the evaluation of the combining algorithm
and of the instantiated obligation, thus getting

P[[(P1)]]req1

= 〈 permit [m log(2016-10-22 10:15:12,
“e-Prescription”, “Dr. House”, “write”)]〉

6 FACPL CONSTRAINT-BASED REPRESENTATION

The analysis of access control policies provides effective
means for ensuring the correctness of policy enforcement
and, consequently, confidentiality and integrity of system
resources. In the case of FACPL, the analysis is made dif-
ficult by the hierarchical structure of policies, the presence
of conflict resolution strategies and the intricacies deriving
from the many involved controls. Moreover, no off-the-shelf
analysis tool directly takes FACPL specifications as input.
Hence, for enabling the analysis of FACPL policies through
well-established and efficient software tools, we introduce
a constraint formalism that permits, on the one hand, to
uniformly represent policies and, on the other hand, to
perform extensive checks of requests.

The constraint-based representation we propose speci-
fies satisfaction problems in terms of formulae based on
multiple theories, e.g., boolean and linear arithmetics. Such
SMT formulae are supported by many automatic solvers,
such as Z3 [18], CVC4 [32], and Yices [33]. This has paved
the way to an extensive employment of SMT formulae in
diverse analysis applications [15].

This section introduces our constraint-based representa-
tion of FACPL policies, while the analysis it enables is pre-
sented in Section 7. We first present the constraint formalism

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 15

Table 9
Syntax of constraints; Value and Name are defined in Table 1

Constraints Constr ::= Value | Name | isMiss(Constr)

| isErr(Constr) | isBool(Constr)

| ¬ Constr | ¬̇ Constr

| Constr cop Constr

Constraint operators cop ::= ∧ | ∨ | ∧̇ | ∨̇ | = | > | ∈
| + | − | ∗ | /

in Section 6.1. Then we introduce the constraint representa-
tion of FACPL policies in Section 6.2 and some crucial results
stating that it is a semantic-preserving representation in
Section 6.3. Finally, we show some examples of constraints
obtained from our e-Health case study in Section 6.4.

6.1 A Constraint Formalism

The constraint formalism we present here extends boolean
and inequality constraints with a few additional operators
aiming at precisely representing FACPL constructs. Intu-
itively, a constraint is a relation defined through some
conditions on a set of attribute names5. An assignment
of values to attribute names satisfies a constraint if all
constraint conditions are matched. Our formalism, besides
usual operators and values, explicitly considers the role of
missing attributes, by assigning ⊥ to attribute names, and
of run-time errors, which correspond to type mismatches in
constraint evaluations. In fact, according to the usually ac-
cepted semantics of access control policies (besides XACML,
see the works by Crampton and Morisset [9] and Crampton
and Williams [20]), a condition involving a missing attribute
should not be evaluated to false by default.

Syntax. Constraints are written according to the grammar in
Table 9. Thus, a constraint can be a literal value, an attribute
name, or a more complex constraint obtained through pred-
icates isMiss(), isErr() and isBool(), or through boolean,
comparison and arithmetic operators. The operators ¬, ∧
and ∨ are the usual boolean ones, while ¬̇, ∧̇ and ∨̇ cor-
respond to the 4-valued ones of FACPL expressions which
implement the special management of ⊥ and error values.

In the sequel, in addition to the notations of Table 4, we
use the letter c to denote a generic element of the set of all
constraints identified by the nonterminal Constr .

Semantics. The semantics of constraints is modelled by the
function C : Constr → (R → Value ∪ 2Value ∪ {error,⊥})
inductively defined by the clauses in Table 10, where the
clauses for >, ∈, −, ∗ and / are omitted as they are similar
to those for = or +. Hence, the semantics of a constraint
is a function that, given the functional representation of a
request, returns a literal value or a set of literal values or
one of the special values ⊥ and error.

The semantics of constraints, except for the cases of
predicates and usual boolean operators, mimics the se-
mantic definitions of the corresponding FACPL expression
operators defined in Table 5. For instance, the constraint

5. In the literature, constraints are typically defined on a set of
variables. In our framework, the role of variables is played by attribute
names. Therefore, to maintain a coherent terminology throughout the
paper, we refer to constraint variables as attribute names.

operator ∨̇ corresponds to the expression operator or, as well
as + corresponds to add. The clause defining the semantics
of predicate isMiss(c) (resp. isErr(c)) returns true only
if the constraint c evaluates to ⊥ (resp. error), while that
of predicate isBool(c) returns true only if the constraint c
evaluates to a boolean value. The clauses for usual boolean
operators are instead defined by ensuring that only boolean
values can be returned. Specifically, they explicitly define
conditions leading to result true, while in all the other cases
the result is false. The constraint ¬ c evaluates to true not
only when the evaluation of c returns false, but also when
it returns ⊥. This is particularly convenient for translating
FACPL policies because, in case of not-app decisions, ⊥ is
treated as false.

6.2 From FACPL Policies to Constraints
The constraint-based representation of a FACPL policy is a
logical combination of the constraints representing targets,
obligations and combining algorithms occurring within the
policy. The translation is formally, and compositionally, de-
fined by a family of translation functions T·, that return
the constraints representing the different FACPL terms. We
use the brackets {| and |} to represent the application of a
translation function to a syntactic term.

We start by presenting the translation of FACPL expres-
sions, whose operators are very close to some of those on
constraints. The translation is formally given by the function
TE : Expr → Constr , whose defining clauses are given
below

TE{|v |} = v TE{|n|} = n

TE{|not(expr)|} = ¬̇TE{|expr |}

TE{|op(expr1, expr2)|} =
TE{|expr1|} getCop(op) TE{|expr2|}

(T-1)

Thus, TE acts as the identity function on attribute names
and values, and as an homomorphism on operators. In
fact, FACPL negation corresponds to the constraint oper-
ator ¬̇, while the binary FACPL operators correspond to
the constraint operators returned by the auxiliary function
getCop(). Its definition is straightforward, the main cases
are defined as follows

getCop(and)= ∧̇ getCop(or)= ∨̇
getCop(equal)= = getCop(in)= ∈
getCop(greater-than)= > getCop(add)= +

The translation of sequences of obligations returns a
constraint whose satisfiability corresponds to the successful
instantiation of all the input obligations. The translation
function TOb : Obligation∗ → Constr is defined below

TOb{|ε|} = true

TOb{|o′ o∗|} = TOb{|o′|} ∧ TOb{|o∗|}

TOb{|[t PepAction(expr∗)]|} =∧
expr ′∈expr∗ ¬isMiss(TE{|expr ′|}) ∧ ¬isErr(TE{|expr ′|})

(T-2)

Hence, a sequence of obligations corresponds to the con-
junction of the constraints representing each obligation.
When translating a single obligation, predicates isMiss()
and isErr() are used to check the instantiation conditions,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 16

Table 10
Semantics of constraints; T stands for one of the sets of literal values or for the powerset of the set of all literal values, and i, j ∈ {1, 2} with i 6= j

C[[n]]r = r(n) C[[v]]r = v

C[[isMiss(c)]]r ={
true if C[[c]]r =⊥
false otherwise

C[[isErr(c)]]r ={
true if C[[c]]r = error

false otherwise

C[[isBool(c)]]r ={
true if C[[c]]r ∈ {true, false}
false otherwise

C[[¬̇ c]]r =
true if C[[c]]r = false

false if C[[c]]r = true

⊥ if C[[c]]r =⊥
error otherwise

C[[c1 ∧̇ c2]]r =
true if C[[c1]]r = C[[c2]]r = true

false if C[[c1]]r = false or C[[c2]]r = false

⊥ if C[[ci]]r =⊥ and C[[cj]]r ∈ {true,⊥}
error otherwise

C[[c1 ∨̇ c2]]r =
true if C[[c1]]r = true or C[[c2]]r = true

false if C[[c1]]r = C[[c2]]r = false

⊥ if C[[ci]]r =⊥ and C[[cj]]r ∈ {false,⊥}
error otherwise

C[[¬ c]]r =
true if C[[c]]r = false

or C[[c]]r =⊥
false otherwise

C[[c1 ∧ c2]]r ={
true if C[[c1]]r = true and C[[c2]]r = true

false otherwise

C[[c1 ∨ c2]]r ={
true if C[[c1]]r = true or C[[c2]]r = true

false otherwise

C[[c1 = c2]]r =
true if C[[c1]]r , C[[c2]]r ∈T and C[[c1]]r = C[[c2]]r

false if C[[c1]]r , C[[c2]]r ∈T and C[[c1]]r 6= C[[c2]]r

⊥ if C[[ci]]r =⊥ and C[[cj]]r 6= error

error otherwise

C[[c1 + c2]]r =
C[[c1]]r + C[[c2]]r if C[[c1]]r , C[[c2]]r ∈Double

⊥ if C[[ci]]r =⊥ and C[[cj]]r 6= error

error otherwise

i.e., that the occurring expressions cannot evaluate to ⊥
or error. The n-ary conjunction operator returns true if the
considered obligation contains no expression, i.e., expr∗ = ε.

The translation function for policies, TP , exploits the
translation functions previously introduced, as well as a
function TA representing the result of applying a combining
algorithm to a sequence of policies. Functions TP and TA are
indeed mutually recursive. Moreover, for representing all
the decisions that a policy can return, both functions return
4-tuples of constraints of the form

〈permit : cp deny : cd not-app : cn indet : ci 〉

where each constraint represents the conditions under
which the corresponding decision is returned. We call these
tuples policy constraint tuples and denote their set by PCT .
As a matter of notation, we will use the projection operator
↓l which, when applied to a constraint tuple, returns the
constraint cl; e.g., ↓p returns the permit constraint cp.

The function TP : Policy → PCT is defined by three
clauses: two for rules, that is one for each effect, and one for
policy sets. The clause for rules with effect permit is

TP {|(permit target : expr obl : o∗)|} =

〈 permit : TE{|expr |} ∧ TOb{|o∗|}
deny : false

not-app : ¬ TE{|expr |}
indet : ¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))

∨ (TE{|expr |} ∧ ¬TOb{|o∗|}) 〉

(T-3a)

The clause takes into account the rule constituent parts
and combines them according to the rule semantics (see
clause (S-4a)). Because of the semantics of the constraint
operator ¬, the not-app constraint is satisfied when the
constraint corresponding to the target expression evalu-
ates to false or to ⊥. Instead, the negation of a constraint
corresponding to a sequence of obligations represents the
failure of their instantiation. In the indet constraint, to-
gether with condition ¬ isBool(TE{|expr |}), we introduce

¬ isMiss(TE{|expr |}) because we want to exclude that
TE{|expr |} =⊥; otherwise, we would fall in the case of
decision not-app. It is worth noting that this constraint is
expressed in terms of predicates isBool(), isMiss() and
isErr(), so to capture the different causes of decision indet.
The clause for rules with effect deny is omitted, as it only
differs from clause (T-3a) because the permit and deny
constraints are swapped.

The clause for policy sets is
TP {|〈 a target : expr policies : p+ obl-p : o∗p obl-d : o∗d 〉|} =

〈 permit : TE{|expr |} ∧ TA{|a, p+|} ↓p ∧TOb{|o∗p |}
deny : TE{|expr |} ∧ TA{|a, p+|} ↓d ∧TOb{|o∗d |}
not-app : ¬ TE{|expr |} ∨ (TE{|expr |} ∧ TA{|a, p+|} ↓n)

indet :
¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓i)
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓p ∧¬ TOb{|o∗p |})
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓d ∧¬ TOb{|o∗d |}) 〉

(T-3b)

With respect to the clauses for rules, it additionally takes
into account the result of the application of the combin-
ing algorithm according to the policy set semantics (see
clause (S-4b)). The exclusive use of operators ¬, ∧ and ∨
ensures that constraint tuples are only formed by boolean
constraints.

Combining algorithms are dealt with by the function
TA : Alg × Policy+ → PCT that, given an algorithm and a
sequence of policies, returns a constraint tuple representing
the result of the algorithm application. Its inductive defini-
tion is

TA{|algδ, p|} = alg(TP {|p|})

TA{|algδ, p
+p′|} = alg(TA{|algδ, p

+|}, TP {|p′|})
(T-4)

Notably, the translation does not depend on the strategy δ.
By means of TP , the policies given in input are translated
into constraint tuples which are then iteratively combined,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 17

two at a time, according to the algorithm combination strat-
egy. By way of example, the combination of two constraint
tuples, say A and B, according to the p-over algorithm, is
defined as follows

p-over(A,B) =

〈permit : A ↓p ∨B ↓p
deny : (A ↓d ∧B ↓d) ∨ (A ↓d ∧B ↓n) ∨ (A ↓n ∧B ↓d)
not-app : A ↓n ∧B ↓n
indet : (A ↓i ∧¬B ↓p) ∨ (¬A ↓p ∧B ↓i)〉

The combinations for the remaining algorithms are reported
in Appendix A. In case of a single tuple in input, all the
algorithms leave the tuple unchanged, but p-unless-d, which
given an input tuple A returns the tuple

〈 permit : A ↓p ∨ A ↓n ∨ A ↓i deny : A ↓d
not-app : false indet : false 〉

and d-unless-p, which behaves similarly.
Finally, the translation of top-level PDP terms

{Alg policies : Policy+} is the same as that of the corre-
sponding policy sets with target true and no obligations,
that is {Alg target : true policies : Policy+ }.

6.3 Properties of the Translation
The key result regarding the translation is that the semantics
of the constraint-based representation of a policy and the
semantics of the policy itself do agree. Before presenting
this result, we show for the constraint semantics a result
analogous to Theorem 5.1.

Theorem 6.1 (Total and Deterministic Constraint Semantics).

1) For all c ∈ Constr and r ∈ R, there exists an el ∈
(Value ∪ 2Value ∪ {error,⊥}), such that C[[c]]r = el .

2) For all c ∈ Constr , r ∈ R and el , el ′ ∈ (Value ∪ 2Value∪
{error,⊥}), it holds that

C[[c]]r = el ∧ C[[c]]r = el ′ ⇒ el = el ′ .

Proof (sketch). By structural induction on the syntax of c (see
Appendix B.2).

Theorem 6.2 (Policy Semantic Correspondence). For all p ∈
Policy and r ∈ R, it holds that

P[[p]]r = 〈dec io∗〉 ⇔ C[[TP {|p|} ↓dec]]r = true .

Proof (sketch). The proof (see Appendix B.2) is by induction
on the depth, which is the nesting level, of p and relies
on three auxiliary correspondence results regarding expres-
sions (Lemma B.1), obligations (Lemma B.2) and combining
algorithms (Lemma B.3).

This theorem implies that the properties verified over
the constraints resulting from the translation of a FACPL
policy would return the same results as if they were directly
proven on the FACPL policy itself. Thus, it ensures that the
analysis we present in Section 7 is sound.

From the previous theorems it follows that policy con-
straint tuples partition the set of input requests, in other

words each access request satisfies only one of the con-
straints of a policy constraint tuple. Essentially, the follow-
ing corollary extends Theorem 6.1 to constraint tuples.

Corollary 6.3 (Constraint-based partition). For all r ∈ R
and p ∈ Policy , such that TP {|p|} = 〈permit : c1 deny :
c2 not-app : c3 indet : c4 〉, it holds that

∃!k ∈ {1, . . . , 4} :
C[[ck]]r = true ∧

∧
j∈{1,...,4}\{k}C[[cj]]r = false

Proof. The thesis immediately follows from Theorems 6.1
and 6.2.

Finally, it is worth noting that the translation does not
depend on the algorithm instantiation strategy, as formally
stated by the following lemma. The proof is omitted as it
trivially follows from the definition of the translation; the
key point is that in the algorithm translation clause (T-4) the
instantiation strategy δ plays no role.

Lemma 6.4. For all p ∈ Policy , it holds that

TP {|p|} = TP {|toAll(p)|} .

6.4 Constraint-based Representation of the e-Health
case study
We now apply the translation functions introduced in Sec-
tion 6.2 to a part of the considered case study. For the sake
of presentation, we shorten the attribute names used within
policies. For instance, the rule addressing Requirement (1)
becomes as follows

(permit target : equal(sub/role, “doctor”)
and equal(act/id, “write”)
and in(“e-Pre-Write”, sub/perm)
and in(“e-Pre-Read”, sub/perm))

Its translation starts by applying function TE to the target
expression. The resulting constraint is

ctrg1 ,
sub/role = “doctor” ∧̇ act/id = “write”
∧̇ “e-Pre-Write” ∈ sub/perm ∧̇ “e-Pre-Read” ∈ sub/perm

The translation proceeds by considering obligations; in this
case they are missing hence the constraint true is obtained.
Function TP finally defines the constraint tuple for the rule
as follows

〈permit : ctrg1 ∧ true

deny : false

not-app : ¬ctrg1

indet : ¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true)〉

The tuples for the rules addressing Requirements (2) and
(3) are defined similarly, they only differ in the constraints
representing their targets, which are denoted as ctrg2 and
ctrg3, respectively.

