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Developer Testing in the IDE: Patterns,
Beliefs, and Behavior

Moritz Beller ,Member, IEEE, Georgios Gousios ,Member, IEEE, Annibale Panichella ,Member, IEEE,

Sebastian Proksch ,Member, IEEE, Sven Amann ,Member, IEEE, and Andy Zaidman ,Member, IEEE

Abstract—Software testing is one of the key activities to achieve software quality in practice. Despite its importance, however, we have

a remarkable lack of knowledge on how developers test in real-world projects. In this paper, we report on a large-scale field study with

2,443 software engineers whose development activities we closely monitored over 2.5 years in four integrated development

environments (IDEs). Our findings, which largely generalized across the studied IDEs and programming languages Java and C#,

question several commonly shared assumptions and beliefs about developer testing: half of the developers in our study do not test;

developers rarely run their tests in the IDE; most programming sessions end without any test execution; only once they start testing, do

they do it extensively; a quarter of test cases is responsible for three quarters of all test failures; 12 percent of tests show flaky behavior;

Test-Driven Development (TDD) is not widely practiced; and software developers only spend a quarter of their time engineering tests,

whereas they think they test half of their time. We summarize these practices of loosely guiding one’s development efforts with the help

of testing in an initial summary on Test-Guided Development (TGD), a behavior we argue to be closer to the development reality of most

developers than TDD.

Index Terms—Developer testing, unit tests, testing effort, field study, test-driven development (TDD), JUnit, TestRoots WatchDog, KaVE

FeedBag++

Ç

1 INTRODUCTION

HOW much should we test? And when should we stop
testing? Since the beginning of software testing,

these questions have tormented developers and their man-
agers alike. In 2006, twelve software companies declared
them pressing issues during a survey on unit testing by
Runeson [1]. Fast-forward to eleven years later, and the ques-
tions are still open, appearing as one of the grand research
challenges in empirical software engineering [2]. But before
we are able to answer howwe should test, wemust first know
howwe are testing.

Post mortem analyses of software repositories by Pinto
et al. [3] andZaidman et al. [4] have provided uswith insights
into how developers create and evolve tests at the commit
level. However, there is a surprising lack of knowledge
of how developers actually test, as evidenced by Bertolino’s
and M€antyl€a’s calls to gain a better understanding of testing

practices [5], [6]. This lack of empirical knowledge of when,
how, and why developers test in their Integrated Develop-
ment Environments (IDEs) stands in contrast to a large body
of folklore in software engineering [2], including Brooks’
statement from “The Mythical Man Month” [7] that “testing
consumes half of the development time.”

To replace folklore by real-world observations, we stud-
ied the testing practices of 416 software developers [8] and
40 computer science students [9] with our purpose-built
IDE plugin WATCHDOG. While these studies started to shed
light on how developers test, they had a number of limita-
tions toward their generalizability: First, they were based
on data from only one IDE, Eclipse, and one programming
language, Java. It was unclear how the findings would gen-
eralize to other programming environments and languages.
Second, the data collection period of these studies stretched
only a period of five months. This might not capture a com-
plete real-world “development cycle,” in which long phases
of implementation-heavy work follow phases of test-heavy
development [4], [10]. Third, we did not know how strongly
the incentives we gave developers to install WATCHDOG

influenced their behavior. Fourth, we had no externally
collected data set to validate our observations against.

In this extension of our original WATCHDOG paper [8],
built on top of our initial draft of the WATCHDOG idea [9]
and its technical tool description [11], we address these
limitations by analyzing data from four IDEs, namely
Eclipse (EC), IntelliJ (IJ), Android Studio (AS), and Visual
Studio (VS), and two programming languages, Java and C#.
We extended our study from 416 developers to an open-
ended field study [12] with 2,433 developers that stretches
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over a data collection period of 2.5 years. By measuring how
developers use the behavior reports WATCHDOG provides as
an incentive, we can now estimate their impact on devel-
opers’ behavior. Thanks to Visual Studio data from the FEED-

BAG++ plugin, developed independently in the KaVE
project [13], we can compare our findings against an exter-
nally collected data set.

In our investigation, we focus on developer tests [14],
i.e., codified unit, integration, or system tests that are engi-
neered inside the IDE by the developer. Developer testing
in the IDE is often complemented by work outside the IDE,
such as testing on the CI server [15], executing tests on the
command line, manual testing, automated test generation,
and dedicated testers, which we explicitly leave out of our
investigation. By comparing the state of the practice to the
state of the art of testing in the IDE [16], [17], [18], we aim
to understand the testing patterns and needs of software
engineers, expressed in our five research questions:

RQ1Which Testing Patterns Are Common In The IDE?
RQ2 What Characterizes The Tests Developers Run In The

IDE?
RQ3How Do Developers Manage Failing Tests In The IDE?
RQ4Do Developers Follow Test-Driven Development (TDD)

In The IDE?
RQ5HowMuch Do Developers Test In The IDE?

If we study these research questions in a large and varied
population of software engineers, the answers to them can
provide important implications for practitioners, designers of
next-generation IDEs, and researchers. To this end, we have
set up an open-ended field study [12] that has run for 2.5 years
and involved 2,443 programmers from industry and open-
source projects around the world. The field study is enabled
by the Eclipse and IntelliJ plugin WATCHDOG and the Visual
Studio plugin FEEDBAG++, which instrument the IDE and
objectively observe howdevelopers work on andwith tests.

Our results indicate that over half of the studied users do
not practice testing; even if the projects contain tests, devel-
opers rarely execute them in the IDE; only a quarter of test
cases is responsible for three quarters of all test failures;
12 percent of test cases show flaky behavior; Test-Driven
Development is not a widely followed practice; and, com-
pleting the overall low results on testing, developers overes-
timate the time they devote to testing almost twofold. These
results counter common beliefs about developer testing
and could help explain the observed bug-proneness of real-
world software systems.

2 STUDY INFRASTRUCTURE DESIGN

In this section, we give a high level overview of our field
study infrastructure design, explore how a practitioner uses
WATCHDOG to convey an intuitive understanding of the
plugin, and describe how our plugins instrument the IDE.

2.1 Field Study Infrastructure

Starting with an initial prototype in 2012, we evolved our
IDE instrumentation infrastructure around WATCHDOG into
an open-source, multi-IDE, and production-ready software
solution [19]. As of version 1.5 released in June 2016, it
features the three-layer architecture depicted in Fig. 1 with
a client, server, and data analysis layer, designed to scale up
to thousands of simultaneous users. In the remainder of this
section, we first describe the client layer containing the four
different IDE plugins for Visual Studio, IntelliJ, Android
Studio and Eclipse (from left to right). We then describe
WATCHDOG’s server and central database and how we con-
verted the KaVE project’s FEEDBAG++ data to WATCHDOG’s
native interval format. We conclude this high-level over-
view of our technical study design with a short description
of our analysis pipeline. In earlier work, we have already
given a more technical description of WATCHDOG’s architec-
ture and the lessons we learned while implementing it [11].

2.1.1 IDE Clients

Weused two distinct clients to collect data from four IDEs: the
WATCHDOG plugin gathers Java testing data from Eclipse
and IntelliJ-based IDEs and the general-purpose interaction
tracker FEEDBAG++gathers C# testing data fromVisual Studio.

WATCHDOG Clients for Eclipse and IntelliJ. We originally
implemented WATCHDOG as an Eclipse plugin, because the
Eclipse Java Development Tools edition (JDT) is one of
the most widely used IDEs for Java programming [20].
With WATCHDOG 1.5, we extended it to support IntelliJ and
IntelliJ-based development platforms, such as Android
Studio, “the official IDE for Android” [21]. Thanks to their
integrated JUnit support, these IDEs facilitate developer
testing.

WATCHDOG instruments the Eclipse JDT and IntelliJ envi-
ronments and registers listeners for user interface (UI)
events related to programming behavior and test execu-
tions. Already on the client side, we group coherent events
as intervals, which comprise a specific type, a start and an
end time. This abstraction allows us to closely follow the
workflow of a developer without being overwhelmed by
hundreds of fine-grained UI events per minute. Every time
a developer reads, modifies, or executes a JUnit test or pro-
duction code class, WATCHDOG creates a new interval and
enriches it with type-specific data.

FEEDBAG++ for Visual Studio. FEEDBAG++ is a general-
purpose interaction tracker developed at TU Darmstadt. It
is available for Visual Studio, as an extension to the widely
used ReSharper plugin [22], which provides static analyses
and refactoring tools to C# developers.

FEEDBAG++ registers listeners for various IDE events
from Visual Studio and the ReSharper extension, effectively
capturing a superset of the WATCHDOG listeners. The cap-
tured information relevant for this paper includes how
developers navigate and edit source files and how they use
the test runner provided by ReSharper. The test recognition

Fig. 1. WATCHDOG’s three-layer architecture.
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covers common .NET testing frameworks, such as NUnit or
MSUnit. In contrast to WATCHDOG, which already groups
events into intervals on the client side, FEEDBAG++ uploads
the raw event stream.

2.1.2 WATCHDOG Server

The WATCHDOG IDE plugins cache intervals locally, to allow
offline work, and automatically send them to our server as a
JSON stream. The WATCHDOG server accepts this JSON data
via its REST API. After sanity checking, the intervals are
stored in a NoSQL database. This infrastructure scales up to
thousands of clients and makes changes in the clients’ data
format easy to maintain. Moreover, we can remotely trigger
an update of all WATCHDOG clients, which allows us to fix
bugs and extend its functionality after deployment. Auto-
mated ping-services monitor the health of our web API, so
we can immediately react if an outage occurs. Thereby, our
WATCHDOG server achieved an average uptime of 98 percent
during the 2.5 years of field study.

2.1.3 WATCHDOG Analysis Pipeline

TheWATCHDOG pipeline is a software analytics enginewritten
in R comprising over 3,000 source lines of codewithoutwhite-
spaces (SLOC). We use it to answer our research questions
and to generate daily reports for the WATCHDOG users. The
pipeline reads in WATCHDOG’s users, projects, and intervals

from the NoSQL database and converts them into intermedi-
ate formats fit for answering our research questions.

2.2 WATCHDOG Developer Survey & Testing Analytics

To give an understanding of the study context and incentives
that WATCHDOG offers, we explore it from a practitioner’s
perspective in this section. Wendy is an open-source devel-
oper who wants to monitor how much she is testing during
her daily development activities inside her IDE. Since
Wendy uses IntelliJ, she installs the WATCHDOG plug-in from
the IntelliJ plug-in repository.

Registration. Once installed, a wizard guides Wendy
through the WATCHDOG registration process: First, she regis-
ters herself as a user, then the project for which WATCHDOG

should collect development and testing statistics, and
finally, she fills in an interactive voluntary in-IDE survey
about testing. Fig. 2 shows one of the up to five pages of the
survey. Key questions regard developers’ programming
expertise, whether and how they test their software, which
testing frameworks they employ and how much time they
think they spend on testing. Since FEEDBAG++ does not col-
lect comparable survey data, we exclude it from research
questions relying on it. Wendy, however, continues to work
on her project using IntelliJ, as usual, while WATCHDOG

silently records her testing behavior in the background.
Developer Statistics. After a short development task,

Wendy wants to know how much of her effort she devoted
to testing and whether she followed TDD. She can retrieve
two types of analytics: the immediate statistics inside the IDE
shown in Fig. 3 and her personal project report on our website
shown in Fig. 4. Wendy opens the immediate statistics view.
WATCHDOG automatically analyzes the recorded data and
generates the view in Fig. 3, which provides information
about production and test code activities within a selected
time window. Sub-graph�1 in Fig. 3 shows Wendy that she
spent more time (over one minute) reading than writing

Fig. 2. Exemplary wizard page of WATCHDOG’s project survey.

Fig. 3. WATCHDOG’s immediate statistics view in the IDE (Source: [11]).

Fig. 4. WATCHDOG’s project report (Source: [11]).

BELLER ETAL.: DEVELOPER TESTING IN THE IDE: PATTERNS, BELIEFS, AND BEHAVIOR 263

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:35:26 UTC from IEEE Xplore.  Restrictions apply. 



