
0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Automatic Identification and Classification of
Software Development Video Tutorial Fragments
Luca Ponzanelli, Student Member, IEEE, Gabriele Bavota, Member, IEEE, Andrea Mocci, Member, IEEE,

Rocco Oliveto, Member, IEEE, Massimiliano Di Penta, Member, IEEE, Sonia Haiduc, Member, IEEE,
Barbara Russo, Michele Lanza, Senior Member, IEEE

Abstract—Software development video tutorials have seen a steep increase in popularity in recent years. Their main advantage is that
they thoroughly illustrate how certain technologies, programming languages, etc. are to be used. However, they come with a caveat: there
is currently little support for searching and browsing their content. This makes it difficult to quickly find the useful parts in a longer video,
as the only options are watching the entire video, leading to wasted time, or fast-forwarding through it, leading to missed information.
We present an approach to mine video tutorials found on the web and enable developers to query their contents as opposed to just their
metadata. The video tutorials are processed and split into coherent fragments, such that only relevant fragments are returned in response
to a query. Moreover, fragments are automatically classified according to their purpose, such as introducing theoretical concepts,
explaining code implementation steps, or dealing with errors. This allows developers to set filters in their search to target a specific type of
video fragment they are interested in. In addition, the video fragments in CODETUBE are complemented with information from other
sources, such as Stack Overflow discussions, giving more context and useful information for understanding the concepts.

Index Terms—Recommender Systems, Mining Unstructured Data, Video Tutorials

F

1 INTRODUCTION

SOFTWARE development often requires developers to face
scenarios where they need to acquire additional knowl-

edge beyond the one they already possess. Such scenarios
include, for example, learning a new framework or a new
programming language feature, as well as looking for infor-
mation needed to fix a bug or to complete a programming
task. The sources of information involved in this process are
various, ranging from direct talks with other developers, to
project and API documentation, either local or online. The
web and online resources, such as forums, blogs, Question
& Answer (Q&A) websites, slide presentations, etc. have
become a precious source of information for developers [1],
due to the amount and diversity of information they provide,
as well as the ease of access.

When developers perform a search on the web, the
returned result set is often heterogeneous, as textual arti-
facts can be accompanied by other non-textual sources like
YouTube videos, providing tutorials on a specific topic. Video
tutorials are a new and emerging source of information, such
as step-by-step, learn-by-example introductions to how new
technologies should be applied in practice.

• L. Ponzanelli, G. Bavota, A. Mocci, and M. Lanza are with the Università
della Svizzera italiana (USI), Lugano, Switzerland.
E-mail: ponzanel, bavotag, moccia, lanzam@usi.ch

• M. Di Penta is with the University of Sannio, Benevento, Italy.
E-mail: dipenta@unisannio.it

• R. Oliveto is with the University of Molise, Pesche (IS), Italy.
E-mail: rocco.oliveto@unimol.it

• S. Haiduc is with the Florida State University, USA.
E-mail: shaiduc@cs.fsu.edu

• B. Russo is with the Free University of Bozen-Bolzano, Italy.
E-mail: barbara.russo@unibz.it

Manuscript received October 10, 2016; revised September 17, 2016.

A recent study by MacLeod et al. [2] investigated how and
why software development video tutorials are created, and
found that they share details such as software customization
knowledge, personal development experiences, implemen-
tation approaches, and application of design patterns or
data structures. The study also highlighted key advantages
of video tutorials over other resources, such as the ability
to visually follow the changes made to the source code,
to see the environment where the program is executed, to
view the execution results and how they relate to the source
code, and to understand a development activity in depth
by looking at different levels of detail. In essence, video
tutorials can provide a learning experience different and
complementary to that offered by traditional, text-based
sources of information.

Despite these benefits, there is limited support for helping
developers find relevant information within video tutorials,
which are often lengthy and lack an index that allows finding
specific fragments of interest. Thus, to find information about
a specific concept in a video tutorial, a developer can either
watch the entire video, wasting time watching irrelevant
parts, or skim it, risking to miss important information. More-
over, a developer may need information from diverse sources
to thoroughly understand a new concept. For example, when
learning to use a new library, a developer could benefit from
watching an introductory video tutorial, complemented by
Q&A forum discussions about known issues or solutions to
common problems of that library.

While existing approaches support developers by mining
API documentation [3], [4] and Q&A websites [5], [6], or by
synthesizing code examples from existing code bases [7], [8],
[9], [10], there is no tool to leverage the relevant information
found within video tutorial fragments and link them to other
relevant sources of information available on the Web.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

We propose CODETUBE, an approach to address these
limitations and leverage the information found in video
tutorials and other online resources to provide developers
with relevant, concise, and holistic information about a topic.

CODETUBE starts from a set of videos relevant to a broad
topic of interest (e.g., Android development). It analyzes
such videos to identify when source code is being shown
(e.g., through the IDE) on screen, using a series of algorithms
and heuristics aimed at identifying shapes and fragments
of Java code in a frame. It then identifies and isolates
cohesive video fragments, i.e., sequences of frames in which
source code is being written, scrolled, or alternated with
other informative material. The text contained in each video
fragment is extracted and complemented with the text of the
audio transcript occurring at the same time.

Machine learning techniques are then used to automat-
ically classify the extracted video fragments into seven
possible categories, namely (i) introduction to a tutorial
topic, (ii) theoretical concepts, (iii) code implementation, (iv)
working environment setup, (v) execution of implemented
code, (vi) dealing with errors, and (vii) closing of a tutorial.
These categories have been identified through an initial study
(presented in Section 2), in two steps: (i) 41 computer science
students/professors and professional developers manually
identified and tagged a total of 784 fragments from 136 Java
development video tutorials, and (ii) an open coding was
performed on the obtained tags.

All the extracted information is then indexed using infor-
mation retrieval techniques. Finally, CODETUBE searches and
indexes Stack Overflow discussions relevant to each video
fragment. A developer can then use a textual query (e.g.,
“implementing an Android listener”) to search CODETUBE
through a web interface, apply filters for the “type” of video
tutorial she is looking for (e.g., dealing with errors), and
obtain a ranked list of relevant video fragments with related
Stack Overflow discussions. CODETUBE is currently available
with a set of 3,526 indexed Java video tutorials retrieved
from YouTube, corresponding to a total of 17,112 extracted
fragments. The mean length of videos is∼552s (median 437s),
while the fragments have a mean length of ∼114s (median
∼78s).

We evaluated CODETUBE in three different studies:

1) We asked 41 people to manually identify and tag
fragments starting from a corpus of 150 video tutorials.
We used this data as ground truth to assess the accuracy
of CODETUBE in identifying video fragments and in
correctly classifying the type of video tutorial fragments
among the considered categories.

2) We asked 34 Android developers to evaluate (i) the
relevance of the video fragments retrieved by CODE-
TUBE for a given query compared to the results returned
by YouTube, (ii) the coherence and conciseness of the
produced video fragments, and (iii) the relevance and
complementarity of Stack Overflow discussions returned
by CODETUBE for specific video fragments.

3) We performed an extrinsic evaluation of the approach
by introducing CODETUBE to three leading developers
involved in the development of Android apps. We then
asked them questions about the usefulness of CODE-
TUBE, focusing on the value of extracting fragments

from video tutorials, and that of combining different
sources of information.

The results show that:
1) The fragments automatically extracted by CODETUBE

from a video tutorial are fairly similar (MoJoFM=77%)
to the ones manually identified by people looking at
the video (i.e.,CODETUBE and people identify similar
cohesive fragments in a given tutorial).

2) CODETUBE is able to classify fragments along the
seven identified categories with an average accuracy
of 72% and an Area Under the Receiving Operating
Characteristic Curve (AUROC) of 0.92.

3) Ca. 80% of the video fragments extracted by CODETUBE
are considered cohesive and ca. 60% are considered
self-contained by developers.

4) The Stack Overflow discussions returned by CODETUBE
for a given video fragment are considered relevant to
it in ca. 50% of cases, while they are almost always
considered complementary in terms of the information
presented with respect to the video fragment (∼90%).

5) The three project managers involved in the third study
see great value in CODETUBE and a great potential in
this line of work.

Paper structure. In Section 2 we report the design and
results of a study aimed at (i) identifying the categories of
development video tutorial fragments and (ii) investigating
the structure of video tutorials. This was done by asking 41
people to manually identify and categorize video fragments
in video tutorials. In Section 3 we describe CODETUBE and
its underlying approach for both video fragmentation and
classification of tutorial fragments. In Section 4 we leverage
the data collected in the study reported in Section 2 to
objectively evaluate the ability of CODETUBE in automatically
fragmenting and classifying video tutorials. In Section 5 we
perform a second study aimed at providing a subjective
assessment of the quality of the extracted video fragments
as perceived by developers, as well as the relevance and
complementarity of the video fragments to the linked Stack
Overflow discussions. Section 6 describes a qualitative
evaluation of CODETUBE with actual practitioners with the
goal of evaluating its industrial applicability. Threats to
validity are discussed in Section 7. After a discussion of
the related literature (Section 8), Section 9 concludes the
paper.

2 INVESTIGATING THE STRUCTURE
OF VIDEO TUTORIALS

Previous research on development video tutorials [2] has
investigated the motivation and purpose of entire develop-
ment video tutorials, but has not analyzed their structure and
content in depth. A video tutorial has an intrinsic structure
embedded in the flow of actions performed by the tutor.
When it comes to devising an automated approach to analyze,
fragment, classify, and index video tutorials, understanding
the structure of the original video is essential to provide, for
example, advanced searching features.

The goal of this initial study was twofold: to deter-
mine how people segment video tutorials into coherent
parts/sections, and what kind of parts are typically com-
posing a software development video tutorial (e.g., setting

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1
Participants’ Occupation, Experience in Java, and Usage of Video Tutorials.

Occupation Total % Experience in Java Total % Usage of Video Tutorials Total %
Faculty 1 2% Less than 1 year 29 71% Daily 29 71%
PhD Student 3 7% 1-3 years 7 17% Few times a week 7 17%
Master Student 4 10% 3-5 years 3 7% Few times a month 3 7%
Undergraduate Student 31 76% 5-10 years 2 5% Rarely 2 5%
Professional Software Developer 2 5% More than 10 years 0 0% Never 0 0%
Total 41 100% Total 41 100% Total 41 100%

of the IDE, code writing, etc.). Collecting this information
is important to determine the ability of any approach -
CODETUBE in this case - to automatically identify and
label these fragments. The context consists of objects, i.e.,
150 tutorials collected from YouTube, and participants, i.e.,
41 computer science students/professors and professional
developers manually identifying and tagging the different
tutorial parts (e.g., “from 1:00 to 3:30 the tutorial shows how
to set up the IDE”). We later use the fragment beginning and
end collected in this study to construct a ground truth for
measuring the ability of CODETUBE to identify video tutorial
fragments (Section 4.1).

2.1 Context, Data Collection & Analysis

We manually selected from YouTube the video tutorials used
in the context of our tagging study. The manual collection
was needed to ensure the selection of real tutorials dealing
with a heterogeneous set of topics at different levels of
abstraction (e.g., theoretical vs practical tutorials). We selected
(i) 50 generic Java tutorials, (ii) 50 tutorials dealing with JSPs
and Servlets (i.e., Java Web applications), and (iii) 50 Android-
related tutorials (i.e., Java mobile apps). We made sure to
include both tutorials for beginners as well as for experienced
developers and to select a mix of theoretical and practical
tutorials. For example, the 50 Java-related tutorials included
tutorials about Java basics (e.g., exceptions handling), ad-
vanced topics (e.g., multi-threading), and theoretical notions
(e.g., how the garbage collector works). The selection of
such tutorials was performed by one author and double-
checked by a second author. All 150 tutorials focus on the
Java programming language, because (i) as it will be detailed
later, our approach leverages a Java island parser [11], [12],
[13] to identify code constructs shown in the video tutorial,
and (ii) this eased the selection of participants for our study.
Also, to limit the effort required from participants, we did
not include video tutorials longer than 20 minutes.

We invited, after selecting participants through conve-
nience sampling [14], [15], 55 computer science students and
professors, as well as five industrial software developers to
participate in our study. In order to limit any hypothesis
guessing or bias, we did not reveal to participants the final
purpose of the tagging nor our usage of the obtained data.
Each participant received an email with a link to the web
application where they could read instructions and then
perform the fragment splitting and tagging tasks. We asked
each participant to watch video tutorials and to split them
into categorized fragments: they had to identify disjoint parts
of the video tutorials and tag each with a category explaining
its main purpose (e.g., “from 1:00 to 3:30 it explains how
to set the working environment, from 3:31 to 5:00 it shows

how to implement a JSP”). We asked participants to extract
and tag fragments for at least 20 minutes of video tutorials.
Participants were free to tag more. Invitees had up to two
months to perform the tasks. Data about the 41 participants
is reported in Table 1.

1

4

3

2

Fig. 1. User Interface of the Fragment Tagging Web Application.

We implemented a web application to support the tagging
process by participants in multiple rounds (e.g., tagging one
tutorial today, and another one after one week). After regis-
tering, participants provided some background information
which we report in Table 1. The actual tagging starts through
the user interface depicted in Figure 1. The web application
shows tutorials embedded in a YouTube video player (1).
The tagging application was designed to balance the number

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

of participants tagging each video tutorial, i.e., in a first
iteration, the web application assigned each video tutorial
in our dataset to at least one participant. Then, if possible, a
second participant was assigned, and so on.

At the bottom of the page there are controls to allow
participants to create and tag fragments—see Figure 1 (2).
Participants are allowed to freely interact with the video
player as they wish, yet they are forced to follow some
constraints when devising the fragments. All fragments need
to be contiguous or the application does not allow the user
to store the tagging session. Also, the fragments have to
cover the whole video. A progress bar (3) allows the users to
keep track of the amount of video covered by the fragments
already devised. To avoid corrupted data, the application
raises an error if the tagging progress goes beyond 100%, or
if any tag is missing, and does not allow to store the session
if the video coverage is not complete.

Last, each user is requested, but not forced, to tag at
least 20 minutes of video tutorials. Another progress bar (4)
shows the overall minutes tagged by the study participants.
Once the bar gets to 20 minutes, the participant is notified
with a pop-up label at the bottom of the application, but
the application leaves the participant the choice to keep
tagging video fragments. Each participant tagged on average
29 minutes of video tutorials (min 7, median 27, max 75).

We collected 784 tagged video fragments (1,219 minutes)
from 136 video tutorials. 14 of the 150 video tutorials we
selected were not analyzed by any participant, while the
remaining 136 were tagged by at least one participant each.
Two of the authors performed an open coding process on the
784 tagged fragments to group the tags into categories. Such
a grouping was independently performed by the authors by
analyzing the tags assigned by the participants as well as
by personally watching each video fragment. After the first
coding, the two authors disagreed on 53 fragments, for which
one of them produced an Unclassified categorization, whereas
the other produced a category. The inter-rater agreement
after the first coding phase—computed in terms of Cohen’s
Kappa [16]—is equal to 0.86, which is considered a very
strong agreement. The two authors met to discuss and refine
(or merge) the identified categories, reaching an agreement
when needed.