We can now define the constraint-based representa-
tion of Policy (P1). Besides the target expression, which
is straightforwardly translated to the constraint ctrgP ,
res/typ = “e-Pre”, the constraint tuple is built up from
the result of function TA representing the application of
the algorithm p-over. Specifically, the constraint tuples of

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 18

rules are iteratively combined according to the definition of
p-over(A,B) previously reported. For example, the combi-
nation of the first two rules generates the following tuple

〈 permit : (ctrg1 ∧ true) ∨ (ctrg2 ∧ true)
deny : (false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)
not-app : ¬ctrg1 ∧ ¬ctrg2
indet : ((¬(isBool(ctrg1) ∨ isMiss(ctrg1))

∨(ctrg1 ∧ ¬true)) ∧ ¬(ctrg2 ∧ true))
∨(¬(ctrg1 ∧ true) ∧ (¬(isBool(ctrg2)
∨ isMiss(ctrg2)) ∨ (ctrg2 ∧ ¬true))) 〉

Notably, the deny constraint is never satisfied, because it is
a disjunction of conjunctions having at least one false term
as argument. This is somewhat expected, because the rules
have the permit effect and the used combining algorithm
is p-over. This tuple is then combined with that of the
remaining rule in a similar way.

To generate the constraint tuple of the policy, we also
need the constraint-based representation of its obligations.
The policy contains only one obligation for the effect permit,
whose corresponding constraint is

cobl p ,∧
n∈{sys/time,res/typ,sub/id,act/id} ¬isMiss(n) ∧ ¬isErr(n)

The constraint corresponding to obligations for the effect
deny, which are missing, is instead true.

Finally, the constraint tuple of Policy (P1) generated by
function TP is

〈permit : ctrgP
∧ ((ctrg1 ∧ true) ∨ (ctrg2 ∧ true) ∨ (ctrg3 ∧ true))
∧ cobl p

deny : ctrgP
∧ ((((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false))

∧ false)
∨(((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false))
∧¬ctrg3)

∨((¬ctrg1 ∧ ¬ctrg2) ∧ false))
∧ true

not-app : ¬ctrgP ∨ (ctrgP ∧ (¬ctrg1 ∧ ¬ctrg2 ∧ ¬ctrg3))

indet : ¬(isBool(ctrgP) ∨ isMiss(ctrgP))
∨ (ctrgP ∧ (((¬(isBool(ctrg1) ∨ isMiss(ctrg1))

∨(ctrg1 ∧ ¬true)) ∧ ¬(ctrg2 ∧ true))
∨ ¬((ctrg1 ∧ true) ∧ (¬(isBool(ctrg2) ∨ isMiss(ctrg2))

∨(ctrg2 ∧ ¬true))) ∧ ¬(ctrg3 ∧ true))
∨ (¬((ctrg1 ∧ true) ∨ (ctrg2 ∧ true)) ∧ (¬(isBool(ctrg3)

∨ isMiss(ctrg3)) ∨ (ctrg3 ∧ ¬true)))
∨ (ctrgP ∧ ((ctrg1 ∧ true) ∨ (ctrg2 ∧ true)

∨(ctrg3 ∧ true)) ∧ ¬cobl p)
∨ (ctrgP ∧ ((((false ∧ false) ∨ (false ∧ ¬ctrg2)

∨(¬ctrg1 ∧ false)) ∧ false)
∨ (((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false))

∧ ¬ctrg3)
∨ ((¬ctrg1 ∧ ¬ctrg2) ∧ false)) ∧ ¬true) 〉

As this example demonstrates, the constraints resulting
from the translation are a single-layered representation of
policies that fully details all the aspects of policy evaluation.
It is also evident that, due to constraints complexity, their
evaluation, as well as their generation, is error-prone. Thus,

constraints-based analysis should not be done manually, but
with the support of automatic tools, as presented hereafter.

7 ANALYSIS OF FACPL POLICIES

The analysis of FACPL policies we propose aims at verifying
different types of properties by exploiting the constraint-
based representation of policies. In Section 7.1, we formalise
a relevant set of properties in terms of expected authorisa-
tions for requests, and present some concrete examples of
them regarding the case study. Then, in Section 7.2 we show
how to express the constraint formalism into a tool-accepted
specification and in Section 7.3 we exploit it to automatically
verify the properties with an SMT solver.

7.1 Formalisation of Properties

We consider both properties that refer to the expected au-
thorisation of single requests, called authorisation properties,
and to the relationships among policies on the base of the
whole set of authorisations they establish, called structural
properties; afterwards we comment on their automated veri-
fication.

7.1.1 Authorisation Properties

The analysis carried out through authorisation properties
aims at investigating how the extension of a request through
the addition of further attributes might change its authori-
sation in a possibly unexpected way. In fact, as remarked
in Section 5.6, FACPL does not enjoy the safety property.
Thus, it is important for system designers to consider the
authorisation decisions not only of specific requests, but also
of their extensions since, e.g., a malicious user could try to
exploit them to circumvent the access control system. This
approach is partially inspired by the probabilistic analysis
on missing attributes introduced by Crampton et al. [23].

To formalise the authorisation properties, we introduce
the notion of request extension set of a given request r . It is
defined as

Ext(r) , {r ′ ∈ R | r(n) 6=⊥ ⇒ r ′(n) = r(n)}

The set is formed by all those requests that possibly extend
request r with new attributes not already defined by r .

Evaluate-To. This property, written r eval dec, requires
the policy under examination to evaluate the request r to
decision dec. The satisfiability, written sat, of the Evaluate-
To property by a policy p is defined as

p sat r eval dec iff P[[p]]r = 〈dec io∗〉

In practice, the verification of the property boils down
to applying the semantic function P to p and r , and to
checking that the resulting decision is dec.

May-Evaluate-To. This property, written r evalmay dec, re-
quires that at least one request extending the request r evalu-
ates to decision dec. The satisfiability of the May-Evaluate-To
property by a policy p is defined as

p sat r evalmay dec iff

∃ r ′ ∈ Ext(r) : P[[p]]r ′ = 〈dec io∗〉

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 19

This property, as well as the next one, addresses additional
attributes extending the request r by considering the re-
quests in its extension set Ext(r).

Must-Evaluate-To. This property, written r evalmust dec, dif-
fers from the previous one as it requires all the extended
requests to evaluate to decision dec. The satisfiability of the
Must-Evaluate-To property by a policy p is defined as

p sat r evalmust dec iff

∀r ′ ∈ Ext(r) : P[[p]]r ′ = 〈dec io∗〉

Of course, additional properties can be obtained by
combining the previous ones like, e.g., a property requiring
that all requests in Ext(r) may evaluate to dec and must not
evaluate to dec′. Again, request extensions can be exploited
to track down possibly unexpected authorisations.

We consider here some examples of properties regarding
the patient consent policies in Section 4.3, namely Poli-
cies (P1) and (P2). The properties we are going to introduce
allow us to verify whether the policies disallow the access to
a pharmacist who wants to write an e-Prescription. To this
aim, we define an Evaluate-To property6 as

(sub/role, “pharmacist”)(act/id, “write”)
(res/typ, “e-Pre”)

eval deny (Pr1)

which requires that such request evaluates to deny. Alterna-
tively, by exploiting request extensions, we can check if there
exists a request by a pharmacist acting on e-Prescriptions
which can be evaluated to not-app. This corresponds to the
May-Evaluate-To property defined as

(sub/role, “pharmacist”)
(res/typ, “e-Pre”)

evalmay not-app (Pr2)

The verification of these properties with respect to Pol-
icy (P1) results in

Policy (P1) unsat (Pr1) Policy (P1) sat (Pr2)

where unsat indicates that the policy does not satisfy the
property. Indeed, as already pointed out in Section 4.3,
each request assigning to act/id a value different from read
evaluates to not-app, hence property (Pr1) is not satisfied
while property (Pr2) holds. On the contrary, the verification
with respect to Policy (P2) results in

Policy (P2) sat (Pr1) Policy (P2) unsat (Pr2)

Both results are due to the internal policy (deny) which,
together with the algorithm p-over, prevents not-app to be
returned and establishes deny as default decision.

7.1.2 Structural Properties
This group of properties refers to the structure of the sets
of authorisations established by one or multiple policies.
In case of multiple policies, the properties aim at char-
acterising the relationships among the policies. Different
structural properties have been proposed in the literature
by pursuing different approaches for their definition and

6. For the sake of presentation, we write requests as sequences
of attributes according to the FACPL syntax rather than using their
semantical functional representation.

verification [11], [14], [17]. Here, we consider a set of com-
monly addressed properties and provide a uniform charac-
terisation thereof in terms of requests and policy semantics.
These properties support system designers in developing
and maintaining policies. For instance, they enable change-
impact analysis [14], which examines policy modifications for
discovering unintended consequences of such changes.
Completeness. A policy is complete if it applies to all re-
quests. Thus, the satisfiability of the Completeness property
by a policy p is defined as

p sat complete iff

∀ r ∈ R : P[[p]]r = 〈dec io∗〉, dec 6= not-app

Essentially, we require that the policy applies to any request,
that is it always returns a decision different from not-app.
Notably, in this formulation indet is considered as an ac-
ceptable decision; a more restrictive formulation could only
accept permit and deny.
Disjointness. Disjointness among policies means that such
policies apply to disjoint sets of requests. Thus, this prop-
erty, written disjoint p′, requires that there is no request
for which both the policy under examination and the policy
p′ evaluate to a decision considered admissible, i.e., permit
or deny. The satisfiability of the Disjointness property by a
policy p is defined as

p sat disjoint p′ iff

∀ r ∈ R : P[[p]]r = 〈dec io∗〉,P[[p′]]r = 〈dec′ io′∗〉,
{ dec, dec′ } 6⊆ {permit, deny}

It is worth noting that disjoint polices can be combined with
the assurance that the allowed or forbidden authorisations
established by each of them are not in conflict, which
simplifies the choice of the combining algorithm to be used.
Coverage. Coverage among policies means that one of such
policies establishes the same decisions as the other ones.
More specifically, the property cover p′ requires that for
each request r for which p′ evaluates to an admissible
decision, the policy under examination evaluates to the
same decision. The satisfiability of the Coverage property by
a policy p is defined as

p sat cover p′ iff ∀ r ∈ R :

P[[p′]]r = 〈dec io∗〉, dec ∈ {permit, deny}
⇒ P[[p]]r = 〈dec io′∗〉

Thus, p calculates at least the same admissible decisions
as p′. Consequently, if p′ also covers p, the two policies
establish exactly the same admissible authorisations.

We conclude by considering some structural properties
of the patient consent policies. Specifically, by verifying
completeness, we can check if there is a request that evalu-
ates to not-app. We get

Policy (P1) unsat complete Policy (P2) sat complete

As expected, Policy (P1) does not satisfy completeness, be-
cause there is at least one request that evaluates to not-app,
whereas Policy (P2) is complete. Instead, we can check if
Policy (P2) correctly refines Policy (P1) by simply verifying
coverage. We get

Policy (P2) sat cover Policy (P1)

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 20

This follows from the fact that Policy (P2) evaluates to
permit the same set of requests as Policy (P1) and that
Policy (P1) never returns deny; clearly, the opposite coverage
property does not hold. It should be also noted that the
two policies are not disjoint as they share the same set of
permitted requests.

7.1.3 Towards Automated Verification
The analysis approach we propose is feasible in practice,
although the involved sets of requests, such as the request
extension set of a given request and the set of all possible
requests, might be infinite. Indeed, Lemma 5.4 implies that
only the attribute names occurring within the policies of
interest are relevant for their analysis, and these are finite
in number; any other name cannot affect policy evaluation.
Thus, for instance, to analyse a policy p, we must not
consider the set R of all possible requests, but only the set
of those requests whose domain is Names(p), which is the
finite set of attribute names occurring in p. This property
paves the way for carrying out automated property verifi-
cation by means of SMT solvers as described in Section 7.3.

7.2 Expressing Constraints with SMT-LIB

In order to be practically effective, tool support is essen-
tial for property verification. To this aim, we express the
constraints defined in Section 6 by means of the SMT-LIB
language [34], which is a standardised constraint language
accepted by most SMT solvers. Intuitively, SMT-LIB is a
strongly typed functional language expressly defined for the
specification of constraints. Of course, the feasibility of the
SMT-based reasoning crucially depends on decidability of
the satisfiability checks to be done; in other words, the used
SMT-LIB constructs must refer to decidable theories, such as
uninterpreted function and array theories. We now provide
a few insights on the SMT-LIB coding of our constraints.

The key element of the coding strategy is the
parametrised record type representing attributes. This type,
named TValue, is defined as follows

(declare-datatypes (T) ((TValue
(mk-val (val T)(miss Bool)(err Bool)))))

Hence, each attribute consists of a 3-valued record, whose
first field val is the value with parametric type T assigned
to the attribute, while the boolean fields miss and err
indicate, respectively, if the attribute value is missing or has
an unexpected type. Additional assertions, not shown here
for the sake of presentation, ensure that the fields miss and
err cannot be true at the same time, and that, when one
of the last two fields is true, it takes precedence over val.
Of course, a specification formed by multiple assertions is
satisfied when all the assertions are satisfied.

The declaration of TValue outlines the syntax of SMT-
LIB and its strongly typed nature. This means that each
attribute occurring in a policy has to be typed, by prop-
erly instantiating the type parameter T. Since FACPL is
an untyped language, to reconstruct the type of each at-
tribute, we define the type inference system reported in Ta-
ble 11. The rules are straightforward and infer the judgment
Γ ` expr : U | C which, under the typing context Γ, assigns
the type (or the type variable) U to the FACPL expression

expr and generates the typing constraint C. Specifically, Γ is
an injective function that associates a type variable to each
attribute name, while C basically consists of conjunctions
and disjunctions of equalities between variables and types.
The generated typing constraint will be processed at the end
of the inference process to establish well-typedness of an
expression. Thus, a FACPL expression is well-typed if C is
satisfiable, i.e., there exists a type assignment for the typing
variables occurring in C that satisfies C . Moreover, a FACPL
policy is well-typed if the typing constraints generated by all
the expressions occurring in the policy are satisfied by a
same assignment. These type assignments are then used to
instantiate the type parameters of the SMT-LIB constraints
representing well-typed policies.

The type inference system aims at statically get-
ting rid of all those policies containing expressions that
are not well-typed. For instance, given the expression
or(cat/id, equal(cat/id, 5)) and the typing context Γ(cat/id)
= Xcat/id, the inference rules assign the type Bool to the
expression and generate the constraint Xcat/id = Double ∧
Xcat/id = Bool , where we have omitted conditions trivially
satisfied. This constraint is clearly unsatisfiable as attribute
cat/id cannot simultaneously be a double and a boolean.
Hence, a policy containing such expression is not well-
typed and would be statically discarded. Although policies
are well-typed, errors can arise during their evaluation due
to requests assigning values of unexpected type to some
attributes. In our analysis, the field err is used to address
the impact of these errors. It is indeed crucial to analyse
also wrongly typed requests, as they might end up granting
unwanted accesses to careless or even malicious users.

On top of the TValue datatype we build the uninter-
preted functions expressing the operators of the proposed
constraint formalism. By way of example, the operator ∧̇
corresponds to the FAnd function defined as follows

(define-fun FAnd
((x (TValue Bool)) (y (TValue Bool)))
(TValue Bool)
(ite (and (isTrue x) (isTrue y))

(mk-val true false false)
(ite (or (isFalse x) (isFalse y))

(mk-val false false false)
(ite (or (err x) (err y))

(mk-val false false true)
(mk-val false true false)))))

where mk-val is the constructor of TValue records. Hence,
the function takes as input two TValue Bool records (i.e.,
type Bool is the instantiation of the type parameter T) and
returns a Bool record as well. The conditional if-then-else
assertions ite are nested to form a structure that mimics the
semantic conditions of Table 10, so that different TValue
records are returned according to the input. The function
isFalse (resp. isTrue) is used to compactly check that
all fields of the record are false (resp. only the field val
is true). All the other constraint operators, except ∈, are
defined similarly.