(only a few seconds). Moreover, of the two tests she executed
�2 , one was successful and one failed. Their average execu-
tion runtime was 1.5 seconds. Finally, Wendy observes that
the majority (55 percent) of her development time has been
devoted to engineering tests�3 , not unusual for TDD [8].

While the immediate statistics view provides Wendy with
an overview of recent activities inside the IDE, the project
report gives her a more holistic view of her development
behavior, including more computationally expensive analy-
ses over the whole project history. She accesses her report
through a link from the IDE or directly via the TESTROOTS

website,1 providing the project’s ID. Wendy’s online project
report summarizes her development behavior in the IDE
over the whole recorded project lifetime. Reading the report
in Fig. 4, Wendy observes that she spent over 195 hours in
total on the project under analysis, an average of 36 minutes
per day �1 . She worked actively with IntelliJ in 58 percent
of the time that the IDE was actually open. The time spent
on writing Java code corresponds to 55 percent of the total
time, while she spent the remaining 45 percent reading
Java code. When registering the project, Wendy estimated
the working time she would spend on testing to equal
50 percent. With the help of report, she finds out that her
initial estimation was relatively precise, since she actually
spent 44 percent of her time working on test code.

The project report also provides Wendy with TDD statis-
tics for the project under analysis, �2 in Fig. 4. Moreover,
anonymized and averaged statistics from the large WATCH-

DOG user base allow Wendy to put her own development
practices into perspective. This way, project reports foster
comparison and learning among developers. Wendy finds
that, for her small change, she was well above average
regarding TDD use: She learned how to develop TDD-style
from the “Let’s Developer” YouTube channel.2 The WATCH-

DOG project for “Let’s Developer” is the second highest
TDD follower of all WATCHDOG users on 5th June, 2017
(following TDD for 37 percent of all modifications).3

2.3 IDE Instrumentation

Here, we explain how WATCHDOG clients instrument the
IDE. We then continue with a description of how we trans-
form FEEDBAG++ events into WATCHDOG intervals.

2.3.1 WATCHDOG Clients

WATCHDOG focuses around the concept of intervals. Table 1
gives a technical description of the different interval types.
They appear in the same order as rows in Fig. 5, which
exemplifies a typical development workflow to demonstrate
howWATCHDOG monitors IDE activity with intervals.

TABLE 1
Overview of WATCHDOG Intervals and How We Transformed FEEDBAG++ Events to Them.

Related Intervals Appear without Horizontal Separation

Interval Type WATCHDOG Description FEEDBAG++ Transformation

JUnitExecution y Interval creation invoked through the Eclipse JDT-integrated
JUnit runner, which also works for Maven projects (example in
Fig. 6). Each test execution is enriched with the SHA-1 hash of its
test name (making a link to a Reading or Typing interval possi-
ble), test result, test duration, and child tests executed.

FEEDBAG++ tracks the ReSharper runner for the execution of
NUnit tests. The results of running tests are easy to match to
JUnit’s result states. However, NUnit does not differentiate
between errored and failed tests, so we map all failing runs to the
latter and only report errors for inconclusive test runs.

Reading Interval in which the user was reading in the IDE-integrated file
editor. Enriched with an abstract representation of the read file,
containing the SHA-1 hash of its filename, its SLOC, and whether
it is production or test code. A test can further be categorized into
a test (1) which uses JUnit and is, therefore, executable in the IDE,
(2) which employs a testing framework, (3) which contains
“Test” in its filename, or (4) which contains “test” in the project
file path (case-insensitive). Backed by inactivity timeout.

FEEDBAG++ tracks document and window events, allowing us
to identify when a developer opens a specific file or brings it
back to focus. If no other activity interrupts this, we count it as
reading, until the inactivity threshold is reached.

Typing Interval in which the user was typing in the IDE. Enriched with
the Levenshtein edit distance, backed by inactivity timeout.

We use FEEDBAG++’s edit events to distinguish Reading from
Typing intervals and approximate the Levenshtein distance
via the number of Typing intervals.

UserActive Interval in which the user was actively working in the IDE (evi-
denced for example by keyboard or mouse events). Backed by
inactivity timeout.

Each user-triggered event extends the current interval (or cre-
ates a new one, if there is none). Once the inactivity threshold is
reached or the event stream ends, we close the current interval.

EclipseActive y * Interval in which the IDE had the focus on the computer. FEEDBAG++ monitors the active window in the same way as
WATCHDOG does. We group events into intervals.

Perspective Interval describing which perspective the IDE was in (Debug-
ging, regular Java development, ...).

We approximate themanually changed Eclipse Perspectives,
withVisual Studio’s automatically changing perspectives.

WatchDogView * Interval that is created when the user consults the immediate
WATCHDOG statistics. Only available in the Eclipse IDE.

Not provided in FEEDBAG++.

EclipseOpen y Interval in which the IDE was open. If the computer is sus-
pended, the EclipseOpen is closed and the current sessions
ends. Upon resuming, a new EclipseOpen interval is started,
discarding the time in which the computer was sleeping. Each
session has a random, unique identifier.

FEEDBAG++ generates specific events that describe the IDE
state. From the start-up and shutdown events of the IDE, we
generate EclipseOpenintervals.

y As of WATCHDOG 1.5, we support multiple IDEs, so better interval names would have been TestExecution, IDEActive, and IDEOpen.
*Not shown in Fig. 5.

1. http://testroots.org/report.html
2. http://www.letsdeveloper.com
3. Project report: http://goo.gl/k9KzYj
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Exemplary Development Workflow. Our developer Wendy
starts her IDE. The integrated WATCHDOG plugin creates
three intervals: EclipseOpen, Perspective, and User-

Active�1 . Thereafter, Wendy executes the unit tests of the
production class she needs to change, triggering the crea-
tion of a JUnitExecution interval, enriched with the test
result “Passed” �2 . Having browsed the source code of the
file �3 to understand which parts need to change (a Read-

ing interval is triggered), Wendy performs the necessary
changes. A re-execution of the unit test shows Wendy that
there is a failing test after her edit�4 . Wendy steps through
the test with the debugger �5 and fixes the error. The final
re-execution of the test�6 succeeds.

Interval Concept. WATCHDOG starts or prolongs intervals
concerning the user’s activity (Reading, Typing, and
other general activity) once it detects an interval-type pre-
serving action. For example, if there is a Reading interval
on class X started for 5 seconds and the plugin receives a
scroll event, the interval is prolonged. However, if we
detect that the IDE lost focus (end of EclipseActive

interval), or the user switched from reading file X (Read-
ing) to typing in file Y (Writing), we immediately end the
currently opened interval. WATCHDOG closes all such activ-
ity-based intervals after an inactivity timeout of 16 seconds,
so that we adjust for breaks and interruptions. A timeout
length of roughly 15 seconds is standard in IDE-based obser-
vational plugins [9], [23], [24]. Most interval types may over-
lap. For example, WATCHDOG always wraps Typing or
Reading intervals inside a UserActive interval (which it,
in turn, wraps in an EclipseActive, Perspective, and
EclipseOpen interval). However, Reading and Typing

intervals are by nature mutually exclusive. We refer to
an IDE session as the time span in which the IDEwas contin-
uously running (even in the background) and not closed
or interrupted, for example, because the developer sus-
pended the computer. All intervals that belong to one IDE
session are hence wrapped within one EclipseOpen

interval,�1 in Fig. 5.
We enrich Reading and Typing intervals with different

information about the underlying file. To all intervals we

add a hash of the filename and its file type, such as XML or
Java class. For Java classes, we add their SLOC and classify
them as production or test code. As our churn measure for
the size of a change, we also add the Levenshtein edit dis-
tance [25] between the content of the file before and after
the modification during the interval to Typing intervals.

Test Recognition. WATCHDOG has four different recogni-
tion categories for test classes (see Table 1): To designate the
file as a test that can be executed in the IDE, we require the
presence of at least one JUnit import together with at least
one method that has the @Test annotation or that follows
the testMethod naming convention. This way, we support
both JUnit3 and JUnit4. Furthermore, we recognize imports
of common Java test frameworks and their annotations
(Mockito, PowerMock). As a last resort, we recognize when
a file contains “Test” in its file name or the project file path.
It is a common convention to pre- or postfix the names of
test files with Test [4], or to place all test code in one sub-
folder. For example, the standard Maven directory layout
mandates that tests be placed under src/test/java [26].
Thereby, we can identify and differentiate between all tests
that employ standard Java testing frameworks as test run-
ners for their unit, integration, or system tests, test-related
utility classes, and even tests that are not executable in the
IDE. We consider any Java class that is not a test according
to this broad test recognition strategy to be production code.

2.3.2 FEEDBAG++-to-WATCHDOG Interval Transformation

In contrast to the native WATCHDOG clients, FEEDBAG++ pro-
vides us with a raw event stream (see Section 2.1.1). To feed
FEEDBAG++ data into the WATCHDOG pipeline, we derive
intervals via a post factum analysis of FEEDBAG++ data.
In addition to this technical difference, several minor
semantic differences exist in the instrumented IDEs. We
had to find congruent concepts for them and transform
FEEDBAG++ events to intervals.

Concept Mapping. The Eclipse, IntelliJ, and the Visual
Studio IDEs are similar conceptually, yet differ in some
implementation details important to our study. In addition
to IDE concepts, we had to map C# concepts to their Java
counterparts.

One such central difference is the different testing frame-
works available in the C# ecosystem. FEEDBAG++ recogni-
zes the same four categories of test classes described in
Section 2.3.1: To designate a file as a test that can be executed
in Visual Studio, we require an import of one of the .NET
testing frameworks NUnit, XUnit, MSUnit, csUnit, MbUnit,
or PetaTest. Furthermore, we recognize imports of the C#
mocking frameworks moq, Rhino.Mocks, NSubstitute, and
Simple.Mocking.

A difference between Visual Studio and Eclipse is that the
former does not have perspectives that developers can man-
ually open, but instead it automatically switches between its
design view for writing code, and its debug view for debugging
a program run. We map the concept of these Visual Studio
views to the Perspective intervals inWATCHDOG.

Arguably the largest difference between IDEs is how they
manage different projects and repositories. Eclipse organizes
source code in aworkspace that may containmany potentially
unrelated projects. IntelliJ groups several modules in a project.
Visual Studio organizes code in a solution, which contains

Fig. 5. Exemplary workflow visualization with intervals. Table 1 describes
the interval types in the same order as they appear in the different rows.
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a number of usually cohesive projects. In Java, a single project
or module often contains both the production code and test
code. This is not the case in Visual Studio, where the two
kinds of source code are typically split into two separate proj-
ects. If not accounted for, this leads to a higher number of
observed projects in Visual Studio and distorts the answers
to some of our project-level research questions. To counter
this problem, we need functions to map test code from
one project to its corresponding production code in another.
The notion of a Visual Studio solution and even more so,
IntelliJ’s project matches the definition of a Watchdog project,
understood as a cohesive software development effort. To avoid
confusion about the overloaded “project” term, we asked the
user explicitly whether “all Eclipse projects in this work-
space belong to one ‘larger’ project?” in theWATCHDOG regis-
tration dialogues (see Section 2.2).

FEEDBAG++ does not measure the Levenshtein distance in
Typing intervals. However, WATCHDOG data shows that the
edit distance generally correlates strongly with the number
of edits: The number of production code edits correlates at
r ¼ 0:88 with production code churn, i.e., the amount of
changed code [27], and the number of test edits is correlated
at r ¼ 0:86 with test code churn. Hence, we use the num-
ber of edits as a proxy for the missing churn in FEEDBAG++
data.

Event Transformation. As a second step, we transformed
the event stream to intervals. We re-implemented transfor-
mation rules that work on the raw FEEDBAG++ event stream
based on the interval detection logic that the WATCHDOG

plugin family performs within the IDE. We then store it
in WATCHDOG’s central NoSQL database store (see Fig. 1).
In the right column of Table 1, we sketch how we derive
the various WATCHDOG interval types from the events that
FEEDBAG++ captures. From there, we simply re-use the
existing WATCHDOG analysis pipeline.

3 RESEARCH METHODS

In this section, we describe the methods with which we
analyze the data for our research questions.