The output of this process is a set of categories that can be
used to describe the different parts composing software de-
velopment video tutorials. To give an example, 144 fragments
were marked by participants with tags clearly referring to
the introduction of the tutorial topic (e.g., “introduction”, “topic
introduction”, “tutorial introduction”, etc.).

2.2 Analysis of the Results

2.2.1 Categories of video tutorial fragments
Table 2 reports the seven categories of video tutorial frag-
ments derived from our open coding procedure.

For 36 fragments we were not able to understand the
meaning of the tags assigned by the participants—see the
Unclassified row—(e.g., details, observations). We excluded
these tags from our study.

Most tagged fragments (37%) refer to code implementation
activities. Examples of tags in this category include “program
writing”, “JComboBox implementation”, and “implementing

TABLE 2
Categories Resulted from the Open Coding Process.

Category Tags %
Code implementation (CI) 288 37%
Introduction to the Tutorial Topic (ITT) 144 18%
Execution of the Implemented Code (EIC) 124 15%
Theoretical Concepts (TC) 87 11%
Closing of the Tutorial (CT) 47 6%
Environment Setup (ES) 39 5%
Dealing with Errors (DE) 19 3%
Unclassified 36 5%
Total 784 100%

a JSP page”. Introduction to the tutorial topic is the second
most popular category, grouping 18% of the assigned tags. It
concerns parts of the tutorial where the main tutorial topic is
presented from a general point of view without providing
implementation details. This category is followed by execution
of the implemented code (15%), including 124 fragments in total.

The latter category includes tags like “deployment and
execution of the implemented web app” and “program exe-
cution and test logger”. Theoretical concepts (i.e., when some
specific aspects of the topic are explained in detail, possibly
interleaving slides/discussions with some code examples)
are in 11% of the tagged fragments (e.g., “explaining HTTP
status codes”) while the working environment setup category
groups 39 (5%) tags (e.g., “IDE settings”). Finally, 47 tags
(6%) are related to the closing of the tutorial and 19 (3%) to
explanations on how to deal with errors one could encounter
while implementing the topics discussed in the video tutorial
(e.g., “what happens if we do not properly configure log4j”).

These seven categories are the ones considered in CODE-
TUBE when automatically classifying the type of the extracted
video tutorial fragments.

2.2.2 Structure of Video Tutorials

The availability of tagged and classified video fragments
allows us to provide—without generalizing beyond the
samples on Java development—an idea of how development
video tutorials are structured.

Table 3 describes the patterns—intended as sequences of
fragments belonging to the seven identified categories—that
occur at least twice in the analyzed dataset.

Surprisingly, the most common pattern (p1, 9 instances) is
not related to explaining implementation concepts, but rather
to illustrating the setup of a specific piece of technology.
Other frequent patterns (p2, p3, p5, p6, p7, p8) follow typical
scenarios in which there is a topic introduction, possibly
followed by theoretical concepts and/or some environment
setup; then, implementation details are shown in one or more
fragments and, finally, the tutorial is in some cases closed by
some concluding remarks.

In some cases (p4, with 4 instances, or p11, with 3
instances) the tutorial does not show the IDE with the source
code at all, but just provides some theoretical elements. On
the other hand, there are some kinds of video tutorials (p8,
with 4 instances, p15 with 2 instances, and p20, with 2
instances), which are mainly screencasts showing implemen-
tation details in the IDE (preceded by an introduction for p15
and followed by closing remarks for p20).

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 3
Video tutorial composition patterns, their occurrence, and their typical

structural sequence.

Pattern Occurrences Sequence
p1 9 ITT, ES
p2 7 ITT, CI, EIC
p3 7 ITT, CI+
p4 6 ITT, TC+
p5 5 ITT, CI+, CT
p6 5 ITT, ES, CI+
p7 4 ITT, TC, CI
p8 4 CI+
p9 3 ITT, CI, TC+
p10 3 ITT, CI, EIC, CI, CT
p11 3 TC
p12 2 ITT, TC, CI, CT
p13 2 ITT, TC, DE, TC
p14 2 ITT, CI, DE, CT
p15 2 ITT, CI, CT
p16 2 ITT, ES, EIC+
p17 2 ITT, ES, (CI, EIC)+
p18 2 ITT, (CI, TC)+, CT
p19 2 ITT, (CI, EIC)+, CT
p20 2 CI+, CT

Some patterns (p10, p16, p17, p19) reveal a scenario in
which the execution is being shown after having explained
its implementation, and in some cases (p17 and p19) there
are multiple iterations of implementation details along with
a related execution.

In some cases (p13 and p14) the explanation of theoretical
concepts or of implementation details is followed by specific
fragments to explain how to deal with erroneous conditions.

Table 4 and Figure 2 report and depict the transition
frequencies—estimated across all videos in our dataset—
between different types of video tutorial fragments, in order
to get an overview of how these transitions generally occur
in the analyzed dataset.

While the table reports exact frequency values, the figure
depicts the structure of video tutorials in the form of a
Markov chain, where thicker transition edges indicate higher
probabilities. In 85% of cases an introduction about the
tutorial topics is provided. In the remaining 15% of cases, the
tutorials directly start with an implementation activity (7%),
the setting of the working environment (4%), an explanation
of theoretical concepts (3%), or the execution of the code that
will be the object of the tutorial (1%).

After the topic introduction, 49% of the tutorials deal
with code implementation activities, often representing the
bulk of software development tutorials. A typical transition
is START→ITT→ES→CI, starting with a topic introduction
(START→ITT=85%), continuing with setting up the working
environment (ITT→ES=21%) and then starting an implemen-
tation activity (ES→CI=21%). Other tutorials (22%), focusing
more on theoretical aspects, start explaining theoretical
concepts right after the topic introduction.

In 37% of cases a code implementation fragment is
followed by another one (CI→CI=37%), because the tutorial
features independent implementation activities (e.g., how
to use method A and method B of a given API). Other
frequent transitions happen from code implementation to
code execution (38%), often (48%) followed by another code

TC

ES

CI

CT

END

EIC

DE

ITT

START

Fig. 2. Transition graph between the different parts of the video tutorials.

implementation activity (i.e., a transition CI→EIC→CI).
Outgoing transitions from fragments dealing with theo-

retical concepts (TC node in Figure 2), are generally followed
by implementation activities (TC→CI=55%) or by another
theoretical fragment on a different concept (TC→TC= 17%).
Instead, those outgoing from fragments dealing with com-
mon errors (DE) are almost equally distributed between:
(i) theoretical concepts (DE→TC=25%), explaining why a
specific error arises, (ii) the execution of the implemented
code (DE→EIC=30%), showing how the error manifests
at execution time, and (iii) code implementation activities
(DE→CI=30%), showing how to fix the error.

The results discussed above highlight how the latent
structure of a video tutorial can be quite complex. This recalls
(and justifies) the need for an approach to automatically
navigate among fragments to search/browse video tutorials
and pinpoint the interesting parts.

3 CODETUBE OVERVIEW

CODETUBE is a multi-source documentation miner to locate
useful pieces of information for a given task at hand. The
results are fragments of video tutorials relevant for a given
textual query, augmented with additional information mined
from other “classical”, text-based online resources. The
analysis of video tutorials is currently limited to videos
in English dealing with the Java programming language.

Figure 3 depicts the CODETUBE pipeline. It is composed
of (i) an offline analysis phase aimed at collecting and
indexing video tutorials and other resources, and (ii) an
online service where developers can search these processed
resources. In the following we detail each step.

3.1 Crawling and Analyzing Video Tutorials
The first step of the process is defining the topics of interest.
The user provides (i) a set of queries Q describing the video

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 4
Transition frequencies between different parts of the video tutorials.

ITT TC EIC CI ES DE CT END
START 84.62% 3.50% 0.70% 6.99% 4.20% 0.00% 0.00% 0.00%
Introduction Tutorial to Topic (ITT) 3.03% 21.97% 2.27% 48.48% 21.21% 2.27% 0.00% 0.76%
Theoretical Concepts (TC) 0.00% 12.64% 6.90% 40.23% 3.45% 4.60% 5.75% 26.44%
Execution Implemented Code (EIC) 2.70% 12.61% 5.41% 32.43% 1.80% 5.41% 7.21% 32.43%
Code Implementation (CI) 1.19% 7.94% 33.73% 33.33% 0.79% 4.37% 8.33% 10.32%
Environment Setup (ES) 2.38% 7.14% 9.52% 40.48% 2.38% 7.14% 4.76% 26.19%
Dealing with Errors (DE) 0.00% 17.86% 21.43% 21.43% 0.00% 3.57% 7.14% 28.57%
Closing of the Tutorial (CT) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Video Tutorials
Crawler

Video Tutorials
Analyzer

Lucene
Index Builder

Lucene IR Engine

Video Fragments
Identifier

Video Tutorials
(Youtube, Vimeo, …)

Video
Tutorial

Fragments

Island Parser
Lucene IR Engine

Tesseract OCR

Online Resource
Index (StackOverflow
discussions, etc.)

Video Slices Index

VideosVideos

Text Source Code

Audio Transcript

VideosVideos

Video Tutorials

Audio Transcript

Online Resources
(StackOverflow, Mailing Lists,

Documentation, …)

Video Fragments
Classifier

Fig. 3. CODETUBE: Analysis process.

tutorials she is interested in (e.g., “Android development”)
and (ii) a set of related tags T to identify and index relevant
Stack Overflow discussions (e.g., “Android”). Each query in
Q is run by the Video Tutorials Crawler using the YouTube
Data API1 to get the list of YouTube channels relevant to the
given query qi ∈ Q.

For each channel the Video Tutorials Crawler retrieves
the metadata (e.g., video URL, title, description) and the
audio transcripts, which are either automatically generated
by Google with speech recognition or written by the author.
Using GOOGLE2SRT2 we extract the contents of the transcrip-
tions for the videos. The crawling of video meta-information
is performed on YouTube, but it can be extended to any video
streaming service or video collection where the same type
of meta-information and transcripts are available or can be
extracted, e.g., using an off-the-shelf speech recognition API.

Once the videos have been crawled, their metadata is
provided as input to the Video Tutorial Analyzer. It analyzes
each video and extracts pieces of information to isolate
video fragments related to a specific topic. The Video Tutorial
Analyzer aims at characterizing each video frame with the

1. https://developers.google.com/youtube/v3/
2. http://google2srt.sourceforge.net/en/

text and the source code it contains. It uses multi-threading
to concurrently analyze multiple batches of videos.

3.1.1 Frame Extraction
The analysis starts by downloading the video at the maxi-
mum available resolution. CODETUBE uses the multimedia
framework FFMPEG3 to extract one frame per second, saving
each frame in a png image. Given the set of frames in the
video, we compare subsequent pairs of frames (fi, fi+1) to
measure their dissimilarity in terms of their pixel matrices.
If they differ by less than 10% we only keep the first frame
in the data analysis since the two frames show almost the
same information. This scenario is quite common in video
tutorials where the image on the screen is fixed for some
seconds while the tutor speaks. To have an idea of the impact
of this optimization step in the computational cost of our
process, we measured the percentage of frames removed by
this heuristic on a set of 100 Java video tutorials randomly
selected from the YouTube videos currently indexed in
CODETUBE. We found that, on average, 86% of the frames are
removed (median=88%, standard deviation=9%). This means
moving from an average of 463 frames per video to analyze,
to only 64, thus substantially reducing the computational cost
of our process. While this strong reduction in the number
of frames might look surprising, it is worth noticing that
a video having a fixed image on the screen for 20 seconds
(e.g., a slide shown while the tutor speaks) will experience a
percentage reduction of the number of frames to analyze of
95% (i.e., one out of the twenty frames will be kept for the
analysis).

After obtaining the reduced set of frames to analyze,
CODETUBE performs the following information extraction
steps.

3.1.2 English Terms Extraction
We use the OCR (Optical Character Recognition) tool
TESSERACT-OCR4 to extract the text from the frame. OCR tools
are usually designed to deal with text on white background
(i.e., paper documents). In order to cope with this, many
OCR tools convert colored images to black and white before
processing them. When using an OCR tool on video frames,
the high variability of the background, and the potential
low quality of a frame can result in a high amount of noise.
Thus, after splitting composite words—based on camel case
or other separators—we use a dictionary-based filtering, to

3. http://www.ffmpeg.org/
4. https://github.com/tesseract-ocr

https://developers.google.com/youtube/v3/
http://google2srt.sourceforge.net/en/
http://www.ffmpeg.org/
https://github.com/tesseract-ocr

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

ignore strings that are invalid English words5. Note that,
while this helps in filtering out possible noise generated by
the OCR tool, this step can also remove some interesting
technical terms (e.g., https) not part of the standard English
dictionary. The definition of a customized and more technical
dictionary is part of our future research agenda.

3.1.3 Java Code Identification

In principle, the output of the OCR could be processed to
extract the depicted Java constructs. However, such output
often contains noise. Figure 4 shows three frames containing
Java code. In Frame 1 the code occupies the whole screen,
and there is a clear background: The noise of the OCR output
is limited. The noise increases in the Frames 2 and 3, due to
the buttons, menu labels, the graphics on the t-shirt, etc. To
limit the noise produced by the OCR we identify the sub-
frame containing code using two heuristics, shape detection
and frame segmentation.

Shape Detection. We use BOOFCV6 to apply shape
detection on a frame, identifying all quadrilaterals by using
the difference in contrast in the corners. This is typically
successful to detect code editors in the IDE as in Frame 2.

Frame Segmentation. The shape detection phase could
fail in identifying sub-frames with code. In Frame 1 and
Frame 3 of Figure 4 BOOFCV fails because of missing
quadrilaterals.

In this case, we apply a segmentation heuristic by
sampling small sub-images having height and width equal
to 20% of the original frame size and we run the OCR on
each sub-image. We mark all sub-images Sm containing at
least one valid English word and/or Java keyword and we
identify the part of the frame containing the source code as
the quadrilateral delimited by the top-left sub-image (i.e.,
the one having the minimum x and y coordinates) and the
bottom-right sub-image (i.e., the one having the maximum x
and y coordinates) in Sm. The heuristic might be imprecise.
For example, in Frame 2, if the quadrilaterals identified
by the shape detection algorithm are ignored, the heuristic
identifies the whole frame as code area. Another example is
Frame 3, where the opening parenthesis of the if statement
is left outside the code area, thus breaking the integrity of
the code snippet.