To express the operator ∈, we need to represent multival-
ued attributes. Firstly, we define an array datatype, named
Set, to model sets of elements as follows

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 21

Table 11
Type inference rules for an excerpt of FACPL expressions; we use X as a type variable, U as a type name or a type variable, and we assume that

Bool , Double, String , Date, 2Value identify both the values’ domains and their type names

v ∈ Bool

Γ ` v : Bool | true

v ∈ Double

Γ ` v : Double | true

v ∈ String

Γ ` v : String | true

v ∈ Date

Γ ` v : Date | true

v ∈ 2Value

Γ ` v : 2Value | true

Γ(n) = X

Γ ` n : X | true

Γ ` expr : U | C
Γ ` not(expr) : Bool | C ∧U = Bool

Γ ` expr1 : U1 | C1 Γ ` expr2 : U2 | C2

Γ ` eop(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = Bool ∧U2 = Bool
eop ∈ {and, or}

Γ ` expr1 : U1 | C1 Γ ` expr2 : U2 | C2

Γ ` equal(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = U2

Γ ` expr1 : U1 | C1 Γ ` expr2 : 2U2 | C2

Γ ` in(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = U2

(define-sort Set (T) (Array Int T))

where the type parameter T is the type of the elements of
the array. By definition of array, each element has an associ-
ated integer index that is used to access the corresponding
value. Thus, a multivalued attribute is represented by a
TValue record with type an instantiated Set. For example,
(TValue (Set Int)) is an attribute whose value is a set
of integers. Consequently, we can build the uninterpreted
function modelling the constraint operator ∈. In case of
integer sets, we have

(define-fun inInt
((x (TValue Int)) (y (TValue (Set Int))))
(TValue Bool)
(ite (or (err x)(err y))

(mk-val false false true)
(ite (or (miss x) (miss y))

(mk-val false true false)
(ite (exists ((i Int))

(= (val x) (select (val y) i)))
(mk-val true false false)
(mk-val false false false)))))

where the command (select (val y) i) takes the
value in position i of the set in the field val of the argument
y. In addition to the conditional assertions, the function uses
the existential quantifier exists for checking if the value of
the argument x is contained in the set of the argument y.

The coding approach we pursue generates, in most of
the cases, fully decidable constraints. In fact, since we sup-
port nonlinear arithmetic, specifically multiplication, it is
possible to define constraints that a solver cannot handle.
Anyway, modern constraint solvers are actually able to
resolve nontrivial nonlinear problems that, for what con-
cerns access control policies, should prevent any undefined
evaluation7. Similarly, the quantifier-based constraints are
in general not decidable, but solvers still succeed in eval-
uating complicated quantification assertions due to, e.g.,
powerful pattern techniques [35]. Notice anyway that if we
assume that each expression operator in, and consequently
constraint operator ∈, is applied to at most one attribute
name, the quantifications are bounded by the number of
literals defining the other operator argument.

Concerning the value types we support, SMT-LIB does
not provide a primitive type for Date . Hence, we use in-

7. It should be noted that if at least one argument of each occurrence
of the multiply operator is a numeric constant, then the resulting non-
linear arithmetic constraints are decidable.

tegers to represent its elements. Furthermore, even though
SMT-LIB supports the String type, the Z3 solver we use
does not. Thus, given a policy as an input, we define an
additional datatype, say Str, with as many constants as
the string values occurring in the policy. The string equality
function is then defined over TValue records instantiated
with type Str.

By way of example, the SMT-LIB code for the constraint
ctrg1 introduced in Section 6.4 is

(define-fun cns_target_Rule1
()
(TValue Bool)
(FAnd
(equalStr n_sub/role cst_doc)
(FAnd (equalStr n_act/id cst_write)
(FAnd
(inStr cst_permWrite n_sub/perm)
(inStr cst_permRead n_sub/perm)))))

where identifiers starting with n_ (resp. cst_) represent
attribute names (resp. literals) of the represented expression.
The whole SMT-LIB code for Policy (P1) can be found at [36].

7.3 Automated Properties Verification

The SMT-LIB coding permits using SMT solvers to automat-
ically verify the properties formalised in Section 7.1. In the
following, given a FACPL policy p, we denote by 〈permit :
smtlib-cp deny : smtlib-cd not-app : smtlib-cn indet :
smtlib-ci〉 the tuple of SMT-LIB codes representing the
formal constraints TP {|p|} = 〈permit : cp deny : cd not-app :
cn indet : ci〉. Hereafter, we present first the strategies to
follow for verifying the authorisation properties, then those
for verifying the structural properties.

7.3.1 Authorisation Properties

The verification of authorisation properties requires: (i) to
define the SMT-LIB coding of the chosen property, given the
request defined by the property and the policy constraint
smtlib-c of interest; and (ii) to check the satisfiability (or
validity) of the resulting constraint.

Given a request r , the SMT-LIB coding of the request is
defined as follows

rsmtlib ,
(assert (= (val n) v))
(assert (and (not (miss n))

(not (err n))))
r(n) = v



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 22

Thus, all attribute names n in r are asserted to be equal
to their value v and to be neither missing nor erroneous.
Furthermore, given a FACPL policy p, we also define the
following SMT-LIB coding of the request

rsmtlib(p) ,{
(assert (miss n)) n ∈ Names(p) ∧ r(n) =⊥

}
where, as in Section 5.6, Names(p) indicates the set of
attribute names occurring in p. Thus, all the names n that
occur in p and are not assigned to a value in r are asserted
to be missing attributes. The overbar notation hints that the
assertion concerns the complement of the attributes in r .

By exploiting this SMT-LIB coding of requests, we can
now use an SMT solver to automate the verification of the
authorisation properties as follows

p sat r eval dec iff

smtlib-cdec ◦ rsmtlib ◦ rsmtlib(p) is sat
p sat r evalmay dec iff smtlib-cdec ◦ rsmtlib is sat
p sat r evalmust dec iff smtlib-cdec ◦ rsmtlib is valid

where ◦ indicates the concatenation of SMT-LIB code8 and
valid means that the corresponding SMT-LIB code is a
valid set of assertions, i.e., satisfied by all the assignments
for the attribute names.

The Evaluate-To property does not exploit request ex-
tensions, hence all attribute names not assigned by the
considered request can only assume the special value ⊥.
This means that the request r is coded in SMT-LIB with
rsmtlib and rsmtlib(p). The satisfiability of the property thus
corresponds to that of the resulting SMT-LIB code.

To verify the May-Evaluate-To property, since it considers
request extensions, the request has to be coded only with
rsmtlib. As before, the satisfiability of the property corre-
sponds to that of the resulting SMT-LIB code.

Finally, to verify the Must-Evaluate-To property, we code
again the request with rsmtlib only, but we check the validity
of the resulting SMT-LIB code. This amounts to checking if
the negation of the resulting SMT-LIB code is not satisfiable,
in which case the property holds.

7.3.2 Structural Properties
The verification of structural properties does not require to
modify policy constraints, but rather to check the unsatisfi-
ability of combinations of constraints. Indeed, we have

p sat complete iff smtlib-cn is unsat

p sat disjoint p′ iff
smtlib-cp ◦ smtlib-c′p is unsat

smtlib-cp ◦ smtlib-c′d is unsat

smtlib-cd ◦ smtlib-c′p is unsat

smtlib-cd ◦ smtlib-c′d is unsat

p sat cover p′ iff{
¬ smtlib-cp ◦ smtlib-c′p is unsat

¬ smtlib-cd ◦ smtlib-c′d is unsat

where smtlib-c′dec refers to the SMT-LIB code modelling
decision dec of policy p′. Some comments follow.

8. Notably, checking the satisfiability of the SMT-LIB code resulting
from the concatenation of two sets of SMT-LIB assertions amounts to
checking if both the assertions hold at the same time.

The trivial case is that of the completeness property, which
only amounts to checking if the constraint modelling the
decision not-app is not satisfiable, i.e., if its negation is valid.
If it is, the property holds.

The disjointness of two policies is verified by checking,
one at a time, if the conjunctions between the permit or deny
constraint of the first policy and the permit or deny con-
straint of the second policy are not satisfiable. If this holds
for the four possible combinations of those constraints, the
property holds.

The coverage of policy p on policy p′ is verified by
checking if the conjunction between the negation of the
permit (resp., deny) constraint of p and the permit (resp.,
deny) constraint of p′ is not satisfiable. Intuitively, if the
policy p does not calculate a permit or deny decision (i.e.,
¬ smtlib-cp and ¬ smtlib-cd hold), policy p′ cannot do it as
well, otherwise the property is not satisfied. If this holds for
the two conjunctions separately, the property holds.

8 THE FACPL TOOLCHAIN

The coding, analysis and enforcement tasks pursued in the
development of FACPL specifications are fully supported
by the Java-based software toolchain9 graphically depicted
in Figure 3. The key element of the toolchain is an Eclipse-
based IDE that provides features like, e.g., static code checks
and automatic generation of runnable Java and SMT-LIB
code. A dedicated Java library is used to compile and
execute the Java code, while the analysis of SMT-LIB code
exploits the Z3 solver.

To provide interoperability with XACML v3.0 and the
various available tools supporting it (e.g., XCREATE [38],
Margrave [14] and Balana [39]), the IDE automatically trans-
lates FACPL code into XACML and vice-versa. Since the two
languages slightly differ in terms of expressiveness, there
are some limitations in FACPL and XACML interoperability
as detailed in Section 9.1.

Furthermore, to allow newcomers to directly experiment
with FACPL, the web application “Try FACPL in your
Browser” reachable from the FACPL website offers an on-
line editor and an evaluation engine for FACPL policies,
with the e-Health case study as a running example. Addi-
tionally, a web interface [36] shows a proof-of-concept on
how a FACPL-based access control system can be exploited
for providing e-Health services.

In the rest of this section, we detail the FACPL Java
library and IDE in Sections 8.1 and 8.2, respectively, and
present the performance evaluation of our tools in Sec-
tion 8.3.

8.1 The FACPL Library

Our Java library permits evaluating FACPL policies, hence
fully implementing the evaluation process formalised in
Section 5. To this aim, driven by the formal semantics, we
have defined a conformance test-suite that systematically
verifies each library unit, like expressions and combining
algorithms, with respect to its formal specification.

9. The FACPL supporting tools are freely available and open-source;
binary files, source files, unit tests, case study implementations and
documentation can be found at the FACPL website [37].

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 23

<<generates>><<uses>>

Policy
Developer

<<interacts>>

FACPL IDE

FACPL
FACPL Library

JAVA JAR

Xtext

XML
< / >

XACMLv3.0XACMLv3.0

<<generates>>

FACPL CODE <<generates>>

XML
< / >

XACMLv3.0

<<generates>>

FACPL Constraints

<<uses>>
SMT-LIB Z3

<<uses>>

< code >

Figure 3. The FACPL toolchain

For each element of the language, the library contains
an abstract class that provides its evaluation method. In
practice, a FACPL policy, as well as a PDP, is translated into
a Java class that extends the corresponding abstract one and
adds, by means of specific methods (e.g., addObligation),
its forming elements. Similarly, a request corresponds to a
Java class containing the request attributes and a reference
to a context handler that can be used to dynamically retrieve
additional attributes at evaluation-time.

Evaluating requests amounts to invoking the evaluation
method of a policy, which coordinates the evaluation of its
enclosed elements in compliance with its formal specifica-
tion. In addition to the authorisation process, the library
supports the enforcement process by defining the three
enforcement algorithms and a minimal set of pre-defined
PEP actions, i.e., log, mailTo and compress. Additional
actions can be dynamically introduced by providing their
implementation classes to the PEP initialisation method.

By way of example, we report in the listing in Figure 4
an excerpt of the Java code of Policy (P1) introduced in
Section 4.3. Besides the specific methods used for adding
policy elements, the Java code highlights the use of class
references for selecting expression operators and combining
algorithms. This design choice, together with the use of
best-practices of object-oriented programming, allows the
library to be easily extended with, e.g., new expression
operators, combining algorithms and enforcement actions.
Further details are given in Section 10.1. Notice that rules
are private inner classes, because they cannot be referred
outside the enclosing policy sets.

Besides the four-valued decisions considered so far,
the FACPL library also supports the extended indetermi-
nate values used by XACML v3.0, i.e., indetP, indetD and
indetDP. They can be used to specify the potential decision
(permit, deny and both, respectively) that should have been
returned by the evaluation of a policy if an error would
not have occurred. Extended indeterminate values allow the
PDP to obtain additional information about policy evalua-
tion, which can be exploited, e.g., during policy debugging
for improving the treatment of errors. However, their usage
may require additional workload. In fact, it establishes that
if the target of a policy set evaluates to error, rather than
stopping and returning indet, the evaluation process con-
tinues the computation by processing the enclosed policies

public class PolicySet_e-Prescription extends PolicySet{
public PolicySet_e-Prescription(){
addCombiningAlg(PermitOverrides.class);
addTarget(new ExpressionFunction(Equal.class, "e-

Prescription",
new AttributeName("resource","type")));

addRule(new rule1());
addRule(new rule2());
addRule(new rule3());
addObligation(new Obligation("log",Effect.PERMIT,

ObligationType.M,
new AttributeName("system","time"),new AttributeName

("resource","type"),
new AttributeName("subject","id"),new AttributeName(

"action","id")));}
private class rule1 extends Rule{
rule1 (){
addEffect(Effect.PERMIT);
addTarget(...new ExpressionFunction(In.class,

new AttributeName("subject","permission"),"e-Pre-Write"
),...);}}

private class rule2 extends Rule{ rule2 (){...} }
private class rule3 extends Rule{ rule3 (){...} }}

Figure 4. Java code of Policy (P1)

and using the decision resulting from the application of the
combining algorithm to calculate an extended indeterminate
value. Thus, e.g., if the combining algorithm returns the de-
cision permit, the evaluation of the policy returns indetP. For
all these reasons, we have chosen to support the extended
indeterminate values by means of a boolean parameter of
the method doAuthorisation whose setting can enable or
disable their use at each PDP invocation.

8.2 The FACPL IDE

The FACPL IDE is an Eclipse plug-in implemented by
means of Xtext [40]. It aims at bringing together the available
FACPL functionalities and tools. Indeed, it fully supports
writing, evaluating and analysing FACPL specifications. A
screenshot of the IDE is shown in Figure 5.

The IDE accepts an enriched version of the FACPL
language, which contains high level features facilitating the
coding tasks. In particular, each policy has an identifier that
can be used as a reference to include the policy within
other policies, while specific linguistic handles enable the
definition of new expression operators and combining al-
gorithms. In order to ease the organisation of large policy
specifications, the plug-in supports modularisation of files

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 24

Figure 5. The FACPL IDE

and import commands extending file scopes. Also, to en-
sure interoperability from XACML to FACPL, it relies on a
higher-order function map that, given a function and a set
of elements, applies the function to each element of the set.

The development environment provided by the plug-
in is standard. It offers graphical features, like keywords
highlighting, code suggestion and navigation within and
among files, static controls on FACPL code, like uniqueness
of identifiers and type checking, and automatic generation
of Java, XACML, and SMT-LIB code.

To facilitate the analysis of FACPL policies, the plug-
in provides a simple interface allowing policy developers
to specify the authorisation and structural properties to be
verified on a certain policy. Thus, the plug-in automatically
generates the corresponding SMT-LIB files according to the
strategies reported in Section 7.3; an execution script for the
Z3 solver is also generated. Of course, the SMT-LIB files can
be also evaluated by any other solver accepting SMT-LIB
code and supporting the theories we use.

As previously pointed out, the Java library is flexible
enough to be easily extended. The plug-in facilitates this
task by means of dedicated commands. For instance, to
define a new expression operator, once a developer has
defined the signature of the new function, that is used for
type checking and inference, a template of its Java and SMT-
LIB implementation is automatically generated. The actual
implementation of the Java class, as well as that of the SMT-
LIB function, is left to the developer.

FACPL-type projects are created through a dedicated
wizard. By construction, they include all the libraries
needed for coding and evaluation tasks. A project consists
of text files, with extension .fpl, containing FACPL code.
Similarly to an Eclipse Java project, our IDE supports writ-
ing of these files by means of a dedicated text editor, an
outline view and contextual menus. Functionalities sup-
porting code development, like code suggestion and auto-
completion, are available via the usual Eclipse shortcuts
and menus. In particular, from either the toolbar menu or
the right-click editor menu, the developer can find a set
of pre-defined commands to generate Java, XACML and
SMT-LIB code, or to open a step-by-step wizard for the
definition of authorisation and structural properties. Besides
coding from scratch, FACPL policies could be produced by
exploiting the automatic translation from XACML policies.