3.1 Correlation Analyses (RQ1, RQ2)

We address our research questions RQ1 and RQ2 with the
help of correlation analyses. For example, one of the steps
to answer RQ1 is to correlate the test code churn introduced
in all Typing intervals with the number of test executions.

Intuitively, we have the assumption that if developers
change a lot of code, they would run their tests more often.
Like all correlation analyses, we first compute the churn
and the number of test executions for each IDE session and
then calculate the correlation over these summed-up values
of each session. IDE sessions form a natural divider between
work tasks, as we expect that developers typically do not
close their IDE or laptop at random, but exactly when they
have finished a certain task or work step (see Table 1).

3.2 Analysis of Induced Test Failures (RQ3)

We abstract and aggregate the tests of multiple projects to
derive general statements like “only 25 percent of tests
are responsible for 75 percent of test failures in the IDE.”
Algorithm 1 outlines the steps we use to count the number

of executed test cases and the number of corresponding test
failures they have caused per project. We iterate over all
failed test cases (line 9), determine which percentage of
failed test executions they are responsible for (line 10) and
put the resulting list of test cases in descending order, start-
ing with the test case with the highest responsibility of test
failures (line 12). We then normalize the absolute count
numbers to the relative amount of test cases in the project
(line 14) by calling CALCFAILINGTESTPERCENTAGE on every proj-
ect, average the results so that each project has the same
weight in the graph, and plot them.

The algorithm makes assumptions that lead to a likely
underestimation of the percentage of test failures caused by
a specific test: First, it assumes that test names are stable. If
test names change during our field study, they count as two
different tests, even though their implementation might
stay the same. Second, it excludes projects that only have a
small number of test cases (< 10). If, for instance, a project
only has two test cases, the result that 50 percent (i.e., one)
of them is responsible for all test failures would be too
coarse-grained for our purposes.

Algorithm 1. Sketch of Test Failure Percentage Calculation

1: procedure CALCFAILINGTESTPERCENTAGE(project)
2: tcs.ok successful(testcases(project)) "List of every sin-

gle successful execution of a test case
3: tcs.failed failed(testcases(project)) "List of every single

failed or errored execution of a test case
4: tcs tcs.ok [ tcs.failed
5: if n(unique(tcs) < 10) then "Not enough test cases
6: return
7: end if
8: fail.tc "Map between a test case name (key) and the rela-

tive amount of test executions in which it failed (value)
9: for tc 2 unique(tcs.failed) do
10: fail.tc(tc) n(tc 2 tcs) / n(failed(tests(project)))
11: end for
12: values(fail.tc) order(values(fail.tc), descending)
13: fail.perc "Per percentage of all test cases, returns which

percentage of failures they are responsible for
"Invariants: fail.perc(0) ¼ 0 and fail.perc(1) ¼ 1

14: for i 2 f0%; 0:1%; 0:2%; . . . ; 100%g do
15: first.i.tcs head(fail.rate, round(i � n(unique(tcs))))
16: failure.rate(i) sum(values(first.i.tcs))
17: end for
18: return fail.perc
19: end procedure

3.3 Sequentialization of Intervals (RQ3, RQ4)

For RQ3 and RQ4, we need a linearized stream of intervals
following each other. We generate such a sequence by order-
ing the intervals according to their start time. For example, in
Fig. 5, the sequenced stream after the first test failure in (4) is:

Failing Test! Switch Perspective! Start

JUnit Test! Read Production Code! ...

3.4 Test Flakiness Detection (RQ3)

Flaky tests are defined as tests that show non-deterministic
runtime behavior: they pass one time and fail another time
without modifications of the underlying source code or
test [28]. Applied to the WATCHDOG interval concept, we
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look for subsequent executions of test cases embedded in
JUnitExecution intervals that have no Typing interval
to either production or source code in-between them in the
above linearized interval stream from Section 3.3. If the
result of those subsequent executions differs, for example
Failing Test ! � � � ! Passing Test, we regard such
a test as flaky. To control for external influences, we only do
this within the confines of a session, not across sessions.
Otherwise, the risk for external influences becomes too
large, for example through updating the project via the com-
mand line without our IDE plugin noticing.

3.5 Recognition of Test-Driven Development (RQ4)

Test-Driven development is a software development process
originally proposed by Beck [29]. While a plethora of studies
have been performed to quantify the supposed benefits of
TDD [30], [31], it is unclear how many developers use it in
practice. In RQ4, we investigate how many developers fol-
low TDD to which extent. In the following, we apply Beck’s
definition of TDD to theWATCHDOG interval concept, provid-
ing a formally verifiable definition of TDD in practice. Since
TDD is a process sequence of connected activities, it lends
itself towardmodeling as a statemachine [32].

TDD is a cyclic process comprising a functionality-
evolution phase depicted in Fig. 7, optionally followed by
a functionality-preserving refactoring phase depicted in
Fig. 8. We can best illustrate the first phase with the strict
non-finite automaton (NFA, [33]) in Fig. 7a and our devel-
oper Wendy, who is now following TDD: before Wendy
introduces a new feature or performs a bug fix, she assures
herself that the test for the production class she needs to
change passes (JOk in Fig. 7 stands for a JUnitExecution
that contains a successful execution of the test under

investigation). Thereafter, she first changes the test class
(hence the name “test-first” software development) to assert
the precise expected behavior of the new feature or to docu-
ment the bug she is about to fix. We record such changes in
a Typing interval on test code. Naturally, as Wendy has
not yet touched the production code, the test must fail
(JFail). Once work on the test is finished, Wendy switches
to production code (Type Prod.), in which she makes pre-
cisely the minimal required set of changes for his failing test
to pass again (JOk). The TDD cycle can begin anew.

When we applied this strict TDD process, we found that
it is difficult to follow in reality, specifically the clear separa-
tion between changes to test code and later changes to pro-
duction code. Especially when developing a new feature
like the Board of a board game in Fig. 9, developers face
compilation errors during the test creation phase of TDD,
because the class or method they want to assert on (Board)
does not exist yet, since the test has to be created before the
production code. To be able to have an executing, but failing
test, they have to mix in the modification or creation of pro-
duction code. Moreover, developers often know the result
of a test without executing it (for example, because it con-
tains obvious compile errors like in Fig. 9), and that a test
case succeeds before they start to work on it (for example,
because they fixed the test on their previous day at work).
To adjust for these deviations between a strict interpretation
of TDD and its application, we created the lenient non-finite
automaton (�-NFA, [33]) in Fig. 7b, which is more suitable
for the recognition of TDD in practice. Due to the �-edge, a
TDD cycle can directly start with modifications of test code.

TDD does not only comprise a functionality-changing
phase, but also the code refactor phase depicted in Fig. 8.
In this phase, developers have the chance to perform func-
tionality-preserving refactorings. Once they are finished
with refactoring, the tests must still pass [29]. It is impossible
to separate changes between production and test classes in
the refactoring phase in practice, as the latter rely on the API
of the first.

To assess how strictly developers follow TDD, we con-
vert all three NFAs to their equivalent regular expressions

Fig. 7. Strict and lenient NFAs of TDD. JOk stands for a passing and
JFail for a failing test execution (JUnitExecution).

Fig. 8. NFA for the refactoring phase of TDD.

Fig. 9. Compile errors while creating a TDD test.

Fig. 6. Eclipse’s visualization of the JUnitExecution constituents.
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and match them against the linearized sequence of intervals
(see Section 3.3). For a more efficient analysis, we can
remove all intervals from the sequentialized stream except
for JUnitExecution and Typing intervals, which we
need to recognize TDD. To be able to draw a fine-grained
picture of developers’ TDD habits, we performed the analy-
sis for each session individually. We count refactoring activ-
ity towards the total usage of TDD. The portion of matches
in the whole string sequence gives us a precise indication of
a developer’s adherence to TDD.

3.6 Statistical Evaluation (RQ1–RQ5)

When applying statistical tests in the remainder of this
paper, we regard results as significant at a 95 percent confi-
dence interval (a ¼ 0:05), i.e., iff p4a. All results of tests ti
are statistically significant at this level, i.e., 8i : pðtiÞ4a.

For each test ti, we first perform a Shapiro-Wilk Normality
testsi [34]. Since all our distributions significantly deviate
from a normal distribution according to Shapiro-Wilk (8i :
pðsiÞ < 0:014a), we use non-parametric tests: 1) For testing
whether there is a significant statistical difference between
two distributions, we use the non-parametric Wilcoxon Rank
Sum test. 2) For performing correlation analyses, we use the
non-parametric Spearman rank-order ( r ) correlation coeffi-
cient [35]. Hopkins’s guidelines facilitate the interpretation
of r [36]: they describe 04j r j < 0:3 as no, 0:34j r j < 0:5
as a weak, 0:54j r j < 0:7 as a moderate, and 0:74j r j41 as
a strong correlation.

4 STUDY PARTICIPANTS

In this section, we first explain how we attracted study
participants, report on their demographics, and then show
how we produced a normalized sample.

4.1 Acquisition of Participants

We reached out to potential developers to install WATCHDOG

(WD) and FEEDBAG++ (FB) in their IDE by:

1) Providing project websites (WD, FB).4

2) Raffling off prizes (WD).
3) Delivering value to WATCHDOG users in that it gives

feedback on their development behavior (WD).
4) Writing articles in magazines and blogs relevant

to Java and Eclipse developers: Eclipse Magazin,
Jaxenter, EclipsePlanet, Heise News (WD).

5) Giving talks and presentations at developer confer-
ences: Dutch Testing Day, EclipseCon (WD).

6) Presenting at research conferences [8], [9], [13], [23],
[37] (WD, FB).

7) Participating in a YouTube Java Developer series [38]
(WD).

8) Penetrating social media: Reddit, Hackernews,
Twitter, Facebook (WD, FB).

9) Approaching software development companies
(WD, FB).

10) Contacting developers, among them 16,058 Java
developers on GitHub (WD).

11) Promoting our plugins inwell-established Eclipse [39],
IntelliJ [40], and Visual Studio [41] marketplaces
(WD, FB).

12) Launching a second marketplace that increases
the visibility of scientific plugins within the Eclipse
ecosystem, together with the Eclipse Code Recom-
menders project [42] (WD).

13) Promoting the plugin in software engineering labs at
TU Darmstadt (FB).

14) Approaching an electrical engineering research
group working with Visual Studio (FB).

We put emphasis on the testing reports of WATCHDOG to
attract developers interested in testing. Instead, for FEEDBAG
++, we mainly advertised its integrated code completion
support.

4.2 Demographics of Study Subjects

Table 2 and Fig. 10 provide an overview of the observational
data we collected for this paper. In total, we observed
14,266,683 user interactions (so-called intervals, see Section 2.1)
in 77,110 distinct IDE sessions. Fig. 10a shows how 10 percent
of our 2,443 users contributed the wealth of our data
(80 percent). The majority of users and, thus, data stems
from the Eclipse IDE, shown in Fig. 10b. Reasons include
that the collection period for Eclipse is longer than that
of the other IDEs and that we advertised it more heavily.
In this paper, we report on an observatory field study
stretching over a period of 2.5 years, on data we collected
from the 15th of September 2014 to March 1st 2017, exclud-
ing student data that we had analyzed separately [9], but
including our original developer data [8]. Data periods for
other plugins are shorter due to their later release date.
As we updated WATCHDOG to fix bugs and integrate new
features (see Section 2.1.2), we also filtered out data from
deprecated versions 1.0 and 1.1.