Identifying Java Code. After identifying a candidate sub-
frame, we run the OCR to obtain the raw text that likely rep-
resents code. Then, we use an island parser [11], [12] on the
extracted text to cope with the noise, the imperfections of the
OCR, and the incomplete code fragments. The island parser
separates invalid code or natural language (water) from
matching constructs (islands), and produces a Heterogeneous
Abstract Syntax Tree (H-AST) [13]. By traversing the H-AST
we can exclude water nodes and keep complete constructs
(e.g., declarations, blocks, other statements) and incomplete
fragments (e.g., partial declarations, like methods without a
body). If we are not able to match complete or incomplete
Java constructs with any of the described heuristics, we
assume that the frame does not contain source code.

5. We use the OS X English dictionary.
6. http://boofcv.org/

3.2 Identifying Video Fragments

The Video Fragments Identifier detects cohesive fragments in a
video tutorial using the previously collected information. We
refer to Figure 5 to illustrate the performed steps.

CODETUBE starts by identifying video fragments char-
acterized by the presence of a specific piece of code. The
conjecture is that a frame containing a code snippet is
coupled to the surrounding video frames showing (parts
of) the same code.

Identifying the video frames containing a specific code
snippet presents non-trivial challenges: A piece of code could
be written incrementally during a video tutorial: If writing
a Java class lasts 3 minutes, all frames will contain snippets
of code related to that class and thus should be considered
as part of the same video fragment. However, such code
snippets contain different programming constructs due to
the incremental writing. Second, to provide a line-by-line
explanation, the tutor could scroll the code snippet shown on
video. This causes frames showing the same code snippet to
show different portions of it. Last, the tutor could interleave
two frames showing the same code snippet with slides or
other applications, e.g., the Android emulator.

CODETUBE overcomes these challenges and identifies
video fragments characterized by the presence of a specific
piece of code by comparing subsequent pairs of frames
containing code to verify if they refer to the same code
snippet. The frames depicted in red in Figure 5 represent
code frames, frames containing code fragments. Given two
code frames CODETUBE verifies if they contain at least one
common complete or incomplete Java construct. If so, the two
frames are marked as containing the same code component.
If not, we cannot exclude that the two frames do not refer
to the same code. We have to take into account (i) possible
OCR imprecisions when extracting the source code from the
two frames (e.g., a Java construct is correctly extracted only
in one frame), and (ii) scrolling from one frame to another
has hidden some constructs in one of the two frames.

If the island parser fails in matching a common construct
in the two frames, we compute the Longest Common Sub-
string (LCS) between the pixel matrices representing the code
frames. Specifically, we represent matrices as strings, where
each pixel is converted to a 8-bit grayscale representation. If
the LCS between the two frames includes more than γ of the
pixels in the frames, CODETUBE considers the two frames as
showing the same code snippet. The process adopted to tune
the threshold γ is reported in Section 3.5.

Note that the LCS is not affected by possible OCR
imprecisions, and it can deal with the IDE scrolling, as shown
in Figure 6 (in cyan the portion of the two frames identified
as LCS).

As a drawback, LCS is sensitive to zooming. Since the
alignment of the proportions between two subsequent frames
changes, LCS would fail in identifying a common part.
Overall, given the advantages of the LCS over the Java
constructs matching between the two frames via island
parser, one may think that applying the LCS for each pair
of code frames is the way to go. Unfortunately, the LCS is
computationally expensive due to the huge number of pixels
composing a frame (a 1080p HD video has ∼2M pixels per
frame). For this reason, we adopt the LCS as a contingency

http://boofcv.org/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

1 2 3

Fig. 4. Example frames from which CODETUBE is able to extract code fragments. (1) http://y2u.be/eKXnQ83RU3I, (2) http://y2u.be/NMDPxN8FgXM,
(3) http://y2u.be/jQWB_-o1kz4. The red rectangles are the quadrilaterals identified by BoofCV. The blue quadrilaterals are the code areas identified
by our segmentation heuristic.

No Code Frame
Code Frame

Code Interval
Transcript Interval

Video Fragment

1 2 3 4 5 6 7 8 9

Fragment 1 Fragment 2 Fragment 3

Fig. 5. Identification of video fragments.

public String read(File file) {
 fis = new FileInputStream(file);
 byte[] data =
 new byte[(int) file.length()];
 fis.read(data);
 fis.close();

 return new String(data, "UTF-8");
}

 byte[] data =
 new byte[(int) file.length()];
 fis.read(data);
 fis.close();

 return new String(data, "UTF-8");
}

public boolean isNull(Object obj) {

Fig. 6. LCS between two frames showing the same code. The right frame
is scrolled down by the tutor.

strategy when the island parser is unable to identify common
Java constructs in the two frames under analysis. To speed up
the LCS computation we scale the frames to 25% of their size.
In the example depicted in Figure 5, CODETUBE compares the
code frame pairs (3,4), (4,7), and (7,8), identifying the first two
pairs as containing the same code snippet. As highlighted
by the grey line below the frames, it identifies the first two
cohesive “code intervals”, i.e., the first going from Frame
3 to Frame 7 and the second containing Frame 8 only. The
non-code frames 5 and 6 (blue in Figure 5) are included in the
first code interval, since they are surrounded by two code
frames (4 and 7) containing the same snippet.

To assess the reliability of the LCS in identifying related

TABLE 5
Accuracy of the LCS heuristic.

Manual
LCS true false

true 173 139
false 9 43

code frames we extracted all pairs of code frames for which
the LCS is invoked in CODETUBE (i.e., pairs of code frames
for which the island parser fails to identify any code overlap)
from the same set of 100 Java video tutorials previously
used to test the frames reduction heuristic. This resulted
in the extraction of 6,266 pairs of frames that we stored as
.png files. Out of these, 182 are identified by the LCS as
showing the same code snippet7. The first author manually
analyzed these 182 pairs as well as 182 randomly selected
pairs for which the LCS does not report an overlap of the
pixels in the frame higher than γ (i.e., these pairs are not
marked as showing the same code snippet in CODETUBE).
The goal of the manual validation was to verify whether the
LCS is able to correctly classify the pairs of code frames as
containing/not containing the same code snippet. The results
of such a manual validation are reported in the confusion
matrix shown in Table 5: The columns report the classification
automatically made by the LCS, while the rows show the
manual classification made by the first author. True indicates
that the two code frames contain the same code snippet
(based on the LCS output or on the evaluator judgment),
while false indicates no code overlap.

The results reported in Table 5 show that when the LCS
indicates the two frames as reporting the same code snippet,
it rarely fails. Indeed, its precision when reporting code
overlap is 95% (173 out of 182 pairs correctly classified as
showing the same code snippet). Instead, when no overlap is
detected by the LCS, the accuracy of such a heuristic drops
to 24% (43 out of 182 correctly classified as not showing
the same code snippet). The manual analysis of these cases
showed that the LCS heuristic is frequently failing in two
cases. First, and as expected, the LCS fails in case of zooming,
totally missing the detection of code snippets shared in the
two frames. Second, it happens very frequently in video
tutorials that, while coding in the IDE, the tutor opens a
small window covering a large part of the code shown in
the IDE. In these cases, while the human evaluator can still
see the few statements of code not covered by the window
and map them to the previous frame, the LCS heuristic does
not work. Devising more advanced strategies to successfully
deal with these cases is part of our future work agenda.

Once analyzed the code in the frames, in a subsequent
step CODETUBE analyzes the audio transcripts (black lines

7. We used as value for the γ threshold the one identified during the
parameters’ tuning process detailed in Section 3.5.

http://y2u.be/eKXnQ83RU3I
http://y2u.be/NMDPxN8FgXM
http://y2u.be/jQWB_-o1kz4

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

at the bottom of Figure 5) to refine the already identified
code intervals (grey lines). CODETUBE identifies the audio
transcripts starting and/or ending inside each code interval.
The audio transcripts are provided in the SubRip8 format
when extracted from YouTube’s videos. In the example
reported in Figure 5, three audio transcripts are considered
relevant when refining the code interval going from frame
3 to 7. CODETUBE uses the beginning of the first and the
end of the last relevant audio transcript for a code interval
to extend its duration and avoid that the code interval starts
or ends with a broken sentence. The extended code interval
represents an identified video fragment (Fragment 2—light
cyan in Figure 5).

There might still be non-code frames in the video that
have not been assigned to any video fragment (e.g., frames 1
and 2 in Figure 5). These frames are grouped together on the
basis of the audio transcript part they fall in. For example,
the first two frames in Figure 5 are grouped in the same
video fragment (Fragment 1), since they both fall in the same
audio transcript part.

As a final step, each subsequent pair of fragments is
compared to remove very short video fragments and to
merge semantically related fragments. CODETUBE merges
two subsequent fragments if:

1) Their textual similarity (computed using the Vector
Space Model (VSM) [17]) is greater than a threshold λ.
Each video fragment is represented by the text contained
in its audio transcripts and in its frames (as extracted by
the OCR). The text is pre-processed by removing English
stop words, splitting by underscore and camel case, and
stemming with the Snowball stemmer9.

2) One fragment is shorter than µ seconds. This is done to
remove short video fragments that unlikely represent a
complete and meaningful fragment of a video tutorial.

3.3 Features Construction for the Classification

The Video Fragment Classifier is in charge of classifying them
into one of the seven categories obtained as output of the
study presented in Section 2 (see Table 2).

There are different aspects to consider when devising an
approach to automatically classify complex objects like video
fragments. The information characterizing a video fragment
is heterogeneous, and it includes (i) temporal aspects, e.g.,
the position in the video with respect to other fragments, (ii)
structural features, e.g., presence of shapes on the screen, (iii)
semantic features, e.g., textual topics, and (iv) information
concerning the source code being shown on the screen.
We present all features involved in the construction of the
feature vector used by the machine learning algorithm to
automatically classify a given video fragment.

3.3.1 Temporal Features
Some types of video fragments have a tight relationships with
their temporal position in the video, and with their duration
as well. Specifically, we consider the following three features:
Beginning Time, expressed as percentage of the whole

video (i.e., begin_time/video_length). Identifying

8. https://en.wikipedia.org/wiki/SubRip
9. http://snowball.tartarus.org

the position of the fragments should help the classifier
in identifying relationships between certain categories
of video fragments and their temporal position within
the video. For example, introduction to the tutorial topic
and closing of the tutorial to the beginning and the end of
the video, respectively.

Fragment Length, in seconds. Different fragment categories
are likely to have different durations. For example,
fragments related to the opening and closing of a tutorial
are likely to be short, while fragments showing code
implementation activities are likely to last longer, since
they constitute the core of a tutorial.

Fragment Coverage, as percentage of the video tutorial
covered by the fragment (i.e., fragment_length /
video_length). Although the coverage can be con-
sidered similar to the fragment length, it avoids possible
issues related to video tutorials having a substantially
different duration. Indeed, fragments extracted from
long video tutorials are likely to be longer than those
extracted from short video tutorials, despite their “type”.
This feature, being normalized on the video tutorial
length, avoids this issue.

3.3.2 Structural Features
Another aspect to be considered is the structure of each frame
composing a given video fragment. Specifically, different
frames have different content of graphical elements, that
translates into different features to be leveraged for video
fragment identification. CODETUBE focuses on:

Average Pixel Overlap between all possible frame pairs
in the fragment. The overlap is calculated pixel-wise. Only
pixels in the same position and with the same color in two
frames are considered overlapping. Fragments categorized
as theoretical concepts are likely to have a higher percentage
of overlapping pixels between frames, since the tutor may
show the same slide for several seconds while discussing the
concepts. Since we have discarded subsequent similar frames,
we need to take this into consideration when computing such
a feature. For example, assume that our video fragment V
is composed of frames F1, F2, and F3 and that we have
discarded F2 as being too similar to F1. Also, suppose that
the pixel overlap between F2 and F3 is 60%. We consider
100% of pixel overlap between F1 and F2, thus obtaining
80% as average pixel overlap for the fragment.

Average Number of Quadrilaterals, i.e., the average
number of quadrilaterals identified by shape detection
analysis in the fragment’s frames. Figure 7 shows an example
of frame taken from a fragment tagged as code implementation.

There are several quadrilaterals corresponding to code
editor, console output, package explorer, and the UI designer.
The number of quadrilaterals is likely to discriminate frag-
ments in which the IDE is shown (e.g., a code implementation
fragment) from the others. Also, the number of quadrilaterals
on the screen also helps in discriminating execution of the
implemented code from code implementation. Indeed, we expect
the execution of the implemented code to open new windows
(e.g., the Android emulator) on the screen. In this case we
adjust our computation to take into account the removal of
(quasi-)identical frames. In this case, if our video fragment
is composed by the frames F1 (4 quadrilaterals), F2 (4
quadrilaterals), and F3 (1 quadrilateral) and F2 has been

https://en.wikipedia.org/wiki/SubRip
http://snowball.tartarus.org

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 7. A frame taken from a code implementation fragment.

removed as too similar to F1, we consider F1 twice in the
computation of the average: (4+4+1)/3=3. This approach is
exploited in all features requiring the computation of the
average between properties of the fragment’s frames.

Average Largest Quadrilateral shown in the fragment’s
frames, expressed as a percentage of the total screen area.
The goal is to understand if the IDE is the foreground of the
frame. In Figure 7 the code editor is the largest quadrilateral
and occupies about 32% of the frame space.

Having a high average coverage of the largest quadri-
lateral could imply having an IDE on the foreground
and therefore helping the classifier in discriminating the
categories involving development, e.g., code implementation,
execution of the implemented code, and dealing with errors. As for
the previous structural features, we considered frames that
were removed, and we replicate the value of their predecessor
in the calculation of the average.

3.3.3 Code Features
Using the information extracted with the island parser, we
compute the following features:

Average Constructs i.e., the average number of code con-
structs found in the fragment’s frames. The classifier could
use this feature to discriminate between fragment categories
likely to show a lot of code (e.g., code implementation),
and categories with less or no code (e.g., topic introduction,
working environment setup). We considered frames that
were removed, by replicating the value of their predecessor.

Average Specific Node Types i.e., the average number of
occurrences of some specific AST nodes in the fragment’s
frames. In particular, we count identifiers, imports, class
declarations, method declarations, blocks, statements, stack traces,
XML tags, and JSON constructs. The idea is to differentiate the
type of constructs for the different categories. For example,
categories like theoretical concepts, topic introduction, or closing
are unlikely to have complex constructs like declarations and
statements. Fragments dealing with common errors are likely
to contain more constructs related to stack traces. Instead,
JSON constructs or XML tags could be shown in a frame
when detailing some specific portions of the implementation
(e.g., JSON for illustrating access to remote services, or XML
for Android app permissions or activity design). Also, XML

constructs can be shown in the context of the environment
setup. As for the previous structural features, we considered
frames that were removed, and we replicate the value of
their predecessor in the calculation of the average.