Additional usage information are available in the FACPL
tools’ guide [37].

To conclude we want here to mention two other freely
available IDEs for access control: the ALFA Eclipse plugin
by Axiomatics [41] and the graphical editor of the Balana-
based framework [42]. Differently from our IDE, their func-
tionalities are mainly limited to the editing of XACML poli-
cies. In particular, ALFA does not allow request evaluation,
since the Axiomatics engine is a proprietary software.

8.3 Performance evaluation

The effectiveness of supporting tools is a crucial point for
the usability of a policy language. Therefore, hereafter we
assess the performance of both the FACPL Java library and
the SMT-based automated analysis, also in comparison with
closely related tools.

Concerning the library, we conducted two different
tests10: (i) a performance comparison with a state-of-the-art
XACML tool on the CONTINUE case study [24], partially
analysed by Fisler et al. [14]; and (ii) a performance stress
test on a large set of randomly generated policies, thus to
analyse the library scalability. We present below the most
relevant test results; the suites of policies and requests, as
well as all the test results, are available on-line [43].

The XACML standard is by now the point-of-reference
for industrial access control. In the authors’ knowledge, the
most up-to-date, freely available XACML implementation is
Balana [39]. Differently from our framework that represents
FACPL policies as Java classes, Balana manages XACML
policies directly in XML by exploiting a DOM representation
of the XML files and evaluating XACML requests through a
visit of the DOM representing the policy. We have compared
the evaluation of more than 1.500 requests and obtained the
results reported in Figure 6; for the sake of readability only
the results concerning 700 requests are reported. The mean
request evaluation time is 0.49ms for FACPL and 1.27ms
for Balana: this implies that evaluating a Java class ensures
higher performance than navigating the DOM. Additionally,
Balana requires an initial set-up time of 770ms to create the
DOM.

10. Both tests were conducted on a MacBook Pro, 3.1 GHz Intel i7,
16 Gb RAM, running OS X Sierra.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 25

Figure 6. FACPL vs. Balana performance evaluation

The CONTINUE case study is by now used as a standard
benchmark in the field of access control tools. However it
is relatively small: it is made of 24 policies controlling 14
attributes. All policies are combined through the first-app
algorithm thus, as soon as a policy applies, the evaluation
stops. Therefore, for evaluating performance and scalability
of the FACPL Java library, we have also considered a set
of large randomly-generated policies. We generated the
policies according to the following criteria: (i) a variable
number of occurring attribute names, that is 10, 100, 1.000
or 10.000; (ii) a policy depth ranging from 1 to 5; (iii) a policy
width ranging from 1 to 5; (iv) only the all instantiation
strategy is used so to always require the evaluation of all the
occurring policies. The combinations of the previous criteria
give rise to a test-bed of 100 policies, formed by a distinct
number of differently structured sub-policies featuring a
different number of attribute names. More specifically, given
a number of attribute names a, depth d and width w, the
policy p(d,w, a) is generated according to the template in
Table 12a. Namely, d corresponds to the nesting levels in
the policy hierarchy, while w corresponds to the number
of policies that each policy (set) in the hierarchy contains.
The total number of sub-policies contained by every policy
p(d,w, a) is summarised in Table 12b. For each of the 25
generated policies, there are 4 different versions, one for
each value that a can take.

Table 12
(a) Structure of each of policy p(d,w, a); (b) Total number of

sub-policies for each combination of d and w

(a) (b)

p(d,w, a)

#w1 p1
1 . . . p1

w

#w2 p2
1 . . . p

2
w
. . . p2

w+1 . . . p
2
w2

...
...

...
...

#wd pd1 . . . p
d
w

. . .pd
wd−w+1

. . . pd
wd

d\w 1 2 3 4 5

1 1 2 3 4 5
2 2 6 12 20 30
3 3 14 39 84 155
4 4 30 120 340 780
5 5 62 363 1364 3905

The generated test-bed has been used to perform the

Figure 7. FACPL performance stress test (when a = 10.000)

stress test on the FACPL library. The results, when a is set
to 10.000, are summarised in Figure 7. The graphs show
how the performance changes as a function of the policy
structure, thus depending on d and w. Better performances
are obtained by structuring policies in terms of larger width
values (marked by the blue square), rather than larger depth
values (marked by the green triangle). Namely, the average
evaluation time increases more by increasing policy depth
than width.

Concerning the automated analysis, the tool closer to
ours [11] relies on the SMT solver Yices [33]. Differently from
Z3, Yices does not support datatype theory, which is crucial
for dealing with a wide range of policy aspects, like missing
and erroneous attributes. To analyse the completeness of the
CONTINUE policies, the Yices-based tool requires around
570ms, while our Z3-based tool requires around 120ms11. To
further evaluate the analysis performance, we also report in
Figure 8 the time required to verify the satisfiability of the
not-app constraint, that is the verification of the complete
property (marked by the blue square), and the permit con-
straint (marked by the green triangle) of the 3905 policies of
the form p(5, 5, a) obtained by varying the number a of at-
tributes. Namely, the complete property is always verified
in less than one second, despite the increasing number of
attributes. Instead, the verification time for the satisfiability
of the permit constraint increases by rising the number of
attribute names, but the increments are significantly lower
than the attribute name variations, that is from 199s with
1.000 attribute names, to 394s with 10.000 ones. The differ-
ence between the two cases is due to the policy semantics:
while a policy evaluates to not-app as soon as its target is
not-app, to obtain a permit decision it is necessary to apply
the combining algorithm to the enclosed policies. It is finally
worth noting that the considered policies have a limited
number of attribute names representing sets of values. In

11. The Yices value is taken directly from the work by Arkoudas et
al. [11], since the provided CONTINUE implementation only runs on
Windows machines. Therefore, we ran this Z3 analysis on an older
comparable hardware configuration (with the current configuration it
takes only 60ms).

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 26

Figure 8. FACPL analysis performance (when d = w = 5)

fact, according to the definition of the inInt function in Sec-
tion 7.2, a higher number of multivalued attributes would
require many satisfiability checks of existential quantifiers
along with the 3905 policies. In this case, the analysis may
require hours instead of minutes. For example, it lasts two
hours for the case of 100 attribute names and 20 multivalued
attributes, while it cannot complete for the case of 1.000
attribute names and 200 multivalued attributes.

To sum up, the extensive performance evaluation of the
FACPL Java library has pointed out that (i) the request
evaluation time on the CONTINUE case study is definitely
better than the DOM-based approach of Balana; (ii) the
performance are affected by the structure of the policy since
the more the policy depth, the longer the evaluation time;
(iii) the library can handle a substantial number of policies
built upon up to 10.000 attributes. The performance of the
analysis tool has instead pointed out that (i) the performance
on CONTINUE are definitely better than the approach by
Arkoudas et al. [11]; (ii) the SMT-based approach provides
good performance also when policies scale. The latter point
is critical for other tools not based on SMT. In fact, as
reported by Arkoudas et al. [11], the increment of possi-
ble values for the attributes occurring in the CONTINUE
policies prevents Margrave to accomplish the analysis. On
the contrary, the results of tests conducted on the test-bed,
and shown in Figure 8, witness that our tool can deal with
infinite sets of attribute values, e.g. integers, on significantly
large policies.

9 RELATED WORK

A preliminary version [12] of FACPL aimed at formalising
the semantics of XACML. The language presented here ad-
dresses a wider range of aspects concerning access control.
Specifically, the syntax of the language is cleaned up and
streamlined (e.g., rule conditions are integrated with rule
targets and the policy structure is simplified); at the same
time, it is extended with additional combining algorithms,
the PEP specification, an explicit syntax for expressions, and
obligations. This latter extension widens FACPL applica-
bility range and expressiveness, as it provides the policy

Table 13
FACPL vs. XACML on the e-Health case study

Policy Number of lines Saved Number of types Saved
XACML FACPL lines XACML FACPL types

e-Prescription 239 24 89,95% 10.656 894 91,61%
e-Dispensation 239 24 89,95% 10.674 914 91,43%
Patient Consent 423 38 91,01% 19.195 1.558 91,88%

evaluation process with further, powerful means to affect
the behaviour of controlled systems. For instance, a practical
example of a policy-based manager for a Cloud platform is
given by Margheri et al. [44]. Additional important differ-
ences concern the definition of the policy semantics. Masi et
al. [12] define it in terms of partitions of the set of all possible
requests. Here, instead, policy semantics is defined in a
functional fashion with respect to a generic request. The new
approach also features the formalisation of combining algo-
rithms in terms of binary operators and instantiation strate-
gies, and the automatic management of missing attributes
and evaluation errors throughout the evaluation process.
Most of all, the aim of this work is significantly different: we
do not only propose an enhanced language, but we provide
a complete methodology that encompasses all phases of
policy life-cycle, i.e., specification, analysis and enforcement.
Concerning the analysis, we characterise in terms of sets of
requests a number of relevant authorisation and structural
properties, preliminarily introduced by Margheri et al. [13].
We then present a constraint-based representation of policies
and an SMT-based approach for verifying properties on top
of constraints. To effectively support these functionalities,
we provide a fully-integrated software toolchain.

In the rest of this section we survey more closely related
work. First, in Section 9.1 we comment on differences and
interoperability of FACPL with the standard XACML. Then,
we discuss other relevant policy languages in Section 9.2
and approaches to the analysis of access control policies in
Section 9.3.

9.1 FACPL vs XACML

XACML [7] is a well-established standard for the specifica-
tion of attribute-based access control policies and requests. It
has an XML-based syntax and an evaluation process defined
in accordance with the RFC 2753 [25], hence similar to the
FACPL one. As a matter of notation, hereafter the words
emphasised in sans-serif, like Rule, are XML elements, while
element attributes are in italics.

From a merely lexical point of view, FACPL allows
developers to define each policy element via a lightweight
mnemonic syntax that leads to compact policy specifica-
tions. Instead, the XML-based syntax used by XACML en-
sures cross-platform interoperability, but generates verbose
specifications that are hardly of immediate comprehension
for developers and are not suitable for formally defining
semantics and analysis techniques. Table 13 exemplifies a
lexical comparison between the FACPL policies for the e-
Health case study and the corresponding XACML ones12.

12. All the considered XACML policies, together with the corre-
sponding FACPL ones, are available on-line [36].

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 27

Although FACPL and XACML policies have a similar
structure, there are quite a number of semantic differences,
as we outline below. These differences are however over-
come by the translators presented in Section 8, which ensure
partial interoperability between the two languages.

In FACPL, request attributes are referred by structured
names. In XACML, they are referred by either Attribut-
eDesignator or AttributeSelector elements. The former one
corresponds to a typed version of a structured name, while
the latter one is defined in terms of XPath expressions,
which are not supported by FACPL. Anyway, FACPL can
represent some of them by appropriately using structured
names; for example, an AttributeSelector with category
subject and an XPath expression like type/id/text() corre-
spond to subject/type.id. Notably, differently from FACPL,
AttributeDesignator and AttributeSelector always return sets
of values, so-called bags. These bags are dealt with as indi-
visible values in the evaluation of all policy elements except
for Targets, where they are dealt with as explained below.

A XACML Target consists of Match elements defin-
ing basic comparison functions on request attributes. The
elements are then organised in terms of the tag struc-
ture AnyOf-AllOf-Match. This structure can be rendered in
FACPL by means of, respectively, the expression operators
and-or-and. The evaluation of a Match element is defined
by separately applying the enclosed comparison function
to each value of the bag resulting from the evaluation
of the enclosed AttributeDesignator or AttributeSelector. In
particular, the evaluation returns true (resp., false), if at least
one (resp., all) application of the function to a (resp., all)
value of the bag returns true (resp., false); otherwise indet is
returned. The XACML-to-FACPL translator preserves this
behaviour in FACPL by exploiting the auxiliary function
map mentioned in Section 8.

Another semantic difference in the target evaluation is
due to the management of errors and missing attributes.
Indeed, while evaluating the target, when a value is missing,
the XACML semantics of Match elements returns error or
false according to the setting of the boolean parameter
MustBePresent, whereas the FACPL semantics of target
elements uses the special value ⊥ to manage the case of
missing attributes in a distinguished way. The same occurs
for evaluation errors. In this way, the FACPL semantics pro-
vides a more fine-grained management of missing attributes
and evaluation errors than the XACML’s one. The issue is
dealt with by the XACML-to-FACPL translator through a
function which converts ⊥ to false.

For the reasons above, there are some limitations when
translating FACPL policies into XACML ones. Indeed, the
case of missing attributes cannot be rendered in XACML.
Similarly, also multivalued attributes cannot be dealt with
due to the semantic differences in XACML between Target
and Condition elements.

Except for target evaluation, the semantics of XACML
and FACPL policies mainly comply with each other. How-
ever, the specification approach fostered by FACPL is more
generic and poses less constraints on the policy structure.
In particular, XACML prescribes a policy structure based
on Policys, which are collections of Rules, and PolicySets,
which are collections of Policys and/or PolicySets. Most of
all, XACML forces specific constraints on targets of Policy

and Policy Set: they can only contain comparison functions
and each comparison can only contain one attribute name.
Moreover, XACML supports fewer combining algorithms
than FACPL and provides only the greedy instantiation
strategy. Additionally, as previously pointed out, XACML
specialises the decision indet into three sub-decisions: for
the sake of presentation, we have not considered them in the
formal development of FACPL, but they are fully supported
by the FACPL library (see Section 8).

FACPL and XACML share the same management of
obligations, although in FACPL this process is specified in
a more precise manner, through the instantiation strategies
and the binary combining operators. It is also worth noting
that the XACML ‘obligation fulfilment’ is termed ‘obligation
instantiation’ in FACPL, since indeed the evaluation of
obligations by the PDP does not carry out any task beyond
its mere instantiation.

Also, XACML provides some constructs that do not
crucially affect policy expressiveness and evaluation. For
instance, Variable elements permit defining pointers to ex-
pression declarations. These constructs are not directly sup-
ported by FACPL.

To sum up, except for minor differences on tangled
XACML aspects mainly concerning the management of
missing attributes and evaluation errors, FACPL subsumes
XACML policies not containing XML raw data. At the
same time, FACPL offers a higher flexibility in the policy
specification approach and a richer set of combining algo-
rithms. Most of all, FACPL provides a formal semantics that
supports formally-based analysis and drives its implemen-
tation.

From a more practical perspective, FACPL tools can
support existing XACML-based systems in different ways.
For example, given a PEP generating XACML requests,
one can use our XACML-to-FACPL translator to transform
the requests in FACPL format. Since we are translating
requests, this further step does not significantly affect the
performance of the evaluation process. The resulting re-
quests can be then redirected for evaluation to a FACPL
PDP by simply invoking the corresponding Java method.
To facilitate this integration, besides the XACML-to-FACPL
translator available within the IDE, we also provide a stan-
dalone version of the translator. As another example, given
a XACML PDP, our XACML-to-FACPL translator can be
used to generate, with the aforementioned limitations, the
corresponding FACPL policies. This transformation enables
both policy analysis and generation of Java code to possibly
replace the XACML PDP.

9.2 Policy Languages for Access Control

Policy languages have recently been the subject of extensive
research, both by industry and academia. Indeed, policies
permit managing different important aspects of system be-
haviours, ranging from access control to adaptation and
emergency handling. We compare in the following the main
policy languages devoted to access control, which is our
focus; Table 14 summarises the comparison.

Among the many proposed policy languages, we can
identify two main specification approaches: rule-based, such
as the XACML standard and Ponder [45], [46], and logic-

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 28

Table 14
Comparison of some relevant policy languages (X∗ means that user

encoding is required)

Features XACML Ponder ASL PTaCL [8] [11] FACPL
Rule-based X X X
Logic-based X X X X

Mnemonic spec. X X
Comb. algorithms X X∗ X∗ X X∗ X

Obligations X X X
Missing attributes X X X

Error handling X X

based, such as ASL [19], PTaCL [9] and the logical frame-
works by Arkoudas et al. [11]. In the literature, several
authors, such as Li et al. [21], Rao et al. [8], and Ramli
et al. [47], study (part of) XACML by formally addressing
peculiar features of design and evaluation of access control
policies.

In the rule-based approach, policies are structured into
sets of declarative rules. The seminal work by Sloman [48]
introduces two types of policies: authorisations and obliga-
tions. Policies of the former type have the aim of establishing
if an access can be performed, while those of the latter
type are basically Event-Condition-Action rules triggering
the enforcement of adaptation actions. This setting is at the
basis of Ponder.