Our users stem from 118 different countries. The most
frequent country of is the United States (19 percent of users),
followed by China (10 percent), India (9 percent), Germany
(6 percent), The Netherlands (4 percent), and Brazil
(4 percent). The other half comes from the 112 remaining

TABLE 2
Descriptive Statistics of Study Data and Participants

IDE Language Plugin & Version #Users #Countries #Projects Work Time #Sessions #Intervals Collection Period Runtime

EC Java WD 1.0 – 2.0.2 2,200 115 2,695 146.2 years 66,623 12,728,351 15 Sept. 2014 – 1 March 2017 488 min

IJ Java WD 1.5 – 2.0.2 117 30 212 3.9 years 5,511 950,998 27 June 2015 – 1 March 2017 25 min

AS Java WD 1.7 – 2.0.2 71 27 178 1.0 year 2,717 347,468 26 Jan. 2016 – 1 March 2017 13 min

VS C# FB 0.1010 – 0.1015 55 unknown 423 9.7 years 2,259 239,866 12 June 2016 – 1 March 2017 13 min

S Java, C# WD, FB 2,443 118 3,508 161 years 77,110 14,266,683 15 Sep. 2014 – 1 March 2017 541 min

SCN Java, C# WD, FB 181 38 434 33.9 years 15,928 3,137,761 15 Sep. 2014 – 1 March 2017 83 min

4. http://www.testroots.org, http://kave.cc
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countries, with less than 4 percent total share each. Our
developers predominately use some variant of Windows
(81 percent of users), MacOS (11 percent), or Linux
(8 percent). Their programming experience in Fig. 10c is
normally distributed (a Shapiro-Wilks test fails to reject
the null hypothesis that it is not normally distributed at
p ¼ 0:15). Generally, we have more inexperienced (< 3
years, 69 percent of users) than experienced users. On
the other hand, very experienced developers (57 years)
represent more than 13 percent of our population.

Overall, the 2,443 participants registered 3,508 unique
projects. The registered projects stem from industry as well
as famous open-source initiatives, such as the Apache
Foundation, but also include private projects.

Using the average work time for OECD countries of
1,770 hours per year,5 we observed a total work time of
161 developer years on these registered projects in the IDE.
The last column in Table 2 denotes the runtime of our analy-
sis pipeline running on a dedicated server with 128GB RAM
using eight Intel Xeon E5-2643 cores at 3.50 GHz.

This paper broadens our single-IDE study on developer
testing in the IDE to a very large set of developers (a ten-
fold increase over our original WATCHDOG data [9]). Survey
responses from 2,291 registrations of WATCHDOG users and
projects complement our technical IDE observations that
now stem from four IDEs in two mainstream programming
languages. FEEDBAG++ data stems from the March 1st, 2017
event data set [43].

4.3 Data Normalization

As discussed in Section 4.2, the majority of our intervals (80
percent) stems from only 378 users. The long tail of users
that contributed only little data might impact some of our
analyses (see Fig. 10a). Conversely, the large amount of data
we received from few developers might affect our results
with a bias toward the individual development preferences
of those few developers. To reduce both biases, we cap
and normalize our data using stratified random sampling
on the number of sessions per user. We chose sessions,
because they are at a finer granularity than projects, but still
allow analyses such as the TDD recognition, which would
not work when sampling random intervals that have no
connection to each other.

We first order our users by the number of sessions each
user submitted and cap at below the user at which we
reached 80 percent of all sessions. This leaves in users with
at least 88 sessions each, effectively removing the bulk of
users who barely contributed data and might, thus, skew
user- or project-based analyses. The problem that few users
have a disproportionately large impact on the analyzed
data remains. Hence, we normalize the data by randomly
sampling 88 of the available sessions for each user. After
this, every user has the same influence on the results in
our new capped, normalized data set, depicted as SCN in
Table 2. In comparison to our overall population S, the
distribution of originating countries and IDEs is similar.
The only apparent change in population demographics is
an almost three-fold increase of very experienced develop-
ers to 32 percent in SCN .

Since our study is a large-scale observatory field study,
we primarily use our non-normalized data set S when
answering research questions. Filtering criteria remain to
some extent arbitrary and might induce a bias themselves.
Whenever there is a significant difference in the capped nor-
malized data set SCN , we report and discuss this in the
answer to the appropriate research question.

5 RESULTS

In the following, we report the results to each of our
research questions individually per section.

5.1 RQ1:Which Testing Patterns Are Common
in the IDE?

To answer how and why developers test, we must first
assess:

RQ1.1How Common Is Codified Testing in the IDE?

When we apply our broad recognition of test classes as
described in Section 2.3.1 and Table 1, we detect test activities
in only 43 percent of projects in our data set (EC: 46 percent,
IJ: 26 percent, AS: 28 percent, VS: 26 percent), meaning that,
in total, only 1,498 projects out of 3,508 contain tests that
a user either read, changed, or executed in the IDE. This is
one of the analyses that is potentially impacted by data
skews due to a short amount of observed development
behavior for many users. However, even in SCN , only
255 projects out of 434 (58 percent) showed testing activity.

Fig. 10. Distributions of the number of sessions per developer (all IDEs), per IDE (log scale), and their programming experience (WATCHDOG).

5. http://stats.oecd.org/index.aspx?DataSetCode=ANHRS
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If we restrict the recognition to tests that can be run
through the IDEs, we find that 594 projects have such tests
(EC: 436, IJ: 88, AS: 27, VS: 40), about 17 percent of the regis-
tered projects (EC: 16 percent, IJ: 22 percent, AS: 15 percent,
VS: 9 percent). In SCN , this percentage is somewhat higher at
29 percent, with 124 projects with executable tests. By com-
paring the WATCHDOG projects IDE data to what developers
claimed in the survey, we could technically detect JUnit tests
in our interval data (as either Reading, Typing, or JUni-
tExecution) for only 43 percent of projects that should
have such tests according to the survey (EC: 42 percent, IJ: 61
percent, AS: 32 percent). Here, we find the only obvious dif-
ference in SCN , where the percentage of users who claimed
to have JUnit tests andwho actually had them, is 73 percent.

Our second sub-research question is:

RQ1.2How Frequently Do Developers Execute Tests?

Of the 594 projects with tests, we observed in-IDE test
executions in 431 projects (73 percent, EC: 75 percent, IJ:
68 percent, AS: 37 percent, VS: 80 percent). In these 431 proj-
ects, developers performed 70,951 test runs (EC: 63,912, IJ:
3,614, AS: 472, VS: 2,942). From 59,198 sessions in which
tests could have been run because we observed the corre-
sponding project to contain an executable test at some point
in our field study, we observed that in only 8 percent or
4,726 sessions (EC: 8.1 percent, IJ: 7.4 percent, AS: 3.4 per-
cent, VS: 8.9 percent) developers made use of them and exe-
cuted at least one test. The average number of executed
tests per session is, thus, relatively small, at 1.20 for these
431 projects. When we consider only sessions in which at
least one test was run, the average number of test runs per
session is 15 (EC: 15.3, IJ: 11.1, AS: 7.6, VS: 17.9).

When developers work on tests, we expect that the more
they change their tests, the more they run their tests to
inform themselves about the current execution status of the
test they are working on. RQ1.3 and following can, there-
fore, give an indication as to why and when developers test:

RQ1.3 Do Developers Excute Their Test Code Changes?

The correlation between test code changes and the num-
ber of test runs yields a moderately strong r ¼ 0:65 (EC:
0.64, IJ: 0.60, AS: 0.41, VS: 0.66) in our data sample
(p-value < 0:01). In other words, the more changes develop-
ers make to a test, the more likely are they to execute this
test (and vice versa).

A logical next step is to assess whether developers run
tests when they change the production code: Do developers
assert that their production code still passes the tests?

RQ1.4Do Developers Test Their Production Code Changes?

The correlation between the number of test runs and
number of production code changes is generally weaker,

with r ¼ 0:39 (EC: 0.38, IJ: 0.47, AS: 0.20, VS: 0.60) and
p-value < 0:01.

Finally, in how many cases do developers modify their
tests, when they touch their production code (or vice versa),
expressed in:

RQ1.5 DoDevelopers Co-Evolve Test and Production Code?

In this case, the Spearman rank correlation test indicates
no correlation ( r ¼ 0:31, EC: 0.26, IJ: 0.58, AS: 0.43, VS:
0.73) between the number of changes applied to test and
production code. This means that developers do not modify
their tests for every production code change, and vice versa.

5.2 RQ2: What Characterizes the Tests Developers
Run in the IDE?

When developers run tests in the IDE, they naturally want
to see their execution result as fast as possible. To be able to
explain how and why developers execute tests, we must,
therefore, first know how long developers have to wait
before they see a test run finish:

RQ2.1How Long Does a Test Run Take?

In all IDEs except for Visual Studio, 50 percent of all test
executions finish within half a second (EC: 0.42, AS: 1.8s, IJ:
0.47s, VS: 10.9s), and over 75 percent within five seconds
(EC: 2.37s, IJ: 2.17s, AS: 3.95s, VS: 163s), see Table 3 for
the average values. Test durations longer than one minute
represent only 8.4 percent (EC: 4.2 percent, IJ: 6.9 percent,
AS: 6.1 percent, VS: 32.0 percent) of the JUnitExecutions.

Having observed that most test runs are short, our next
step is to examine whether short tests facilitate testing:

RQ2.2 Do Quick Tests Lead to More Test Executions?

To answer this research question, we collect and aver-
age the test runtime and the number of times developers
executed tests in each session, as in Section 5.1. Then, we
compute the correlation between the two distributions. If
our hypothesis was true, we would receive a negative cor-
relation between the test runtime and the number of test
executions. This would mean that short tests are related to
more frequent executions. However, the Spearman rank
correlation test shows that this is not the case, as there
is no correlation at r ¼ 0:27 (EC: 0.40, IJ: 0.24, AS: 0.83,
VS: 0.41). In Android Studio’s case, the opposite is true,
indicating a strong relationship between the runtime of a
test and its execution frequency. Combined with the fact
that only a small number of tests are executed, our results
suggest that developers explicitly select test cases [44].
While test selection is a complex problem on build servers,
it is interesting to investigate how developers perform it
locally in their IDE:

TABLE 3
Descriptive Statistics for RQ2 and RQ3 in the

P
Data (Similar Across IDEs, Hence Abbreviated)

Variable Unit Min 25% Median Mean 75% Max Log-Histogram

JUnitExecution duration Sec 0 0 0.5 107.2 3.1 652,600

Tests per JUnitExecution Items 1 1 1 5.0 1 2,260

Time to fix failing test Min 0 0.9 3.7 44.6 14.9 7,048

Test flakiness per project Percent 0 0 0 12.2 15.8 100
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RQ2.3 Do Developers Practice Test Selection?

A test execution that we capture in a JUnitExecu-

tion interval may comprise multiple child test cases.
However, 86 percent of test executions contain only one
test case (EC: 86 percent, IJ: 88 percent, AS: 80 percent,
VS: 85 percent), while only 7.7 percent of test exe-
cutions comprise more than 5 tests (EC: 7.8 percent, IJ:
4.8 percent, AS: 7.6 percent, VS: 10.3 percent), and only
2.2 percent more than 50 tests (Table 3, EC: 2.2 percent, IJ:
0.1 percent, AS: 0.0 percent, VS: 4.4 percent).

Test selection likely happened if the number of exe-
cuted tests in one JUnitExecution is smaller than the
total number of tests for the given project (modulo test
renames, moves, and deletions). The ratio between these
two measures allows us to estimate the percentage of
selected test cases. If it is significantly smaller than
100 percent, developers practiced test selection. Our data
in Table 3 shows that 86.4 percent of test executions
include only one test case.

To explain how and why this test selection happens with
regard to a previous test run, we investigate two possible
scenarios: First, we assume that the developer picks out
only one of the tests run in the previous test execution,
for example to examine why the selected test failed. In the
second scenario, we assume that the developer excludes a
few disturbing tests from the previous test execution. In
the 1,719 cases in which developers performed test selec-
tion, we can attribute 94.6 percent (EC: 94.6 percent, IJ:
91.8 percent, AS: 82.4 percent, VS: 95.5 percent) of selections
to scenario 1, and 4.9 percent (EC: 5.2 percent, IJ: 0.0 percent,
AS: 5.8 percent, VS: 3.6 percent) to scenario 2. Hence, our
two scenarios together are able to explain 99.5 percent
(EC: 99.8 percent, IJ: 91.8 percent, AS: 88.2 percent, VS:
99.1 percent) of test selections in the IDE.

5.3 RQ3: How Do Developers Manage Failing Tests?

Having established how often programmers execute tests in
their IDE in the previous research questions, it remains to
assess:

RQ3.1How Frequently Do Tests Pass and Fail?

There are three scenarios under which a test execution
can return an unsuccessful result: The compiler might
detect compilation errors, an unhandled runtime exception
is thrown during the test case execution, or a test assertion
is not met. In either case, the test acceptance criterion is
never reached, and we therefore consider them as a test fail-
ure, following JUnit’s definition.