3.3.4 Semantic Features
The last set of features concerns the semantics of a fragment
as captured by its textual content. Textual content relates to
(i) the audio transcript, when available, and specifically to
the transcript subset related to the segment time interval,
and (ii) the text contained in the frames.

Considering the occurrences of each term as a feature for
the machine learning algorithm would inevitably hinder the
performance of any classifier, e.g., by introducing problems
related to synonymy or polysemy. A viable solution is
to reduce the dimensionality of the semantic features by
substituting terms with a set of topics extracted from the
fragments. In our approach we use Latent Dirichlet Allocation
(LDA) [18], an unsupervised topic modeling technique that,
as suggested by Blei et al. [18], can be used as feature
reduction approach for terms. We use the Stanford Topic
Modeling Toolbox10 configured to identify seven topics
from the fragments corpus. The number of topics has been
selected according to the number of labels resulted from the
open coding session and reported in Table 2. Although a
near-optimal configuration of LDA could require a proper
setting—e.g., through search-based optimization techniques
[19]—in this work we have set the number of topics equal
to the number of expected categories, an approach already
followed when LDA has been used to categorize text [20].
Also, we adopted the default parameters for α=0.01, β=0.01,
and n =1,000 (where n is the number of Gibbs iterations).

3.4 Classifying Video Fragments
The starting point for building a classifier able to discriminate
between the different types of video fragments is a training
set built from a collection of video fragments, their temporal,
structural, code, and semantic features, and their respective
category (e.g., code implementation). While the computation of
the video fragments’ features is fully automated, the training

10. http://nlp.stanford.edu/software/tmt/

http://nlp.stanford.edu/software/tmt/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

set labeling with categories is manual (e.g., by relying on a
process similar to the one presented in Section 2).

Once a training set is available, a supervised learning
algorithm is run on it. Our approach uses the Weka [21]
implementation of the Random Forest machine learning
algorithm [22], which builds a collection of decision trees
with the aim of solving classification-type problems, where
the goal is to predict values of a categorical dependent
variable from one or more continuous and/or categorical
predictor variables.

The categorical dependent variable is represented by the
video tutorial fragment category as identified in the open
coding process (see Table 2), e.g., code implementation, execution
of the implemented code, etc., and we use the features described
in Section 3.3 as predictor variables.

After experimenting with different machine learning
algorithms, e.g., J48, Bayesian Network, Logistic Regression,
and Bagging classifiers (details of the comparison are in the
replication package [23]), we selected the Random Forest
algorithm. The built model can then be used to classify new
video fragments. To do so, we extract the same set of features
considered in the training set, and based on their values, the
Random Forest is used to automatically determine the video
fragment category.

Since some of the features we considered might correlate,
we perform an information gain feature selection process
[24] aimed at removing all features do not contributing to
the information available for the prediction of the video
fragment category. Also, when training the model we check
the distribution of training set samples across the seven
fragment categories. In case of imbalanced dataset, we apply
a re-balancing technique, as it will be detailed in Section 4.1.

3.5 Tuning of CodeTube Parameters

The performance of CODETUBE depends on three parameters
that need to be properly tuned:

γ: the minimum percentage of LCS overlap between two
frames to consider them as containing the same code
fragment;

λ: the minimum textual similarity between two fragments
to merge them in a single fragment;

µ: the minimum video fragment length.

To identify the most suitable configuration, one of the
authors—who did not participate in the approach definition—
built a “video fragment oracle” by manually partitioning a set
of 10 video tutorials into cohesive video fragments11. Then,
we looked for the CODETUBE parameters configuration best
approximating the manually defined oracle. A challenge
in this context is how to define the “closeness” of the
automatically- and manually-generated video fragments.

Estimating Video Fragments Similarity. A video can
be seen as a set of partitions (video fragments) of frames,
where each frame belongs to only one partition, i.e., the
generated video fragments are clusters of frames. To compare
the closeness of the video fragments generated by CODETUBE
and those manually defined in the oracle, we used the MoJo

11. These 10 videos are not part of the 136 considered in the study
presented in Section 2.

effectiveness Measure (MoJoFM) [25], a normalized variant
of the MoJo distance, computed as:

MoJoFM(A,B) = 100−
(

mno(A,B)

max(mno(∀EA, B))
× 100

)
where mno(A,B) is the minimum number of Move or Join
operations needed to transform a partition A into a partition
B, and max(mno(∀ EA, B)) is the maximum possible
distance of any partition A from the partition B. Thus,
MoJoFM returns 0 if A is the farthest partition away from
B, and returns 100 if A is exactly equal to B.

While MoJoFM is suitable to compare different partitions
(video fragments) of the same elements (frames), we must
take into account that video fragments are characterized
by a constraint of sequentiality (i.e., they can only contain
subsequent frames). This could lead the MoJoFM to return
high values (similarity) even when applied to two totally
different video partitions. For example, consider the video
frames F = {1, 2, 3, 4, 5, 6} and two sets of video fragments
where the first set, A = {1, 2, 3, 4, 5, 6}, contains a unique
partition (video fragment) with all the elements (frames),
and the second set, B = {{1, 2, 3}, {4, 5, 6}}, contains 2
partitions of size 3. Since the MoJoFM is not a symmetric
function, it would return MoJoFM (A,B) = 25.0 and
MoJoFM (B,A) = 80.0, i.e., two different values, despite
the fact that the two partitions are the same.

Keeping a one-way comparison between the oracle and
the obtained video fragments undermines the tuning phase.
To avoid this, yet keeping a margin of approximation, both
sides of the MoJoFM should be taken into account. Two sets
of fragments will tend to have the same value if they are
close in their partitioning. For this reason, we calculate the
similarity in both directions and compute their mean value:

closeness(A,B) =
MoJoFM(A,B) +MoJoFM(B,A)

2

In doing so, spikes of high values for the MoJoFM between
two sets of video fragments for one direction are lowered or
preserved depending on the opposite.

Estimating the Most Suitable Parameter Configuration.
For each parameter, we identified a set of possible values.
Table 6 shows the intervals we adopted, and the step (∆)
used whenever a new combination is generated.

TABLE 6
Parameter tuning intervals.

Parameter Min Max ∆
γ 5% 50% 5%
λ 10% 80% 5%
µ 1,000s 120,000s 10,000s

In total, we experimented 1,800 different parameter
combinations, adopting the one with the top ranked MoJoFM
(γ =5%, λ =15%, µ =50s) for the full-fledged analysis phase.

3.6 Integrating Other Sources of Information

CODETUBE can be enriched by mining other online resources,
as our goal [26] is to offer a holistic point of view, also
because we argue that no single type of resource can offer

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

2

1

3

45

Fig. 8. The CODETUBE user interface: (1) video fragment, (2) fragment controls, (3) related Stack Overflow discussions, (4) related video fragments,
(5) search box.

exhaustive assistance. As an initial contribution, we added as
an additional online information source the Stack Overflow
data dump. We mined and extracted discussions related to
the topics of the extracted video tutorials, pre-processed them
to reduce the noise, and made them available to CODETUBE.

The last step in the data pre-processing of CODETUBE
consists in indexing both the extracted video fragments and
the Stack Overflow discussions.

For this step we use LUCENE12. Each video fragment is
considered as a document, while for each Stack Overflow
discussion we separately index each question and answer.
The text pre-processing phase is identical to the one explained
in Section 3.2. The text indexed for a video fragment is
represented by the terms contained in its frames and audio
transcripts. The text indexed for the Stack Overflow post is
represented by the terms they contain.

3.7 The CodeTube User Interface
The main user interface of CODETUBE is depicted in Figure 8.
CODETUBE provides a service that allows users to search,
watch, and navigate the different fragments of a video
tutorial. The user can input a textual query and select via
checkboxes the type of fragment categories she is interested
in (see Figure 9).

CODETUBE will provide a list of relevant video tutorial
fragments (search results) from which the user can select the
one she is interested in watching. When a video fragment
is selected for watching from the search results, the GUI
depicted in Figure 8 is shown.

CODETUBE uses the YouTube player (1) provided by
the YouTube API13. The video starts at the time devised by
the selected fragment. CODETUBE provides an additional
controller (2) to visualize the timestamps of the fragments
identified by our approach, select a specific fragment, or
move to the next/previous fragment. During the playback,
the selector underneath the video player keeps the pace of
the video timing and shows the current fragment. When a
new fragment is reached, or the user jumps to it, CODETUBE

12. https://lucene.apache.org/
13. https://developers.google.com/youtube/js_api_reference

Fig. 9. CODETUBE: Search page with filtering.

automatically extracts a query from the text contained in the
fragment (i.e., transcripts and OCR output of the frames it
contains), queries both the index of Stack Overflow and of
the video fragments, and updates the related discussions (3)
and the suggested YouTube video fragments (4). A search
bar (5) is always available to the user to run new queries.

4 STUDY I: IDENTIFICATION AND CLASSIFICATION
OF VIDEO TUTORIAL FRAGMENTS

The goal of this study is to evaluate CODETUBE with the
purpose of determining its ability to (i) extract meaningful
video tutorial fragments, and (ii) correctly classify them,
using the categories identified in Section 2.

We cast such an evaluation into two research questions:

RQ1: To what extent do automatically and manually ex-
tracted video tutorial fragments overlap?

RQ2: How accurate is CODETUBE in classifying video
tutorial fragments in the considered categories?

The first research question assesses the overlap between
the video tutorial fragments automatically extracted by

https://lucene.apache.org/
https://developers.google.com/youtube/js_api_reference

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

CODETUBE and those manually identified by people watch-
ing the same tutorial. A high overlap indicates the ability of
CODETUBE to split video tutorials as humans would do.

The second question (i) assesses the accuracy of our
technique in classifying video tutorial fragments in the seven
categories listed in Table 2, and (ii) investigates the relevance
of the different categories of features (i.e., temporal, structural,
code, and semantic) described in Section 3.

4.1 Study design and procedure
We use the dataset of video tutorial fragments described
in Section 2, consisting of 748 manually tagged fragments
taken from 136 video tutorials related to Java programming,
JSPs/Servlets, and Android development, distributed across
the seven categories of video fragments. We run CODETUBE
on this dataset to identify and categorize video fragments.

To answer RQ1, we computed the MoJoFM [25] between
the fragments extracted by CODETUBE and the ones man-
ually identified by the study participants, by essentially
applying the same procedure adopted for the parameters’
tuning (see Section 3.5). We show boxplots of the MoJoFM
achieved by CODETUBE over the 136 subject video tutorials.

To answer RQ2, we performed a 10-fold cross validation,
computing the overall average accuracy of the model when
(i) only relying on temporal, structural, code, and semantic
features in isolation, (ii) combining the four categories of
features in pairs (six possible pairs) and in groups of three
(four possible groups), and (iv) considering all of them.

We performed a feature selection process using the
information gain feature selection technique [24] before run-
ning the 10-fold cross-validation. Table 7 shows selected
and discarded features (and their rank as provided by the
information gain) when considering the complete dataset.

TABLE 7
Feature selection results.

Feature Type Name Selected

Temporal
Beginning Time 3 1
Fragment Length 3 2
Fragment Coverage 3 4

Structural
Average Pixel Overlap 3 3
Average Number of Rectangles 3 8
Average Largest Rectangle 3 7

Code

Average Constructs 3 9
#identifiers 3 15
#class declarations 3 17
#method declarations 3 19
#blocks 3 13
#statements 3 10
#imports 3 20
#stack traces 7 –
#JSON constructs 7 –
#XML tags 7 –

Semantic

topic 1 3 16
topic 2 3 5
topic 3 3 14
topic 4 3 18
topic 5 3 12
topic 6 3 11
topic 7 3 6

The temporal feature is top ranked as some fragments
occur in specific time frames of the video. Some features
that seem to be related (e.g., fragment length and coverage)
are both taken into account and ranked in the top position,

hence indicating that they bring complementary information.
Instead, data-specific features (e.g., JSON constructs and
XML tags) do not bring information for discriminating the
considered categories. The same happens for stack traces,
that could have been potentially useful for discerning error
scenarios. One possible interpretation is that the OCR failed
to successfully capture stack traces, e.g., because the console
output is not fully visible in the IDE.

Since our dataset is strongly unbalanced (see Table 2), we
balanced the training set at each iteration (i.e., for each of the
ten folds) by exploiting the Synthetic Minority Oversampling
TEchnique (SMOTE) [27]. SMOTE re-balances the training
set by creating artificial instances obtained by joining nearest
neighbors of the minority class instances. While we balanced
the training set to build the classifier, the test set was never
modified to avoid any bias.

We assess the overall performances of the model with its
average accuracy. Also, we dig into the results by presenting
(i) the obtained confusion matrix, (ii) the model accuracy for
each of the seven considered fragment categories, and (iii)
the Area Under the ROC curve (AUROC) [28] obtained for
each category as well as for the overall model. An AUROC
of 0.5 indicates a model having the same prediction accuracy
in identifying true positives as a random classifier. A perfect
model (i.e., zero false positives and zero false negatives) has
instead AUROC=1.0. Thus, the closer the AUROC to 1.0, the
higher the model performances.

4.2 Study results
4.2.1 RQ1: To what extent do automatically and manually
extracted video tutorial fragments overlap?
Figure 10 shows (i) the boxplots of the MoJoFM obtained
when comparing the video fragments automatically extracted
by CODETUBE with those manually defined by watching the
136 video tutorials subject of this study, and (ii) the scatterplot
of the MoJoFM and video length, useful to investigate
possible relationships between the accuracy of CODETUBE in
identifying video fragments and the video length.

50
60

70
80

90
10
0

M
oJ
oF
M

●

M
oJ

oF
M

100

90

80

70

60

50

0 200 600 1000 1400

50
60

70
80

90
10

0

Video Length (secs)

M
oJ

oF
M

M
oJ

oF
M

100

90

80

70

60

50

Video length (secs)

0 200 400 600 800 1000 1200 1400

Kendall’s τ = -0.17

Fig. 10. RQ1: MoJoFM achieved on the 136 video tutorials and scatterplot
between MoJoFM and video length

On average, CODETUBE achieves 77% of MoJoFM (me-
dian=76%), suggesting a high similarity between manually-
and automatically-identified video fragments. In seven cases,
the video partition proposed by CODETUBE is exactly the
same manually defined by participants and, for twenty

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

videos, the MoJoFM is higher than 90%. Clearly, there are
cases in which CODETUBE fails in identifying meaningful
fragments, as it happens for the five video tutorials in
which it achieves a MoJoFM lower than 60%. We looked
into these cases to understand the reasons behind such a
low performance of CODETUBE. We identified three main
situations in which CODETUBE clearly exhibits limitations in
identifying meaningful video fragments:

1) Very low video quality. Low quality videos14 make it
difficult to extract meaningful text with the OCR,
substantially limiting the information available to the
CODETUBEVideo Fragments Analyzer.