Ponder is a strongly-typed policy language that, dif-
ferently from FACPL, takes authorisation and obligations
policies apart. Ponder does not provide explicit strategies to
resolve conflictual decisions possibly arising in policy eval-
uation, rather it relies on abductive reasoning to statically
prevent conflicts from occurring, although no implemen-
tation or experimental results are presented. On the con-
trary, FACPL provides combining algorithms, as we think
they offer higher degrees of freedom to policy developers
for managing conflicts. Similarly to Ponder, FACPL uses
a mnemonic textual specification language and addresses
value types, although they are not explicitly reported. Fi-
nally, the FACPL evaluation process is triggered by requests
and not by events as in Ponder. Anyway, the FACPL ap-
proach is as general as the Ponder one since, by exploiting
attributes, requests can represent any event of a system.

The logic-based approach mainly exploits predicate or
multi-valued logics. Most of these proposals [19], [49], [50]
are based on Datalog [51], which implies that the access
rules are defined as first order logic predicates. In general,
these proposals offer valuable means for a low-level design
of rules, but the lack of high-level features, like combining
algorithms or obligations, prevent them from representing
policies like those of FACPL.

ASL, one of the firstly defined logic-based languages, ex-
presses authorisation policies based on user identity creden-
tials and authorisation privileges, and supports hierarchy
and propagation of access rights among roles and groups
of users. Additional predicates enable the definition of a
posteriori integrity checks on authorisation decisions, like
conflict resolution strategies. Differently from ASL, FACPL
provides high-level constructs and offers by-construction
many not straightforward features like, e.g., conflict resolu-
tion strategies. The use of a suitable policy hierarchy enables
access right propagation in FACPL policies as well.

PTaCL follows the logic-based approach as well, but it
does not rely on Datalog. It defines two sets of algebraic
operators based on a multi-valued logic: one modelling tar-
get expressions, the other one defining policy combinations.
These operators emphasise the role of missing attributes in
policy evaluation, in a way similar to FACPL, but only par-
tially address errors. In fact, combination operators are not
defined on error values: it is rather assumed that all target
functions are string equalities that never produce errors.
Similarly to FACPL, PTaCL permits formalising the non-
monotonicity and safety properties of attribute-based policies
introduced by Tschantz and Krishnamurthi [22]. The PTaCL
extension by Crampton and Williams [20] introduces obliga-
tions and their instantiation, but it still lacks error handling.

A similar study, but more focussed on the distinguishing
features of XACML, is done by Ramli et al. [47]. It introduces
a formalisation of XACML in terms of multi-valued logics,
by first considering 4-valued decisions and then 6-valued
ones. Most of the XACML combining algorithms are for-
malised as operators on a partially ordered set of decisions,
while the algorithms first-app and one-app are defined by
case analysis. Differently from FACPL, this formalisation
does not deal with missing attributes and obligations, which
have instead a crucial role in XACML policy evaluation.

Another logic-based language is due to Arkoudas et
al. [11]. In this case, a policy is a list of constraint asser-
tions that are evaluated by means of an SMT solver. The
framework supports reasoning about different properties,
but any high-level feature, like combining algorithms, has to
be encoded ‘by hand’ into low-level assertions. In addition,
missing attributes, erroneous values and obligations are not
addressed.

Multi-valued logics and the relative operators have also
been exploited to model the behaviour of combining algo-
rithms. For example, the Fine-Integration Algebra by Rao et
al. [8] models the strategies of XACML combining algo-
rithms by means of a set of 3-valued (i.e., permit, deny and
not-app) binary operators. The behaviour of each algorithm
is then defined in terms of the iterative application of
the operators to the policies of the input sequence. This
approach significantly differs from the FACPL one since it
does not consider the indet decision. Instead, Li et al. [21]
explicitly introduce an error handling function that, given
two decisions, determines whether their combination pro-
duces an error, i.e., an indet decision. Each (binary) operator
is then defined using such error function. The formalisation
of FACPL combining algorithms follows a similar approach,
but it also deals with obligations and instantiation strategies,
which require different iterative applications of operators.
Moreover, in the work by Li et al. [21] nonlinear constraints
are used for the specification of combining algorithms which
return a decision dec if the majority of the input policies
return dec. Such algorithms are not usually dealt with in
the literature and cannot be expressed in terms of iterative
application of some binary operators.

Finally, we want to point out that the term obligation is
used with different meaning in the literature. Some authors,
among which Hilty et al. [52] and Bettini et al. [53], use the
term to refer to actions that must be performed in the future,
after the access is granted. In this sense, obligations are
concerned with commitments of the involved parties that

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 29

cannot be guaranteed at the moment of granting access and
have thus to be checked afterwards by means of suitable
monitoring mechanisms. This approach is also followed by
Pretschner et al. [54] that, for better controlling the usage of
accessed data, refine the notion of obligation enforceability
in order to distinguish between controllable, observable and
non-observable obligations. Differently from these authors,
we are not concerned with what happens after access has
been granted since FACPL obligations, like XACML ones,
refer to actions to be performed before an access is autho-
rised.

9.3 Analysis of Access Control Policies

The increasing spread of policy-based specifications has
prompted the development of many verification techniques
like, e.g., property checking and behavioural characterisa-
tions. Such techniques have been implemented by means of
different formalisms, ranging from SMT formulae to multi-
terminal binary decision diagrams (MTBDD), including dif-
ferent kinds of logics. Hereafter we review the more relevant
ones.

The works concerning policy analysis that are closer to
our approach are of course those exploiting SMT formulae.
Turkmen et al. [16] introduce a strategy for representing
XACML policies in terms of SMT formulae. The represen-
tation, which is based on an informal semantics of XACML,
supports integers, booleans and doubles, while the repre-
sentation of sets of values and strings is only sketched.
The combining algorithms are modelled as conjunctions
and disjunctions of formulae representing the policies to
be combined, in a form similar to the approach shown in
Appendix A. As a design choice, formulae corresponding to
the not-app decision are not generated, because they can be
inferred as the complementary of the other ones. Moreover,
the representation assumes that each attribute name is as-
signed only to those values that match the implicit type of
the attribute, hence the analysis cannot deal with missing
attributes or erroneous values. Finally, it does not take into
account obligations, which have instead an important role
in the evaluation. The SMT-based framework by Arkoudas
et al. [11], mentioned in Section 9.2, suffers from similar
drawbacks.

The only analysis approach that takes missing attributes
into account is due to Crampton et al. [23]. The analysis is
based on a notion of request extension, as we have done
in Section 7. This analysis aims at quantifying the impact
of possibly missing attributes on policy evaluations. Specif-
ically, the PTaCL language is used to model policy target
expressions, and PRISM [55] is then used to experimentally
study the probability of evaluation errors due to missing
attributes. Differently from our approach, this analysis does
not support the specification and evaluation of properties
on calculated decisions.

The change-impact analysis of XACML policies by Fisler
et al. [14] aims at studying the consequences of policy
modifications. In particular, to verify structural properties
among policies by means of automatic tools, this approach
relies on an MTBDD-based representation of policies. How-
ever, it cannot deal with many of the XACML combining
algorithms and, as outlined by Arkoudas et al. [11], an SMT-

based approach like ours scales significantly better than the
MTBDD one.

Datalog-based languages, like ASL, only provide limited
analysis functionalities, that are anyway significantly less
performant than SMT-based approaches. In general, these
languages are useful to reason on access control issues
at a high abstraction level, but they neglect many of the
advanced features of modern access control systems.

Description Logic (DL) is used by Kolovski et al. [17]
as a target formalism for representing a part of XACML.
The approach does not take into account many combining
algorithms and the decisions not-app and indet. Thus, it
only permits reasoning on a set of properties significantly
reduced with respect to that supported by our SMT-based
approach. Furthermore, DL reasoners support the verifica-
tion of structural properties of policies but suffer from the
same scalability issues as the MTBDD-based reasoners.

Answer Set Programming (ASP) is used by Ahn et
al. [56] and Ramli et al. [10] for encoding XACML and
enabling verification of structural properties that are similar
to the complete one defined in Section 7.1.2. This approach
however suffers from some drawbacks due to the nature of
ASP. In fact, differently from SMT, ASP does not support
quantifiers and multiple theories like datatype and arith-
metic. Some seminal extensions of ASP to “Modulo Theo-
ries” have been proposed, but, to the best of our knowledge,
no effective solver like Z3 is available. Similarly, Hughes and
Bultan [57] exploit the SAT-based tool Alloy [58] to detect
inconsistencies in XACML policies. However, as outlined by
Arkoudas et al. [11] and Fisler et al. [14], Alloy is not able to
manage even quite small policies and, more importantly, it
cannot reason on arithmetic or any additional theory.

Finally, it is worth noting that various analysis ap-
proaches using SAT-based tools have been developed for the
Ponder language [59]. These approaches, however, cannot
actually be compared with ours due to the numerous differ-
ences among Ponder and FACPL. Furthermore, many other
works deal with the analysis of access control policies by
using, e.g., process algebra and model checking techniques.
However, they consider only a limited part of access con-
trol policy aspects and suffer from scalability issues when
compared to SMT-based tools.

In summary, all the approaches to the analysis of access
control policies mentioned above are deficient in several
respects when compared with ours. Those based on SMT
formulae do not address relevant aspects, like missing at-
tributes, while the other ones do not enjoy the benefits of
using SMT, in particular support of multiple theories and
scalable performance.

10 CONCLUDING REMARKS AND FUTURE WORK

We have described a full-fledged framework for the specifi-
cation, analysis and enforcement of access control policies.
Our framework relies on FACPL and is built on top of
solid formal foundations. The FACPL semantics provides a
formalisation of complex access control features —including
obligations and missing attributes, which are overlooked
by many other proposals— and lays the basis for devel-
oping analysis techniques and tools. We have shown that
FACPL policies can be represented in terms of specific SMT

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 30

formulae, whose automatic evaluation permits verifying
various authorisation and structural properties. We have
demonstrated feasibility and effectiveness of our approach
by means of a case study from the e-Health application do-
main, which is currently one of the most critical application
domains of access control systems. We have also shown
that the use of SMT solvers provides us with stable and
efficient tools, ensuring better performance than many other
approaches from the literature.

In a general perspective, our approach brings together
the benefits deriving from using a high-level, mnemonic
rule-based language with the rigorous means provided by
denotational semantics and constraints. Most of all, the sup-
porting tools we implemented allow access control system
developers to use any of the formally-defined functionalities
provided by our framework, without the need that they be
familiar with formal methods.

We conclude by first enlighting some distinguishing
traits of FACPL in Section 10.1, then by pointing out some
future research directions in Section 10.2.

10.1 Discussion

We want here to recap and reflect on a few characteristics
of FACPL, and its framework, and the design choices that
underlie them.

Expressiveness. The access control systems expressible by
FACPL are those expressible by XACML, but not dealing
with XML raw data, with in addition the possibility of
using consensus-based combining algorithms and the all
instantiation strategy for obligations. FACPL access control
systems are systematically more compact and feature a
smoother management of errors and missing attributes. This
latter characteristic, together with the fact that we decided
not to introduce any static check on the type of requests,
permits to accurately deal with every access control request.
Alternatively, we could have defined a type inference sys-
tem in order to statically check the policies and infer the
expected type of any attribute name occurring within. Then,
we could have reserved evaluation for only those requests
whose attribute names comply with their expected type,
while we could have directly returned the indet decision
for all the other requests. By pursuing such an approach,
however, we would have lost expressiveness, since policies
could not be able anymore to automatically manage errors
due to unexpected attribute values and possibly mask them
by using operators that combine, according to different
strategies, indet decisions with the others.

Besides the definition of access controls, FACPL per-
mits defining obligations, which are a key ingredient to
enhance the expensiveness of access control systems. As
exemplified in the definition of the e-Health case study in
Section 4.3, the instantiation of obligations permits defining
context-dependent actions to be enforced at run-time in the
controlled system. Indeed, the side-effects of policy evalua-
tion are not only the enforcement of access decisions, but
also the enforcement of dynamically instantiated actions.
FACPL obligations permit enforcing, e.g., resource usage,
adaptation and emergency handling strategies. For example,
in the application of the Ponder language by Sloman and
Lupu [60] and in the preliminary version of FACPL by

Margheri et al. [44], [61], obligations are used to enforce
self-adaptation strategies in autonomic computing systems.
Instead, in the context of emergency handling, an obligation-
based approach is proposed by Brucker and Petritsch [62]
and Marinovic et al. [63] to enforce the principle known as
‘break the glass’, which means that authorisation controls
can be bypassed in case of emergency.

We intentionally abstract from the actual syntax of obli-
gations. They are simply intended to be actions executed
at run-time. From time to time, they can be chosen to
more adequately express the access control system at hand.
We also abstract from the actual obligation semantics: the
discharging of obligations done by the PEP simply refers
to the fact that the system has taken charge of their execu-
tion, which has to complete by the conclusion of the PEP
enforcement process. However, the possibility of enforcing
some obligations after releasing the decision and granting
the access is a topic worth to be studied. This is indeed one
of the future research directions we want to pursue.

Validation. Our framework has essentially three constituent
elements: (i) the linguistic constructs together with their
denotational semantics; (ii) the constraint formalism and
the semantic-preserving translation; (iii) the Java-based sup-
porting tools. For each of them we have presented different
validation results, both theoretical and empirical.

The linguistic constructs are validated with respect to
their expressiveness. This is done, on the one hand, by
modelling a real-world case study from the e-Health ap-
plication domain, on the other hand, by comparing FACPL
with XACML, which is the state-of-the-art OASIS standard
for attribute-based access control systems. FACPL formal
semantics is validated according to the so-called reasonability
properties by Tschantz and Krishnamurthi [22] that precisely
characterise the expressiveness of a policy language. Besides
these properties, we show that the semantics is well-defined
(Theorem 5.1) and precisely characterise the attributes that
are relevant for policy evaluation (Lemma 5.4); this impor-
tant result, as pointed out in Section 7.1.3, underlies the au-
tomatic property verification. All the results are presented in
Section 5.6, while their proofs are relegated to Appendix B.1.

Similarly, the constraint formalism and the semantic-
preserving translation of FACPL policies into SMT formulae
are validated by the theoretical results presented in Sec-
tion 6.3 and proved in Appendix B.2. All together these
results ensure that the approach to the analysis of FACPL
policies presented in Section 7 is sound.

The software tools are validated by empirically exam-
ining their performance and functionalities. The obtained
results are reported in Section 8.3.

Exploitation. The FACPL framework is a production-level
software that is also used in industry. Indeed, since its pre-
liminary version, FACPL has been used by Tiani Spirit [64]
instead of XACML to carry out design and automated
analysis of access control policies. In particular, the FACPL
access control engine has been used as XACML reference
implementation in several projects. Furthermore, FACPL
was used for team works in a PhD school on engineering
Collective Autonomic Systems [65] and has been used in
many bachelor and master thesis (further details can be
found at the FACPL web-site). These practical exploita-

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 31

tions have highlighted that its compact, mnemonic syntax
requires very short learning time, even to undergraduate
students. The users have also appreciated the flexibility of
the IDE, which can be smoothly integrated within other
development environments.

Extendability. The proposed framework offers a wide range
of constructs, ranging from expression operators to com-
bining algorithms, for defining access controls. Anyway,
to better suit any need, as reported in Section 8, both the
Java library and the IDE can be easily extended with the
introduction of, e.g., new expression operators. This ap-
proach supports writing customised FACPL specifications.
These specifications can then be translated, in accordance
with the user’s definition of the added constructs, to Java
and SMT-LIB code that can be evaluated and analysed,
respectively. The formal assurance of semantic preservation
(Theorem 6.2) can be easily tailored for encompassing the
user’s extensions. For instance, in case of addition of a new
expression operator, it only requires devising a constraint
operator, or a combination thereof, that faithfully represents
the semantics of the new operator.

10.2 Future Work
We plan to address the issue of controlling the access while
it is in progress. In this sort of ‘continuos’ access control,
the challenge is to ensure guarantees on how granted ac-
cesses are used. This model is usually referred to as Usage
Control [66] in the literature and has been recently studied
by various researchers. To deal with usage control, tempo-
ral aspects are of paramount importance, both to refer to
ongoing accesses and to enforce obligations after releasing
access decisions. To this aim, along the lines of the work by
Carniani et al. [67], we will provide a FACPL-based solution
for usage control that, by relying on the already avail-
able context-dependent authorisation process, can control
ongoing accesses and instantiate temporal obligations. To
actually enforce these obligations and, consequently, reason
on them, we will refine the PEP semantics by appropriately
instantiating the predicate ⇓ok introduced in Section 5.4.