In the aggregated results of all observed 70,951 test
executions, 57.4 percent of executions fail, i.e., 40,700
JUnitExecutions (EC: 57.4 percent, IJ: 60.7 percent, AS:
56.8 percent, VS: 43.2 percent), and only 42.6 percent
pass successfully. Moreover, when we regard the child
test cases that are responsible for causing a failed test
execution, we find that in 86 percent (EC: 95 percent, IJ:
84 percent, AS: 88 percent, VS: 94 percent) of test execu-
tions only one single test case fails, and is, thus, responsi-
ble for making the whole test execution fail, even though
other test cases from the same test class might pass, as
exemplified in Fig. 6.

To zoom into the phenomenon of broken tests, we ask:

RQ3.2 Are All Test Cases Equally Responsible for Test
Failures?

In this question, we regard all test cases that have ever
been executed and observed. We then calculate and track
how many times each of them failed, as described in detail
in Section 3.2. Since we cannot track renames of files and,
therefore, treat them as two different files, it is likely that
the real error percentage for test cases is slightly higher.
Fig. 11 depicts the results, showing that only 25 percent of
test cases are responsible for over 75 percent of test failures
in Eclipse and Visual Studio. In all IDEs, 50 percent of test
cases are responsible for over 80 percent of all test errors.
While slightly lower for IntelliJ-based IDEs, the failure and
growth rate of the curve is similar across IDEs, suggesting a
near-logarithmic growth.

As developers apparently often face test failures, we ask:

RQ3.3How Do Developers React to a Failing Test?

For each failing test execution in our data sets, we gener-
ate a linearized stream of subsequently following intervals,
as explained in Section 3.3. By counting and summing
up developers’ actions after each failing test for up to
3.3 minutes (200 seconds), we can draw a precise picture
of how developers manage a failing test in Fig. 12. Across
all IDEs, the most widespread immediate reaction in
�50 percent of cases within the first seconds is to read test
code.6 The second most common reaction, at stable 20 per-
cent of reactions across the time, is to read production code.

The next most common reactions—switching focus away
from the IDE (for example, to turn to the web browser),
switching perspective in the IDE (for example to a dedicat-
ed debugging perspective), typing test code, and being
inactive—appear in different order among IDEs. Typing

Fig. 11. Accumulated error responsibility of test cases per IDE. Based on
134 projects with � 10 run test cases (EC: 112, IJ: 9, AS: 1, VS 12).

6. While writing this extension, we uncovered a bug in the analysis
code to RQ3.3. The bug swapped the “Read Test Code” with the “Read
Production Code” label. This lead us to wrongly claim in the original
WATCHDOG paper [8] that developers dived into offending production
code first, which was never the case.
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test code, however, is a more common reaction to a failing
test in all IDEs than typing production code. Starting
another test execution is a fairly common course of action
within the first minute across all IDEs, reaching �15 percent
frequency. Switching perspective is only prevalent in the
first seconds (see Fig. 12d), since it is an automated feature of
Visual Studio (see Section 2.3.2). Altogether quitting the IDE
almost never happens and is, therefore, not shown. After
two minutes (120 seconds), the reactions trend asymptoti-
cally toward their overall distribution, with little variability.

The logical follow-up to RQ3.3 is to ask whether devel-
opers’ reactions to a failing test are in the end successful, and:

RQ3.4How Long Does It Take to Fix a Failing Test?

To answer this question, we determine the set of unique
test cases per project and their execution result. The 40,700
failing test executions were caused by 15,696 unique test
classes according to their file name hash (EC: 13,371, IJ: 959,
AS: 94, VS: 1,271). We never saw a successful execution of
32 percent (EC: 28 percent, IJ: 50 percent, AS: 46 percent, VS:
54 percent) of tests, and at least one successful execution of
the others.

For the 10,701 failing tests that we know have been
fixed later, we examine how long developers take to fix
a failing test. Table 3 shows that a quarter of test repairs
happen within less than a minute, half within 4 minutes,
and 75 percent within 15 minutes.

One reason why in some cases the time between a failing
and succeeding test might be so short is that developers did
not actually have to make repairs to their tests. Instead, they
might have just executed the tests without changes, since it
might be flaky. A flaky test is a test that shows non-deter-
ministic pass behavior [45], [46], meaning it (randomly) fails
or succeeds. To answer this question, we ask for the IDE:

RQ3.5 Do Developers Experience Flaky Tests?

Following the research method described in Section 3.4,
we measure the “test flakiness” per project, the percentage
of tests that show non-deterministic behavior despite the
fact that there are no changes to the project in the mean-
time, including changes to test, production, or configura-
tion files. Table 3 shows that the mean flakiness value is
12.2 percent, with outliers of zero and 100 percent flaky
test percentages.

Fig. 12. Frequency of immediate reactions to a failing test over time, separated by IDE.
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5.4 RQ4: Do Developers Follow TDD in the IDE?

In RQ4, we aim to give an answer to the adoption of TDD
in practice.

Our results reveal that sessions of only 43 developers
match against a strict TDD definition, the top NFA in Fig. 7a
(EC: 42, IJ: 0, AS: 0, VS: 1). This makes 1.7 percent of all
developers, or 11.8 percent of developers who executed
tests, see Section 5.1. In total, only 2.2 percent of sessions
with test executions contain strict TDD patterns. Only one
developer uses strict TDD in more than 20 percent of the
development process on average. Seven of the 43 develop-
ers use TDD for at least 5% of their development. The
remaining 35 developers use strict TDD in less than 5% of
their intervals. Refactoring is the dominant phase in TDD:
39 of the 43 developers did some form of refactoring.
At 69 percent, the majority of the intervals of the 43 develop-
ers are devoted to the refactoring phase of TDD (depicted in
Fig. 8). Most developers who practiced strict TDD have a
long programming experience: 23 declared an experience
between 7 and 10 years.

Sessions from 136 developers match against the lenient
TDD NFA in Fig. 7b (EC: 42, IJ: 18, AS: 3, VS: 3). This makes
5.6 percent of all developers, or 37 percent of developers
who executed tests (EC: 15 percent, IJ: 38 percent, AS: 33 per-
cent, VS: 19 percent), see Section 5.1. Sixteen developers use
lenient TDD in more than 20 percent of their intervals,
including the developer who has over 20 percent strict
TDD matches. 28 developers use lenient TDD in more than
10 percent, but less than 20 percent of their intervals. 98 of
the 136 developers who use lenient TDD also refactor their
code according to the TDD refactoring process in Fig. 8.
For them, 48 percent of intervals that match against the
lenient TDD are due to refactoring. Of the 136 developers,
49 have little programming experience (0–2 years), 25 have
some experience (3–6 years), and the majority of 59 is very
experienced (> 7 years).

In our normalized data set, the results on the use of TDD
are somewhat higher, with 6 percent of users following
strict, and 22 percent following lenient TDD. The distribu-
tion of testing- and refactoring is similar to the S values.

However, even top TDD users do not follow TDD in
most sessions. For example, the user with the highest TDD
usage has one session with 69 percent compliance to TDD.
On the other hand, in the majority of the remaining sessions,
the developer did not use TDD at all (0 percent). We verified

this to be common also for the other developers who par-
tially used TDD. These low results on TDD are comple-
mented by 574 projects where users claimed to use TDD, but
in reality only 47 of the 574 did according to our definition.

5.5 RQ5: How Much Do Developers Test in the IDE?

In WATCHDOG clients, we asked developers how much time
they spend on engineering tests. To compare survey answers
to their actual development behavior, we consider Reading
and Typing intervals, and further split the two intervals
according to the type of the document the developer works
on: either a production or test class. The duration of test
executions does not contribute to it, as developers can typi-
cally work while tests execute. The mostly short test dura-
tion is negligible compared to the time spent on reading and
typing (see Section 5.2). When registering new projects,
developers estimated the time they spend on testing in
the project. Hence, we have the possibility to verify how
accurate their estimation was by comparing it to their actual
testing behavior.

There are two ways to aggregate this data at different lev-
els of granularity. The first is to explore the phenomenon on
a per-project basis: we separately sum up the time develop-
ers are engineering (reading and writing) production classes
and test classes, and divide it by the sum of the two. Then,
we compare this value to the developers’ estimation for the
project. This way, we measure how accurate each individual
prediction was. The second way is to explore the phenome-
non in our whole data set, by averaging across project and
not normalizing for the contributed development time (only
multiplying each estimation with it).

Per-Project Measurement. Following Halkjelsvik et al. [47],
Fig. 13 shows the relative directional error of estimations
as a histogram of the differences between the measured pro-
duction percentage and its estimation per project. A value
of 0 means that the estimation was accurate. A value of
100 denotes that the programmer expected to only work
on tests, but in reality only worked on production code
(-100, precisely the opposite). The picture on the correctness
of estimations is diverse. In Eclipse, developers tend to
overestimate their testing effort by 17 percent-points, see
Fig. 13a, where the median of the distribution is shifted to
the right of 0, marked by the red line. While there are much
fewer observations, the reverse is true for Fig. 13c with an
error of -23.4 percent-points. At an average estimation

Fig. 13. Difference between estimated and actual time spent on testing split per IDE (no data for FEEDBAG++).
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difference of -2.2 percent, IntelliJ developers seemed to be
most accurate. Moreover, they have fewer extreme outliers
than Eclipse (axes labels of Figs. 13a and 13b). However, the
distribution of estimations in Fig. 13b shows that the aver-
age mean value can be deceiving, as the graph demonstrates
a broad proliferation of evening-out estimations from
-40 percent to +50 percent, but no spike at 0 percent. There
are relatively few observations for Android Studio (20) and
IntelliJ (67) in comparison to Eclipse. On a per project-base,
the average mean time spent testing is 28 percent (EC:
27 percent, IJ: 38 percent, AS: 51 percent, VS: 27 percent).
However, developers estimated a distribution of 51 percent
on production code (EC: 56 percent, IJ: 64 percent, AS:
73 percent), and 49 percent on tests, so they overestimated
the time spent on testing by 21 percent percentage points, or
1.75 times.

Averaged Measurement. When we do not normalize the
data per project for our whole data set S, we find that
all developers spend in total 89 percent of their time writing
or reading production classes (EC: 89.3 percent, IJ: 98.5 per-
cent, AS: 84.0 percent VS: 60.0 percent), and 11 percent of
their time on testing (EC: 10.7 percent, IJ: 1.5 percent, AS:
16.0 percent, VS: 40.0 percent). These implausibly large differ-
ences to the normalized testing percentage of 28 percent
and between the IDEs remind us to consider SCN again. Its
average mean test percentage of 26.2 percent confirms the
per-project normalized measurement we reported above
(28 percent).We therefore use these values in the discussion.

Moreover, reading and writing are relatively uniformly
spread across test and production code: while developers
read production classes for 96.6 percent of the total time
they spend in them, they read tests longer, namely 96.9 per-
cent of the total time they spend in them.

6 DISCUSSION

In this section, we interpret the results to our research
questions and put them in a broader perspective.

6.1 RQ1: Which Testing Patterns Are Common in
the IDE?

In RQ1, we established that in over half of the projects, we
did not see a single opened test, even when considering a
very lenient definition that likely overestimates the number
of tests. The test detection rate in the Eclipse-based client is
almost twice as high as in the other clients. A possible rea-
son might be that we concentrated our testing advertise-
ment efforts on Eclipse. An investigation of testing practices
on the popular Continuous Integration (CI) server Travis CI
showed a somewhat higher test rate at 69 percent for Java
projects [15]. Reasons might be that testing is the central
phase of CI [15], [48] and that projects that have set up
Travis CI might be more mature in general. This frequency
is closer to the 58 percent we found in our normalized data
set. Moreover, our IDE observation does not mean that the
projects contain no tests (a repository analysis might find
that there exist some), but it does indicate that testing is not
a prime activity of the registered WATCHDOG developers.
Alarmingly, only 43 percent of the projects that claimed
to have JUnit tests in the survey actually had intervals
showing tests (“truth tellers”). For the other 57 percent, their

developer did not execute, read, or modify any test in the
observation period. The varying amount of data we received
from users impacts this measure, since we are more likely to
detect test activity within a large amount of general activity
for one user than when we have little data overall. Our data
distribution suggests that normalization should give us a
more realistic picture, see Fig. 10a. Consequently, SCN has a
“truth teller” ratio of 73 percent. Since we likely overesti-
mate tests, these two discoveries raise questions: Which
value does testing have in practice? And, further, are (anon-
ymous) developers’ survey answers true and which meas-
ures are suitable to ensure correctness of our conclusions?