2) Zooming on the screen. In some videos the tutor zooms in
and out the screencast15 , thus making it challenging to
identify video fragments. Indeed, zooming at different
levels in different frames limits the effectiveness of some
of the heuristics adopted by the Video Fragments Analyzer
(e.g., the LCS).

3) Continuous shifting of the portion of the screen captured in
the screencast. In some tutorials the screencast does not
capture the whole screen, but just the portion of the
screen surrounding the mouse pointer. This results in a
continuous shifting of the part of the screen shown in
the tutorial16.

The scatterplot in the right part of Figure 10 does not
show any strong relationship between the MoJoFM and the
length (in seconds) of the video tutorials. Also the Kendall’s
τ coefficient (-0.17) confirms that while CODETUBE is slightly
more precise in the identification of video fragments on
shorter videos, there is a very weak negative correlation
between MoJoFM and video length.

4.2.2 RQ2: How accurate is CODETUBE in classifying video
tutorial fragments in the considered categories?
Table 8 reports the accuracy (i.e., percentage of correctly
classified instances) and AUROC obtained by our approach
when relying on different sets of features.

TABLE 8
RQ2: Performances when using different combinations of features.

Considered set of features Accuracy AUROC
Temporal 56% 0.82
Structural 30% 0.65
Code 41% 0.68
Semantic 40% 0.70
Temporal+Structural 61% 0.85
Temporal+Code 67% 0.88
Temporal+Semantic 66% 0.84
Structural+Code 46% 0.74
Structural+Semantic 48% 0.75
Code+Semantic 45% 0.75
Temporal+Structural+Code 68% 0.88
Temporal+Structural+Semantic 68% 0.88
Temporal+Semantic+Code 70% 0.90
Structural+Semantic+Code 52% 0.79
Temporal+Structural+Semantic+Code 72% 0.92

When exploiting the temporal, structural, code, and
semantic features in isolation, the best performances are

14. For example, https://www.youtube.com/watch?v=-VRUX-iSPWc
15. For example, https://www.youtube.com/watch?v=xuX96Lik3Co
16. For example https://www.youtube.com/watch?v=-L8FAKadrhg

provided by the temporal features, with 56% of accuracy
and AUROC=0.82. While this result might look surprising,
temporal features can be very effective in identifying at least
two of the categories considered in our study: the introduction
of the tutorial topic and the closing of the tutorial.

Indeed, 85% of the tutorials start with an introduction to
the tutorial topic and 35% end with a closing part generally
featuring a summary of the tutorial and/or information
about future tutorials that will be published. Thus, it is
quite simple for the model to learn how to spot out these
types of fragments by exploiting temporal features—e.g.,if
beginning time17 < 0.1 then fragment type is introduction of
the tutorial topic. Temporal features also help in identifying
fragments dealing with code implementation activities. For this
fragment type, our approach learns, by exploiting temporal
features, that if a fragment starts during the first half of the
tutorial (i.e., beginning time < 0.58) and it lasts for over 40%
of the overall tutorial length (i.e., fragment coverage > 0.42) it
likely represents a code implementation fragment. This makes
sense since code implementation often represents the bulk of
software development video tutorials.

The other sets of features (i.e., structural, code, and
semantic) obtain substantially lower performances than
temporal features when used in isolation. However, for some
specific categories of fragments, they perform as well as or
even better than the temporal features.

Semantic features help in characterizing fragments de-
scribing how to deal with common errors. This is possible
thanks to a specific LDA topic (topic 2) described by key
words such as exception, try, and throw. This topic is exploited
by our approach in the identification of video fragments
explaining how to deal with common errors. However, this
is not enough for our technique to provide a high accuracy in
the identification of this type of fragments. This is mainly due
to the fact that topic 2 plays a major role in tutorial fragments
dealing with implementation activities, thus leading to a
high number of mis-classifications.

Code features are the best ones in identifying code imple-
mentation fragments: our approach learns that a high number
of code snippets shown on the screen for the whole fragment
duration likely indicates its focus on implementation tasks.
Finally, structural features provide the lowest accuracy and,
when used in isolation, exhibit very low accuracy in the
identification of all categories of video fragments.

When combining the four sets of features in pairs,
performances are boosted up to 67% of accuracy and 0.88
of AUROC (obtained when combining temporal and code
features), indicating quite good performances of the built
model. Again, it is clear the major role played by the temporal
features. Indeed, the three models exploiting them have
AUROC≥0.84 as compared to the 0.74 and 0.75 obtained
in the two models do not exploiting temporal features. The
accuracy further increases up to 70% (AUROC=0.90) when
using three groups of features at a time (temporal, semantic,
and code features), reaching its maximum value (72%) when
all four sets of features are exploited. In this case, the built
model exhibits a quite high AUROC of 0.92.

17. Beginning time expresses the relative beginning of the video
fragment as percentage of the video tutorial length.

https://www.youtube.com/watch?v=-VRUX-iSPWc
https://www.youtube.com/watch?v=xuX96Lik3Co
https://www.youtube.com/watch?v=-L8FAKadrhg

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 9
RQ2: Confusion Matrix and AUROC per each Category when Using all Features.

Predicted Category
Reference Category CT DE ES EIC CI TC ITT AUROC
Closing of the Tutorial (CT) 37 0 0 5 3 0 0 0.98
Dealing with Errors (DE) 0 7 0 0 8 3 1 0.88
Environment Setup (ES) 1 0 19 0 7 4 7 0.88
Execution Implemented Code (EIC) 11 2 3 83 17 6 1 0.91
Code Implementation (CI) 7 8 18 26 200 20 6 0.89
Theoretical Concepts (TC) 1 4 0 6 14 55 7 0.90
Introduction tutorial topic (ITT) 0 1 3 0 2 6 131 0.98

Table 9 reports the confusion matrix obtained by this
comprehensive model, showing as well the AUROC for each
of the seven categories of fragments.

Our approach is very effective in identifying fragments
related to the introduction to the tutorial topic (accuracy=82%,
AUROC=0.98) and to the closing of the tutorial (accuracy=92%,
AUROC=0.98). This very high AUROC is possible because
the temporal features are effective to discriminate video frag-
ments of these two categories. Classification performances
are also very good for fragments dealing with the execu-
tion of the implemented code (accuracy=67%, AUROC=0.91),
the explanation of theoretical concepts (accuracy=63%, AU-
ROC=0.90), and code implementation activities (accuracy=70%,
AUROC=0.89). Concerning the former (e.g., the execution of
an implemented app in the Android emulator), we expected
structural features to be highly discriminating, because the
execution of the code would have opened a new window,
resulting in more quadrilaterals shown on the screen.

However, these features resulted to be useless for the
identification of these fragments. This is due to the fact
that often the implemented code is executed directly inside
the IDE’s console (always shown on the screen) without
opening a new window. This makes it difficult to discern
this situation from a code implementation with no execution
activity. Currently, our approach identifies these fragments as
“short implementation activities” (i.e., they are characterized
exactly as code implementation fragments, but they are
much shorter). Probably, other features should be thought
to increase the classification accuracy for this category of
fragments.

An effective identification of code implementation frag-
ments is possible with a combination of temporal and code
features. For example, one of the rules used in a decision
tree generated by our approach identifies implementation
fragments as those lasting at least 42% of the overall
video length, starting during the first half of the tutorial,
and containing at least one code statement and one block
statement.

Finally, while still being acceptable, performances de-
crease when categorizing fragments related to the environ-
ment setup (accuracy=50%, AUROC=0.88) and to common
errors one could encounter during implementation activities
(accuracy=37%, AUROC=0.88). In these cases, we expected
semantic features to help in the classification of these
fragments. As previously mentioned, semantic features only
partially help in the identification of fragments related to
implementation errors. A deeper investigation revealed that
the limited contribution of the semantic features is due to

the high imprecision of the OCR in extracting terms from
the video frames. As previously explained, OCR tools are
usually designed to deal with text on white background
(i.e., paper documents). When using an OCR tool on video
frames, the high variability of the background can result
in a high amount of noise. Very likely, the accuracy of our
approach could strongly benefit from the implementation of
more robust OCR tools designed to deal with such a noise.

5 STUDY II: INTRINSIC EVALUATION WITH USERS

In our previous study we assessed the accuracy of CODE-
TUBE in (i) identifying meaningful video fragments, and (ii)
correctly classifying video fragments in the seven considered
categories. In this study we dig deeper in the quality of
the extracted video fragments, looking at their cohesiveness,
self-containment, and relevance to a query as perceived by
developers. Also, we assess the relevance and complementar-
ity of the video fragments to the Stack Overflow discussions
recommended by CODETUBE.

The three research questions of this study are:

RQ3: To what extent are the extracted video tutorial frag-
ments cohesive and self-contained?

RQ4: To what extent are the Stack Overflow discussions
identified by CodeTube relevant and complementary
to the linked video fragments?

RQ5: To what extent is CodeTube able to return results
relevant to a textual query?

RQ3 aims at assessing the capability of CODETUBE to
extract fragments that are on the one hand cohesive—i.e.,
related to a very specific (sub)topic of the tutorial—and on
the other hand self-contained, i.e., they can be understood
without watching the rest of the video.

The purpose of RQ4 is to assess the capability of CODE-
TUBE to link video tutorial fragments to relevant Stack Over-
flow discussions. While specific approaches to recommend
Stack Overflow discussions exist [6], our aim is to determine
whether the textual content of the video tutorial fragment can
be used to retrieve such discussions. Also, to determine the
usefulness of a multi-source recommender like CODETUBE,
we are interested to understand whether the Stack Overflow
discussions provide complementary information with respect
to the video tutorial.

RQ5 assesses CODETUBE’s retrieval capabilities over the
indexed video fragments, to determine whether the indexed
textual corpus allows to find relevant video fragments, and
whether such fragments are at least as relevant as those
returned by YouTube with the same query.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

The context of the study consists of participants and objects.
The participants have been identified using convenience
sampling among personal contacts of the authors, and
by sending invitations over mailing lists for open-source
developers. In total, 40 participants completed the survey.
The objects of the study are a set of 4,74718 video tutorials
about Android development indexed in CODETUBE. From
these video tutorials, CODETUBE extracted a total of 38,783
fragments. Note that in this study we chose to focus on video
tutorials dealing with a specific technology (i.e., Android)
and we only involved participants having experience with
such a technology. This was a constraint to ensure a good as-
sessment of the video tutorial fragments and Stack Overflow
discussions identified by CODETUBE.

5.1 Study design and procedure
The study has been conducted using an online survey
questionnaire, through which we asked questions to the
potential respondents to assess the results of CODETUBE.
The questionnaire is composed of two sections, preceded
by preliminary assessment of the primary activity (indus-
trial/open source developer, student, academic), program-
ming experience, and specific experience about Android
development of respondents. This preliminary section also
included exploratory questions aimed at understanding (i)
how often and in which circumstances respondents use video
tutorials and Q&A Websites, (ii) whether they found useful
information there, and (iii) how they react to video tutorials
being too long (e.g., scroll it, watch it anyway, or give up).
We also asked participants what the main aspects of strength
and weakness of video tutorials are, compared to standard
documentation and Q&A Websites.

The first section shows to respondents a video tutorial
from YouTube together with its video fragments extracted by
CODETUBE. Each video shown to respondents is randomly
selected from the set of videos composed by exactly three
fragments in the CODETUBE dataset. For each video frag-
ment we ask (RQ3) whether the fragment is cohesive and
self-contained. We also show the top-three relevant Stack
Overflow posts, and ask (RQ4) to what extent they are
relevant and complementary to the video tutorial fragments.
For each respondent, this section is repeated for two video
tutorials randomly chosen from a sample of 20 video tutorials
randomly selected from the 4,747.

TABLE 10
Queries formulated by graduate students.

1 How to send logs to server android
2 How to initiate an activity as a background service in Android
3 How to display multiple items in listview android
4 Material ui examples android
5 How to animate a transition between fragments android
6 How to access accelerometer data on Android device
7 How to access external file system android
8 Stop background services android
9 How to modify the layout of the UI in android
10 Android GUI thread

The second section aims to assess the relevance of the top-
three returned video fragments to a given query (RQ5). As

18. These numbers refer to a previous publication [29]. The current
numbers are reported in Section 1.

a baseline for comparison, we evaluate the relevance of the
top-three videos returned by YouTube using the same query.
The query shown to each respondent is sampled from a set of
10 queries (see Table 10) formulated by graduate students at
Florida State University, having a long experience in Android
development. The queries involve typical Android tasks, e.g.,
sending logs to servers, initiate activities in background,
animate transitions, access accelerometer data, stopping
background services, or modifying the UI layout.

The queries are generic, and YouTube is likely able to
return as relevant results as CODETUBE. Only specific queries,
referring to code elements—not contained in YouTube
metadata—would show the advanced of the indexing capa-
bilities of CODETUBE. Instead, we are interested in showing
that, for the typical queries a developer formulates, CODE-
TUBE returns at least as relevant as YouTube, but consisting
in shorter, cohesive and self-contained fragments.

Finally, after the second section, we asked the respondents
to evaluate, through an open comment, the main points of
strength and weakness of CODETUBE.

All the assessment-related questions follow a three-
level Likert scale [30], e.g., “very cohesive”, “somewhat
cohesive”, and “not cohesive”. We limit the number of video
fragments, Q&A discussions and queries for each respondent
to avoid the questionnaire being too long. Before sending
the questionnaire to perspective respondents, we ran a pilot
study to assess its estimated duration, which resulted to be
between 25 and 40 minutes.

The questionnaire was then uploaded on the
QUALTRICS19 online survey platform, and a link to the
questionnaire was sent via email to the invitees. We made it
clear that anonymity of participants was protected and data
were only published in aggregate form. The Qualtrics survey
platform allowed us to achieve randomization and balancing,
by automatically selecting video tutorials (with related Stack
Overflow discussion) and queries to be evaluated by each
respondent. After sending out the invitation, invitees had
two weeks to respond.

5.2 Study results
Out of the 40 study participants, 6 declared to have no
experience in Android development. Since the video tutorials
considered in the study were not introductory but related
to specific Android topics, we excluded their answers. We
collected a total of 180 video tutorial fragment evaluations
(with respect to their cohesiveness and self-containment),
540 Stack Overflow discussion evaluations, and 90 video
tutorial fragment evaluations with respect to a query. Each
fragment and SO discussion received 3-5 evaluations, except
for 3 videos and 2 queries, that, due to the exclusion of
some participants motivated above, received less than 3
evaluations. These videos and queries were excluded from
the analysis.

Table 11 shows the demographics of the participants
involved in the survey. The population who completed our
survey is composed of 70.6% of professional and open source
developers, 17.6% of master students, and 11.8% of PhD
students. 32.3% of the population has more than 10 years
experience, 17.5% has between 5 and 10 years, 38.3% between

19. https://az1.qualtrics.com

https://az1.qualtrics.com

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

TABLE 11
Participants’ Occupation, Experience in Java, and Usage of Video Tutorials for Study II.