We also plan to provide a formally-based analysis
technique that system developers can exploit to verify,
e.g., history-dependent properties like dynamic separation
of duty. To this aim, besides formalising new history-
dependent authorisation properties, we want to define and
verify properties on conflicts and dependencies among obli-
gations.

Finally, we intend to investigate the use of natural
language processing techniques and tools [68] to support
elicitation of policies from security requirements expressed
in natural, or at least controlled, language. This would
permit enriching the FACPL framework with facilities for
deriving FACPL policies from high level specifications of
access control rights, such as those reported in Table 2.

REFERENCES

[1] B. W. Lampson, “Protection,” Operating Systems Review, vol. 8,
no. 1, pp. 18–24, 1974.

[2] D. F. Ferraiolo and D. R. Kuhn, “Role-based access control,” in
NIST-NCSC National Computer Security Conference, 1992, pp. 554–
563.

[3] NIST, “A survey of access control models,” 2009, http:
//csrc.nist.gov/news events/privilege-management-workshop/
PvM-Model-Survey-Aug26-2009.pdf.

[4] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control,” IEEE Computer, vol. 48, no. 2, pp. 85–88, 2015.

[5] X. Jin, R. Krishnan, and R. S. Sandhu, “A unified attribute-based
access control model covering DAC, MAC and RBAC,” in DBSec.
Springer, 2012, pp. 41–55.

[6] W. Han and C. Lei, “A survey on policy languages in network
and security management,” Computer Networks, vol. 56, no. 1, pp.
477–489, 2012.

[7] OASIS XACML TC, “eXtensible Access Control Markup Language
(XACML) version 3.0 ,” January 2013, https://www.oasis-open.
org/committees/tc home.php?wg abbrev=xacml.

[8] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “An algebra for
fine-grained integration of XACML policies,” in SACMAT. ACM,
2009, pp. 63–72.

[9] J. Crampton and C. Morisset, “Ptacl: A language for attribute-
based access control in open systems,” in POST, ser. LNCS,
P. Degano and J. D. Guttman, Eds., vol. 7215. Springer, 2012,
pp. 390–409.

[10] C. D. P. K. Ramli, H. Riis Nielson, and F. Nielson, “Xacml 3.0
in answer set programming,” in LOPSTR, ser. LNCS, vol. 7844.
Springer, 2012, pp. 89–105.

[11] K. Arkoudas, R. Chadha, and C. J. Chiang, “Sophisticated access
control via SMT and logical frameworks,” ACM Trans. Inf. Syst.
Secur., vol. 16, no. 4, p. 17, 2014.

[12] M. Masi, R. Pugliese, and F. Tiezzi, “Formalisation and Implemen-
tation of the XACML Access Control Mechanism,” in ESSoS, ser.
LNCS 7159. Springer, 2012, pp. 60–74.

[13] A. Margheri, R. Pugliese, and F. Tiezzi, “On Properties of Policy-
Based Specifications,” in WWV, ser. EPTCS, vol. 188, 2015, pp.
33–50.

[14] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz, “Ver-
ification and change-impact analysis of access-control policies,” in
ICSE. ACM, 2005, pp. 196–205.

[15] L. M. de Moura and N. Bjørner, “Satisfiability modulo theories:
introduction and applications,” Commun. ACM, vol. 54, no. 9, pp.
69–77, 2011.

[16] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone, “Analysis
of XACML policies with SMT,” in POST, ser. LNCS, vol. 9036.
Springer, 2015, pp. 115–134.

[17] V. Kolovski, J. A. Hendler, and B. Parsia, “Analyzing web access
control policies,” in WWW. ACM, 2007, pp. 677–686.

[18] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[19] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A logical lan-
guage for expressing authorizations,” in Symposium On Security
And Privacy. IEEE, 1997, pp. 31–42.

[20] J. Crampton and C. Williams, “Obligations in ptacl,” in
STM, ser. LNCS, S. Foresti, Ed., vol. 9331. Springer, 2015,
pp. 220–235. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-24858-5 14

[21] N. Li, Q. Wang, W. H. Qardaji, E. Bertino, P. Rao, J. Lobo, and
D. Lin, “Access control policy combining: theory meets practice,”
in SACMAT. ACM, 2009, pp. 135–144.

[22] M. C. Tschantz and S. Krishnamurthi, “Towards reasonability
properties for access-control policy languages,” in SACMAT.
ACM, 2006, pp. 160–169.

[23] J. Crampton, C. Morisset, and N. Zannone, “On missing attributes
in access control: Non-deterministic and probabilistic attribute
retrieval,” in SACMAT. ACM, 2015, pp. 99–109.

[24] S. Krishnamurthi, “The CONTINUE server (or, how I admin-
istered PADL 2002 and 2003),” in PADL, ser. LNCS, vol. 2562.
Springer, 2003, pp. 2–16.

[25] R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for
Policy-based Admission Control,” RFC 2753 (Proposed Standard),
Internet Engineering Task Force, 2000. [Online]. Available:
https://tools.ietf.org/html/rfc2753

[26] The epSOS project, “An European eHealth Project,” http://www.
epsos.eu.

[27] M. Kovac, “E-health demystified: An e-government showcase,”
IEEE Computer, vol. 47, no. 10, pp. 34–42, 2014. [Online]. Available:
http://dx.doi.org/10.1109/MC.2014.282

[28] European Parliament and Council, “Directive 95/46/EC,”
1995, official Journal L 281 , 23/11/1995 P. 0031 - 0050.

http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://dx.doi.org/10.1007/978-3-319-24858-5_14
http://dx.doi.org/10.1007/978-3-319-24858-5_14
https://tools.ietf.org/html/rfc2753
http://www.epsos.eu
http://www.epsos.eu
http://dx.doi.org/10.1109/MC.2014.282

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 32

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
CELEX:31995L0046:en:HTML.

[29] The Article 29 Data Protection WP, 2013, http://ec.europa.eu/
justice/data-protection/article-29/.

[30] Health Level Seven organization, “Hl7 standards,” 2017, http://
www.hl7.org.

[31] “Electronic health record in austria (elga),” 2017, http://www.
elga.gv.at/.

[32] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Proc. of CAV, ser.
LNCS, vol. 6806. Springer, 2011, pp. 171–177.

[33] B. Dutertre, “Yices 2.2,” in Proc. of CAV, ser. LNCS, vol. 8559.
Springer, 2014, pp. 737–744.

[34] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard:
Version 2.0,” 2010, http://smtlib.cs.uiowa.edu/.

[35] Microsoft Research, “Z3: a guide,” 2017, http://rise4fun.com/z3/
tutorial/guide.

[36] FACPL e-Health Case Study, 2017, http://facpl.sf.net/eHealth/.
[37] FACPL Website, 2017, http://facpl.sourceforge.net.
[38] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti, “The X-

CREATE Framework - A Comparison of XACML Policy Testing
Strategies,” in WEBIST. SciTePress, 2012, pp. 155–160.

[39] WSO2, “Balana: Open source XACML implementation,” 2017,
https://github.com/wso2/balana.

[40] Xtext, Language Development Made Easy, http://www.eclipse.org/
Xtext/.

[41] Axiomatics, “Axiomatics Language for Authorization (ALFA),”
https://www.axiomatics.com/news/axiomatics-releases-free-
plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/.

[42] WSO2, “Balana UI for XACML,” 2017, http://xacmlinfo.org/
category/xacml-editor/.

[43] FACPL Tools Performance Evaluation, 2017, http://facpl.sf.net/
test.

[44] A. Margheri, M. Masi, R. Pugliese, and F. Tiezzi, “Developing
and Enforcing Policies for Access Control, Resource Usage, and
Adaptation. A Practical Approach,” in WSFM, ser. LNCS, vol.
8379. Springer, 2013, pp. 85–105.

[45] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Pon-
der Policy Specification Language,” in POLICY, ser. LNCS 1995.
Springer, 2001, pp. 18–38.

[46] K. P. Twidle, N. Dulay, E. Lupu, and M. Sloman, “Ponder2: A
policy system for autonomous pervasive environments,” in ICAS.
IEEE, 2009, pp. 330–335.

[47] C. D. P. K. Ramli, H. Riis Nielson, and F. Nielson, “The logic of
XACML,” Sci. Comput. Program., vol. 83, pp. 80–105, 2014.

[48] M. Sloman, “Policy driven management for distributed systems,”
J. Network Syst. Manage., vol. 2, no. 4, pp. 333–360, 1994.

[49] M. Hashimoto, M. Kim, H. Tsuji, and H. Tanaka, “Policy de-
scription language for dynamic access control models,” in DASC.
IEEE, 2009, pp. 37–42.

[50] J. DeTreville, “Binder, a logic-based security language,” in Proceed-
ings of the 2002 IEEE Symposium on Security and Privacy, ser. SP ’02.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 105–113.

[51] S. Ceri, G. Gottlob, and T. Tanca, “What you always wanted to
know about datalog (and never dared to ask),” IEEE Trans. Knowl.
Data Eng., vol. 1, no. 1, pp. 146–166, 1989.

[52] M. Hilty, D. A. Basin, and A. Pretschner, “On obligations,” in
ESORICS, ser. LNCS, vol. 3679. Springer, 2005, pp. 98–117.

[53] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera, “Provisions
and obligations in policy rule management,” J. Netw. Syst.
Manage., vol. 11, no. 3, pp. 351–372, Sep. 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1025711105609

[54] A. Pretschner, M. Hilty, and D. Basin, “Distributed usage control,”
Commun. ACM, vol. 49, no. 9, pp. 39–44, Sep. 2006.

[55] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM: proba-
bilistic model checking for performance and reliability analysis,”
SIGMETRICS Performance Evaluation Review, vol. 36, no. 4, pp. 40–
45, 2009.

[56] G. J. Ahn, H. Hu, J. Lee, and Y. Meng, “Representing and reasoning
about web access control policies,” in COMPSAC. IEEE Computer
Society, 2010, pp. 137–146.

[57] G. Hughes and T. Bultan, “Automated verification of access con-
trol policies using a sat solver,” STTT, vol. 10, no. 6, pp. 503–520,
2008.

[58] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[59] A. K. Bandara, E. Lupu, and A. Russo, “Using event calculus to
formalise policy specification and analysis,” in POLICY. IEEE,
2003, p. 26.

[60] M. Sloman and E. C. Lupu, “Engineering policy-based ubiquitous
systems,” Comput. J., vol. 53, no. 7, pp. 1113–1127, 2010.

[61] A. Margheri, R. Pugliese, and F. Tiezzi, “Linguistic abstractions
for programming and policing autonomic computing systems,” in
UIC/ATC. IEEE, 2013, pp. 404–409.

[62] A. D. Brucker and H. Petritsch, “Extending access control models
with break-glass,” in SACMAT. ACM, 2009, pp. 197–206.

[63] S. Marinovic, N. Dulay, and M. Sloman, “Rumpole: An introspec-
tive break-glass access control language,” ACM TISSEC., vol. 17,
no. 1, pp. 2:1–2:32, 2014.

[64] “Tiani Spirit - Software Solutions for the best Healthcare,” 2017,
http://www.tiani-spirit.com/.

[65] FP7 EU project, “ASCENS,” 2015, Spring School - http://www.
ascens-ist.eu/springschool.html.

[66] A. Lazouski, F. Martinelli, and P. Mori, “Usage control in computer
security: A survey,” Computer Science Review, vol. 4, no. 2, pp. 81–
99, 2010.

[67] E. Carniani, D. D’Arenzo, A. Lazouski, F. Martinelli, and P. Mori,
“Usage control on cloud systems,” Future Generation Comp. Syst.,
vol. 63, pp. 37–55, 2016.

[68] Stanford Natural Language Processing Group, 2017, https://nlp.
stanford.edu/.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://ec.europa.eu/justice/data-protection/article-29/
http://ec.europa.eu/justice/data-protection/article-29/
http://www.hl7.org
http://www.hl7.org
http://www.elga.gv.at/
http://www.elga.gv.at/
http://smtlib.cs.uiowa.edu/
http://rise4fun.com/z3/tutorial/guide
http://rise4fun.com/z3/tutorial/guide
http://facpl.sf.net/eHealth/
http://facpl.sourceforge.net
https://github.com/wso2/balana
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
https://www.axiomatics.com/news/axiomatics-releases-free-
plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/
http://xacmlinfo.org/category/xacml-editor/
http://xacmlinfo.org/category/xacml-editor/
http://facpl.sf.net/test
http://facpl.sf.net/test
http://dx.doi.org/10.1023/A:1025711105609
http://www.tiani-spirit.com/
http://www.ascens-ist.eu/springschool.html
http://www.ascens-ist.eu/springschool.html
https://nlp.stanford.edu/
https://nlp.stanford.edu/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 33

Andrea Margheri is a Research Fellow in Cyber
Security at the University of Southampton. He
received his MSc degree in Computer Science
from University of Florence and his Ph.D. in
Computer Science from University of Pisa. His
research covers both theoretical and practical
aspects of modern computing systems, with par-
ticular emphasis on access control, cloud com-
puting and blockchain-based technologies.

Massimiliano Masi is an IT Security Architect at
Tiani “Spirit” GmbH, with more than 13 years of
experience. Relevant experiences include spec-
ification of IT security measures of the eGP-
EGOR and BeS Projects in Austria, and South
African eHR.ZA (governmental eHealth initia-
tives), lead role of epSOS.eu CCD and leader
of the Core team of the epSOS Security Experts
Group, design security aspects of the LHC com-
puting GRID. Masi has been a member of the
OASIS Trust Elevation Committee, and is also

the editor of the IHE ITI profile XCF, and participated in the evaluation
of the IHE profiles related to security (e.g., XUA, XUA++, SeR, Access
Control White Paper, and ATNA). He is actually leading various task
forces in the e-SENS project.

Rosario Pugliese is Associate Professor at the
Department of Statistic, Computer Science, Ap-
plications, University of Florence. He received
the Laurea degree from University of Pisa and
the Ph.D. degree from University of Rome “La
Sapienza”. His research interests are focused on
today’s concurrent, possibly mobile, distributed
systems, such as service-oriented and auto-
nomic computing systems. The aim is to devise
formal models, languages and tools enabling the
study of issues concerning interaction, connec-

tivity, adaptivity and security.

Francesco Tiezzi is Associate Professor at the
Computer Science Division of the University of
Camerino. He received the Laurea degree from
University of Florence and the Ph.D. degree from
the same university. His research activities focus
on foundational study of distributed systems, and
on application of formal methods for developing
and analysing them. Particular attention is paid
to the definition of formal bases for technolo-
gies supporting service-oriented, cloud and au-
tonomic computing.