Roughly half of projects and users do not practice testing
in the IDE actively.

Only 17 percent of all projects comprise tests that devel-
opers can run in the IDE. The values across IDEs are rela-
tively similar. We assume the real percentage is similar for
Visual Studio, but shows lower due to the fact that tests
are organized in their own project, see Section 2.3.2.
For 27 percent of projects that have executable IDE tests
developers never exercise the option to execute them. This
gives a hint that testing might not be as popular as we
thought [49]. Reasons might include that there are often no
pre-existing tests for the developers to modify, that they are
not aware of existing tests, or that testing is too time-
consuming or difficult to do on a constant basis. The appar-
ent lack of automated developer tests might be one factor
for the bug-proneness of many current software systems.

Even for projects that have tests, developers did not
execute them in most of the sessions. In contrast, the mean
number of test runs for sessions with at least one test execu-
tion was high (15).

Developers largely do not run tests in the IDE. However,
when they do, they do it extensively.

One reason why some developers do not execute tests in
the IDE is that the tests would render their machine unus-
able, for example during the execution of UI tests in the
Eclipse Platform UI project. The Eclipse developers push
their untested changes to the Gerrit review tool [50] and
rely on it to trigger the execution of the tests on the CI
server. In this case, the changes only become part of the
“holy repository” if the tests execute successfully. Other-
wise, the developer is notified via email. Despite the tool
overhead and a possibly slower reaction time, both anec-
dotal evidence and our low results on test executions in the
IDE suggest that developers increasingly prefer such more
complex setups to manually executing their tests in the IDE.
IDE creators could improve the CI server support in future
releases to facilitate this new workflow of developers.

Every developer is familiar with the phrase “Oops,
I broke the build” [51]. The weak correlations between test
churn and test executions (RQ1.3), and production churn
and test executions (RQ1.4) suggest an explanation: devel-
opers simply do not assert for every change that their tests
still run, because “this change cannot possibly break the
tests.” Even when the modifications to production or test
code get larger, developers do not necessarily execute tests
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in the IDE more often [52]. These observations could stem
from a development culture that embraces build failures
and sees them as part of the normal development life cycle,
especially when the changes are not yet integrated into the
main development line.

The weak correlation between production and test code
churn in RQ1.5 is, on the one hand, expected: tests often
serve as documentation and specification of how produc-
tion code should work, and are, therefore, less prone to
change. This conclusion is in line with previous findings
from repository analyses [4], [53]. If, on the other hand, a
practice like TDD was widely adopted (RQ4), we would
expect more co-evolution of tests and production code,
expressed in a higher correlation. Supporting this observa-
tion, Romano et al. found that, even when following TDD,
developers “write quick-and-dirty production code to pass
the tests, [and] do not update their tests often” [54].

Tests and production code do not co-evolve gracefully.

6.2 RQ2: What Characterizes the Tests Developers
Run?

Another factor that could influence how often developer
run tests, is how long they take to run. In RQ2, we found
that testing in the IDE happens fast-paced. Most tests finish
within five seconds, or less.

Tests run in the IDE take a very short amount of time.

While still being fast, a notable exception to this are the
tests run in Visual Studio, which took an order of magnitude
longer. One reason for this could be that many C# tests might
rely on additional base tests that take longer to setup. For
example, the tests for FEEDBAG++ require a specific base test
of ReSharper, which takes 60 seconds to initialize. Another
reason could be that Visual Studio facilitates debugging by
running tests in the debugger automatically. Pausing on a
breakpoint would be added to the tests’ runtime.

We could generally not observe a relation between the test
duration and their execution frequency. The reason for this
could be that there is little difference between a test that takes
0.1 seconds and one that takes 5 seconds in practice. Both
give almost immediate feedback to the programmer. Hence,
it seems unlikely that software engineers choose not to run
tests because of their duration. Instead, our positive correla-
tion values suggest that developers prefer tests that take
slightly longer, for example because they assert more com-
plex constructions. Thus, they might be more beneficial to
developers than straight-forward, very short tests. In fact,
short tests might be so limited in their coverage that develop-
ers might not find them useful enough to run them more
often. This might be particularly relevant for testing mobile
applications, where the typically longer running integration
tests require developers to start up an Android Emulator.
Our strong correlation for Android Studio suggests that
developers prefer running such longer tests.

One reason for the generally short test duration is that
developers typically do not execute all their tests in one test
run. Instead, they practice test selection, and run only a
small subset of their tests, mostly less than 1 percent of all
available tests. This observed manual behavior differs

strongly from an automated test execution as part of the
build, which typically executes all tests.

Developers frequently select a specific set of tests to run
in the IDE. In most cases, developers execute one test.

We can explain 99.5 percent of these test selections with
two scenarios: developers either want to investigate a possi-
bly failing test case in isolation (94.6 percent of test selec-
tions), or exclude such an irritating test case from a larger
set of tests (4.9 percent). This finding complements and
strengthens a study by Gligoric et al., who compared man-
ual test selection in the IDE to automated test selection in a
population of 14 developers [55].

6.3 RQ3: How Do Developers Manage Failing Tests?

One other possible explanation for the short time it takes
tests to run in the IDE is that 65 percent of them fail (RQ3.1):
once a test fails, the developer might abort the execution of
the remaining tests and focus on the failing test, as discov-
ered for RQ2.3.

Most test executions in the IDE fail.

This is a substantial difference to testing on TRAVIS CI,
where only 4 percent of Java builds fail due to failing
tests [15]. For 32 percent of the failing test cases, we never
saw a successful execution (RQ3.4). We built the set of tests
in a project on a unique hash of their file names, which
means we cannot make a connection between a failed and a
successful test execution when it was renamed in-between.
However, this specific scenario is rare, as observed at the
commit-level by Pinto et al. [3]. Consequently, a substantial
part of tests (up to 32 percent) are broken and not repaired
immediately. As a result, developers exclude such “broken”
tests from tests executions in the IDE, as observed for RQ2.3.

This observation motivated us to explore which test cases
failures typically stem from.

Only 25 percent of test cases are responsible for 75 per-
cent of test execution failures in the IDE.

This statement reminds us of the Pareto principle [56],
the startling observation that, for many events, roughly
80 percent of the effects stem from 20 percent of the causes.
The principle has been observed in Software Engineering in
alike circumstances before, for example that 20 percent of
the code contains 80 percent of its errors [57].

On the CI side, test executions are the main part of how
fast a project builds [15]. To manage the problem of long
and expensive builds, Herzig et al. built an elaborate cost
model deciding which tests to skip [58]. A simulation of
their model on Microsoft Windows and Office demon-
strated that they would have skipped 40 percent of test exe-
cutions. Using association rule mining based on recent
historical data, such as test failure frequency, Anderson
et al. demonstrated how they could reduce the duration of
regression testing for another Microsoft product by also
leaving out a substantial amount of tests [59]. Similarly,
Fig. 11 shows that at least in Eclipse and Android Studio,

BELLER ETAL.: DEVELOPER TESTING IN THE IDE: PATTERNS, BELIEFS, AND BEHAVIOR 275

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2022 at 11:35:26 UTC from IEEE Xplore.  Restrictions apply. 



running the right 60 percent of test cases (and skipping
40 percent) results in catching all test failures. For IntelliJ
and Visual Studio, the results are at a comparable �90 per-
cent. Thus, if we can select them efficiently, we can skip exe-
cuting �40 percent of test cases that always give a passing
result in the IDE.

Both Microsoft studies have been performed on the build
level, not as deep down as our findings in the “working
mines of software development,” the IDE. This observation
on the build level trickles down to the IDE, where one
would expect more changes than on the CI level. Moreover,
it also shows that some tests never fail, even during the
change-prone phases of development, reducing the value of
such tests at least for bug-uncovering purposes.

Since test failures in the IDE are such a frequently recur-
ring event, software engineers must have good strategies to
manage and react to them.

The typical immediate reaction to a failing test is to dive
into the offending test code.

All observed IDEs support this work flow by presenting
the developer with the location of the test failure in the
test class when double-clicking a failed execution. It is,
thus, a conscious choice of the programmers to instead
dive into production code (20 percent of reactions) that is
being tested. Closing the IDE, perhaps out of frustration
that the test fails, or opening the debug perspective to
examine the test are very rare reactions. It is only prevalent
in Fig. 12d because Visual Studio automatically switches to
this perspective when running tests. Five seconds after a
test failure, �15 percent of programmers have already
switched focus to another application on their computer.
An explanation could be that they search for a solution
elsewhere, for example in a documentation PDF or on the
Internet. This is useful if the test failure originates from
(mis-)using a language construct, the standard library, or
other well-known APIs and frameworks. Researchers try
to integrate answers from internet fora such as Stack Over-
flow into the IDE [60], to make this possibly interrupting
context switch unnecessary.

12 percent of test case executions show a non-determin-
istic result.

Flaky tests are a phenomenon that has been studied
on the repository [28] and build [45], [61] level. Luo et al.
classified root causes of flaky tests. They found that asyn-
chronous waiting, concurrency, and test order dependency
problems represent 77 percent of test flakiness causes.
Including all potential factors, we have calculated a flaki-
ness score of on average 12 percent of test cases per project
in the IDE. A study on the flakiness of tests run on the
CI server Travis CI [62] found a similar flakiness rate of
12.8 percent [61]. This is another instance of a finding on a
build server level that seems to directly translate to the IDE
of individual developers. Moreover, the test flakiness of
12 percent fits well to an observed reaction of (re-)executing
tests 10 seconds after the initial test failure in 15 percent of
cases for most IDEs in Fig. 12.

Findings on the CI level on test flakiness and error
responsibility seem to trickle down to the IDE of individ-
ual developers.

6.4 RQ4: Do Developers Follow TDD?

TDD is one of the most widely studied software develop-
ment methodologies [30], [31], [63].7 Even so, little research
has been performed on how widespread its use is in prac-
tice. In Section 3.5, we developed a formal technique that
can precisely measure how strictly developers follow TDD.
In all our 594 projects, we found only 16 developers that
employed TDD for more than 20 percent of their changes.
Similar to RQ1, we notice a stark contrast between survey
answers and the observed behavior of developers, even in
our normalized control data set. Only in 12 percent of the
projects in which developers claimed to do TDD, did they
actually follow it (to a small degree).

According to our definition, TDD is not widely practiced.
Programmers who claim to do TDD, neither follow it
strictly nor for all their modifications.

The developers who partially employed TDD in our data
set were more experienced in comparison to the general
population. We also found a higher TDD rate in our normal-
ized data set, likely due to the fact that SCN has more experi-
enced users compared to S and TDD followship correlates
with experience.

Two recent studies support these discoveries on TDD.
Borle et al. found an almost complete lack of evidence for
TDD adoption in the repositories of open source GitHub
projects [64]. Romano et al. found that both novice and
expert programmers apply TDD in a shallow fashion even
in a controlled lab experiment dedicated to TDD [66]. As a
cardinal difference to our field study Romano et al. found
that “refactoring [...] is not performed as often as the process
requires” [66], while we found developers devoting over
50 percent of their TDD development intervals to the re-
adoption of code. A reason might be that refactoring is inev-
itable in most real-world software projects, but can perhaps
be avoided in a lab assignment setting.

In the following, we discuss a number of possible reasons
for the apparently small adoption of TDD in practice:

1) There is no consensus on the usefulness and value of
TDD.While there have been many controlled experi-
ments and case studies in which TDD was found to
be beneficial, there seems to be an equally high num-
ber of studies that showed no, or even adverse
effects [67], [68], [69]. Moreover, some of the pro-
TDD studies contradict each other on its concrete
benefits: For example, Erdogmus measured that the
use of TDD leads to a higher number of tests and
increases productivity [70], while in a case study at
IBM, TDD did not affect productivity, yet decreased
the number of defects [71]. Another study at IBM

7. A Google Scholar search for “Test Driven Development” returned
15,400 hits on May, 18th, 2016, while the much older “Cleanroom Soft-
ware Engineering” only returned 1,350 hits and the popular “Code
Review” 17,300 hits.
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and Microsoft, done in part by the same authors,
found that defects decreased drastically, yet produc-
tivity declined with the introduction of TDD [72]. In
light of no clear evidence for TDD, developers might
simply choose not to employ it.