Occupation Total % Experience in Java Total % Usage of Video Tutorials Total %
Faculty 0 0% Less than 1 year 0 0% Daily 1 3%
PhD Student 4 11.8% 1-3 years 4 11.8% Few times a week 13 38.2%
Master Student 6 17.6% 3-5 years 13 38.3% Few times a month 12 35.3%
Undergraduate Student 0 0% 5-10 years 6 17.5% Rarely 8 23.5%
Professional Software Developer 24 70.6% More than 10 years 11 32.3% Never 0 0%
Total 34 100% Total 34 100% Total 34 100%

3 and 5 years, 11.8% between 1 and 3 years. When asked
about Android programming experience, the majority (38.3%)
declared less than 1 year of experience, followed up by 23.5%
of respondents with more than 3 years experience, 20.5%
between 2 and 3 years, and 17.6% between 1 and 2 years of
experience.

The participants use video tutorials either on a weekly
(38.2%) or monthly (35.3%) basis. 3% declared to use video
tutorials on a daily basis; nobody declared to never use them.
Video tutorials are unlikely to help bug/error fixing (5%),
but are the primary means to learn new concepts (43%).

When asked to provide open comments on the weak-
nesses and strengths of video tutorials, respondents pointed
out different aspects. The primary point of strength is the
step-by-step nature of a video. One respondent wrote “As
opposed to Q&A Websites, video tutorials describe a complete
process step-by-step. The visualized flow of actions is particularly
useful in setting up working environments”, another emphasized
the “possibility to see the complete interaction of the developer
with the IDE” and “how a specific library is imported before it is
used in the code. This does not hold when you simply copy and
paste code from Websites”. Another positive point concerns
the guidance given by a tutor. One respondent reported
that “there is a ’real’ person talking with you, so it is easy to
learn new concepts”, while another respondent emphasized
the fact that “you can see what the tutor does”. The primary
weakness identified by respondents concerns time. When
a video tutorial is too long, respondents said they would
either try to scroll it to seek the relevant information (47%),
or give up to find alternative sources (53%). Nobody opted
for the third option, i.e., watching the whole video anyway.
Respondents generally consider videos too long and slow
and not suited when “you need to quickly solve a problem”, or
“just a small piece of information”. One respondent reported
how “due to time constraints I cannot always watch the entire
tutorial”. The lack of searching and indexing functionalities
of the contents of a video is also considered a weakness. One
of the respondents claimed that “browsing is not easy, unless
the video has an index to navigate through the concepts/sections
in the video”, while another highlighted how “searching for a
particular piece of information in the whole video is much harder
than doing the same in a text document”.

5.2.1 RQ3: To what extent are the extracted video tutorial
fragments cohesive and self-contained?
Figure 11 synthesizes the results of our study for RQ3.

More specifically, the top of Figure 11 shows a diverging
stacked bar chart reporting the distribution of responses
concerning the perceived fragment cohesiveness score. 129
responses (64%) indicated fragments as very cohesive, 56 (28%)
as somewhat cohesive, and 16 (8%) as not cohesive.

Cohesive

Self-contained

40 0 40 80 120 160 200

104

129

68

56

 29

16

Not Somewhat Very

Fig. 11. RQ3: Distribution of cohesiveness and self-containment.

The bottom of Figure 11 shows the distribution of the
perceived self-containment score. In this case, 104 (52%)
fragments were evaluated as very self-contained, 68 (34%) as
somewhat self-contained and 29 (14%) as not self-contained. The
lower scores achieved for self-contained are not surprising,
because obtaining self-contained fragments—and hence
understandable without watching the rest of the video—is
more challenging than achieving a high cohesiveness.

5.2.2 RQ4: To what extent are the Stack Overflow discus-
sions identified by CodeTube relevant and complementary to
the linked video fragments?
Figure 12 synthesizes the results of our study for RQ4.

Relevant

Complementary

80 40 0 40 80 120 160

51

101

13

53

3

46

Low Somewhat Very

Fig. 12. RQ4: Relevance of Stack Overflow discussions to video frag-
ments, and complementariness to videos.

The top of Figure 12 shows the distribution of the per-
ceived relevance of the Stack Overflow discussions associated
to the video fragments of each video tutorial considered in
the study. 101 (50.5%) of the provided response indicated a
very high relevance, 53 (26.5%) a somewhat high relevance, and
46 (23%) no relevance.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

The bottom of Figure 12 shows results related to the
complementariness. In 51 cases (76%) the Stack Overflow
discussions were evaluated as very complementary, in 13 cases
(19%) as somewhat complementary, and in 3 (4%) case as
having a low complementariness. In summary, results indi-
cate that, while respondents only considered the retrieved
discussions fairly relevant to the fragments from where the
queries were generated, they almost totally agreed about the
complementarity of the provided information. We believe
that video tutorials have a different purpose than Stack
Overflow discussions. The former have an introductory, step-
by-step guide to a given problem, the latter discuss a specific
problem/answering a specific questions.

5.2.3 RQ5: To what extent is CodeTube able to return results
relevant to a textual query?
We asked participants to evaluate the top-three results that
CODETUBE and YouTube retrieved for a set of 10 queries (see
Table 10). Each participant evaluated the relevance of a result
with respect to the query by following a three-level Likert
scale [30], i.e., “very related”, “somewhat related”, and “not
related”. We use the Normalized Discounted Cumulative
Gain (NDCG) [31] to aggregate the results.

Similarly to what done for the other research questions,
queries with less than 3 replies are ignored. The NDCG is
thus calculated on a set of 8 queries out of the initial 10. We
obtained NDCGCT (Q, 3) = 0.67 and NDCGY T (Q, 3) =
0.63 for CODETUBE and YouTube, respectively.

Even if CODETUBE seems to perform slightly better
than YouTube, a statistical analysis of the NDCGY T and
NDCGCT distributions, performed using the Wilcoxon
signed-rank (paired) test, did not show the presence of a
statistically significant difference (p-value=0.49). Even though
the data collected is not enough to draft any statistically
significant conclusion, there are some considerations to make.
First, when extracting the top-three results from YouTube we
removed all the retrieved videos that are not included in the
CODETUBE dataset. This makes the comparison unfair for
our approach. Second, YouTube recommends entire videos,
while CODETUBE recommends specific fragments. Thus,
our approach is potentially more focused even if both the
fragment and the whole video recommended by YouTube
are equally relevant.

5.2.4 Strengths and Suggestions for Improvement
We also asked participants to freely comment about CODE-
TUBE. They had a positive impression. One respondent
reported “CodeTube looks very useful, added to the bookmarks!”,
while another wrote “excellent work, [..] the idea behind
CodeTube is brilliant”. The extraction of fragments has been
appreciated and considered “very useful for developers who
are already knowledgeable about the topic, they can save a lot
of time”. The possibility of having complementary sources
of information, e.g., Stack Overflow, was appreciated. One
respondent reported “the concept is amazing, and has a lot of
possibility of improvement, given the huge amount of different
sources of data available”, while other participants asked for
additional features. One participant asked for “the possibility
to search for SO discussions directly below the video”, while
another wondered that “it would be nice if the tool can provide
a summary/description that describes the context”.

6 STUDY III: EXTRINSIC EVALUATION

A successful technological transfer is the main target objec-
tive for each prototype tool. Thus, the goal of this second
study is to extrinsically investigate CODETUBE’s industrial
applicability. Specifically, the research question we aim at
answering with this evaluation is:

RQ6: Would CODETUBE be useful for practitioners?

The context of the study is represented by three leading
developers—all with more than five years of experience
in app development—of three Italian software companies,
namely Next, IdeaSoftware, and Genialapps. Although this
is a fairly limited context, the main purpose of this study is to
collect feedback about the possibility of adopting CODETUBE
in realistic development scenarios, as well as suggestions for
its improvement.

6.1 Study design and procedure
We conducted semi-structured interviews to get quantitative
and qualitative feedback on CODETUBE. Each interview
lasted two hours. During the interview we let developers
explore CODETUBE for about 90 minutes, searching for video
tutorials on specific technology or to fix problems.

Each interview was based on the think-aloud strategy.
We also explicitly asked the following questions: (1) Do you
use video tutorials during development tasks? (2) Would the
extraction of shorter fragments make you more productive?
(3) Is the multi-source nature of CODETUBE useful? (4) Are
you willing to use CODETUBE in your company?

Participants answered each question using a 4-point scale:
absolutely no, no, yes, and absolutely yes. We avoided the
intermediate, neutral level, as we wanted participants to take
a clear position. The interviews were conducted by one of
the authors, who annotated the answers as well as additional
insights about the strengths and weaknesses of CODETUBE
that emerged during the interviews.

6.2 Study results
Nicola Noviello, Project Manager @ Next. Nicola posi-
tively answered to our first three questions (i.e., “absolutely
yes”). Nicola declared to use video tutorials daily; “they
are particularly useful for senior and junior developers for both
learning a new technology or finding the solution to a given
problem. I see very often my developers on specialized YouTube
channels searching for and watching video tutorials.” Nicola also
appreciated the multi-source nature of CODETUBE; “the video
tutorial provides the general idea on the technology, while Stack
Overflow discussions are particularly useful to manage alternative
usage scenarios and specific issues.”. Regarding the extraction
of fragments, Nicola commented that “I usually discard video
tutorials that are too long, because when I try to scroll/fast forward
it to manually locate segments of interest, I am generally not able
to find what I need. I strongly believe that the relevant segment is
there but randomly scrolling a video tutorial is not worthwhile! I
prefer to look for more focused video tutorials. Also, the possibility
to filter video fragments on the basis of their category is a fantastic
feature!”. Nicola then confirmed that the availability of shorter
fragments would make him much more productive.

Nicola answered “yes” to the question related to the
usefulness of CODETUBE; “I did not answer absolutely yes

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

because of the limited number of indexed tutorials. However, I
strongly believe that the tool has an enormous potential.”. Nicola
declared that he will present the tool to a newcomer trainee
to quantify to what extent the tool is useful for developers
that have a little knowledge on the Android world; “I usually
suggest to trainees to look for and watch video tutorials but very
often they are not able to find the right information. I would
like to see whether CODETUBE is able to mitigate such a problem.”.

Luciano Cutone, Project Manager @ IdeaSoftware.
Luciano positively answered to our first three questions;
“I love video tutorials but several times they are too long and I
do not have enough time to watch whole videos. Thus, I have to
scroll the video hoping to identify relevant segments. This takes
time and makes video tutorials less effective. With CODETUBE
life will be easier!” Luciano particularly appreciated also the
possibility to filter video fragments on the basis of their
category. He also suggested an interesting new features:It
could be nice to give the possibility to the user to change the
classification of the video tutorials. In this way it is possible to
correct possibly misclassification and improve the classification
accuracy of the tool. Of course, a moderator is required to accept
the proposed change.“ When exploiting different sources of
information, Luciano works differently from Nicola; “I like
the idea of having video tutorials together with Stack Overflow
discussions. However, the main source of information for me
is Stack Overflow, while video tutorials should be used to fix
problems; if I need to apply a new technology, I would like to
start from Stack Overflow since there I can find snippets of code
that I can copy and paste into my application. Then, if something
goes wrong, I try to find a video tutorial to fix the problem.”.
Luciano also suggested a nice improvement; “Besides the
integration of video tutorials with discussions on forums, I suggest
to add another source of information, namely sample projects.
Specifically, on GitHub there are several sample projects that
explain how to apply specific technologies. Having them together
with video tutorials and Stack Overflow discussions would be
fantastic.” Another suggestion was the addition of a voting
mechanism to provide information on the usefulness and
the effectiveness of a specific (fragment of a) video tutorial.
Luciano answered “absolutely yes” to our last question
(i.e., the one related to the usefulness of CODETUBE); “I just
added CODETUBE to my bookmarks. This is the tool I wanted.
I spent several hours of the day and of the night on YouTube
and Stack Overflow to fix problems or learn new things. This is
part of my job, unfortunately. With CODETUBE I am sure that
I will find relevant information quickly. I can finally go back to
sleep during the night!”. The day after the interview, we got
a text message from Luciano: “I have just used CODETUBE
this morning. I was looking for something related to Android
WebSocket. I found all I needed. Awesome!”.

Giuseppe Socci, Project Manager @ Genialapps.
Giuseppe answered “absolutely yes” to our first question,
stating that in his opinion “Video tutorials are a crucial source of
information for learning a new technology”. Instead, he answered
“no” to our second research question related to the extraction
of fragments; “I am not 100% sure that extracting shorter
fragments makes you more productive. It depends on the scenario
where the video tutorial is used. To me, video tutorials should
be used to learn a new technology. In this case I should watch

the whole video. However, there could be cases where you just
need to fix a problem or have some clarifications on a specific
part of the technology. In this case watching fragments instead of
whole videos could be worthwhile”. In this particular scenario,
Giuseppe found the possibility to filter video fragments on
the basis of their category a great feature: “the filtering based
on the category of the video fragments can really help in improving
productivity.”

Giuseppe also suggested a way to make the tool more
usable based on his way of interpreting video tutorials;
“the search of a video tutorial should be scenario-sensitive. Before
searching, the user should specify why she is searching for a video
tutorial. The first option could be ’I have a problem’. In this case,
the search is based on fragments. The second option could be ’I want
to learn’. Here, whole videos should be retrieved”. As well as the
other two developers, Giuseppe liked the integration of video
tutorials with forum discussion (he answered “absolutely yes”
to our third research question). Consistently with findings of
Study I (Section 5.2.4), he highlighted the need for manually
refining queries when retrieving Stack Overflow discussions:
“all the visualized Stack Overflow discussions are related to a
specific video tutorial. However, Stack Overflow discussions should
be useful to resolve a problem I encountered when applying the
technology explained in the video tutorial. Thus, it might be useful
to filter the retrieved discussion by a specific query (e.g., the type
of error I got).”. Finally, Giuseppe answered “yes” to our
final question; “I think that the tool is nice. You are trying
to solve an important and challenging problem, that is merging
accurately different sources of information in order to make them
more productive.”. Giuseppe also gave a suggestion on how to
improve the visualization of the relevant fragments; “After
submitting a query, CODETUBE provides the list of relevant video
fragments. However, it is quite difficult from the title of the video
and the cover image to identify the most relevant one. I strongly
suggest to show for each video the relevant textual part of the
video content, similar to the part of the text in a Web page content
visualized by Web search engines. The same approach could be
used also to make the navigation of the fragments of a specific video
easier.”.

6.3 Reflection: Approach vs. Tool

The reception of CODETUBE was positive. All leading
developers saw great value and even greater potential in this
line of work. Several improvement suggestions, obtained
also in Study I, regard the tool that embodies our approach,
which we are currently considering. Clearly, tools can always
be improved, given sufficient time and human resources.
However, we would like to emphasize that, stepping beyond
mere implementation and UI concerns, the main contribution
of the paper lies in the underlying approach.