APPENDIX A
DEFINITIONS FOR COMBINING ALGORITHMS

In this section we report all the definitions regarding the
combining algorithms. Table 15 shows all the combination
matrices defining the binary operators ⊗alg for each algo-
rithm alg. Hereafter we report the constraint resulting from
the combination of two constraint tuples, say A and B,
defined according to the various combining algorithms.

p-over(A,B) =

〈 permit : A ↓p ∨ B ↓p
deny : (A ↓d ∧ B ↓d) ∨ (A ↓d ∧ B ↓n) ∨ (A ↓n ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : (A ↓i ∧ ¬B ↓p) ∨ (¬A ↓p ∧ B ↓i)〉

d-over(A,B) =

〈 permit : (A ↓p ∧ B ↓p) ∨ (A ↓p ∧ B ↓n) ∨ (A ↓n ∧ B ↓p)
deny : A ↓d ∨ B ↓d
not-app : A ↓n ∧ B ↓n
indet : (A ↓i ∧ ¬B ↓d) ∨ (¬A ↓d ∧ B ↓i)〉

d-unless-p(A,B) =

〈 permit : A ↓p ∨ B ↓p
deny : ¬A ↓p ∧ ¬B ↓p ∧ (A ↓d ∨ A ↓n ∨ A ↓i)

∧(B ↓d ∨ B ↓n ∨ B ↓i)
not-app : false
indet : false〉

p-unless-d(A,B) =

〈 permit : ¬A ↓d ∧ ¬B ↓d ∧ (A ↓p ∨ A ↓n ∨ A ↓i)
∧(B ↓p ∨ B ↓n ∨ B ↓i)

deny : A ↓d ∨ B ↓d
not-app : false
indet : false〉

first-app(A,B) =

〈 permit : A ↓p ∨ (B ↓p ∧ A ↓n)
deny : A ↓d ∨ (B ↓d ∧ A ↓n)
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ (A ↓n ∧ B ↓i)〉

one-app(A,B) =

〈 permit : (A ↓p ∧ B ↓n) ∨ (A ↓n ∧ B ↓p)
deny : (A ↓d ∧ B ↓n) ∨ (A ↓n ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ B ↓i ∨ ((A ↓p ∨ A ↓d) ∧ (B ↓p ∨ B ↓d))〉

weak-con(A,B)

〈 permit : (A ↓p ∧ B ↓p) ∨ (A ↓p ∧ ¬B ↓d) ∨ (¬A ↓d ∧ B ↓p)
deny : (A ↓d ∧ B ↓d) ∨ (A ↓d ∧ ¬B ↓p) ∨ (¬A ↓p ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : (A ↓p ∧ B ↓d) ∨ (A ↓d ∧ B ↓p) ∨ A ↓i ∨ B ↓i

strong-con(A,B) =

〈 permit : A ↓p ∧ B ↓p
deny : A ↓d ∧ B ↓d
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ B ↓i ∨ (A ↓n ∧ ¬B ↓n) ∨ (¬A ↓n ∧ B ↓n)

∨ (A ↓p ∧ B ↓d) ∨ (A ↓d ∧ B ↓p)〉

APPENDIX B
PROOFS OF THE RESULTS

Some of the proofs proceed by induction on the depth of
policies, which is the number of their nesting levels. It is
defined by induction on the syntax of policies as follows

depth((e target : expr obl : o∗)) = 0
depth({a target : expr policies : p+ obl-p : o∗p obl-d : o∗d }) =

1 + max ({depth(p) | p ∈ p+})

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 34

⊗p-over 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1•io∗2〉 〈permit io∗1〉 〈permit io∗1〉 〈permit io∗1〉
〈deny io∗1〉 〈permit io∗2〉 〈deny io∗1•io∗2〉 〈deny io∗1〉 indet
not-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet
indet 〈permit io∗2〉 indet indet indet

⊗d-over 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1•io∗2〉 〈deny io∗2〉 〈permit io∗1〉 indet
〈deny io∗1〉 〈deny io∗1〉 〈deny io∗1•io∗2〉 〈deny io∗1〉 〈deny io∗1〉
not-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet
indet indet 〈deny io∗2〉 indet indet

⊗d-unless-p 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1•io∗2〉 〈permit io∗1〉 〈permit io∗1〉 〈permit io∗1〉
〈deny io∗1〉 〈permit io∗2〉 〈deny io∗1•io∗2〉 〈deny io∗1〉 〈deny io∗1〉
not-app 〈permit io∗2〉 〈deny io∗2〉 〈deny ε〉 〈deny ε〉
indet 〈permit io∗2〉 〈deny io∗2〉 〈deny ε〉 〈deny ε〉

⊗p-unless-d 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1•io∗2〉 〈deny io∗2〉 〈permit io∗1〉 〈permit io∗1〉
〈deny io∗1〉 〈deny io∗1〉 〈deny io∗1•io∗2〉 〈deny io∗1〉 〈deny io∗1〉
not-app 〈permit io∗2〉 〈deny io∗2〉 〈permit ε〉 〈permit ε〉
indet 〈permit io∗2〉 〈deny io∗2〉 〈permit ε〉 〈permit ε〉

⊗first-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1〉 〈permit io∗1〉 〈permit io∗1〉 〈permit io∗1〉
〈deny io∗1〉 〈deny io∗1〉 〈deny io∗1〉 〈deny io∗1〉 〈deny io∗1〉
not-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet
indet indet indet indet indet

⊗one-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 indet indet 〈permit io∗1〉 indet
〈deny io∗1〉 indet indet 〈deny io∗1〉 indet
not-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet
indet indet indet indet indet

⊗weak-con 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1•io∗2〉 indet 〈permit io∗1〉 indet
〈deny io∗1〉 indet 〈deny io∗1•io∗2〉 〈deny io∗1〉 indet
not-app 〈permit io∗2〉 〈deny io∗2〉 not-app indet
indet indet indet indet indet

⊗strong-con 〈permit io∗2〉 〈deny io∗2〉 not-app indet

〈permit io∗1〉 〈permit io∗1•io∗2〉 indet indet indet
〈deny io∗1〉 indet 〈deny io∗1•io∗2〉 indet indet
not-app indet indet not-app indet
indet indet indet indet indet

Table 15
Combination matrices for the binary operators ⊗alg

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 35

Policies with depth 0 are rules, the other ones are policies
containing other policies. Notationally, we will use pi to
mean that policy p has depth i and (p+)i to mean that at
least a policy in the sequence p+ has depth i and the others
have depth at most i.

B.1 Proofs of Results in Section 5

THEOREM 5.1 (Total and Deterministic Semantics).
1) For all pas ∈ PAS and req ∈ Request , there exists a

dec ∈ Decision , such that PAS[[pas, req]] = dec.
2) For all pas ∈ PAS , req ∈ Request and dec, dec′ ∈

Decision , it holds that
PAS[[pas, req]] = dec ∧ PAS[[pas, req]] = dec′

⇒ dec = dec′ .

Proof. The goal of the proof is to show that PAS is a
total and deterministic function, i.e., it is defined for all
possible input pairs and always returns the same decision
any time it is applied to a specific pair. If we let pas be
{ pep : ea pdp : pdp } then, from the clause (S-8), we have
that

PAS[[{ pep : ea pdp : pdp }, req]] =
EA[[ea]](PDP[[pdp]](R[[req]]))

Thus, since function composition preserves totality and
determinism, we are left to prove that R, PDP and EA are
total and deterministic functions. Due to their inductive def-
inition (given in Section 5), the proof proceeds by inspecting
their defining clauses with the aim of checking that they
satisfy the two requirements below
R1: there is one, and only one, clause that applies to each

syntactic domain element (this usually follows since
the definition is syntax-driven and considers all the
syntactic forms that the input can assume);

R2: for each defining clause,
• the conditions in the right hand side are mutually

exclusive (from the systematic use of the otherwise
condition, it directly follows that they cover all the
possible cases for the syntactic domain elements of
the form occurring in the left hand side),

• the values assigned in each case of the right hand side
are obtained by only using total and deterministic
functions/operators/predicates.

Case R. From its defining clauses (S-1) we get that R is
defined on all non-empty sequences of attributes, i.e.,
is all requests. Moreover, the conditions in the right
hand side of each clause are mutually exclusive and
the operator d is total and deterministic by definition.
Thus R1 and R2 hold, which means thatR is a total and
deterministic function.

Case PDP . To prove this case, we first prove that E , O, A
and P are total functions.
Case E . By an easy inspection of the clauses defining
E , an excerpt of which are in Table 5, it is not hard
to believe that they satisfy R1 (since the application
of the clauses is driven by the syntactic form of the
input expression) and R2 above, hence E is a total
function. Moreover, since the operator • is total and
deterministic, from the clauses (S-2) it follows that E

remains a total and deterministic function also when
extended to sequences of expressions.

Case O. Since E is a total and deterministic function
also on sequences of expressions, from the clauses (S-
3a) and (S-3b) it follows that R1 and R2 hold, thus
O is a total and deterministic function both on single
obligations and on sequences of obligations.

Cases A and P . The definitions of P andA are syntax-
driven and consider all the syntactic forms that the
input can assume, thus R1 is satisfied. Now, since P
and A are mutually recursive, we prove by induction
on the depth of their arguments that their defining
clauses satisfy R2 for all input policies.

Base Case (i = 0). Let us start from P . p0 is of the
form (e target : expr obl : o∗). We have hence to
prove that the clause (S-4a), which is the defining
clause of P that applies to p0, satisfies R2. This di-
rectly follows from the fact that E and O are total
and deterministic functions. Now, let us consider
A and proceed by case analysis on a .

(a = algall for any alg). Since the clause (S-4a)
satisfies (R1 and) R2, for each p0

j in (p+)0,
P[[p0

j]]r is uniquely defined. Thus, since each
operator ⊗alg is total and deterministic by
construction, the clauses (S-6a), to be used
since the form of a, satisfies R2 (when all the
input policies have depth 0).

(a = alggreedy for any alg). This case is similar to
the previous one, but involves the clauses (S-
6b). It satisfies R2 (when all the input policies
have depth 0) since its conditions in the right
hand side are mutually exclusive by construc-
tion (indeed, each predicate isFinalalg and
each operator ⊗alg is total and deterministic).

Inductive Case (i = n+ 1). Let us start from P .
pn+1 is of the form {a target :expr policies :(p+)n

obl-p : o∗p obl-d : o∗d}. By the induction hypothe-
sis, for any r , a and pkj in (p+)n, with k ≤ n, the
clauses defining P and A satisfy (R1 and) R2, that
is P[[pkj]]r andA[[a, (p+)n]]r are uniquely defined.
Hence, the clause (S-4b), to be used since the form
of pn+1, satisfies R2 as well. For A, we can reason
like in the base case by exploiting the induction
hypothesis. We can thus conclude that both the
clauses (S-6a) and (S-6b) satisfy R2 (for any input
policy).

Therefore, P and A are total and deterministic func-
tions.

Now, that PDP is a total and deterministic function
directly follows from its defining clause (S-5).

Case EA. The requirement R1 is satisfied by definition.
Moreover, since the predicate ⇓ ok is total and deter-
ministic, the same holds for the function (()). There-
fore, also R2 is satisfied by each defining clause (the
conditions on res.dec are trivially mutually exclusive).
Hence, EA is a total and deterministic function.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 36

THEOREM 5.2 (Instantiation Strategy Correspondence). For
all p ∈ Policy and r ∈ R, it holds that

P[[p]]r = 〈dec io∗1〉 ⇔ P[[toAll(p)]]r = 〈dec io∗2〉 .

Proof. Equivalently, by induction on the depth i of p, we
prove that

(P[[p]]r).dec = (P[[toAll(p)]]r).dec .

Base Case (i = 0). p0 has the form (e target : expr obl : o∗),
thus, by definition, p = toAll(p) and the thesis for this
case obviously follows.

Inductive Case (i = n+ 1). pn+1 is of the form
{a target : expr policies : (p+)n obl-p : o∗p obl-d : o∗d}
and we have two cases to consider.
a uses all as instantiation strategy. This means that

a = algall for some algall ∈ Alg. Hence, we have that
toAll(p) = {a target : expr policies : toAll((p+)n)
obl-p : o∗p obl-d : o∗d}. Now, by the induction hypoth-
esis, for all pkj in (p+)n, with k ≤ n, it holds that
(P[[pkj]]r).dec = (P[[toAll(pkj)]]r).dec. Thus, from
the clauses (S-6a) and from the combination ma-
trices for the binary operators shown in Table 15,
by easy induction on the length of the sequence
(p+)n, it follows that (A[[algall, (p

+)n]]r).dec =
(A[[algall, toAll((p+)n)]]r).dec.

a uses greedy as instantiation strategy. This means
that a = alggreedy for some alggreedy ∈ Alg. Hence,
we have that toAll(p) = {algall target : expr
policies : toAll((p+)n) obl-p : o∗p obl-d : o∗d}. Thus,
by the induction hypothesis, for all pkj in (p+)n

with k ≤ n, it holds that (P[[pkj]]r).dec =
(P[[toAll(pkj)]]r).dec. Now, by reasoning on
induction on the structure of p+, we prove that

(A[[alggreedy, (p
+)n]]r).dec

= (A[[algall, toAll((p+)n)]]r).dec
(1)

from which the thesis then follows because of the
clause (S-4b) defining the semantics of policies.
Base Case. This means that (p+)n is a single pol-

icy, say pk1 , with k ≤ n. From the clauses (S-
6b), we have that (A[[alggreedy, p

k
1]]r).dec =

(⊗alg(P[[pk1]]r)).dec. Now, since by induction
on n we can assume that (P[[pk1]]r).dec =
(P[[toAll(pk1)]]r).dec, from the clauses (S-6a),
we have that (⊗alg(P[[toAll(pk1)]]r)).dec =
(A[[algall, toAll(pk1)]]r).dec, which proves (1).

Inductive Case. Let (p+)n be (p+
1)k1pk22 , with

k1, k2 ≤ n. From the clauses (S-6b), we have two
cases to consider.
isFinalalg(A[[alggreedy, (p

+
1)k1]]r) = true.

The proof proceeds by case analysis
on alg and derives directly from the
definitions in Appendix A. We only report
the case of the p-over algorithm, as the
other ones are similar. In the considered
case, due to the definition of predicate
isFinalp-over in Table 6, the hypothesis
isFinalp-over(A[[p-overgreedy, (p

+
1)k1]]r) = true

implies that (A[[p-overgreedy, (p
+
1)k1]]r).dec

= permit. Therefore, by the structural
induction hypothesis, we have that
(A[[p-overall, toAll((p+

1)k1)]]r).dec = permit.
Now, since by induction on n we can assume
that (P[[pk22]]r).dec = (P[[toAll(pk22)]]r).dec,
from the clauses (S-6a) and from the
combination matrices for the binary operators
shown in Table 15, we get that

(A[[p-overall, toAll((p+)n)]]r).dec =
(⊗p-over(A[[p-overall, toAll((p+

1)k1)]]r ,

P[[toAll(pk22)]]r)).dec =
permit

which proves (1).
isFinalalg(A[[alggreedy, (p

+
1)k1]]r) = false.

By induction on n, we have that (P[[pk22]]r).dec
= (P[[toAll(pk22)]]r).dec. Moreover, by
structural induction hypothesis, we
have that (A[[alggreedy, (p

+
1)k1]]r).dec =

(A[[algall, toAll((p+
1)k1)]]r).dec. Therefore,

from the combination matrices for the binary
operators shown in Table 15, we get that

(⊗alg(A[[alggreedy, (p
+
1)k1]]r ,P[[pk22]]r)).dec =

(⊗alg(A[[algall, toAll((p+
1)k1)]]r ,

P[[toAll(pk22)]]r)).dec

This, by the clauses (S-6a) and (S-6b),
proves (1).

LEMMA 5.4 (Policy relevant attributes). For all p ∈ Policy
and r , r ′ ∈ R such that r(n) = r ′(n) for all n ∈ Names(p)
it holds that P[[p]]r = P[[p]]r ′.

Proof. The statement is based on an analogous result con-
cerning expressions

for all expr ∈ Expr and r1, r
′
1 ∈ R such that

r1(n) = r ′1(n) for all n ∈ Names(expr),
it holds that E [[expr]]r1 = E [[expr]]r ′1

(R)

which can be easily proven by structural induction on the
syntax of expressions. Functions r1 and r ′1 are only exploited
in the base case when evaluating a name n ∈ Names(expr)
for which, by definition and hypothesis, we have E [[n]]r1 =
r1(n) = r ′1(n) = E [[n]]r ′1. Since for any expr occurring in
p, we have that Names(expr) ⊆ Names(p), from (R), by
taking r1 = r and r′1 = r′, it follows that

for all expr occurring in p, E [[expr]]r = E [[expr]]r ′ (R-E)

From (R-E), it also immediately follows that

for all o occurring in p, O[[o]]r = O[[o]]r ′ (R-O)

Now we can prove the main statement by induction on the
depth i of p.
Base Case (i = 0). p0 has the form (e target : expr obl : o∗),

thus the clause (S-4a) is used to determine P[[p]]r . The
thesis then trivially follows from (R-E) and (R-O).

Inductive Case (i = n+ 1). pn+1 is of the form
{a target : expr policies : (p+)n obl-p : o∗p obl-d : o∗d},
thus the clause (S-4b) is used to determine P[[p]]r .
By the induction hypothesis, for any pkj in (p+)n,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 37

with k ≤ n, it holds that P[[pkj]]r = P[[pkj]]r ′. This,
due to the clauses (S-6a) and (S-6b), implies that
A[[a, (p+)n]]r = A[[a, (p+)n]]r ′, for any algorithm a.
The thesis then follows from this fact and from (R-E)
and (R-O).

B.2 Proofs of results in Section 6
THEOREM 6.1 (Total and Deterministic Constraint Semantics).

1) For all c ∈ Constr and r ∈ R, there exists an el ∈
(Value ∪ 2Value ∪ {error,⊥}), such that C[[c]]r = el .

2) For all c ∈ Constr , r ∈ R and el , el ′ ∈ (Value ∪
2Value ∪ {error,⊥}), it holds that

C[[c]]r = el ∧ C[[c]]r = el ′ ⇒ el = el ′ .