2) Technical practicalities prohibit the use of TDD. Some
libraries or frameworks do not lend themselves for
development in a TDD-fashion. As an example, few
graphical toolkits allow development in a test-first
manner for a UI.

3) Time or cost pressure prohibits the use of TDD. TDD is
often associated with a slower initial development
time, and the hope that the higher quality of code it
produces offsets this cost in the longer run [73], [74].
At high pressure phases or for short-lived projects, a
concise decision not to use TDD might be made.

4) Developers might not see value in testing a certain function-
ality TDD-style. We received anecdotal evidence from
developers saying that they do not think the current
piece of functionality they are working on mandates
thorough testing, or “simply cannot bewrong.”

5) Developers skip certain phases of the required TDD pro-
cess. We received anecdotal evidence from develop-
ers saying that they “sometimes know the result of a
test execution.” Consequently, they might skip the
mandatory test executions in Fig. 7.

6) The application of TDD might be unnatural. Instead of
working toward a solution, TDD puts writing its
specification first. This often requires developers to
specify an interface without knowing the evolution
and needs of the implementation. Romano et al.
accordingly report that developers found the “red”
test phase of TDD, in which developers are sup-
posed to perform the above steps, particularly chal-
lenging and demotivating [66].

7) Developers might not know how to employ TDD. TDD is a
relatively light-weight developmentmethodology that
is taught in numerous books [29], blog posts, articles,
YouTube videos, and even part of the ACM’s recom-
mendations on a curriculum for undergraduate Soft-
ware Engineering programs [75]. By contrast, Janzen
and Saiedian noted that one common misconception
among developers was that “TDD equals automated
testing.” [76] Since Beck defines TDD as “driv[ing]
development with automated tests” [29], we believe
practitioners have understood it correctly and that a
lack of education on TDD or a wrong understanding
of it is not a likely reason inmost cases.

While TDD might be clear enough for all practitioners,
for academic studies, we still miss a precise, formally
agreed-upon definition. In fact, the lack of it might explain
some of the variability in the outcomes of research on the
benefits of TDD. We hope that our precise definition of
TDD in terms of automata from Section 3.5 can help future
research on a technical level.

We need to convene on a generally agreed-upon, formal
definition of TDD.

In his 2014 keynote at Railsconf and subsequent blog
posts [77], [78], Heinemeier Hansson sparked a debate on

the usefulness and adoption of TDD, leading to a series of
broadcast discussions together with Fowler and Beck on the
topic “Is TDD dead?” [79]. Since our WATCHDOG results
seemed relevant to their discussion, we approached Beck,
Fowler, and Heinemeier Hansson with our paper [8] to
uncover if we made any methodological mistakes, for exam-
ple that our model of TDD might be erroneous. Fowler and
Heinemeier Hansson replied that they were generally inter-
ested in the results of the study and identified the potential
sampling bias also discussed in Section 7.4. Regarding the
low TDD use, Fowler stated that he would not be surprised
if developer testing of any kind remains uncommon.

6.5 RQ5: How Much Do Developers Test?

The question of how much time software engineers put into
testing their application was first asked (and anecdotally
answered) by Brooks in 1975 [7]. In contrast to our study,
Brooks’ numbers cover the entire development and not only
software developers themselves. Nowadays, it is widely
believed that “testing takes 50 percent of your time.” While
their estimationwas remarkably on-par with Brooks’ general
estimation (average mean 50.5 percent production time to
49.5 percent test time, median 50 percent) in Fig. 2, WATCH-

DOG developers tested considerably less than they thought
they would at only 28 percent of their time, overestimating
the real testing time nearly two-fold. The time developers
spend testing is relatively similar across all IDEs, with the
only apparent outlier of Android Studio (51 percent). Mobile
application developers might indeed spend more time test-
ing since the Android framework facilitates unit, integration,
and UI testing (“Android Studio is designed to make testing
simple. With just a few clicks, you can set up a JUnit test that
runs on the local JVM or an instrumented test that runs on a
device” [80]), or our developer sample from Android Studio
might be too small. We need more research to better under-
stand this phenomenon and the reasons behind it.

Developers spend a quarter of their time engineering
tests in the IDE. They overestimated this number nearly
twofold.

In comparison, students tested 9 percent of their time [9],
and overestimated their testing effort threefold. Hence, real-
world developers test more and have a better understand-
ing of how much they test than students. Surprisingly, their
perception is still far from reality.

The ability to accurately predict the effort and time
needed for the main tasks of a software project (such as test-
ing) is important for its coordination, planning, budgeting
and, finally, successful on-time completion. In a comprehen-
sive review of the research on human judgments of task com-
pletion durations, Halkjelsvik and Jørgensenmerged the two
research lines of effort prediction from engineering domains
and time-duration estimation from psychology [47]. Their
results showed that duration predictions frequently (more
than 60 percent of predictions) fall outside even a 90 percent
confidence interval given by the estimators, meaning that it
is normal for predictions to be as inaccurate as observed in
our study. While engineers generally seem to overestimate
the duration of small tasks, they underestimate larger tasks.
As testing is the smaller activity in comparison to production
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code for most projects (�25 percent:75 percent of work time
overall), this observation fits the measured overestimation of
testing effort in our study. There might be a tendency to
underestimate difficult and overestimate easy tasks, particu-
larly in software development projects [81]. As developers
often dislike testing and consider it “tedious” [82], [83], this
might be a contributing factor to our observed overestima-
tion of testing. In a study on software maintenance tasks
by Hatton [84], developers consistently overestimated the
duration of small change requests, while they consistently
underestimated larger ones. Many developers might per-
ceive testing as the smaller task in relation to the seemingly
endless complexity of coming upwith a working production
implementation. Consequently, Hatton’s findings could
help explain why our participants overestimated it. Similar
to our study, Halkjelsvik and Jørgensen report that working
professional engineers, while still not accurate, were better
in their predictions than students [47].

A prime reason for developers’ inaccurate estimations
might be that predicting is an inherently difficult task, espe-
cially in fast-changing domains like software development.
Another reason for the inaccuracy of predictions could be
that people remember the time previous tasks took incor-
rectly [85]. When participants had written records of their
past prediction performances, however, they became quite
accurate [86]. Highly overestimating the testing effort of a
software product can have adverse implications on the qual-
ity of the resulting product. Software developers should,
therefore, be aware of how much they test, and how much
their perception deviates from the actual effort they invest
in testing in the IDE. WATCHDOG supplies developers
with both immediate and accumulated statistics, hopefully
allowing them to make more precise estimations and better
planning in the future.

In conjunction with RQ1 and RQ3, our discrepancy
between survey answers and real-world behavior casts
doubt on whether we can trust untriaged answers from
developers in surveys, especially if the respondents are
unknown to the survey authors.

Objectively observed behavior in the IDE often contra-
dicted survey answers on developers’ self-estimation
about testing and TDD, showcasing the importance of
data triangulation.

6.6 A Note on Generality and Replicability

Long-running field studies and studies that generalize over
multiple factors, such as IDEs or languages, are rare in soft-
ware engineering [5], [12], [87], [88], because building and
maintaining the necessary tools requires significant time
efforts over prolonged periods of time. Moreover, we show
that it is possible to re-cycle data that was originally not
intended for this study by including the FEEDBAG++ client.
This paper demonstrates that even controversial, unexpected
results such as our original observations on testing pat-
terns [9], can generalize across different state-of-the art IDEs.
Our larger study—comprising ten timesmore data and three
more IDEs—confirmed most of the observations we drew
from a much shorter, less resource-intense 5-month study in
only Eclipse.

If argued correctly, even a relatively small number of
observations in one environment can generalize to similar
contexts in Software Engineering.

We needed to normalize only relatively few of our
results, leaving most of our observations straight-forward
to derive from our data. However, for some research ques-
tions, for example to counter the appearance that develop-
ers might test 20 times longer in one IDE than in another
(see RQ5, Section 5.5), normalization was critical. Since filter
criteria always induce a bias, this paper also shows how an
observational field study can use unfiltered and easy-to-
interpret and replicate data and combine it with the smaller
normalized data sample where necessary.

Our mixed-methods study also showcased the problem
of reporting survey answers without further triaging. While
normalizing the data improved their credibility, even with
it, there was a considerable mismatch between developers’
actions and their surveyed answers and beliefs. A diverse
set of factors, including psychological ones, seems to play a
key role in this.

6.7 Toward a Theory of Test-Guided Development

Combining results from RQ1–RQ5, we find that most devel-
opers spend a substantial amount of their time working on
codified tests, in some cases more than 50 percent. How-
ever, this time is shorter than expected generally and specif-
ically by the developers themselves. Many of the tests
developers work on cannot be executed in the IDE and
could, therefore, not provide immediate feedback. There are
relatively short development phases when programmers
execute IDE-based tests heavily, followed by periods when
they invoke almost no tests.

Test and production code evolution in general is only
loosely coupled. This corroborates with our finding that
no developer follows TDD continuously and that it, thus,
seems to be a rather idealistic software development
method that a small percentage of developers occasionally
employs with overall little adoption in practice. We call the
development practice of loosely guiding one’s development
with the help of tests, as the majority of developers does,
relying on testing to varying degrees, Test-Guided Develop-
ment (TGD). We argue that TGD is closer to the develop-
ment reality of most programmers than TDD.

Two insights from our study, test flakiness and test failure
rate, seem to be almost identical in the context of CI, showing
the strong connection to individual developer testing in the
IDE. However, there are also significant differences, namely
that CI provides no fast feedback loop to developers, by tak-
ing on average 20minutes, several orders of magnitudes lon-
ger than a typical IDE test execution [15]. Test failures are
much more infrequent in Java builds than in test executions
in the IDE.We, therefore, argue that it plays a different, com-
plimentary role to testing in the IDE. Due to its different and
less immediate nature, CI testing cannot (fully) explain the
observed low values on developer testing.

7 THREATS TO VALIDITY

In this section, we discuss limitations and threats that can
affect the validity of our study and show how we mitigated
them.
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7.1 Limitations

Our study has two main limitations, scope and a lack of
value judgments, which we describe in the following.

Scope Definition. An endemic limitation of our study is
that we can only capture what happens inside the IDE.
Conversely, if developers perform work outside the IDE,
we cannot record it. Examples for such behavior include
pulling-in changes through an external version-control tool,
such as git or svn, or modifying a file with an external
editor. To reduce the likelihood and impact of such modifi-
cations, we typically limit analyses of our research ques-
tions, for example RQ3.5 regarding test flakiness, to one IDE
session only.

Naturally, for RQ5, we cannot detect work on a white-
board or thought processes of developers, which are gener-
ally hard to quantify. However, in our research questions,
we are not interested in the absolute time of work processes,
but in their ratio. As such, it seems reasonable to assume
that work outside the IDE happens in the same ratio as in
the IDE. For example, we have no indication to assume that
test design requires more planning or white board time
than production code.

Our conclusions are drawn from the precisely-defined
and scoped setting of codified developer testing in IDEs.
To draw a holistic picture of the state of testing, we need
more multi-faceted research in environments including
dedicated testers.

Value Judgments. If we want to gain insight into whether
more developer testing manifests in an improvement for the
project, we would need to define a suitable outcome mea-
sure, for example bugs per release. One could then, for exam-
ple, compare the testing effort in days across several releases,
and identify whether there is a correlation. However, differ-
ent projects would have different, possibly contradicting,
definitions of the outcome measure: A self-managed server
project in the cloud might pay no attention to bugs per
release, as releases are short-lived and upgrading the soft-
ware is essentially cost free. On the other hand, a server
installed at a customer that cannot be reached from the out-
side might have this metric as its only priority. We have not
defined a uniform outcome measure because (1) we could
not define a sensible uniform outcome measure across all
participating projects of their different priorities, (2) many
developers preferred to stay anonymous, and (3) do not have
or (4) would not have given us access to this highly sensible
data. One can argue that if a project reaches its desired out-
come with the limited amount of testing we generally found
in this study, this is better than having to spend a lot of effort
on testing, it in principle wastes resources without contribut-
ing to the project’s functionality. This remains a fruitful
future area for deep studies on a small set of projects.