7 THREATS TO VALIDITY

Threats to construct validity are mainly related to the mea-
surements performed in our studies, and in Study I and II
in particular. In Study I this is mainly due to subjectiveness
in the construction of the labeled fragment dataset used in
our study, since each video has been fragmented and tagged
by one expert only. However, during the second phase (open
coding) two authors, before starting the open coding activity,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

performed a sanity check of the obtained fragments and tags.
Finally, subjectiveness in the open coding was mitigated by
employing a multiple-coder strategy, for which there has also
been a very strong inter-rater agreement even since the first
coding phase.

In Study II, instead of using proxy measures, we preferred
to let developers evaluate video fragments and their related
Stack Overflow discussions. Subjectiveness of such an evalua-
tion was mitigated by involving multiple evaluators for each
video, although as explained in Section 5.1 we favored the
number of videos over the number of responses per fragment.
Also, although a four or five-level Likert scale [30] could have
provided a more accurate evaluation, we preferred a simpler
three-level scale for the sake of facilitating the task to the
respondents, which was already long, due to the need for
watching the videos before answering the questions.

Threats to internal validity concern factors internal to
our studies that could have influenced our results. In
Section 3.5 we have shown how the CODETUBE parameters
γ, λ, and µ have been tuned. Instead, we did not tune
the similarity threshold used to detect similar subsequent
frames (10%). This is because such a threshold is mostly an
optimization parameter that, based on tests we performed
while defining our approach, does not really affect the way
the video fragments are defined but only reduces the required
computational time. In Section 3.1 we have reported results
of a study aimed at assessing the impact of such a threshold
on the approach’s cost. Last, but not least, in Section 3.2 we
have reported a study aimed at assessing the impact of the
LCS heuristic in identifying related frames.

Another possible problem is that the evaluation in
Study II could have been influenced by the knowledge of
respondents about the topic. We mitigated this threat by
discarding responses of participants not having any knowl-
edge about Android. In addition, the evaluation is mainly
related to cohesiveness, self-containment and relevance of
video fragments, and relevance and complementariness of
Stack Overflow discussions, rather than to how they would
be helpful for the respondents. Also, a possible bias could
have been introduced by the choice of the videos used in
the survey. Such videos have been randomly sampled by
considering 7 minutes as maximum video duration, and
three as maximum number of fragments for each video and
query results. These limitations have been introduced to
restrict the survey duration to a reasonable time.

Concerning the machine learning classifier, for the prepro-
cessing phase, we have mitigated possible multicollinearity
problems by using a feature selection approach. Also, we
have used SMOTE to deal with unbalanced data. Finally,
while we have tried different machine learning techniques
and chosen the one (Random Forest) producing the best
results, it is possible that we did not consider techniques (or
parameter settings for a technique) producing even better
results than what we achieved. As explained in Section 3 we
adopted a simple and possibly sub-optimal LDA calibration
when extracting semantic features. This is in line with work
using LDA in classification approaches [20].

Threats to external validity concern the generalizability of
our findings. Our studies are limited to Java video tutorials
only. We do not expect large differences in the structure
of a video tutorial for a different programming language.

Also, it is possible that results might not generalize. Also,
although our approach captures a wide range of information
characterizing video tutorials from different perspectives, it is
possible that additional information might be required when
dealing with tutorials about pieces of technology not consid-
ered in our dataset. Finally, the validity of the third study is
limited to the three very specific mobile app development
contexts we considered. However, the main aim of the third
study was not to achieve generalizability, nor conclusions on
statistical basis. Instead, as explained in Section 6, the main
aim was to collect feedback about CODETUBE’s applicability
and suggestions for its improvement.

8 RELATED WORK

To the best of our knowledge, there is limited work about
studying and analyzing video tutorials in the software
engineering context. MacLeod et al. [2] have conducted
an empirical study investigating how and why developers
produce video tutorials. This study focused on screencasts,
and its goals were to understand how and why develop-
ers produce and share such documentation. The findings
revealed that videos are a useful medium for communicating
program knowledge between developers, and that they
present key advantages compared to written documentation.
MacLeod et al.’s study therefore brings into attention the
need to leverage such information and motivates our work.
CODETUBE is the first approach to actually process and
recommend information extracted from video documentation
for software development.

A very recent work by Yadid and Yahav [32] proposes an
approach to extract source code from video tutorials. Their
approach combines OCR with statistical language models
and ensures a recall between 66% and 81%, and a precision
between 80% and 82%. The approach adopted by CODETUBE
to identify the source code to be indexed is different (as
explained in Section 3) as it is based on identifying the
IDE source code frame and in filtering source code text by
combining the use of programming language dictionaries
and island parsing. In future work we contemplate the
possibility of comparing or combining the two source code
extraction approaches. CODETUBE, however, goes beyond
just source code extraction, as it (i) identifies, classifies, and
indexes cohesive video tutorial fragments, (ii) links such
fragments to relevant Stack Overflow discussions, and (iii)
provides a mechanisms for querying the indexed fragments.

In the following subsections we discuss related work
about (i) recommender systems for software documentation
and code examples, (ii) automatic categorization of software
engineering artifacts, (iii) multimedia retrieval and process-
ing, (iv) analysis of multimedia tutorials and lectures, and
(v) use of multimedia in learning.

8.1 Recommender systems for software documenta-
tion and code examples

Numerous approaches have been proposed to provide devel-
opers with official or informal documentation for their task
at hand, as well as code samples they can reuse. Among the
various informal documentation sources, Stack Overflow has
been used by many recommender systems [3], [6], [33], [34],

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

[35], [36]. Other recommenders have focused on recovering
links between code and documentation [37], with some
focusing on recommending or enhancing API documentation
[4], [38]. Among these, the work of Petrosyan et al. [39] is
the most related, as it analyzed tutorials to extract fragments
explaining API types. With respect to such approaches,
CODETUBE is specific for analyzing video tutorials and
recommending their cohesive and self-contained fragments.

Other approaches focused on the in-project knowledge
[40], [41], [42], [43] to retrieve relevant artifacts for developers.
A prominent example is Hipikat [40], a tool that builds a
project memory from artifacts created during a software de-
velopment project (e.g., source code, documentation, emails),
and recommends such artifacts if they result relevant to
the task being performed. Several approaches focused on
mining API usage to synthesize code samples [7], [8], [9],
[10], [44], [45], [46], [47]. An example is proposed Prospector
[44], a tool that synthesize jungloids using both API method
signatures and jungloids mined from sample client programs.
Prospector integrates with the Eclipse IDE code assistance
feature, and infers queries without programmer intervention.

Other work suggested relevant web discussions to help
solve coding problems [6], [35], [48], or from online resources
in general. An example is Dora [48], a tool integrated into
Visual Studio that automatically query and analyze online
discussions (e.g., Stack Overflow) to locate relevant solutions
to programming problems.

The infrastructure of CODETUBE is designed such that
any source of documentation can potentially be used to
complement the information extracted from video tutorials.
While the current CODETUBE instantiation leverages Stack
Overflow discussions, future work will investigate integrat-
ing additional information sources.

8.2 Automatic Categorization of Software Engineering
Artifacts

Researchers have proposed many approaches that categorize
various kinds of software engineering artifacts, like bug
reports, change sets or API documentation. For example,
Antoniol et al. used text mining techniques to separate bug
reports from enhancements when issue trackers fail to do
so [49]. Hindle et al. built a classifier to categorize a change
request into corrective/adaptive/perfective maintenance, fea-
ture addition, or non-functional improvement [50]. Instead,
Kim et al. applied machine learning to detect and distinguish
change sets that induce (or not) a bug fix [51], and Thung et
al. classified the type of defects by using features collected
from both bug tracking systems and code repositories [52].
Concerning other type of artifacts, Bacchelli et al. proposed a
technique to classify the content of development emails at
the line level, detecting for example code, patches, or stack
traces [53]. McMillan et al. presented an approach to classify
software applications by using API calls from third-party
libraries [54]. Last, but not least, the approach developed
by Chatri and Robillard [4] aimed at distinguishing “refer-
ence” (i.e., indispensable, or at least valuable) parts of API
documentation, from less valuable details. In our previous
work we focused on Stack Overflow discussions, and in
particular to the classification and categorization of quality
using readability and structural metrics [55], [56].

8.3 Multimedia Retrieval
Multimedia information retrieval focuses on extracting and
retrieving relevant information from multimedia resources
(e.g., images, audio, or video). One problem in the field
is splitting a video into semantically coherent fragments.
Existing approaches usually employ supervised machine
learning techniques applied to various textual, acoustic, and
visual features [57] to resolve such an issue. Galuščáková
and Pecina [58] explored the use of Passage Retrieval
segmentation techniques to retrieve relevant segments by a
textual query in a set of audio-visual recordings. Mettes et
al. [59] proposed an approach using hierarchical clustering
and syntactic and semantic similarity metrics to identify the
segments.

While CODETUBE also identifies fragments within a
video, it is significantly different than those proposed in
multimedia retrieval: it is not supervised and bases its seg-
mentation algorithm on information specific to the software
development domain, i.e., the occurrence of code in the
tutorials, something that has not been done in the field of
multimedia information retrieval [60].

8.4 Analysis of Multimedia Tutorials and Lectures
Recent work in related fields, such as human-computer
interaction has also recognized the general limitations of
current multimedia platforms and has set out to address
some of these limitations. Banovic et al. [61] proposed an
approach able to analyze end-user software video tutorials
and extract the GUI elements appearing on the screen (e.g.,
menus, icons, etc.), as well as the interaction with those
elements present in the video (e.g., user clicks), without
a-priori knowledge of the application. Other works have
also extracted GUI elements from end-user software training
materials, but using templates to identify them [62], [63], [64].
Moslehi et al. [65] proposed an approach to mine the speech
in YouTube videos, extract use case scenarios, and show how
their content can supplement existing documentation.

Other related works have focused on segmenting videos
based on various criteria. Pongnumkul et al. [64] introduced
Pause-and-Play, a system that detects important events in
video tutorials, segments videos based on these events, and
links them to events in the target application as the end user
is replicating what they see on the screen. DemoCut [66], a
video editing system introduced by Chi et al. also segments
video tutorials based on important events, but it requires the
users to mark these key moments within videos showing
physical demonstrations. Shin et al. [67] introduced “visual
transcripts” for blackboard-style video lectures, obtained
by segmenting a video based on visual entities such as
equations or figures, linking parts of the available audio
transcripts to these entities, and then producing a transcript
that intertwines them.

In addition, some research investigated ways to improve
categorization, summarization, and navigation of video
lectures and tutorials. For example, the technique by Chatbri
et al. [68] generates and analyzes the audio transcripts of
science and math videos in order to categorize them based on
their discipline. The video digests introduced by Pavel et al.
[69] allow users to browse and skim long talks by segmenting

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

and organizing the videos into chapters, and then providing
short summaries for each section. Kim et al. [70] also aim to
improve the navigation and summarization of educational
videos, and propose various techniques to address this, such
as a video timeline, transcript search, keyword summaries,
relevant frame extraction, and a visual summary.

While similar to our work in analyzing part of the infor-
mation captured in video tutorials, CODETUBE differs from
all this previous work as it focuses specifically on software
development tutorials, and includes tailored analysis for
this purpose: identifying and extracting source code found
within the video, segmenting videos based on the presence
of code, classifying video fragments into categories found
specifically in software development video tutorials, and
linking video fragments to other, complementary sources of
developer documentation such as Stack Overflow.

An extensive treatment of approaches for video analysis
and repackaging for the purpose of distance education is
provided in a book by Ram and Chaudhuri [71]. In particular,
they introduce the concept of media repackaging on client’s
side, to provide remote students with customize content.
The general idea is to provide videos eliminating redundant
frames, e.g., by detecting slide transitions in presentations,
or by distinguishing frames providing content by those not
providing content (e.g., where an instructor just talks).

While we share with Ram and Chaudhuri the goal of
producing short video fragments, CODETUBE is very specific
to software development video tutorial. This is because
(i) it employs specific heuristics for identifying IDEs and
their content; (ii) it relies on source-code related text-mining
approaches [72], [73], [74] to analyze the source code shown
in video frames and to identify fragments relevant to a query.

8.5 Use of Multimedia in Learning
Multimedia resources, especially those using videos, have
been shown to be a very effective medium for learning,
which is also often preferred by students over written text.
Mayer [75] established twelve principles, based on numerous
studies, that define the use and efficiency of multimedia
in learning environments. Some of these principles clearly
motivate CODETUBE: (i) the multimedia principle states that
people learn better from words and graphics than from words
alone; (ii) the temporal contiguity principle indicates that people
learn better when corresponding words and pictures are
presented simultaneously rather than successively. These
two principles stand at the core of CODETUBE and suggest
that video tutorials could be a better learning medium for
developers than traditional software documentation, where
text is often the only information source, or, at best, it
is shown in a sequence with graphics. Future work will
investigate this direction through user studies. Previous work
has also shown that YouTube can be an efficient way to teach
new concepts. Duffy [76] has shown that students like to
use YouTube, as it provides a user-guided experience. For
Mullamphy et al. [77] videos allow students to learn at their
own pace. These observations were also confirmed within
our first study.

9 CONCLUSION

Software development video tutorials are a modern medium
to disseminate in-depth technical knowledge, and if we were

to make an informed guess, they represent the next frontier
in software documentation. However, the intrinsic nature of
audio-visual content poses a number of challenges. First, it
is difficult, if not impossible, to search videos based on their
contents. This is a prime requisite to make the information
contained in the video tutorials more accessible. Second, it
is non-trivial to understand whether a video contains the
information one is looking for, short of watching the whole
video.

We presented CODETUBE, a novel approach to extract and
classify relevant fragments from software development video
tutorials. CODETUBE mixes several existing approaches and
technologies like Optical Character Recognition (OCR) and is-
land parsing to analyze the complex unstructured contents of
the video tutorials. Our approach extracts video fragments by
merging the code information located and extracted within
video frames, together with the speech information provided
by audio transcripts. Also, it automatically classify the “type”
of video fragment (e.g., theoretical, implementation) and
complements the video fragments with relevant Stack Over-
flow discussions. We conducted three studies to evaluate
CODETUBE, showing its ability to identify and correctly
classify meaningful code fragments. Also, we investigated
the perception of our approach in industry environments
by interviewing three leading developers, receiving useful
insights on the strengths and potential extensions of our
current work. To our knowledge, CODETUBE is the first, and
freely available20 tool to perform video fragment analysis for
software development.