Proof. Similarly to the proof of Theorem 5.1, the proof re-
duces to showing that C is a total and deterministic function.
We proceed by structural induction on the syntax of c.
Base Case. If c = v, the thesis immediately follows since
C[[v]]r = v; otherwise, i.e., c = n, we have C[[n]]r = r(n)
and the thesis follows because r is a total and determin-
istic function.

Inductive Case. It is not hard to believe that all the defining
clauses of C are such that the conditions in the right
hand side are mutually exclusive and cover all the
necessary cases. For each different form that c can as-
sume, the thesis then directly follows by the induction
hypothesis.

The proof of Theorem 6.2 relies on the following three
auxiliary results.

Lemma B.1. For all expr ∈ Expr and r ∈ R, it holds that

E [[expr]]r = C[[TE{|expr |}]]r

Proof. We proceed by structural induction on the syntax of
expr according to the translation rules of the clause (T-1).
(expr = n). Since TE{|n|} = n , the thesis follows because
E [[n]]r = r(n) = C[[n]]r .

(expr = v). Since TE{|v |} = v , the thesis follows because
E [[v]]r = v = C[[v]]r .

(expr = not(expr1)). Since TE{|expr |} = ¬̇ TE{|expr1|}
and, by the induction hypothesis, E [[expr1]]r =
C[[TE{|expr1|}]]r , the thesis follows due to the corre-
spondence of the semantic clause of the operator ¬̇ in
Table 10 and that of the operator not in Table 5.

(expr = op(expr1, expr2)). Since TE{|expr |} = TE{|expr1|}
getOp(op) TE{|expr2|} and, by the induction hypoth-
esis, E [[expr1]]r = C[[TE{|expr1|}]]r and E [[expr2]]r =
C[[TE{|expr2|}]]r , the thesis follows due to the corre-
spondence of the semantic clause of the expression op-
erator op in Table 10 and that of the constraint operator
getOp(op) in Table 5.

Lemma B.2. For all o ∈ Obligation and r ∈ R it holds that

O[[o]]r = io ⇔ C[[TOb{|o|}]]r = true

and
O[[o]]r = error ⇔ C[[TOb{|o|}]]r = false

Proof. We only prove the (⇒) implication as the proof
for the other direction proceeds in a specular way. Let
o = [t pepAct(expr∗)] with expr∗ = expr1 . . . exprn. By
the clause (T-2), it is translated into the constraint

c =∧
exprj∈expr∗ ¬isMiss(TE{|expr j |}) ∧ ¬isErr(TE{|expr j |})

We now proceed by case analysis on O[[o]]r .
(O[[o]]r = io). We have to prove that C[[c]]r = true. By the

definition of C, C[[c]]r = true corresponds to

∀j ∈ {1, . . . , n} :
C[[¬ isMiss(TE{|expr j |})]]r = true
∧ C[[¬ isErr(TE{|expr j |})]]r = true

According to the constraint semantics of ¬, isMiss and
isErr, this corresponds to

∀j ∈ {1, . . . , n} :
C[[TE{|expr j |}]]r 6=⊥ ∧ C[[TE{|expr j |}]]r 6= error

By the hypothesis O[[o]]r = io and the clauses (S-3a)
and (S-2), we have

E [[expr∗]]r = E [[expr1]]r • . . . • E [[exprn]]r = w1 . . .wn

where wj stands for a literal value or a set of values.
Thus, by Lemma B.1, we get that

∀j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r = wj 6∈ {⊥, error}

which proves the thesis.

(O[[o]]r = error). We have to prove that C[[c]]r = false. By
the definition of C, C[[c]]r = false corresponds to

∃j ∈ {1, . . . , n} :
C[[¬ isMiss(TE{|expr j |})]]r = false
∨ C[[¬ isErr(TE{|expr j |})]]r = false

According to the constraint semantics of ¬, isMiss and
isErr, this corresponds to

∃j ∈ {1, . . . , n} :
C[[TE{|expr j |}]]r =⊥ ∨ C[[TE{|expr j |}]]r = error

By the hypothesis O[[o]]r = error and the clauses (S-3a)
and (S-2), we have

E [[expr∗]]r = E [[expr1]]r • . . . • E [[exprn]]r 6= w∗

⇒ ∃j ∈ {1, . . . , n} : E [[expr j]]r ∈ {⊥, error}

Thus, by Lemma B.1, we obtain that

∃j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r ∈ {⊥, error}

which proves the thesis.

Lemma B.3. For all algall ∈ Alg, r ∈ R and sequences
of policies p+, such that for all pi in p+ it holds P[[pi]]r =
〈deci io∗i 〉 ⇔ C[[TP {|pi|} ↓deci

]]r = true , we have

A[[algall, p
+]]r =〈dec io∗〉 ⇔ C[[TA{|algall, p

+|}↓dec]]r = true .

Proof. The proof proceeds by case analysis on alg and de-
rives directly from the definitions in Appendix A. In what
follows, we only report the case of the p-over algorithm, as

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 38

the other ones are similar. We now proceed by reasoning on
structural induction on p+.
Base Case. This means that p+ is a single policy, say p1.

By definition, we have ⊗p-over(P[[p1]]r) = P[[p1]]r and
p-over(TP {|p1|}) = TP {|p1|}. The thesis then directly
follows from the hypothesis on p1, that is P[[p1]]r =
〈dec1 io∗1〉 ⇔ C[[TP {|p1|} ↓dec1

]]r = true , due to the
clauses (S-6a) and (T-4).

Inductive Case. Let p+ be (p′)+p′′. By the structural in-
duction hypothesis, we can assume that the thesis
holds for the sequence (p′)+. That is, if we let c =
TA{|p-overall, (p

′)+|}, we have

A[[p-overall, (p
′)+]]r = 〈dec′ (io′)∗〉
⇔

C[[c ↓dec′]]r = true .

Moreover, from the hypothesis, we have that

P[[p′′]]r = 〈dec′′ (io′′)∗〉 ⇔ C[[TP {|p′′|} ↓dec′′]]r = true .

Hence, we are left to prove that

⊗p-over(〈dec′ (io′)∗〉, 〈dec′′ (io′′)∗〉) = 〈dec io∗〉
⇔

C[[p-over(c, TP {|p′′|}) ↓dec]]r = true .

For the sake of simplicity, in the following we omit
the sequences of instantiated obligations, as their
combination does not affect the decision dec re-
turned by ⊗p-over. Now, by a case analysis on dec,
we determine the form assumed by the constraint
p-over(c, TP {|p′′|}) ↓dec . In all cases, we rely on the
combination matrix for the operator ⊗p-over defined in
Table 15 and on the definition, reported in Appendix A,
of the constraint resulting from the combination of two
constraint tuples according to the algorithm p-over.
(dec = permit). It follows that dec′ = permit or dec′′ =

permit. Moreover, we have p-over(c, TP {|p′′|}) ↓p =
c ↓p ∨ TP {|p′′|} ↓p.

(dec = deny). It follows that dec′, dec′′ ∈
{deny, not-app} but dec′ = dec′′ = not-app does
not hold. Moreover, we have p-over(c, TP {|p′′|}) ↓d
= (c ↓d ∧TP {|p′′|} ↓d) ∨ (c ↓d ∧ TP {|p′′|} ↓n) ∨
(c ↓n ∧ TP {|p′′|} ↓d).

(dec = not-app). It follows that dec′ = dec′′ = not-app.
Moreover, we have p-over(c, TP {|p′′|}) ↓n = c ↓n
∧ TP {|p′′|} ↓n.

(dec = indet). It follows that dec′ = indet or dec′′

= indet and dec′, dec′′ 6= permit. Moreover, we
have p-over(c, TP {|p′′|}) ↓i = (c ↓i ∧¬TP {|p′′|} ↓p)
∨ (¬c ↓p ∧ TP {|p′′|} ↓i).

In any case, the thesis follows from the definition of C
by the structural induction hypothesis and the hypoth-
esis on p′′.

THEOREM 6.2 [Policy Semantic Correspondence] For all
p ∈ Policy enclosing combining algorithms only using all
as instantiation strategy, and r ∈ R, it holds that

P[[p]]r = 〈dec io∗〉 ⇔ C[[TP {|p|} ↓dec]]r = true

Proof. Due to Theorem 5.2 and Lemma 6.4, without loss of
generality we can assume that the policy p only encloses
algorithms using the all instantiation strategy and prove the
statement in this case. Now, the proof proceeds by induction
on the depth i of p.
Base Case (i = 0). This means that p is of the form

(e target : expr obl : o∗). We proceed by case analysis
on dec.
(dec = permit). By the clause (S-4a), it follows that

E [[expr]]r = true ∧ O[[o∗]]r = io∗

Thus, by Lemma B.1, it follows that

C[[TE{|expr |}]]r = true

and, by Lemma B.2 and the clause (T-2), it follows
that

C[[TOb{|o∗|}]]r = true

On the other hand, by the clause (T-3a), we have that

TP {|(permit target : expr obl : o∗)|} ↓p=
TE{|expr |} ∧ TOb{|o∗|}

Hence, by the definition of C, we can conclude that

C[[TP {|(permit target : expr obl : o∗)|} ↓p]]r=

C[[TE{|expr |}]]r ∧ C[[TOb{|o∗|}]]r=
true ∧ true=true

which proves the thesis.

(dec = deny). We omit the proof since it proceeds like
the previous case.

(dec = not-app). By the clause (S-4a), it follows that

E [[expr]]r = false ∨ E [[expr]]r =⊥

By the clause (T-3a), we have that

TP {|(e target : expr obl : o∗)|} ↓n= ¬ TE{|expr |}

Hence, the thesis directly follows by Lemma B.1 and
the definition of C.

(dec = indet). By the clause (S-4a), the otherwise con-
dition holds, that is

¬(E [[expr]]r = true ∧ O[[o∗]]r = io∗)
∧ ¬(E [[expr]]r = false ∨ E [[expr]]r =⊥)

By applying standard boolean laws and reasoning on
function codomains, this condition can be rewritten
as follows

¬(E [[expr]]r = true ∧ O[[o∗]]r = io∗)
∧ ¬(E [[expr]]r = false ∨ E [[expr]]r =⊥)

= (E [[expr]]r 6= true ∨ O[[o∗]]r = error)
∧ (E [[expr]]r 6∈ {false,⊥})

= E [[expr]]r 6∈ {true, false,⊥} ∨ (E [[expr]]r 6∈ {false,⊥}
∧O[[o∗]]r = error)

= E [[expr]]r 6∈ {true, false,⊥} ∨
(E [[expr]]r 6∈ {true, false,⊥} ∧ O[[o∗]]r = error) ∨
(E [[expr]]r = true ∧ O[[o∗]]r = error)

= E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r = true ∧ O[[o∗]]r = error)

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 39

On the other hand, by the clause (T-3a), we have that

TP {|(e target : expr obl : o∗)|} ↓i=
¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ ¬TOb{|o∗|})

The thesis then follows by Lemmas B.1 and B.2 and
the definition of C.

Inductive Case (i = k + 1). p is of the form
{algall target : expr policies : (p+)k obl-p : o∗p obl-d : o∗d }.
We proceed by case analysis on dec.
(dec = permit). By the clause (S-4b), it follows that

E [[expr]]r = true ∧ A[[algall, (p
+)k]]r = 〈permit io∗1〉

∧ O[[o∗p]]r = io∗2

Thus, by Lemma B.1, it follows that

E [[expr]]r = C[[TE{|expr |}]]r = true

and, by Lemma B.2 and the clause (T-2), it follows
that

C[[TOb{|o∗p |}]]r = true

Since by the induction hypothesis, for all phi in (p+)k

with h ≤ k, it holds that

P[[phi]]r = 〈deci io∗〉 ⇔ C[[TP {|phi |} ↓deci]]r = true

then, by Lemma B.3, it follows that

TA{|algall, (p
+)k|} ↓p= true

On the other hand, by the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k

obl-p : o∗p obl-d : o∗d }|} ↓p
= TE{|expr |} ∧ TA{|algall, (p

+)k|} ↓p ∧ TOb{|o∗p |}

Hence, by the definition of C, we can conclude that

C[[TP {|{algall target : expr policies : (p+)k

obl-p : o∗p obl-d : o∗d }|} ↓p]]r
= C[[TE{|expr |}]]r ∧ C[[TA{|algall, (p

+)k|} ↓p]]r
∧ C[[TOb{|o∗p |}]]r

= true ∧ true ∧ true = true

which proves the thesis.

(dec = deny). We omit the proof since it proceeds like
the previous case.

(dec = not-app). By the clause (S-4b), it follows that

E [[expr]]r = false ∨ E [[expr]]r =⊥
∨ (E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = not-app)

By the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k

obl-p : o∗p obl-d : o∗d }|} ↓n
= ¬ TE{|expr |} ∨ (TE{|expr |} ∧ TA{|algall, (p

+)k|} ↓n)

The thesis then directly follows by Lemmas B.1
and B.3, due to the induction hypothesis and the
definition of C.

(dec = indet). By the clause (S-4b), the otherwise con-
dition holds, that is

¬(E [[expr]]r = true ∧ A[[algall, (p
+)k]]r = 〈e io∗1〉

∧ (A[[algall, (p
+)k]]r = 〈e io∗1〉 =⇒ O[[o∗e]]r = io∗2)

∧ ¬(E [[expr]]r = false ∨ E [[expr]]r = ⊥
∨ (E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = not-app))

(C)

where, to recall the connection between the effect
returned by the combining algorithm and the se-
quence of obligations that is instantiated, we exploit
the tautology

A[[algall, (p
+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = io∗2

=

A[[algall, (p
+)k]]r = 〈e io∗1〉

∧(A[[algall, (p
+)k]]r = 〈e io∗1〉 =⇒ O[[o∗e]]r = io∗2)

By applying standard boolean laws and reasoning on
function codomains, the Condition (C) above can be
rewritten as follows

¬(E [[expr]]r = true ∧ A[[algall, (p
+)k]]r = 〈e io∗1〉

∧ (A[[algall, (p
+)k]]r = 〈e io∗1〉 =⇒ O[[o∗e]]r = io∗2)

∧ ¬(E [[expr]]r = false ∨ E [[expr]]r = ⊥
∨ (E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = not-app))

=

(E [[expr]]r 6= true ∨ A[[algall, (p
+)k]]r ∈ {not-app, indet}

∨ (A[[algall, (p
+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = error))

∧ (E [[expr]]r 6∈ {false,⊥}
∧(E [[expr]]r 6= true ∨ A[[algall, (p

+)k]]r 6= not-app))

=

(E [[expr]]r 6= true ∨ A[[algall, (p
+)k]]r ∈ {not-app, indet}

∨ (A[[algall, (p
+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = error))

∧(E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app))

=

E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r 6∈ {true, false,⊥}
∧ A[[algall, (p

+)k]]r 6= not-app)
∨(E [[expr]]r 6∈ {true, false,⊥}
∧ A[[algall, (p

+)k]]r ∈ {not-app, indet})
∨(E [[expr]]r 6∈ {false,⊥}
∧ A[[algall, (p

+)k]]r 6= not-app
∧ A[[algall, (p

+)k]]r ∈ {not-app, indet})
∨(E [[expr]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r = 〈e io∗1〉
∧ O[[o∗e]]r = error)
∨(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app
∧ A[[algall, (p

+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r = indet)
∨(E [[expr]]r 6∈ {false,⊥}
∧ A[[algall, (p

+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = error)

=

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2765640, IEEE
Transactions on Software Engineering

A. MARGHERI ET AL. 40

E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r = indet)
∨(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)
∨(E [[expr]]r 6∈ {true, false,⊥}
∧A[[algall, (p

+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = error)
∨(E [[expr]]r = true
∧A[[algall, (p

+)k]]r = 〈e io∗1〉 ∧ O[[o∗e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)
∨(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = 〈e io∗1〉
∧O[[o∗e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}
∨(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)
∨(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = 〈permit io∗1〉
∧O[[o∗p]]r = error)
∨(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = 〈deny io∗1〉
∧O[[o∗d]]r = error)

where the last step exploits the fact that e ∈
{permit, deny}.
On the other hand, by the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k

obl-p : o∗p obl-d : o∗d }|} ↓i=
¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓i)
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓p ∧¬ TOb{|o∗p |})
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓d ∧¬ TOb{|o∗d |})

The thesis then follows by Lemmas B.1, B.2 and B.3,
due to the induction hypothesis and the definition of
C.