This paper does not contain an outcome measurement.
As such, all statements are comparative to the respective
groups and non-judgmental. A relative high (or low)
description does not mean imply “good” or “bad.”

7.2 Construct Validity

Construct validity concerns errors caused by the way we
collect data. For capturing developers’ activities we use

WATCHDOG and FEEDBAG++ (described in Section 2.1), which
we thoroughly tested with end-to-end, integration, and
developer tests. Moreover, 40 students had already used
WATCHDOG before the start of our data collection phase [9].
Similarly, FEEDBAG++ had been deployed at a company dur-
ing 2015 [23] before we made it publicly available in 2016.
To verify the integrity of our infrastructure and the correct-
ness of the analysis results, we performed end-to-end tests
on Linux, Windows, and MacOS with short staged develop-
ment sessions, which we replicated in Eclipse, IntelliJ,
and Visual Studio. We then ran our analysis pipeline and
ensured the analyzed results were comparable.

When we compare data across IDEs, it is paramount
that the logic that gathers and abstracts this data (to inter-
vals) works in the same way. WATCHDOG’s architecture
with its mutually shared core guarantees this by design
(see Section 2.1). Moreover, we had a professional soft-
ware tester examine WATCHDOG.

To ensure the correctness of the transformation from FEED-

BAG++ events to WATCHDOG intervals, we implemented an
extensive test suite for the transformation on the FEEDBAG++
side and created a debugger that visualizes intervals simi-
larly to the diagram shown in Fig. 5. We used this visualiza-
tion for an analysis of several manually defined usage
scenarios, in which we verified that the generated intervals
are accurate and that they reflect the actually recorded inter-
actions. Moreover, we recorded artificial mini-scenarios with
FEEDBAG++, transferred them to WATCHDOG intervals and
ran parts of the analysis pipeline, for example for the recogni-
tion of TDD behavior, effectively creating end-to-end tests.

7.3 Internal Validity

Internal validity regards threats inherent to our study.
Our study subject population shows no peculiarity

(see Section 4.2), such as an unusually high number of users
from one IP address or from a country where the software
industry is weak. Combined with the fact that we use a mild
form of security (HTTP access authentication), we have no
reason to believe that our data has been tampered with (for
example, in order to increase the chances of winning a prize).

A relatively small set of power-users contribute the
majority of development sessions (Fig. 10a). To control for
the possible effects of a distorted distribution, we created
a normalized data set SCN , which showed little practical
difference to our main sample. Moreover, contrary to the
idea of conducting an open field study, we run the risk of
arbitrarily selecting for certain behavior by sampling. Since
WATCHDOG and FEEDBAG++ are freely available, we cannot
control who installs it. Due to the way we advertise it
(see Section 4.1), our sample might be biased toward devel-
opers who are actively interested in testing.

In the wizard in Fig. 2 for RQ5, the default slider position
to estimate between production and test effort was set to
50 percent. This could be a reason for why we received an
estimation of 51 percent:49 percent. To mitigate this, WATCH-

DOG users had to move the slider before they were allowed
to progress the wizard, forcing them to think about their
own distribution.

The Hawthorne effect [89] poses a similar threat: partici-
pants of our studywould bemore prone to use, run, and edit
tests than they would do in general, because they know (1)
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that they are being measured and (2) they can preview a lim-
ited part of their behavior. As discussed in Section 4.1, it was
necessary to give users an incentive to install WATCHDOG.
Without the preview functionality, we would likely not have
had any users. Tomeasure the potential impact of our imme-
diate IDE statistics (see Fig. 3), we tracked how often and
how long developers consulted it via the WatchDogView

interval. In total, only 192 of the 2,200 Eclipse developers
opened the view in total 720 times in 422 of 39,855 possible
sessions (1 percent), with a median open time of 2.4 minutes
per user. This is similar with 58 times for 181 developers in
SCN . We believe that thesemeasures demonstrate that devel-
opers did not constantly monitor their WATCHDOG recorded
testing behavior, otherwise the numbers would be signi-
ficantly higher. That users engage with reports about their
behavior only for a short amount of time is not unique to our
study: Meyer et al. found similar numbers when presenting
developers with a report of their productivity [90]. Even the
commercial RescueTime only had user engagement lengths
of on average five seconds per day [91]. Our long observation
period is another suitable countermeasure to the Hawthorne
effect, as developers might change their behavior for a day,
but unlikely for several months.

All internal threats point in the direction that our low
results on testing are still an overestimation of the real test-
ing practices.

7.4 External Validity

Threats to external validity concern the generalizability of
our results. While we observed 161 years of development
worktime (collected in 14,266,683 intervals originating from
2,443 developers over a period of five months), the testing
practices of particular individuals, organizations, or compa-
nies are naturally going to deviate from our population phe-
nomenon observation. Our contribution is an observation of
the general state of developer testing among a large corpus
of developers and projects. However, we also examined if
certain sub-groups deviated significantly form our general
observations. As an example of this, we identified that
mainly very experienced programmers follow TDD to some
extent in Section 5.4.

By capturing not only data from Eclipse, but also IntelliJ,
Android Studio, and Visual Studio, we believe to have
sufficiently excluded the threat that a certain behavior
might be IDE-specific. While we have data from two pro-
gramming languages (Java and C#), other programming
language communities, especially non-object-oriented ones,
might have different testing cultures and use other IDEs
that might not facilitate testing in the same way the Eclipse,
IntelliJ, and Visual Studio IDEs do. Hence, their results
might deviate from the relatively mature and test-aware
Java and C# communities.

Finally, the time we measure for an activity such as test-
ing in the IDE does not equal the effort an organization
has to invest in it overall. Arguments against this are that
developer testing per hour is as expensive as development
(since both are done by the same set of persons), and that
time is typically the critical resource in software develop-
ment [47]. An in-depth investigation with management
data such as real project costs is necessary to validate this
in practice. To exclude the risk of a different understanding

of the word testing, we specifically asked developers about
JUnit testing, i.e., automated, codified developer tests (see
the description in Fig. 2).

8 RELATED WORK

In this section, we first describe tools and plugins that are
methodically similar to WATCHDOG, and then proceed with
a description of related research.

8.1 Related Tools and Plugins

A number of tools have been developed to assess develop-
ment activity at the sub-commit level. These tools include
Hackystat [92], Syde [93], Spyware [94], CodingTracker [95],
DFlow [96], the “Change-Oriented Programming Environ-
ment,”8 the “Eclipse Usage Data Collector,”9 Quantified-
Dev,10 Codealike,11 and RescueTime.12 However, none of
these focused on time-related developer testing.

Hackystat with its Zorro extension was one of the first
solutions that aimed at detecting TDD activities [97], [98],
similar to the education-oriented TDD-Guide [99] and the
prototype TestFirstGauge [100]. In contrast to WATCHDOG,
Hackystat did not focus on the IDE, but offered a multitude
of sensors, from bug trackers such as Bugzilla to build
tool such as ant. One of Hackystat’s challenges that we
addressed with WATCHDOG was attracting a broader user
base that allowed the recording and processing of their data.

8.2 Related Research

To investigate the presence or absence of tests, Kochar et al.
mined 20,000 open-source projects and found that 62 per-
cent contained unit tests [101]. LaToza et al. [102] surveyed
344 software engineers, testers and architects at Microsoft,
with 79 percent of the respondents indicating that they use
unit tests. Our findings indicate that only 35 percent of proj-
ects are concerned with testing. One factor why our figure
might be smaller is that we do not simply observe the pres-
ence of some tests, but that we take into account whether
they are actually being worked with.

In a study on GitHub using a repository-mining
approach, Borle et al. found that a mere 3.7 percent of over
250,000 analyzed repositories could be classified to be using
TDD [64]. This result strengthens our observed low TDD
use in IDE sessions.

Pham et al. [103] interviewed 97 computer science stu-
dents and observed that novice developer perceive testing
as a secondary task. The authors conjectured that students
are not motivated to test as they have not experienced its
long-term benefits. Similarly, Meyer et al. found that 47 out
of 379 surveyed software engineering professionals perceive
tasks such as testing as unproductive [83].

Zaidman et al. [4] and Marsavina et al. [53] studied when
tests are introduced and changed. They found that test and
production code typically do not gracefully co-evolve. Our
findings confirm this observation on a more fine-grained
level. Moreover, Zaidman andMarsavina found that writing

8. http://cope.eecs.oregonstate.edu
9. https://eclipse.org/epp/usagedata
10. https://www.youtube.com/watch?v=7QKWo5SulP8
11. https://codealike.com
12. https://rescuetime.com
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test code is phased: after a longer period of production code
development, developers switch to test code. Marinescu
et al. [104] observed that test coverage usually remains
constant, because already existing tests execute part of the
newly added code. Feldt [105] on the other hand notes that
test cases “grow old”: if test cases are not updated, they are
less likely to identify failures. In contrast, Pinto et al. [3]
found that test cases evolve over time. They highlight that
tests are repaired when the production code evolves, but
they also found that non-repair test modifications occurred
nearly four times as frequently as test repairs. Deletions of
tests are quite rare and if they happen, this is mainly due
to refactoring the production code. A considerable portion
of test modifications is related to the augmentation of test
suites. Additionally, Athanasiou et al. investigated the qual-
ity of developer tests, noting that completeness, effective-
ness, and maintainability of tests tend to vary among the
observed projects [106].

The work presented in this paper differs from the afore-
mentioned works in that the data that we use is not obtained
(1) from a software repository [3], [4], [53], [101], [105] or (2)
purely by means of a survey or interview [83], [102], [103],
[107]. Instead, our data is automatically gathered inside the
IDE, which makes it (1) more fine-grained than commit-
level activities and (2) more objective than surveys alone.

9 CONCLUSION

Our work studies how developers test in their IDE. Our goal
was to uncover the underlying habits of how developers
drive software development with tests. To this end, we per-
formed a large-scale field study using low-interference obser-
vation instruments installed within the developers’ working
environment to extract developer activity.We complemented
and contrasted these objective observations with surveys of
said developers. We found that automated developer testing
(at least in the IDE) is not as popular as often assumed, that
developers do not test as much as they believe they do, and
that TDD is not a popular development paradigm. We called
the concept of loosely steering software development with
the help of testing Test-Guided Development.

This work makes the following key contributions:

1) A low interference method and its implementation to
record fine-grained activity data from within the
developers’ IDEs.

2) A formalized approach to detect the use of TDD.
3) A thorough statistical analysis of the activity data

resulting in both qualitative and quantitative answers
in developers’ testing activity habits, test run fre-
quency and time spent on testing.

4) A generalized investigation of developer testing pat-
terns across four IDEs in two programming languages.

In general, we find a distorting gap between expectations
and beliefs about how testing is done in the IDE, and
the real practice. This gap manifests itself in the following
implications:

Software Engineers should be aware that they tend to overes-
timate their testing effort and do not follow Test-Driven
Development by the book. This might lead to a lower-
than-expected quality in their software. Our work
suggests that different tools and languages that are

conceptually similar might not impact the practice as
much as individuals often think, since we found few
differences between data originating from them.

IDE creators could design next-generation IDEs that support
developers with testing by integrating: 1) solutions
from Internet fora, 2) reminders for developers to exe-
cute tests during large code changes, 3) automatic test
selection, and 4) remote testing on the build server.

Researchers can acknowledge the difference between common
beliefs about software testing, and our observations from
studying developer testing in the real world. Specifi-
cally, there is a discrepancy between the general atten-
tion to testing and TDD in research, and their observed
popularity in practice. More abstractly, developers’
survey answers only partially matched their behavior in
practice, and student data deviated significantly from
real-world observations. This may have implications on
the credibility of certain research methods in software
engineering and showcases the importance of triangula-
tion with mixed-method approaches. On a positive note,
we also found that even relatively small samples from
one population groupmight generalize well.
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