The approach presented in this paper is, to the best of
our knowledge, the first classification and fragmentation
approach for video tutorial fragments used in software
engineering. The work on CODETUBE will continue by
experimenting additional strategies to successfully deal with
sources of noise (e.g., scrolling, zooming) present in video
tutorials as well as for improving the linking between each
video fragment with the related Stack Overflow discussions.
Finally, we plan to revise the CODETUBE user interface to
take inspiration from recent advances in the field of Human-
Computer interaction (see e.g., [70]). Our long-term vision is
to seamlessly integrate video tutorials with the development
environment, and to move towards the concept of a holistic
recommender, where we aim at providing additional sources
of information other than Stack Overflow altogether.

ACKNOWLEDGMENTS

Ponzanelli and Lanza thank the Swiss National Science
foundation for the financial support through SNF Project
ESSENTIALS, No. 153129. Bavota thanks the Swiss National
Science foundation for the financial support through SNF
Project JITRA, No. 172479.

REFERENCES

[1] M. Umarji, S. Sim, and C. Lopes, “Archetypal Internet-Scale source
code searching,” in Open Source Development, Communities and
Quality, ser. IFIP The International Federation for Information
Processing, B. Russo, E. Damiani, S. Hissam, B. Lundell, and
G. Succi, Eds., vol. 275. Springer US, 2008, pp. 257–263.

20. http://codetube.inf.usi.ch

http://codetube.inf.usi.ch

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 23

[2] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowledge
using YouTube,” in Proceedings of ICPC 2015 (23rd IEEE International
Conference on Program Comprehension), 2015, pp. 104–114.

[3] P. C. Rigby and M. P. Robillard, “Discovering essential code
elements in informal documentation,” in Proceedings of ICSE 2013
(35th International Conference on Software Engineering). IEEE Press,
2013, pp. 832–841.

[4] M. P. Robillard and Y. B. Chhetri, “Recommending reference API
documentation,” Empirical Software Engineering, pp. 1–29, 2014.

[5] R. Holmes and G. C. Murphy, “Using structural context to rec-
ommend source code examples,” in Proceedings of ICSE 2005 (27th
International Conference on Software Engineering). ACM, 2005, pp.
117–125.

[6] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the IDE into a self-confident pro-
gramming prompter,” in Proceedings of MSR 2014 (11th Working
Conference on Mining Software Repositories). ACM, 2014, pp. 102–
111.

[7] R. P. L. Buse and W. Weimer, “Synthesizing API usage examples,”
in Proceedings of ICSE 2012 (34th International Conference on Software
Engineering). IEEE, 2012, pp. 782–792.

[8] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial
orders from source code: from usage scenarios to specifications,”
in Proceedings of ESEC/FSE 2007 (6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering). ACM, 2007, pp.
25–34.

[9] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code
examples,” in Proceedings of ICSE 2014 (36th International Conference
on Software Engineering). ACM, 2014, pp. 664–675.

[10] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can I use this method?” in Proceedings of ICSE 2015 (37th
IEEE/ACM International Conference on Software Engineering), 2015,
pp. 880–890.

[11] L. Moonen, “Generating robust parsers using island grammars,”
in Proceedings of WCRE 2001 (8th Working Conference on Reverse
Engineering). IEEE CS, 2001, pp. 13–22.

[12] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting
structured data from natural language documents with island
parsing,” in In Proceedings of ASE 2011 (26th IEEE/ACM International
Conference On Automated Software Engineering), 2011, pp. 476–479.

[13] L. Ponzanelli, A. Mocci, and M. Lanza, “Stormed: Stack overflow
ready made data,” in Proceedings of MSR 2015 (12th Working
Conference on Mining Software Repositories). ACM Press, 2015,
pp. 474–477.

[14] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2000.

[15] R. M. Groves, Survey Methodology, 2nd edition. Wiley, 2009.
[16] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-

tional and Psychosocial Measurement, vol. 20, pp. 37–46, 1960.
[17] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.

Addison-Wesley, 1999.
[18] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of Machine Learning Research, vol. 3, pp. 993–1022, Mar. 2003.
[19] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and

A. De Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in
Proceedings of ICSE 2013 (35th ACM/IEEE International Conference on
Software Engineering), 2013, pp. 522–531.

[20] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of ICSE 2014
(36th ACM/IEEE International Conference on Software Engineering),
2014, pp. 1025–1035.

[21] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, Third Edition. Morgan Kaufmann Publishers Inc.,
2011.

[22] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[23] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, and
M. Lanza, “Replication package.” http://reveal.inf.usi.ch/reports/
codetube-tse/.

[24] T. M. Mitchell, Machine Learning, 1st ed. McGraw-Hill, Inc., 1997.
[25] Z. Wen and V. Tzerpos, “An effectiveness measure for software

clustering algorithms,” in Proceedings of ICPC 2004 (12th IEEE

International Workshop on Program Comprehension). IEEE, 2004,
pp. 194–203.

[26] L. Ponzanelli, “Holistic recommender systems for software engi-
neering,” in Proceedings of ICSE 2014 (36th International Conference
on Software Engineering). ACM, 2014, pp. 686–689.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357, Jun. 2002.

[28] A. P. Bradley, “The use of the area under the ROC curve in the
evaluation of machine learning algorithms,” Pattern Recognition,
vol. 30, no. 7, pp. 1145–1159, 1997.

[29] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto,
M. Hasan, B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t
watch! extracting relevant fragments from software development
video tutorials,” in Proceedings of ICSE 2016 (38th International
Conference on Software Engineering). ACM Press, 2016, pp. 261–272.

[30] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement. Pinter Publishers, 1992.

[31] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge University Press, 2008.

[32] S. Yadid and E. Yahav, “Extracting code from programming tutorial
videos,” in 2016 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward!
2016, Amsterdam, The Netherlands, November 2-4, 2016, 2016, pp.
98–111.

[33] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommen-
dation to support problem solving in software development,” in
Proceedings of RSSE 2012 (3rd International Workshop on Recommen-
dation Systems for Software Engineering). IEEE Press, 2012, pp.
85–89.

[34] W. Takuya and H. Masuhara, “A spontaneous code recommen-
dation tool based on associative search,” in Proceedings of SUITE
2011 (3rd International Workshop on Search-Driven Development: Users,
Infrastructure, Tools, and Evaluation). ACM, 2011, pp. 17–20.

[35] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd
knowledge for software comprehension and development,” in
Proceedings of CSMR 2013 (17th European Conference on Software
Maintenance and Reengineering), 2013, pp. 59–66.

[36] ——, “Seahawk: Stack overflow in the ide,” in Proceedings of ICSE
2013 (35th International Conference on Software Engineering), Tool
Demo Track. IEEE, 2013, pp. 1295–1298.

[37] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia, “Information
retrieval models for recovering traceability links between code
and documentation,” in Proceedings of ICSM (16th IEEE International
Conference on Software Maintenance). IEEE CS Press, 2000, pp. 40–51.

[38] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API
documentation,” in Proceedings of ICSE 2014 (36th International
Conference on Software Engineering). ACM, 2014, pp. 643–652.

[39] G. Petrosyan, M. P. Robillard, and R. D. Mori, “Discovering
information explaining api types using text classification,” in
Proceedings of ICSE 2015 (37th ACM/IEEE International Conference on
Software Engineering), 2015, pp. 869–879.

[40] D. Cubranic, G. Murphy, J. Singer, and K. Booth, “Hipikat: A project
memory for software development,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[41] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of FSE 2006 (14th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering). ACM, 2006, pp. 1–11.

[42] R. Holmes, R. J. Walker, and G. C. Murphy, “Approximate structural
context matching: An approach to recommend relevant examples,”
IEEE Transactions on Software Engineering, vol. 32, no. 12, pp. 952–
970, Dec. 2006.

[43] R. Holmes and A. Begel, “Deep intellisense: A tool for rehydrating
evaporated information,” in Proceedings of MSR 2008 (5th IEEE
International Working Conference on Mining Software Repositories).
New York, NY, USA: ACM, 2008, pp. 23–26.

[44] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman, “Jungloid mining:
Helping to navigate the api jungle,” in Proceedings of PLDI 2005
(16th ACM SIGPLAN Conference on Programming Language Design
and Implementation). ACM, 2005, pp. 48–61.

[45] N. Sawadsky and G. C. Murphy, “Fishtail: From task context to
source code examples,” in Proceedings of TOPI 2011 (1st Workshop
on Developing Tools As Plug-ins). ACM, 2011, pp. 48–51.

[46] S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant
for reusing open source code on the web,” in Proceedings of the

http://reveal.inf.usi.ch/reports/codetube-tse/
http://reveal.inf.usi.ch/reports/codetube-tse/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2779479,
IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

ASE (22nd IEEE/ACM International Conference on Automated Software
Engineering). New York, NY, USA: ACM, 2007, pp. 204–213.

[47] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding API
components and examples,” in Proceedings of the Visual Languages
and Human-Centric Computing, ser. VLHCC ’06. IEEE Computer
Society, 2006, pp. 195–202.

[48] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Auto-
matically locating relevant programming help online,” in IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2012, pp. 127–134.

[49] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of CASCON 2008. ACM, 2008, pp.
304–318.

[50] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Auto-
matic classification of large changes into maintenance categories,”
in In Proceedings of ICPC 2009 (17th IEEE International Conference on
Program Comprehension). IEEE Press, 2009, pp. 30–39.

[51] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181–196, 2008.

[52] F. Thung, X.-B. D. Le, and D. Lo, “Active semi-supervised defect
categorization,” in Proceedings of ICPC 2015 (23rd IEEE International
Conference on Program Comprehension). IEEE Press, 2015, pp. 60–70.

[53] A. Bacchelli, T. D. Sasso, M. D’Ambros, and M. Lanza, “Content
Classification of Development Emails,” in Proceedings of ICSE 2012
(34th ACM/IEEE International Conference on Software Engineering),
2012.

[54] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and
M. Grechanik, “Categorizing software applications for main-
tenance,” in Proceedings of ICSM 2011 (27th IEEE International
Conference on Software Maintenance). IEEE Computer Society, 2011,
pp. 343–352.

[55] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza, “Understand-
ing and Classifying the Quality of Technical Forum Questions,” in
Proceedings of QSIC 2014 (14th International Conference on Quality
Software). IEEE CS Press, 2014, pp. 343–352.

[56] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton,
“Improving Low Quality Stack Overflow Post Detection,” in
Proceedings of ICSME 2014 (30th International Conference on Software
Maintenance and Evolution). IEEE, 2014, pp. 541–544.

[57] T. Du, Y. Junsong, and D. Forsyth, “Video event detection: From
subvolume localization to spatiotemporal path search,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 2, pp. 404–416, Feb. 2014.

[58] P. Galuščáková and P. Pecina, “Experiments with segmentation
strategies for passage retrieval in audio-visual documents,” in
Proceedings of ICMR 2014 (4th International Conference on Multimedia
Retrieval). ACM, 2014, pp. 217:217–217:224.

[59] P. Mettes, J. C. van Gemert, S. Cappallo, T. Mensink, and C. G. M.
Snoek, “Bag-of-fragments: Selecting and encoding video fragments
for event detection and recounting,” in Proceedings of ICMR 2015
(5th ACM International Conference on Multimedia Retrieval). ACM,
2015, pp. 427–434.

[60] A. R. Ram and S. Chaudhuri, Video Analysis and Repackaging for
Distance Education, 1st ed. Springer-Verlag New York, 2012.

[61] N. Banovic, T. Grossman, J. Matejka, and G. Fitzmaurice, “Waken:
reverse engineering usage information and interface structure from
software videos,” in Proceedings of the 25th annual ACM symposium
on User interface software and technology (UIST ’12). ACM, 2012, pp.
83–92.

[62] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using gui screenshots
for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’09.
ACM, 2009, pp. 183–192.

[63] L. Bergman, V. Castelli, T. Lau, and D. Oblinger, “Docwizards:
a system for authoring follow-me documentation wizards,” in
Proceedings of the 18th annual ACM symposium on User interface
software and technology (UIST ’05), ser. UIST ’09. ACM, 2005, pp.
191–200.

[64] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev,
S. Avidan, and M. F. Cohen, “Pause-and-play: automatically linking
screencast video tutorials with applications,” in Proceedings of the
24th annual ACM symposium on User interface software and technology
(UIST ’11). ACM, 2011, pp. 135–144.

[65] P. Moslehi, B. Adams, and J. Rilling, “On mining crowd-based
speech documentation,” in Proceedings of MSR 2016 (13th Interna-

tional Conference on Mining Software Repositories). ACM, 2016, pp.
259–268.

[66] P.-Y. Chi, J. Liu, J. Linder, M. Dontcheva, W. Li, and B. Hartmann,
“Democut: generating concise instructional videos for physical
demonstrations,” in Proceedings of the 26th annual ACM symposium
on User interface software and technology (UIST ’13). ACM, 2013, pp.
141–150.

[67] H. V. Shin, F. Berthouzoz, W. Li, and F. Durand, “Visual transcripts:
lecture notes from blackboard-style lecture videos,” ACM Transac-
tions on Graphics, vol. 34, no. 6:240, Nov. 2015.

[68] H. Chatbri, K. McGuinness, S. Little, J. Zhou, K. Kameyama,
P. Kwan, and N. E. O’Connor, “Automatic mooc video classification
using transcript features and convolutional neural networks,”
in Proceedings of the 2017 ACM Workshop on Multimedia-based
Educational and Knowledge Technologies for Personalized and Social
Online Training (MultiEdTech ’17). ACM, 2017, pp. 21–26.

[69] A. Pavel, C. Reed, B. Hartmann, and M. Agrawala, “Video digests:
a browsable, skimmable format for informational lecture videos,”
in Proceedings of the 27th annual ACM symposium on User interface
software and technology (UIST ’14). ACM, 2014, pp. 573–582.

[70] J. Kim, P. J. Guo, C. J. Cai, S.-W. D. Li, K. Z. Gajos, and R. C. Miller,
“Data-driven interaction techniques for improving navigation of
educational videos,” in Proceedings of UIST 2014 (27th Annual ACM
Symposium on User Interface Software and Technology). ACM, 2014,
pp. 563–572.

[71] A. R. Ram and S. Chaudhuri, Video Analysis and Repackaging for
Distance Education. Springer Publishing Company, Incorporated,
2014.

[72] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[73] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of Software:
Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013.

[74] D. Poshyvanyk, Y. Guéhéneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval,” IEEE Trans.
Software Eng., vol. 33, no. 6, pp. 420–432, 2007.

[75] R. E. Mayer, Multimedia Learning, 2nd ed. New York, NY, USA:
Cambridge University Press, 2009.

[76] P. Duffy, “Engaging the youtube google-eyed generation: Strategies
for using web 2.0 in teaching and learning,” in European Conference
on ELearning, ECEL, 2007, pp. 173–182.

[77] D. Mullamphy, P. Higgins, S. Belward, and L. Ward, “To screencast
or not to screencast,” Anziam Journal, vol. 51, pp. C446–C460, 2010.

